JP5674286B2 - Method for producing drinking water - Google Patents

Method for producing drinking water Download PDF

Info

Publication number
JP5674286B2
JP5674286B2 JP2009130597A JP2009130597A JP5674286B2 JP 5674286 B2 JP5674286 B2 JP 5674286B2 JP 2009130597 A JP2009130597 A JP 2009130597A JP 2009130597 A JP2009130597 A JP 2009130597A JP 5674286 B2 JP5674286 B2 JP 5674286B2
Authority
JP
Japan
Prior art keywords
water
izu
akazawa
deep sea
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009130597A
Other languages
Japanese (ja)
Other versions
JP2010274214A (en
Inventor
山田 勝久
勝久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DHC Corp
Original Assignee
DHC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DHC Corp filed Critical DHC Corp
Priority to JP2009130597A priority Critical patent/JP5674286B2/en
Publication of JP2010274214A publication Critical patent/JP2010274214A/en
Application granted granted Critical
Publication of JP5674286B2 publication Critical patent/JP5674286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、伊豆赤沢海洋深層水を用い、軟水タイプの飲料水を得ることのできる飲料水の製造方法に関する。 The present invention relates to a method for producing drinking water that uses Izu Akazawa Deep Sea Water to obtain soft water type drinking water.

海洋深層水は、清浄性を有し、無機栄養塩類が豊富であり、低温安定性がある。
すなわち、海洋深層水は、人や他の生物が生きるために不可欠なミネラル分を陸水よりも多種類含むだけでなく、陸水のようにダイオキシン等の有害化学物質に汚染されていないという特性を持っている。
そこで、様々な用途、とりわけ飲料水としての用途が開発されている。
しかし、飲料水に用いるために、海洋深層水をそのまま利用することはできない。
そこで、海洋深層水の濃縮水を0.5〜1.0%の濃度になるように河川源流水(陸水)で希釈するという特許文献1に係る製造方法を初めとして、幾多の試みが既になされている。
本発明者らは、このような従来技術により得られる飲料水よりも、さらに好適な飲料水の製造方法について鋭意検討を重ねた。
Deep ocean water has cleanliness, is rich in inorganic nutrients, and is stable at low temperatures.
In other words, deep ocean water not only contains more minerals than land water, but also is not polluted by harmful chemical substances such as dioxin, as it does in land water. have.
Therefore, various uses, particularly as drinking water, have been developed.
However, since it is used for drinking water, deep ocean water cannot be used as it is.
Therefore, many attempts have already been made, including the manufacturing method according to Patent Document 1, in which the concentrated water of deep ocean water is diluted with river source water (land water) to a concentration of 0.5 to 1.0%. Has been made.
The inventors of the present invention have intensively studied a more preferable method for producing drinking water than drinking water obtained by such a conventional technique.

特開2002−369671JP 2002-369671 A

本発明の目的は、伊豆赤沢海洋深層水を原料として用いた軟水タイプの飲料水の製造方法であって、おいしく(飲み易く)、かつ、他の自然から得た飲料水よりも細胞活性を高くでき、有用成分の細胞への取り込みを促進できる飲料水の製造方法を提供することにある。 The object of the present invention is a soft water type drinking water production method using Izu Akazawa deep sea water as a raw material, which is delicious (easy to drink) and has higher cell activity than other natural drinking water. An object of the present invention is to provide a method for producing drinking water that can promote uptake of useful components into cells.

上記の課題を解決するため、本発明は、飲料水の製造方法であって、伊豆赤沢海洋深層水を逆浸透膜法で淡水化して希釈用淡水を得る工程と、該希釈用淡水に伊豆赤沢海洋深層水の原水を0.1〜0.9体積%の割合で添加する工程とを備えることを特徴とする。
本発明に係る飲料水の製造方法は、好適な実施の形態で、上記伊豆赤沢海洋深層水が、伊豆赤沢沖の水深800mから汲み上げられた海洋深層水であることを特徴とする。
In order to solve the above problems, the present invention is a method for producing drinking water, the step of obtaining fresh water for dilution by desalinating Izu Akazawa deep sea water by a reverse osmosis membrane method, and Izu Akazawa in the fresh water for dilution. And a step of adding raw water of deep ocean water at a ratio of 0.1 to 0.9 % by volume.
In a preferred embodiment of the method for producing drinking water according to the present invention, the Izu Akazawa Deep Sea Water is deep sea water pumped from a depth of 800 m off Izu Akazawa .

