JP5676854B2 - Hard coating member and method for producing the same - Google Patents

Hard coating member and method for producing the same Download PDF

Info

Publication number
JP5676854B2
JP5676854B2 JP2009089833A JP2009089833A JP5676854B2 JP 5676854 B2 JP5676854 B2 JP 5676854B2 JP 2009089833 A JP2009089833 A JP 2009089833A JP 2009089833 A JP2009089833 A JP 2009089833A JP 5676854 B2 JP5676854 B2 JP 5676854B2
Authority
JP
Japan
Prior art keywords
film
chromium
nitrogen
thickness
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009089833A
Other languages
Japanese (ja)
Other versions
JP2010242135A (en
Inventor
清水 雄一郎
雄一郎 清水
北村 征寛
征寛 北村
光輝 戸石
光輝 戸石
尚子 渡邊
尚子 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2009089833A priority Critical patent/JP5676854B2/en
Publication of JP2010242135A publication Critical patent/JP2010242135A/en
Application granted granted Critical
Publication of JP5676854B2 publication Critical patent/JP5676854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、硬質皮膜被覆部材およびその製造方法に関し、特に、表面に硬質皮膜として窒素含有クロム皮膜が形成された部材およびその製造方法に関する。   The present invention relates to a hard film-coated member and a method for producing the same, and more particularly to a member having a nitrogen-containing chromium film formed on the surface as a hard film and a method for producing the same.

従来、耐摩耗性や耐焼き付き性が必要とされる自動車などの摺動部品や機械部材の他、高面圧下で使用される金型などの表面に、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜を形成して、耐摩耗性や耐焼き付き性を向上させる方法が知られている。しかし、スパッタリングなどの物理的蒸着によって窒素含有クロム皮膜のような硬質皮膜を金属基材上に形成すると、皮膜自体の圧縮応力により皮膜を厚くするのが困難であり、皮膜の内部応力が大きくなって基材への密着性が悪くなるという問題がある。   Conventionally, nitrogen-containing chromium is produced by physical vapor deposition such as sputtering on the surfaces of sliding parts and machine parts such as automobiles that require wear resistance and seizure resistance, as well as dies used under high surface pressure. A method is known in which a film is formed to improve wear resistance and seizure resistance. However, when a hard film such as a nitrogen-containing chromium film is formed on a metal substrate by physical vapor deposition such as sputtering, it is difficult to thicken the film due to the compressive stress of the film itself, and the internal stress of the film increases. There is a problem that the adhesion to the base material is deteriorated.

このような問題を解消する方法として、スパッタリング法により、基材の表面に形成される窒素含有クロム皮膜中の窒素濃度を基材側と表面側の間で変化させて、良好な耐摩耗性および耐焼き付き性などを有するとともに、基材への密着性および靭性にも優れた窒素含有クロム皮膜を製造する方法が提案されている(例えば、特許文献1参照)。また、イオンプレーティング法により、柱状晶ができる高バイアス電圧で複合窒化物を一定時間形成する工程と、柱状晶ができない低バイアス電圧で複合窒化物を一定時間形成する工程とを交互に繰り返して、柱状晶の複合窒化物の硬質皮膜中に一定間隔毎に一定の厚さの柱状晶ではない構造の複合窒化物の応力緩和層を挟み込むことによって、内部応力が低減されて高い密着力を有する硬質厚膜皮膜を製造する方法が提案されている(例えば、特許文献2参照)。   As a method for solving such a problem, by changing the nitrogen concentration in the nitrogen-containing chromium film formed on the surface of the substrate by the sputtering method between the substrate side and the surface side, good wear resistance and There has been proposed a method for producing a nitrogen-containing chromium film that has seizure resistance and the like, and also has excellent adhesion to a base material and toughness (see, for example, Patent Document 1). In addition, the step of forming the composite nitride for a certain period of time with a high bias voltage capable of forming columnar crystals by the ion plating method and the step of forming the composite nitride for a certain period of time with a low bias voltage capable of preventing columnar crystals are alternately repeated. In addition, by interposing a stress relaxation layer of a composite nitride having a structure that is not a columnar crystal with a certain thickness at regular intervals in the hard film of the columnar composite nitride, the internal stress is reduced and the adhesive strength is high A method for producing a hard thick film has been proposed (see, for example, Patent Document 2).

特開2007−92112号公報(段落番号0008−0013)JP 2007-92112 A (paragraph number 0008-0013) 特開2005−187859号公報(段落番号0011−0013)Japanese Patent Laying-Open No. 2005-187859 (paragraph numbers 0011-0013)

しかし、特許文献1や特許文献2の方法では、基材への密着性は向上するが、硬さが低下するという問題がある。   However, in the methods of Patent Document 1 and Patent Document 2, the adhesion to the base material is improved, but there is a problem that the hardness is lowered.

したがって、本発明は、このような従来の問題点に鑑み、所望の硬さを維持しつつ基材への密着性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a hard film-coated member coated with a hard film having a high hardness and excellent adhesion to a base material while maintaining a desired hardness, and a method for producing the same The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、基材上にクロム皮膜と窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する硬質皮膜被覆部材の製造方法において、バイアス電圧−30V〜−70Vでスパッタリングして、略同一の厚さ10〜50nmのクロム皮膜と略同一の厚さ10〜50nmの窒素含有クロム皮膜を交互に形成することにより、所望の硬さを維持しつつ基材への密着性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors formed a plurality of chromium films and a plurality of nitrogen-containing chromium films so that a chromium film and a nitrogen-containing chromium film are alternately arranged on the substrate. In the manufacturing method of the hard film covering member to be performed, sputtering is performed at a bias voltage of −30 V to −70 V, and a chromium film having approximately the same thickness of 10 to 50 nm and a nitrogen-containing chromium film having approximately the same thickness of 10 to 50 nm are alternately formed. In order to complete the present invention, it is found that a hard coating member coated with a hard coating having a high hardness and excellent adhesion to a base material can be produced while maintaining a desired hardness. It came.

すなわち、本発明による硬質皮膜被覆部材の製造方法は、基材上にクロム皮膜と窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する硬質皮膜被覆部材の製造方法において、バイアス電圧−30V〜−70V、好ましくは−30V〜−50Vでスパッタリングして、略同一の厚さ10〜50nm、好ましくは20〜40nmのクロム皮膜と、略同一の厚さ10〜50nm、好ましくは20〜40nmの窒素含有クロム皮膜を交互に形成することを特徴とする。   That is, the method of manufacturing a hard coating member according to the present invention includes a hard coating coating that forms a plurality of chromium coatings and a plurality of nitrogen-containing chromium coatings so that a chromium coating and a nitrogen-containing chromium coating are alternately arranged on a substrate. In the member manufacturing method, sputtering is performed at a bias voltage of −30 V to −70 V, preferably −30 V to −50 V, and the chromium film having substantially the same thickness of 10 to 50 nm, preferably 20 to 40 nm, and substantially the same thickness. A nitrogen-containing chromium film having a thickness of 10 to 50 nm, preferably 20 to 40 nm is alternately formed.

この硬質皮膜被覆部材の製造方法において、複数のクロム皮膜と複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にするのが好ましい。   In this method of manufacturing a hard coating member, when a plurality of chromium coatings and a plurality of nitrogen-containing chromium coatings are continuously formed in a processing chamber of an apparatus for sputtering using a chromium target to form a plurality of chromium coatings. In this case, it is preferable that the processing chamber is set to an argon gas atmosphere, and when the plurality of nitrogen-containing chromium films are formed, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas.