本発明は、別の側面で飲料水であり、本発明に係る飲料水の製造方法によって製造されることを特徴とする。
この飲料水は、好適には、6mg/L〜60mg/Lの硬度を有し、0.3mS/cm〜0.5mS/cmの電気伝導率を有する。
Another aspect of the present invention is drinking water, which is manufactured by the method for manufacturing drinking water according to the present invention.
This drinking water preferably has a hardness of 6 mg / L to 60 mg / L and an electrical conductivity of 0.3 mS / cm to 0.5 mS / cm.

なお、本発明は、飲料水に係るものである。しかし、飲料水の語を「精製水」と置き換えても本発明は成立する。すなわち、化粧品、バスグッズ、入浴剤、アルコール類、水産加工食品のために用いられる精製水と読み替えても、本発明は成立する。   The present invention relates to drinking water. However, the present invention is established even if the word “drinking water” is replaced with “purified water”. In other words, the present invention can be realized even if it is read as purified water used for cosmetics, bath goods, bath agents, alcohols, and processed fishery products.

本発明によれば、伊豆赤沢海洋深層水を原料として用いた軟水タイプの飲料水の製造方法であって、おいしく(飲み易く)、かつ、他の自然から得た飲料水よりも細胞活性を高くでき、有用成分の細胞への取り込みを促進できる飲料水の製造方法が提供される。 According to the present invention, a soft water type drinking water production method using Izu Akazawa Deep Sea Water as a raw material is delicious (easy to drink) and has higher cell activity than other natural drinking water. A method for producing drinking water that can promote the uptake of useful components into cells is provided.

本発明に係る飲料水の製造方法について、その一実施の形態を説明する概念図である。It is a conceptual diagram explaining the embodiment about the manufacturing method of the drinking water which concerns on this invention. 伊豆赤沢海洋深層水の原水と、他の各種の水とについて、細胞活性を示すグラフである。It is a graph which shows cell activity about raw water of Izu Akazawa deep sea water and other various water. 伊豆赤沢海洋深層水の高濃度側におけるコラーゲンの合成促進能の評価結果を示すグラフである。It is a graph which shows the evaluation result of the synthesis | combination promotion ability of collagen in the high concentration side of Izu Akazawa deep sea water. 伊豆赤沢海洋深層水の低濃度側におけるコラーゲンの合成促進能の評価結果を示すグラフである。It is a graph which shows the evaluation result of the synthesis | combination promotion ability of collagen in the low concentration side of Izu Akazawa deep sea water. 表層水を用いた場合のコラーゲンの合成促進能について、比較評価結果を示すグラフである。It is a graph which shows a comparative evaluation result about the synthesis | combination promotion ability of collagen at the time of using surface layer water. 図4の伊豆赤沢海洋深層水の添加によるコラーゲン合成量への影響に関する結果と、図5の表層水の添加によるコラーゲン合成量への影響に関する結果を取り出して表したグラフである。It is the graph which took out and represented the result regarding the influence on the collagen synthesis amount by addition of Izu Akazawa deep sea water of FIG. 4, and the effect regarding the collagen synthesis amount by addition of surface water of FIG. 本発明に係る飲料水及び他の各種の水で調製した培地に対する、安定化ビタミンC添加によるヒト皮膚由来線維芽細胞のコラーゲン合成促進作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the collagen synthesis promotion effect | action of the human skin origin fibroblast by the stabilization vitamin C addition with respect to the culture medium prepared with the drinking water which concerns on this invention, and other various waters. 本発明に係る飲料水及び他の各種の水で調製した培地に対する、B16細胞に対するアルブチン添加による美白作用を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the whitening effect by the arbutin addition with respect to B16 cell with respect to the culture medium prepared with the drinking water which concerns on this invention, and other various water.

以下に添付図面を参照しながら、本発明に係る飲料水の製造方法について、その実施をするための形態を説明する。
図1は、本発明に係る飲料水の製造方法について、その一実施の形態を説明する概念図である。
EMBODIMENT OF THE INVENTION The form for the implementation is demonstrated about the manufacturing method of the drinking water based on this invention below, referring an accompanying drawing.
FIG. 1 is a conceptual diagram illustrating one embodiment of a method for producing drinking water according to the present invention.