また、本発明による硬質皮膜被覆部材は、基材上に略同一の厚さ10〜50nm、好ましくは20〜40nmのクロム皮膜と略同一の厚さ10〜50nm、好ましくは20〜40nmの窒素含有クロム皮膜が交互に配置されるようにそれぞれ20層以上のクロム皮膜と窒素含有クロム皮膜が形成された硬質皮膜被覆部材であって、2θ=63.5°のX線回折強度をICrN(220)、2θ=60.6°のX線回折強度をICrN(202)、クロム皮膜の厚さをCr膜厚、窒素含有クロム皮膜の厚さをCr(N)膜厚、全てのクロム皮膜と窒素含有クロム皮膜の合計の厚さを全膜厚とすると、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値が20(nm)以上であることを特徴とする。 Further, the hard film-coated member according to the present invention has a nitrogen content of about 10 to 50 nm, preferably about 20 to 40 nm, and about 20 to 40 nm, substantially the same thickness as a chromium film on the substrate. chromium coating to a hard-coated member or each 20 layers of chrome surface and nitrogen-containing chromium film formed so as to be arranged alternately, IcRn the X-ray diffraction intensity of 2θ = 63.5 ° (220 ) 2θ = 60.6 ° X-ray diffraction intensity ICr 2 N (202), chromium film thickness Cr film thickness, nitrogen-containing chromium film thickness Cr (N) film thickness, all chromium film And the total thickness of the nitrogen-containing chromium film, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) film thickness (nm) × 1000 / Total film thickness (nm)} is 20 (n ) And wherein the or more.

なお、本明細書中において、「窒素含有クロム皮膜」とは、クロム皮膜中に窒素および窒化クロムの少なくとも一方が分散した皮膜をいう。   In the present specification, the “nitrogen-containing chromium film” refers to a film in which at least one of nitrogen and chromium nitride is dispersed in the chromium film.

本発明によれば、所望の硬さを維持しつつ基材への密着性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができる。この硬質被膜被覆部材は、金型、機械部品、自動車部品などに使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hard film coating | coated member coat | covered with the hard film of the high hardness excellent in the adhesiveness to a base material is maintained, maintaining desired hardness. This hard film covering member can be used for molds, machine parts, automobile parts and the like.

本発明による硬質皮膜被覆部材の実施の形態の構造を示す断面図である。It is sectional drawing which shows the structure of embodiment of the hard film coating | coated member by this invention. 本発明による硬質皮膜被覆部材の実施の形態を製造するための処理装置の概略図である。It is the schematic of the processing apparatus for manufacturing embodiment of the hard film coating | coated member by this invention.

以下、添付図面を参照して、本発明による硬質皮膜被覆部材およびその製造方法の実施の形態について詳細に説明する。   Embodiments of a hard film covering member and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings.

図1に示すように、本発明による硬質皮膜被覆部材の実施の形態は、基材1と、この基材1上に形成された下地層2としてのクロム皮膜と、この下地層2上に略同一の厚さの応力緩和層としてのクロム皮膜と硬質層としての窒素含有クロム皮膜が交互に配置されるように形成された複数のクロム皮膜3および複数の窒素含有クロム皮膜4とを備えている。   As shown in FIG. 1, an embodiment of a hard film covering member according to the present invention includes a base material 1, a chromium film as a base layer 2 formed on the base material 1, and a substantially rough coating on the base layer 2. A plurality of chromium coatings 3 and a plurality of nitrogen-containing chromium coatings 4 are formed so that a chromium coating as a stress relaxation layer having the same thickness and a nitrogen-containing chromium coating as a hard layer are alternately arranged. .

このように、略同一の厚さの窒素含有クロム皮膜(硬質層)とクロム皮膜(硬質層より硬度が低い応力緩和層)が交互に(周期的に)積層された多層膜を基材上に形成することにより、基材への密着力および耐久性に優れた高硬度の硬質皮膜で被覆された硬質皮膜被覆部材を製造することができる。すなわち、基材上に形成される皮膜を多層構造にすることにより、硬質層と応力緩和層の界面でクラックが伝播するのを阻止して、高硬度を確保しながら応力緩和層により応力緩和して充分な密着力を確保することができる。   In this way, a multilayer film in which nitrogen-containing chromium films (hard layers) and chromium films (stress relaxation layers whose hardness is lower than that of the hard layers) having substantially the same thickness are alternately (periodically) laminated is formed on the substrate. By forming, a hard film-coated member coated with a hard film having a high hardness and excellent adhesion to the substrate and durability can be produced. In other words, by forming a multi-layered coating on the base material, it is possible to prevent cracks from propagating at the interface between the hard layer and the stress relaxation layer, and to relieve stress by the stress relaxation layer while ensuring high hardness. And sufficient adhesion can be secured.

多層膜の各々のクロム皮膜および窒素含有クロム皮膜の厚さは、10〜50nmであるのが好ましく、20〜40nmであるのがさらに好ましい。また、多層膜のクロム皮膜および窒素含有クロム皮膜の数は、それぞれ20層以上であるのが好ましく、120層以上であるのがさらに好ましく、240層以上であるのが最も好ましい。また、基材と多層膜との密着力をさらに向上させるために、基材上に下地層として厚さ0.05〜2μmのクロム皮膜を形成するのが好ましく、厚さ0.1〜1μmのクロム皮膜を形成するのがさらに好ましい。さらに、下地層を除く多層膜全体の厚さは、5〜30μmであるのが好ましく、5〜20μmであるのがさらに好ましく、5〜15μmであるのが最も好ましい。   The thickness of each chromium film and nitrogen-containing chromium film of the multilayer film is preferably 10 to 50 nm, and more preferably 20 to 40 nm. The number of chromium films and nitrogen-containing chromium films in the multilayer film is preferably 20 layers or more, more preferably 120 layers or more, and most preferably 240 layers or more. Further, in order to further improve the adhesion between the substrate and the multilayer film, it is preferable to form a chromium film having a thickness of 0.05 to 2 μm on the substrate as a base layer, and having a thickness of 0.1 to 1 μm. More preferably, a chromium film is formed. Furthermore, the thickness of the entire multilayer film excluding the base layer is preferably 5 to 30 μm, more preferably 5 to 20 μm, and most preferably 5 to 15 μm.

下地層と複数のクロム皮膜と複数の窒素含有クロム皮膜は、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成することができる。すなわち、下地層および複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気し、複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にして、下地層と複数のクロム皮膜と複数の窒素含有クロム皮膜を連続的に形成することができる。   The underlayer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films can be continuously formed in a processing chamber of an apparatus that performs sputtering using a chromium target. That is, when forming the base layer and the plurality of chromium films, an argon gas atmosphere is formed in the processing chamber, and when forming a plurality of nitrogen-containing chromium films, the processing chamber is set to an atmosphere containing argon gas and nitrogen gas. The underlayer, the plurality of chromium films, and the plurality of nitrogen-containing chromium films can be formed continuously.