図1に示す実施の形態では、まず、海洋深層水を採水し(工程100)、逆浸透膜法で淡水化して希釈用淡水を得る(工程102)。そして、得られた希釈用淡水に、海洋深層水の原水を、好適には0.01〜5.0体積%、より好適には0.1〜0.9体積%の割合で添加し均一に混合する(工程104)。さらに、ろ過滅菌し(工程106)、ボトリングを行う(工程108)。   In the embodiment shown in FIG. 1, first, deep ocean water is sampled (step 100), and then desalinated by the reverse osmosis membrane method to obtain fresh water for dilution (step 102). And the raw water of deep sea water is preferably added to the obtained dilution fresh water in a proportion of preferably 0.01 to 5.0% by volume, more preferably 0.1 to 0.9% by volume. Mix (step 104). Further, the solution is sterilized by filtration (step 106) and bottling is performed (step 108).

工程104では、取水地点の深さに対応する長さ(通常200〜1000m)の採水用管体を備えた海洋深層水採水装置を用い、海洋深層水を採水する。このような海洋深層水採水装置としては、従来知られているものを用いることができる。   In step 104, deep ocean water is sampled using a deep ocean water sampling apparatus including a water sampling tube having a length (usually 200 to 1000 m) corresponding to the depth of the intake point. As such a deep sea water sampling apparatus, a conventionally known apparatus can be used.

本発明で、原水として用いられるのは伊豆赤沢海洋深層水である。この海洋深層水は、伊豆赤沢沖の水深800mから、汲み上げられ、表層水に比べて、微生物の存在比が数千分の一程度である。さらに、伊豆赤沢は、水の大消費地である首都圏・大都市圏に最も近い海洋深層水の取水地であり、輸送その他の経費を考慮した場合、水を提供するうえでは他の地域に比べてコストメリットが大きい。
しかし一方で、首都圏に最も近いということは、京浜地域によって汚染された東京湾から太平洋に向けて流れ出た海水によって汚染されることが懸念される。ところが、伊豆半島付近の海洋表層には、北東方向に向けて黒潮が流れており、また、伊豆半島南東沖海底には高い海底火山群からなる伊豆・小笠原弧が形成されている。したがって、実際には、伊豆赤沢沖には、黒潮の流れ、そして、伊豆・小笠原弧によって、東京湾から流れ出た汚染された海水が流れ込むことはない。このため、伊豆赤沢沖は、首都圏・大都市圏に最も近い海洋深層水の取水地でありながら、汚染されていない清浄な海洋深層水を得ることが
できる場所となっている。
In the present invention, Izu Akazawa Deep Sea Water is used as raw water. This deep ocean water is drawn from a depth of 800 m off Izu Akazawa, and the abundance of microorganisms is about a thousandth that of surface water. In addition, Izu Akazawa is the closest water intake area to the metropolitan area and metropolitan area where water is consumed, and in consideration of transportation and other expenses, Izu Akazawa has other areas in providing water. Compared with cost advantage.
However, on the other hand, the fact that it is closest to the Tokyo metropolitan area is a concern that it will be contaminated by seawater that has flowed from Tokyo Bay, which was contaminated by the Keihin area, toward the Pacific Ocean. However, the Kuroshio Current flows northeastward on the surface of the ocean near the Izu Peninsula, and the Izu-Ogasawara Arc, which is composed of high submarine volcanoes, is formed on the southeast coast of the Izu Peninsula. Therefore, in fact, the contaminated seawater that flows out of Tokyo Bay does not flow off the coast of Izu Akazawa due to the Kuroshio Current and the Izu-Ogasawara Arc. For this reason, off the coast of Izu Akazawa, it is the place where the deepest ocean water is the closest to the Tokyo metropolitan area and the metropolitan area, but it is a place where you can get clean, deep, unsealed water.

工程102では、前述のように、逆浸透膜法で淡水化して希釈用淡水を得る。
逆浸透膜法による淡水化は、従来知られている方法によって実施することができる。
例えば、中空糸膜モジュールを用いた逆浸透膜装置(RO装置)による逆浸透膜法を採用することができる。
このような中空糸膜モジュールは、中空糸を実質上同一方向に揃えて束ねた中空糸型選択透過膜エレメントを容器内に中空糸の長手方向に並べて配置している。
In step 102, as described above, fresh water for dilution is obtained by reverse osmosis membrane method.
Desalination by the reverse osmosis membrane method can be carried out by a conventionally known method.
For example, a reverse osmosis membrane method using a reverse osmosis membrane device (RO device) using a hollow fiber membrane module can be employed.
In such a hollow fiber membrane module, hollow fiber type selectively permeable membrane elements in which hollow fibers are bundled substantially in the same direction are arranged in a container in the longitudinal direction of the hollow fiber.