このスパッタリングは、DCマグネトロンスパッタリング法によって行うことができるので、基材として使用する鋼材の焼き戻し温度以下の低温(例えば、250℃以下、好ましくは200℃以下)で成膜することができるため、鋼材の軟化や熱歪を抑制することができ、また、他の物理的蒸着と比べて生産性が高い。また、このスパッタリングでは、イオンプレーティング法によって成膜する場合のように皮膜の材料が溶融した塊(ドロップレット)が発生しないので、平滑な表面の皮膜を形成することができる。さらに、このスパッタリングでは、クロム皮膜と窒素含有クロム皮膜を形成するため、他の材料の中間層を排除することができるので、従来のスパッタリング装置に単一のターゲットを使用して、処理室内への窒素ガスを導入のON/OFFの切り替えにより、多層構造の皮膜(内部に複数の界面が形成された皮膜)を形成することができる。そのため、応力緩和層としてのクロム皮膜と硬質層としての窒素含有クロム皮膜の界面でクラックが伝播するのを阻止して、高硬度を確保しながら応力緩和層により応力緩和して優れた密着性を有する窒素含有クロム皮膜を得ることができる。また、バイアス電圧を一定にしてスパッタリングを行うことができるので、皮膜の割れを防止することができ、応力緩和層を挟み込んでも硬度が低下するのを防止することができる。   Since this sputtering can be performed by the DC magnetron sputtering method, the film can be formed at a low temperature (for example, 250 ° C. or less, preferably 200 ° C. or less) below the tempering temperature of the steel material used as the base material. Softening and thermal strain of steel can be suppressed, and productivity is higher than other physical vapor deposition. In addition, in this sputtering, since a lump (droplet) in which the material of the film is melted does not occur as in the case of film formation by an ion plating method, a film having a smooth surface can be formed. Further, since this sputtering forms a chromium film and a nitrogen-containing chromium film, an intermediate layer of other materials can be eliminated, so that a single target is used in a conventional sputtering apparatus to enter the processing chamber. By switching on / off of nitrogen gas introduction, a multi-layered film (a film having a plurality of interfaces formed therein) can be formed. For this reason, crack propagation is prevented at the interface between the chromium film as the stress relaxation layer and the nitrogen-containing chromium film as the hard layer, and the stress is relaxed by the stress relaxation layer while ensuring high hardness, resulting in excellent adhesion. The nitrogen-containing chromium film | membrane which has can be obtained. Further, since sputtering can be performed with a constant bias voltage, it is possible to prevent the film from cracking and to prevent the hardness from being lowered even if the stress relaxation layer is sandwiched.

本発明による硬質皮膜被覆部材の実施の形態は、例えば、図2に示す処理装置10を使用して製造することができる。この処理装置10は、真空処理室12と、この真空処理室12内を減圧して真空にするための真空ポンプ14と、真空処理室12内の底部の中心部に配設された回転テーブル16と、この回転テーブル16上に治具18を介して載置された被処理部材として基材20と、この基材20を取り囲むように配置された蒸発源としてのターゲット22と、これらのターゲット22の各々に接続された直流のスパッタ電源24と、回転テーブル16に接続された直流のイオンボンバードおよびバイアス電源26と、真空処理室12内にアルゴンガスおよび窒素ガスを導入するためのガス導入パイプ28とを備えている。以下、この処理装置10を使用して、本発明による硬質皮膜被覆部材の実施の形態を製造する方法について説明する。   The embodiment of the hard film covering member according to the present invention can be manufactured using, for example, the processing apparatus 10 shown in FIG. The processing apparatus 10 includes a vacuum processing chamber 12, a vacuum pump 14 for reducing the pressure in the vacuum processing chamber 12 to form a vacuum, and a rotary table 16 disposed at the center of the bottom of the vacuum processing chamber 12. A substrate 20 as a member to be processed placed on the turntable 16 via a jig 18; a target 22 as an evaporation source disposed so as to surround the substrate 20; and these targets 22 A DC sputtering power source 24 connected to each of these, a DC ion bombard and bias power source 26 connected to the rotary table 16, and a gas introduction pipe 28 for introducing argon gas and nitrogen gas into the vacuum processing chamber 12. And. Hereinafter, a method for producing an embodiment of the hard film covering member according to the present invention using the processing apparatus 10 will be described.

(イオンボンバード処理工程)
まず、処理装置10のターゲット22としてクロムターゲットを真空処理室12内に配置し、真空ポンプ14を作動させて真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にして、イオンボンバード処理を行って、基材20の表面を活性化する。
(Ion bombarding process)
First, a chromium target is disposed in the vacuum processing chamber 12 as the target 22 of the processing apparatus 10, the vacuum pump 14 is operated to evacuate the vacuum processing chamber 12, and then the vacuum processing chamber 12 is connected via a gas introduction pipe 28. Argon gas is introduced into the vacuum processing chamber 12 to form an argon gas atmosphere, and ion bombarding is performed to activate the surface of the substrate 20.

(下地層形成工程)
次に、アルゴンガスの導入を一旦停止し、真空処理室12内を真空排気した後、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にする。その後、ターゲット22にスパッタ電源24の所定の電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が基材20の表面に叩き付けられて、基材20の表面に下地層としてのクロム皮膜が形成される。
(Underlayer forming process)
Next, the introduction of the argon gas is temporarily stopped, the inside of the vacuum processing chamber 12 is evacuated, and then the argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 so that the inside of the vacuum processing chamber 12 is argon gas. Make the atmosphere. Thereafter, a predetermined voltage of the sputtering power supply 24 is applied to the target 22 to cause glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are struck out from the target 22, and the chrome atoms are struck against the surface of the substrate 20. A chromium film as an underlayer is formed on the surface of 20.

(クロム皮膜形成工程)
次に、ガス導入パイプ28を介して真空処理室12内にアルゴンガスを導入して真空処理室12内をアルゴンガス雰囲気にする。その後、ターゲット22にスパッタ電源24からの−30V〜−70V,好ましくは−30V〜−50Vの電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が基材20上の下地層の表面に叩き付けられて、基材20上の下地層の表面に応力緩和層としての厚さ10〜50nm、好ましくは厚さ20〜40nmのクロム皮膜が形成される。
(Chromium film formation process)
Next, argon gas is introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 to make the inside of the vacuum processing chamber 12 an argon gas atmosphere. Thereafter, a voltage of −30 V to −70 V, preferably −30 V to −50 V from the sputtering power supply 24 is applied to the target 22 to generate glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed. As a result of this collision, chromium atoms are struck out from the target 22, and the chrome atoms are struck against the surface of the base layer on the substrate 20. Thus, a chromium film having a thickness of 10 to 50 nm, preferably 20 to 40 nm, as a stress relaxation layer is formed on the surface of the base layer on the substrate 20.

(窒素含有クロム皮膜形成工程)
次に、ガス導入パイプ28を介して真空処理室12内にアルゴンガスと窒素ガスを導入して真空処理室12内をアルゴンガスと窒素ガスの雰囲気にする。その後、ターゲット22にスパッタ電源24からの−30V〜−70V,好ましくは−30V〜−50Vの電圧を印加して、ターゲット22の近傍にグロー放電(低温プラズマ)を生じさせる。これにより、放電領域内のアルゴンガスがイオン化してターゲット22に高速で衝突し、この衝突によってターゲット22からクロム原子が叩き出され、このクロム原子が真空処理室12内の雰囲気中の窒素原子とともに基材20上のクロム皮膜の表面に叩き付けられて、基材20上のクロム皮膜の表面に窒素を含有する厚さ10〜50nm、好ましくは厚さ20〜40nmのクロム皮膜(硬質層)が形成される。このようにして形成された窒素含有クロム皮膜は、クロム皮膜中に窒素および窒化クロムの少なくとも一方が分散した皮膜であり、クロム皮膜中に固溶した窒素、アモルファス構造の窒化クロムまたは微細な結晶の窒化クロムの少なくとも1つを含む皮膜であると考えられる。
(Nitrogen-containing chromium film forming process)
Next, argon gas and nitrogen gas are introduced into the vacuum processing chamber 12 through the gas introduction pipe 28 to make the inside of the vacuum processing chamber 12 an atmosphere of argon gas and nitrogen gas. Thereafter, a voltage of −30 V to −70 V, preferably −30 V to −50 V from the sputtering power supply 24 is applied to the target 22 to generate glow discharge (low temperature plasma) in the vicinity of the target 22. As a result, the argon gas in the discharge region is ionized and collides with the target 22 at a high speed, and this collision expels chromium atoms from the target 22, and these chromium atoms together with nitrogen atoms in the atmosphere in the vacuum processing chamber 12. A chromium film (hard layer) having a thickness of 10 to 50 nm, preferably 20 to 40 nm, containing nitrogen is formed on the surface of the chromium film on the substrate 20 by being struck against the surface of the chromium film on the substrate 20. Is done. The nitrogen-containing chromium film formed in this way is a film in which at least one of nitrogen and chromium nitride is dispersed in the chromium film, and is formed of nitrogen dissolved in the chromium film, chromium nitride having an amorphous structure, or fine crystals. A film containing at least one of chromium nitride is considered.

さらに、上記のクロム皮膜形成工程と窒素含有クロム皮膜形成工程を繰り返して、略同一の厚さのクロム皮膜と窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する。   Further, the chromium film forming step and the nitrogen-containing chromium film forming step are repeated, so that the chromium film and the nitrogen-containing chromium film having substantially the same thickness are alternately arranged so that the plurality of chromium films and the plurality of nitrogen-containing chromium are provided. Form a film.

なお、上記のスパッタリングでは、皮膜の厚さを均一にするために且つ基材20の温度をその焼戻し温度以下に維持するために、ターゲット22と基材20の間隔を、例えば、70〜80mmに保持するのが好ましい。   In the above sputtering, in order to make the thickness of the coating uniform and to maintain the temperature of the base material 20 below the tempering temperature, the distance between the target 22 and the base material 20 is set to, for example, 70 to 80 mm. It is preferable to hold.

このようにして製造した硬質皮膜被覆部材についてX線回折測定を行うと、2θ=63.5°と2θ=60.6°にピークが明確に認められ、2θ=63.5°のX線回折強度をICrN(220)、2θ=60.6°のX線回折強度をICrN(202)、クロム皮膜の厚さをCr膜厚、窒素含有クロム皮膜の厚さをCr(N)膜厚、下地膜を除く全てのクロム皮膜と窒素含有クロム皮膜の合計の厚さを全膜厚とすると、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値が20(nm)以上になる。 When X-ray diffraction measurement is performed on the hard film-coated member thus produced, peaks are clearly recognized at 2θ = 63.5 ° and 2θ = 60.6 °, and X-ray diffraction at 2θ = 63.5 °. The intensity is ICrN (220), the X-ray diffraction intensity of 2θ = 60.6 ° is ICr 2 N (202), the thickness of the chromium film is the Cr film thickness, and the thickness of the nitrogen-containing chromium film is the Cr (N) film thickness. If the total thickness of all the chromium films except the base film and the nitrogen-containing chromium film is the total film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr ( the value of N) thickness (nm) × 1000 / total film thickness (nm)} is 20 (nm) or more.

以下、本発明による硬質皮膜被覆部材およびその製造方法の実施例について詳細に説明する。   Examples of the hard film-coated member and the manufacturing method thereof according to the present invention will be described in detail below.

[実施例1]
ダイス鋼SKD11に浸炭焼入れ焼き戻しを施した後に鏡面研磨した基材を用意した。この基材をクロムターゲットを使用する処理装置(DCマグネトロンスパッタリング装置)の真空処理室に入れて、到達真空度5×10−4Pa以下に真空排気した後、真空処理室内が圧力5×10−1Paのアルゴンガス雰囲気になるように制御してアルゴンガスを真空処理室内に導入し、1000V×2Aでイオンボンバード処理を約180分間施して、基材の表面を活性化した。
[Example 1]
The die steel SKD11 was carburized, quenched, and tempered, and then a mirror-polished base material was prepared. This base material is put into a vacuum processing chamber of a processing apparatus (DC magnetron sputtering apparatus) using a chrome target and evacuated to an ultimate vacuum of 5 × 10 −4 Pa or less, and then the pressure in the vacuum processing chamber is 5 × 10 Argon gas was introduced into a vacuum processing chamber under control of an argon gas atmosphere of 1 Pa, and ion bombarding was performed at 1000 V × 2 A for about 180 minutes to activate the surface of the substrate.

次に、アルゴンガスの導入を一旦停止し、真空処理室内を排気して真空にした後、真空処理室内の雰囲気中のアルゴンガスの分圧が0.061Paになるようにアルゴンガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−100Vとして、スパッタリングを約180秒間行って、基材上に下地層としてビッカース硬度HV500程度、厚さ240nm程度のクロム皮膜を形成した。   Next, the introduction of the argon gas is temporarily stopped, the vacuum processing chamber is evacuated and evacuated, and then the argon gas is evacuated so that the partial pressure of the argon gas in the atmosphere in the vacuum processing chamber becomes 0.061 Pa. Then, sputtering was performed for about 180 seconds with an input power of 4 kW and a bias voltage of −100 V, and a chromium film having a Vickers hardness of about HV500 and a thickness of about 240 nm was formed on the substrate as an underlayer.

次に、真空処理室内の雰囲気中のアルゴンガスの分圧が0.061Paになるようにアルゴンガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−50Vとして、スパッタリングを30秒間行って、基材上に厚さ40nm程度のクロム皮膜を形成した(クロム皮膜形成工程)。   Next, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber is 0.061 Pa, sputtering is performed for 30 seconds with an input power of 4 kW and a bias voltage of −50 V. Then, a chromium film having a thickness of about 40 nm was formed on the substrate (chrome film forming step).

次に、真空処理室内の雰囲気中のアルゴンガスの分圧が0.042Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.054Paになるように窒素ガスを真空処理室内に導入しながら、投入電力4kW、バイアス電圧を−50Vとして、スパッタリングを30秒間行って、基材上に厚さ約40nmの窒素含有クロム皮膜を形成した(窒素含有クロム皮膜形成工程)。   Next, while introducing argon gas into the vacuum processing chamber so that the partial pressure of argon gas in the atmosphere in the vacuum processing chamber becomes 0.042 Pa, nitrogen gas is introduced so that the partial pressure of nitrogen gas becomes 0.054 Pa. While being introduced into the vacuum processing chamber, an input power of 4 kW, a bias voltage of −50 V, and sputtering were performed for 30 seconds to form a nitrogen-containing chromium film having a thickness of about 40 nm on the substrate (nitrogen-containing chromium film forming step). .

さらに、上記のクロム皮膜形成工程と窒素含有クロム皮膜形成工程を繰り返し、それぞれ厚さ約40nmのクロム皮膜と窒素含有クロム皮膜を120層ずつ(合計240層、下地層を除く全膜厚約9.6μm)交互に形成して硬質皮膜被覆部材を得た。   Further, the above-described chromium film forming step and nitrogen-containing chromium film forming step are repeated, and 120 layers each of a chromium film having a thickness of about 40 nm and a nitrogen-containing chromium film (total thickness of about 9. 6 μm) Alternatingly formed, a hard coating member was obtained.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕の評価を行った。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated.

マイヤー硬さは、フィッシャー硬度計(超微小硬さ試験機)を使用して、バーコビッチ圧子により測定荷重10mN/10sおよび100mN/10sを加えて室温で測定した塑性変形硬さに基づいて算出した。その結果、マイヤー硬さは19.2GPaであった。   The Meyer's hardness was calculated based on the plastic deformation hardness measured at room temperature using a Fischer hardness tester (ultra-micro hardness tester) with a measurement load of 10 mN / 10 s and 100 mN / 10 s by a Berkovich indenter. . As a result, the Meyer hardness was 19.2 GPa.

スクラッチ臨界荷重については、スクラッチ試験機(CSM社製のREVETEST、AEセンサー付スクラッチ試験機)を使用し、最小荷重0.9N、最大荷重150N、荷重速度100N/分、スクラッチ速度10mm/分、スクラッチ距離8.91mmとして、0.2mmRのダイヤモンド圧子(型式Rockwell、シリアルNo.N2−3122)によってスクラッチ試験を行い、スクラッチの周辺の皮膜が破壊されたときの荷重(スクラッチ臨界荷重)を測定した。その結果、スクラッチ臨界荷重は150Nであった。   For the critical scratch load, use a scratch tester (CSM REVETEST, scratch tester with AE sensor), minimum load 0.9N, maximum load 150N, load speed 100N / min, scratch speed 10mm / min, scratch A scratch test was conducted with a diamond indenter of 0.2 mmR (model Rockwell, serial No. N2-3122) at a distance of 8.91 mm, and the load (scratch critical load) when the coating around the scratch was destroyed was measured. As a result, the scratch critical load was 150N.

HRC圧痕判定は、ロックウェル試験機を使用して、Cスケールで圧痕を打って観察することにより、HRC圧痕判定試験(DIN50103/1)に準拠して評価した。その結果、HRC圧痕判定結果は(圧痕の周囲にわずかにひびが認められる)HF2であった。   The HRC impression determination was evaluated based on the HRC impression determination test (DIN 50103/1) by using a Rockwell tester and observing the impression on a C scale. As a result, the HRC indentation determination result was HF2 (a slight crack was observed around the indentation).

また、得られた硬質皮膜被覆部材について、X線回折装置(RIGAKU社製のRINT2000)を使用して、管電圧40kV、管電流20mA、走査角度20〜80°、スキャンステップ1°/分の条件で、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ113cps(カウント/秒)、180cps、813cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、1.0:1.6:7.4であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、(180/813)×(40×40×1000/9600)=36.9(nm)であった。 Moreover, about the obtained hard-film coating | coated member, X-ray-diffraction apparatus (RINTKU made by RIGAKU) is used, Tube voltage 40kV, Tube current 20mA, Scan angle 20-80 °, Scan step 1 ° / min. Then, X-ray diffraction was measured. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) peaks are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 113 cps (counts / second), 180 cps, and 813 cps, respectively. ICrN (200): ICr 2 N (202): ICrN (220) was 1.0: 1.6: 7.4. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was (180/813) × (40 × 40 × 1000/9600) = 36.9 (nm) .

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、超深度表面形状測定顕微鏡(株式会社キーエンス製のVK−8500)を使用して測定した結果から、JIS B0601(1994年)に基づいて表面粗さを示すパラメータである算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.36μm、最大高さRyは10.58μm、十点平均粗さRzは10.13μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard film covering member, it was based on JIS B0601 (1994) from the results of measurement using an ultra-deep surface shape measurement microscope (VK-8500 manufactured by Keyence Corporation). The arithmetic average roughness Ra, the maximum height Ry, and the ten-point average roughness Rz, which are parameters indicating the surface roughness, were calculated. As a result, the arithmetic average roughness Ra was 0.36 μm, the maximum height Ry was 10.58 μm, and the ten-point average roughness Rz was 10.13 μm.

[実施例2]
窒素含有クロム皮膜形成工程において、真空処理室内の雰囲気中のアルゴンガスの分圧が0.040Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.062Paになるように窒素ガスを真空処理室内に導入した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 2]
In the nitrogen-containing chromium film forming step, the argon gas is introduced into the vacuum processing chamber so that the partial pressure of the argon gas in the atmosphere in the vacuum processing chamber is 0.040 Pa, and the partial pressure of the nitrogen gas is 0.062 Pa. As described above, a hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that nitrogen gas was introduced into the vacuum processing chamber.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは19.9GPa、スクラッチ臨界荷重は150N、HRC圧痕判定結果はHF2であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 19.9 GPa, the scratch critical load was 150 N, and the HRC indentation determination result was HF2.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ144cps、297cps、2053cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.6:1.2:8.2であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、24.1(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) peaks are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 144 cps, 297 cps, and 2053 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.6: 1.2: 8.2. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 24.1 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.37μm、最大高さRyは24.85μm、十点平均粗さRzは24.75μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.37 μm, the maximum height Ry was 24.85 μm, and the ten-point average roughness Rz was 24.75 μm.

[実施例3]
窒素含有クロム皮膜形成工程において、真空処理室内の雰囲気中のアルゴンガスの分圧が0.037Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.063Paになるように窒素ガスを真空処理室内に導入した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 3]
In the nitrogen-containing chromium film forming step, the argon gas is introduced into the vacuum processing chamber so that the partial pressure of the argon gas in the atmosphere in the vacuum processing chamber is 0.037 Pa, and the partial pressure of the nitrogen gas is 0.063 Pa. As described above, a hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that nitrogen gas was introduced into the vacuum processing chamber.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは18.4GPa、スクラッチ臨界荷重は150N、HRC圧痕判定結果は(圧痕の周囲の一部にわずかにひびが認められる)HF1であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 18.4 GPa, the scratch critical load was 150 N, and the HRC indentation determination result was HF1 (a slight crack was observed around the indentation).

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ76cps、155cps、626cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.9:1.8:7.3であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜(nm)厚×1000/全膜厚(nm)}の値を求めたところ、41.3(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 76 cps, 155 cps, and 626 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.9: 1.8: 7.3. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr The value of (N) film (nm) thickness × 1000 / total film thickness (nm) } was determined to be 41.3 (nm) .

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.35μm、最大高さRyは15.73μm、十点平均粗さRzは12.88μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.35 μm, the maximum height Ry was 15.73 μm, and the ten-point average roughness Rz was 12.88 μm.

[実施例4]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ15秒間にして、それぞれ厚さ約20nmのクロム皮膜と窒素含有クロム皮膜を240層ずつ(合計480層、下地層を除く全膜厚約9.6μm)形成した以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 4]
Sputtering time for forming the chromium film and the nitrogen-containing chromium film was 15 seconds each, and 240 layers of chromium films and nitrogen-containing chromium films each having a thickness of about 20 nm (total of 480 layers, excluding the underlayer) A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that the thickness was about 9.6 μm).

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは24.0GPa、スクラッチ臨界荷重は140N、HRC圧痕判定結果はHF1であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 24.0 GPa, the scratch critical load was 140 N, and the HRC indentation determination result was HF1.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ147cps、552cps、912cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.9:3.4:5.7であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、25.2(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) peaks are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 147 cps, 552 cps, and 912 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.9: 3.4: 5.7. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 25.2 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.36μm、最大高さRyは15.20μm、十点平均粗さRzは14.19μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.36 μm, the maximum height Ry was 15.20 μm, and the ten-point average roughness Rz was 14.19 μm.

[実施例5]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ15秒間にして、それぞれ厚さ約20nmのクロム皮膜と窒素含有クロム皮膜を240層ずつ(合計480層、下地層を除く全膜厚約9.6μm)形成した以外は、実施例3と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 5]
Sputtering time for forming the chromium film and the nitrogen-containing chromium film was 15 seconds each, and 240 layers of chromium films and nitrogen-containing chromium films each having a thickness of about 20 nm (total of 480 layers, excluding the underlayer) A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 3 except that the thickness was about 9.6 μm.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは23.7GPa、スクラッチ臨界荷重は110N、HRC圧痕判定結果はHF2であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 23.7 GPa, the scratch critical load was 110 N, and the HRC indentation determination result was HF2.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ123cps、252cps、429cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、1.5:3.1:5.3であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、24.5(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 123 cps, 252 cps, and 429 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 1.5: 3.1: 5.3. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 24.5 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.36μm、最大高さRyは22.86μm、十点平均粗さRzは21.35μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.36 μm, the maximum height Ry was 22.86 μm, and the ten-point average roughness Rz was 21.35 μm.

[実施例6]
バイアス電圧を−30Vにした以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 6]
A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that the bias voltage was −30V.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは17.8GPa、スクラッチ臨界荷重は139N、HRC圧痕判定結果はHF1であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 17.8 GPa, the scratch critical load was 139 N, and the HRC indentation determination result was HF1.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ133cps、169cps、686cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、1.3:1.7:6.9であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、41.1(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 133 cps, 169 cps, and 686 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) is 1.3: 1.7: 6.9. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 41.1 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.28μm、最大高さRyは8.90μm、十点平均粗さRzは8.30μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.28 μm, the maximum height Ry was 8.90 μm, and the ten-point average roughness Rz was 8.30 μm.

[実施例7]
バイアス電圧を−30Vにした以外は、実施例4と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Example 7]
A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 4 except that the bias voltage was -30V.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは15.6GPa、スクラッチ臨界荷重は131N、HRC圧痕判定結果はHF1であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 15.6 GPa, the scratch critical load was 131 N, and the HRC indentation determination result was HF1.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ74cps、190cps、315cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、1.3:3.3:5.4であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、25.1(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) peaks are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 74 cps, 190 cps, and 315 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) is 1.3: 3.3: was 5.4. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 25.1 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.38μm、最大高さRyは18.90μm、十点平均粗さRzは17.00μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.38 μm, the maximum height Ry was 18.90 μm, and the ten-point average roughness Rz was 17.00 μm.

[比較例1]
バイアス電圧を−100Vにするとともに、クロム皮膜と窒素含有クロム皮膜を交互に形成(多層膜を形成)する代わりに、窒素含有クロム皮膜を成膜するためのスパッタリング時間を2時間にして、10μmの窒素含有クロム皮膜を形成(単層膜を形成)した以外は、実施例1と同様の方法により硬質皮膜被覆部材を得た。
[Comparative Example 1]
The bias voltage was set to −100 V, and instead of alternately forming a chromium film and a nitrogen-containing chromium film (forming a multilayer film), the sputtering time for forming the nitrogen-containing chromium film was set to 2 hours, and 10 μm A hard film-coated member was obtained by the same method as in Example 1 except that a nitrogen-containing chromium film was formed (a single-layer film was formed).

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは20.8GPa、スクラッチ臨界荷重は50N、HRC圧痕判定結果は(圧痕の周囲の全周にわたってひびが認められ、ひびの発生している部分の表面の剥離が認められる)HF3であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness is 20.8 GPa, the scratch critical load is 50 N, and the HRC indentation judgment result is that cracks are observed all around the indentation and the surface of the cracked part is peeled off. HF3.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ80cps、204cps、659cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.8:2.2:7.0であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 80 cps, 204 cps, and 659 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.8: 2.2: 7.0.

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.18μm、最大高さRyは7.74μm、十点平均粗さRzは7.05μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.18 μm, the maximum height Ry was 7.74 μm, and the ten-point average roughness Rz was 7.05 μm.

[比較例2]
窒素含有クロム皮膜形成工程において、真空処理室内の雰囲気中のアルゴンガスの分圧が0.038Paになるようにアルゴンガスを真空処理室内に導入するとともに、窒素ガスの分圧が0.074Paになるように窒素ガスを真空処理室内に導入した以外は、比較例1と同様の方法により硬質皮膜被覆部材を得た。
[Comparative Example 2]
In the nitrogen-containing chromium film forming step, the argon gas is introduced into the vacuum processing chamber so that the partial pressure of the argon gas in the atmosphere in the vacuum processing chamber is 0.038 Pa, and the partial pressure of the nitrogen gas is 0.074 Pa. Thus, a hard coating member was obtained by the same method as in Comparative Example 1 except that nitrogen gas was introduced into the vacuum processing chamber.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは27.6GPa、スクラッチ臨界荷重は30N、HRC圧痕判定結果は(HF3よりも剥離がさらに進んでいることが認められる)HF4であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 27.6 GPa, the scratch critical load was 30 N, and the HRC indentation determination result was HF4 (it is recognized that peeling is further advanced than HF3).

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ124cps、194cps、390cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、1.8:2.7:5.5であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 124 cps, 194 cps, and 390 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) is 1.8: 2.7: was 5.5.

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.16μm、最大高さRyは19.29μm、十点平均粗さRzは17.90μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.16 μm, the maximum height Ry was 19.29 μm, and the ten-point average roughness Rz was 17.90 μm.

[比較例3]
バイアス電圧を−300Vにした以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 3]
A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that the bias voltage was -300V.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは11.7GPa、スクラッチ臨界荷重は90N以上、HRC圧痕判定結果はHF1であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 11.7 GPa, the scratch critical load was 90 N or more, and the HRC indentation determination result was HF1.

[比較例4]
バイアス電圧を−100Vにした以外は、実施例1と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 4]
A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 1 except that the bias voltage was set to -100V.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは18.1GPa、スクラッチ臨界荷重は90N、HRC圧痕判定結果はHF2であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 18.1 GPa, the scratch critical load was 90 N, and the HRC indentation determination result was HF2.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ70cps、162cps、1895cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.3:0.8:8.9であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、14.2(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) planes are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 70 cps, 162 cps, and 1895 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.3: 0.8: 8.9. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 14.2 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.20μm、最大高さRyは7.78μm、十点平均粗さRzは7.23μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.20 μm, the maximum height Ry was 7.78 μm, and the ten-point average roughness Rz was 7.23 μm.

[比較例5]
バイアス電圧を−100Vにした以外は、実施例4と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 5]
A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Example 4 except that the bias voltage was set to -100V.

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは24.5GPa、スクラッチ臨界荷重は80N、HRC圧痕判定結果はHF2であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 24.5 GPa, the scratch critical load was 80 N, and the HRC indentation determination result was HF2.

また、得られた硬質皮膜被覆部材について、実施例1と同様の方法により、X線回折の測定を行った。その結果、2θ=43.7°にCrN(200)面からのピーク、2θ=60.6°にCrN(202)面に起因すると推測されるピーク、2θ=63.5°にCrN(220)面からのピークが見られ、これらのX線回折強度ICrN(200)、ICrN(202)、ICrN(220)は、それぞれ57cps、150cps、728cpsであり、強度比ICrN(200):ICrN(202):ICrN(220)は、0.6:1.6:7.8であった。また、X線回折強度比ICrN(202)/ICrN(220)を膜厚で補正した値として、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値を求めたところ、8.6(nm)であった。 Moreover, the X-ray diffraction measurement was performed on the obtained hard coating member by the same method as in Example 1. As a result, a peak from the CrN (200) plane at 2θ = 43.7 °, a peak presumed to originate from the Cr 2 N (202) plane at 2θ = 60.6 °, and CrN ( 220) peaks are observed, and these X-ray diffraction intensities ICrN (200), ICr 2 N (202), and ICrN (220) are 57 cps, 150 cps, and 728 cps, respectively, and the intensity ratio ICrN (200): ICr 2 N (202): ICrN (220) was 0.6: 1.6: 7.8. Further, as a value obtained by correcting the X-ray diffraction intensity ratio ICr 2 N (202) / ICrN (220) by the film thickness, {ICr 2 N (202) / ICrN (220)} × {Cr film thickness (nm) × Cr (N) was determined value of film thickness (nm) × 1000 / total film thickness (nm)}, was 8.6 (nm).

さらに、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.29μm、最大高さRyは16.19μm、十点平均粗さRzは14.68μmであった。   Furthermore, as an evaluation of the surface roughness of the obtained hard coating member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.29 μm, the maximum height Ry was 16.19 μm, and the ten-point average roughness Rz was 14.68 μm.

[比較例6]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ15秒間と30秒間にして、厚さ約20nmのクロム皮膜と厚さ約40nmの窒素含有クロム皮膜を160層ずつ(合計320層、下地層を除く全膜厚約9.6μm)形成した以外は、比較例4と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 6]
Sputtering time for forming the chromium film and the nitrogen-containing chromium film was 15 seconds and 30 seconds, respectively, and 160 layers of about 20 nm thick chromium film and about 40 nm thick nitrogen-containing chromium film (320 layers in total). A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Comparative Example 4 except that the total thickness excluding the base layer was about 9.6 μm).

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは22.3GPa、スクラッチ臨界荷重は61N、HRC圧痕判定結果はHF3であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 22.3 GPa, the scratch critical load was 61 N, and the HRC indentation determination result was HF3.

また、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.27μm、最大高さRyは19.36μm、十点平均粗さRzは18.77μmであった。   Further, as an evaluation of the surface roughness of the obtained hard film-coated member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.27 μm, the maximum height Ry was 19.36 μm, and the ten-point average roughness Rz was 18.77 μm.

[比較例7]
クロム皮膜と窒素含有クロム皮膜を成膜するためのスパッタリング時間をそれぞれ10秒間と15秒間にして、厚さ約13nmのクロム皮膜と厚さ約20nmの窒素含有クロム皮膜を290層ずつ(合計580層、下地層を除く全膜厚約9.6μm)形成した以外は、比較例4と同様の方法によりクロム皮膜と窒素含有クロム皮膜を交互に形成して硬質皮膜被覆部材を得た。
[Comparative Example 7]
Sputtering time for forming the chromium film and the nitrogen-containing chromium film was set to 10 seconds and 15 seconds, respectively, and 290 layers each of a chromium film having a thickness of about 13 nm and a nitrogen-containing chromium film having a thickness of about 20 nm (total of 580 layers). A hard coating member was obtained by alternately forming a chromium coating and a nitrogen-containing chromium coating by the same method as in Comparative Example 4 except that the total thickness excluding the base layer was about 9.6 μm).

このようにして得られた硬質皮膜被覆部材のマイヤー硬さ、スクラッチ臨界荷重およびHRC圧痕について、実施例1と同様の方法により評価した。その結果、マイヤー硬さは22.9GPa、スクラッチ臨界荷重は68N、HRC圧痕判定結果はHF2であった。   The Meyer hardness, scratch critical load, and HRC indentation of the hard film-coated member thus obtained were evaluated by the same method as in Example 1. As a result, the Meyer hardness was 22.9 GPa, the scratch critical load was 68 N, and the HRC indentation determination result was HF2.

また、得られた硬質皮膜被覆部材の表面粗さの評価として、実施例1と同様の方法により、算術平均粗さRa、最大高さRy、十点平均粗さRzを算出した。その結果、算術平均粗さRaは0.34μm、最大高さRyは14.10μm、十点平均粗さRzは12.73μmであった。   Further, as an evaluation of the surface roughness of the obtained hard film-coated member, arithmetic average roughness Ra, maximum height Ry, and ten-point average roughness Rz were calculated by the same method as in Example 1. As a result, the arithmetic average roughness Ra was 0.34 μm, the maximum height Ry was 14.10 μm, and the ten-point average roughness Rz was 12.73 μm.

これらの実施例および比較例の硬質皮膜被覆部材の製造条件、構造および特性を表1〜表4に示す。なお、表2において、マイヤー硬さが21GPa以上で非常に良好な硬さの場合を◎、15GPa以上で良好な硬さの場合を○、15GPa未満で硬さが不十分な場合を×で示している。また、表2において、密着力が非常に良好な場合を◎、良好な場合を○、十分ではない場合を△、悪い場合を×で示している。   Tables 1 to 4 show the production conditions, structures, and characteristics of the hard film-coated members of these examples and comparative examples. In Table 2, the case where the Meyer hardness is 21 GPa or more and very good hardness is indicated by を, the case where the Meyer hardness is 15 GPa or more and good hardness is indicated by ○, and the case where the hardness is less than 15 GPa and insufficient is indicated by ×. ing. In Table 2, the case where the adhesion is very good is indicated by ◎, the case where it is good is indicated by ◯, the case where it is not sufficient is indicated by Δ, and the case where it is poor is indicated by ×.

Figure 0005676854
Figure 0005676854

Figure 0005676854
Figure 0005676854

Figure 0005676854
Figure 0005676854

Figure 0005676854
Figure 0005676854

1 基材
2 下地層(クロム皮膜)
3 応力緩和層(クロム皮膜)
4 硬質層(窒素含有クロム皮膜)
10 処理装置
12 真空処理室
14 真空ポンプ
16 回転テーブル
18 治具
20 基材
22 ターゲット
24 スパッタ電源
26 イオンボンバードおよびバイアス電源
28 ガス導入パイプ
1 Substrate 2 Underlayer (chrome film)
3 Stress relaxation layer (chrome coating)
4 Hard layer (nitrogen-containing chromium film)
DESCRIPTION OF SYMBOLS 10 Processing apparatus 12 Vacuum processing chamber 14 Vacuum pump 16 Rotary table 18 Jig 20 Base material 22 Target 24 Sputtering power supply 26 Ion bombardment and bias power supply 28 Gas introduction pipe

Claims (8)

基材上にクロム皮膜と窒素含有クロム皮膜が交互に配置されるように複数のクロム皮膜と複数の窒素含有クロム皮膜を形成する硬質皮膜被覆部材の製造方法において、バイアス電圧−30V〜−70Vでスパッタリングして、略同一の厚さ10〜50nmのクロム皮膜と窒素含有クロム皮膜を交互に形成することを特徴とする、硬質皮膜被覆部材の製造方法。 In a method of manufacturing a hard coating member in which a plurality of chromium coatings and a plurality of nitrogen-containing chromium coatings are formed so that chromium coatings and nitrogen-containing chromium coatings are alternately arranged on a substrate, the bias voltage is −30V to −70V. by sputtering, and forming a chromium coating and the nitrogen-containing chromium film of substantially the same thickness 10~50nm alternately method of hard-coated member. 前記バイアス電圧が−30V〜−50Vであることを特徴とする、請求項1に記載の硬質皮膜被覆部材の製造方法。 The method of manufacturing a hard film-coated member according to claim 1, wherein the bias voltage is -30V to -50V. 前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜の各々の厚さが20〜40nmであることを特徴とする、請求項1または2に記載の硬質皮膜被覆部材の製造方法。 3. The method of manufacturing a hard film-coated member according to claim 1, wherein each of the plurality of chromium films and the plurality of nitrogen-containing chromium films has a thickness of 20 to 40 nm. 前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜が、クロムターゲットを使用してスパッタリングする装置の処理室内で連続的に形成され、前記複数のクロム皮膜を形成する際には、処理室内をアルゴンガス雰囲気にし、前記複数の窒素含有クロム皮膜を形成する際には、処理室内をアルゴンガスと窒素ガスを含む雰囲気にすることを特徴とする、請求項1乃至3のいずれかに記載の硬質皮膜被覆部材の製造方法。 The plurality of chromium coatings and the plurality of nitrogen-containing chromium coatings are continuously formed in a processing chamber of a sputtering apparatus using a chromium target. When forming the plurality of chromium coatings, the processing chamber is filled with argon. The hard coating film according to any one of claims 1 to 3, wherein when forming the plurality of nitrogen-containing chromium coatings in a gas atmosphere, the processing chamber is filled with an atmosphere containing argon gas and nitrogen gas. A manufacturing method of a covering member. 前記スパッタリングがDCマグネトロンスパッタリング法によって行われることを特徴とする、請求項4に記載の硬質皮膜被覆部材の製造方法。The said sputtering is performed by DC magnetron sputtering method, The manufacturing method of the hard film coating | coated member of Claim 4 characterized by the above-mentioned. 前記スパッタリングがバイアス電圧を一定にして行われることを特徴とする、請求項4または5に記載の硬質皮膜被覆部材の製造方法。6. The method of manufacturing a hard film-coated member according to claim 4, wherein the sputtering is performed with a constant bias voltage. 基材上に略同一の厚さ10〜50nmのクロム皮膜と窒素含有クロム皮膜が交互に配置されるようにそれぞれ20層以上のクロム皮膜と窒素含有クロム皮膜が形成された硬質皮膜被覆部材であって、2θ=63.5°のX線回折強度をICrN(220)、2θ=60.6°のX線回折強度をICrN(202)、クロム皮膜の厚さをCr膜厚、窒素含有クロム皮膜の厚さをCr(N)膜厚、全てのクロム皮膜と窒素含有クロム皮膜の合計の厚さを全膜厚とすると、{ICrN(202)/ICrN(220)}×{Cr膜厚(nm)×Cr(N)膜厚(nm)×1000/全膜厚(nm)}の値が20(nm)以上であることを特徴とする、硬質皮膜被覆部材。 In hard-coated member of substantially the same thickness chromium film and chromium film and the nitrogen-containing chromium film over each 20 layers as the nitrogen-containing chromium film are alternately arranged in 10~50nm is formed on a substrate The X-ray diffraction intensity of 2θ = 63.5 ° is ICrN (220), the X-ray diffraction intensity of 2θ = 60.6 ° is ICr 2 N (202), the thickness of the chromium film is Cr film thickness, nitrogen If the thickness of the chromium film containing Cr is the Cr (N) film thickness and the total thickness of all the chromium films and the nitrogen-containing chromium film is the total film thickness, {ICr 2 N (202) / ICrN (220)} × { A hard film-coated member having a value of Cr film thickness (nm) × Cr (N) film thickness (nm) × 1000 / total film thickness (nm)} of 20 (nm) or more. 前記複数のクロム皮膜と前記複数の窒素含有クロム皮膜の各々の厚さが20〜40nmであることを特徴とする、請求項に記載の硬質皮膜被覆部材。 The hard coating member according to claim 7 , wherein each of the plurality of chromium coatings and the plurality of nitrogen-containing chromium coatings has a thickness of 20 to 40 nm.
JP2009089833A 2009-04-02 2009-04-02 Hard coating member and method for producing the same Active JP5676854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089833A JP5676854B2 (en) 2009-04-02 2009-04-02 Hard coating member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089833A JP5676854B2 (en) 2009-04-02 2009-04-02 Hard coating member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010242135A JP2010242135A (en) 2010-10-28
JP5676854B2 true JP5676854B2 (en) 2015-02-25

Family

ID=43095467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089833A Active JP5676854B2 (en) 2009-04-02 2009-04-02 Hard coating member and method for producing the same

Country Status (1)

Country Link
JP (1) JP5676854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341923B2 (en) 2011-09-14 2016-05-17 Nikon Corporation Composite plastic member and method for producing the same
CN116240512A (en) * 2023-03-01 2023-06-09 纳狮新材料有限公司杭州分公司 Spray cleaning of coating die head and preparation of CrxN lamination on surface of coating die head

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503105A1 (en) * 1985-01-30 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR COATING MACHINE PARTS AND TOOLS WITH CARBIDE MATERIAL AND MACHINE PARTS AND TOOLS PRODUCED BY THE METHOD
JPH01234559A (en) * 1988-03-11 1989-09-19 Nissin Electric Co Ltd Iron and steel member with coating film and production thereof
JPH0652511A (en) * 1992-07-31 1994-02-25 Matsushita Electric Ind Co Ltd Magnetic head and its manufacture
JPH06150239A (en) * 1992-11-06 1994-05-31 Matsushita Electric Ind Co Ltd Production of magnetic head and chromium nitride film
JPH11190430A (en) * 1997-12-24 1999-07-13 Teikoku Piston Ring Co Ltd Piston ring and manufacture thereof
JP2001329360A (en) * 2000-05-22 2001-11-27 Seiko Epson Corp Work with hard coating, and method of working the same
JP2005082822A (en) * 2003-09-05 2005-03-31 Ion Engineering Research Institute Corp Hard thick film, and method for forming the same
DE102004043550B4 (en) * 2004-09-09 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Wear resistant coating, its use and method of making the same
JP2007196364A (en) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Surface-coated cutting tool and its manufacturing method
KR100791274B1 (en) * 2007-06-20 2008-01-04 현대하이스코 주식회사 Stainless steel separator for fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010242135A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
Zhang et al. Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates
KR100845372B1 (en) Diamondlike carbon hard multilayer film formed body and method for producing the same
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
CN106893987B (en) Preparation method of physical vapor deposition Ta-C coating and Ta-C coating
EP3067438B1 (en) Forming method of intermediate layer formed between base material and dlc film, dlc film forming method, and intermediate layer formed between base material and dlc film
JP5660697B2 (en) Hard coating member and method for producing the same
JP2008001951A (en) Diamond-like carbon film and method for forming the same
KR101779844B1 (en) Part having a dlc coating and method for applying the dlc coating
JP5145051B2 (en) Hard film covering member and method for manufacturing the same
JP5676854B2 (en) Hard coating member and method for producing the same
WO2011007770A1 (en) Coated-surface sliding part having excellent coating adhesion and method for producing the same
KR20170128675A (en) A method of forming a multi-element alloy thin film composite
JP5345436B2 (en) Method for producing hard coating member
JP5660696B2 (en) Hard coating member and method for producing the same
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
JP2008207219A (en) Pressing die
JP4848545B2 (en) Hard coating member and method for producing the same
JP2004137541A (en) Dlc gradient structural hard film, and its manufacturing method
JP5634669B2 (en) Hard coating member and method for producing the same
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
JP5530751B2 (en) LAMINATED COATING COATED MEMBER AND METHOD FOR PRODUCING THE SAME
JP5924908B2 (en) Method for producing hard coating member
JP5824010B2 (en) Hard coating coated member
JP2006307317A (en) Nitrogen-containing chromium coating film, its manufacturing method, and mechanical member
JP4848546B2 (en) Hard coating member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5676854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250