このような逆浸透膜装置を用い、海洋深層水を中空糸内に流入させ、中空糸を透過したものを淡水として回収することによって工程102を実施することができる。
逆浸透膜装置を用いる方法は、エネルギー消費量が比較的少なく、かつ、ほぼ完全に溶存イオンを除去することができるという利点がある。
なお、電気透析(ED)法による場合は、電気エネルギーを過大に消費し、しかも溶存イオンを完全には除去することが困難であり、得られる飲料水のミネラルバランスを崩すおそれがある。
Using such a reverse osmosis membrane device, step 102 can be performed by flowing deep sea water into the hollow fiber and collecting the permeated hollow fiber as fresh water.
The method using the reverse osmosis membrane device has an advantage that energy consumption is relatively small and dissolved ions can be almost completely removed.
In the case of the electrodialysis (ED) method, electric energy is excessively consumed, and it is difficult to completely remove dissolved ions, and the mineral balance of the obtained drinking water may be lost.

工程104では、前述のように、工程102で得られた希釈用淡水に、海洋深層水の原水を、好適には0.01〜5.0体積%、より好適には0.1〜0.9体積%の割合で添加する。
このように、海洋深層水から得られた淡水を希釈用水とし、かつ、この希釈用淡水に、好適には0.01〜5.0体積%、より好適には0.1〜0.9体積%の割合で海洋深層水の原水を添加することは、本発明に係る飲料水の製造方法の重要な特徴である。本発明者らは、鋭意検討することによって、このような特徴が最適であることに想到した。このことを、実施例を参照しながら、後に説明する。
海洋深層水を淡水化して得られる水を希釈用水として用いることは、本発明にとって不可欠である。この理由としては、海洋深層水が、水が最大密度を示す温度域(約4℃)において、長年にわたり高圧条件下[特に、800mの場合(伊豆赤沢深層水)、80気圧]で保存された水であるため、河川水や陸水起源のいわゆるミネラルウォーター、水道水、海洋表層水などに比べ、物理・化学的に水としての特性が高く維持されている。
In step 104, as described above, the raw fresh water for deep seawater is added to the fresh water for dilution obtained in step 102, preferably 0.01 to 5.0% by volume, more preferably 0.1 to 0.00%. Add at a rate of 9% by volume.
Thus, fresh water obtained from deep ocean water is used as dilution water, and the dilution fresh water is preferably 0.01 to 5.0% by volume, more preferably 0.1 to 0.9% by volume. It is an important feature of the method for producing drinking water according to the present invention to add raw water of deep ocean water at a rate of%. The inventors of the present invention have come up with the idea that such a feature is optimal through intensive studies. This will be described later with reference to examples.
It is indispensable for the present invention to use water obtained by desalinating deep ocean water as dilution water. The reason for this is that deep ocean water has been stored under high pressure conditions (especially 800 m (Izu Akazawa Deep Water), 80 atmospheres) in the temperature range (about 4 ° C.) where the maximum density of water is present for many years. Because it is water, its properties as water are maintained physically and chemically higher than so-called mineral water derived from river water and land water, tap water, and ocean surface water.

本発明に係る飲料水の製造方法で得られる飲料水は、以上のようにして製造されるので、含有するミネラルの絶対量は希釈される。しかし、ミネラルバランスは、同一に維持される。すなわち、伊豆赤沢海洋深層水の含有ミネラル比は、カリウム:カルシウム:マグネシウム:ナトリウム=1:1:3:24である。この比は、本発明によって提供される飲料水で確実に維持されている。 Since the drinking water obtained by the manufacturing method of the drinking water which concerns on this invention is manufactured as mentioned above, the absolute amount of the mineral to contain is diluted. However, the mineral balance is kept the same. That is , the mineral ratio of Izu Akazawa Deep Sea Water is potassium: calcium: magnesium: sodium = 1: 1: 3: 24. This ratio is reliably maintained with the drinking water provided by the present invention.

発明者らの研究により、伊豆赤沢海洋深層水中のミネラル(無機塩)類は、細胞の営みに大きな影響を及ぼすことが判明している。伊豆赤沢海洋深層水に由来する利点は、単一のミネラル(無機塩)の多寡によるものではなく、全体としてのミネラルバランスに起因するものと推測している。 According to the inventors' research, it has been found that minerals (inorganic salts) in Izu Akazawa deep sea water have a great influence on cell behavior. It is speculated that the advantage derived from Izu Akazawa Deep Sea Water is not due to a single mineral (inorganic salt), but due to the overall mineral balance.

工程106では、希釈用淡水と、原水の混合水をろ過滅菌する。
ろ過滅菌は、従来知られている装置を用いて実施することができる。
このようなろ過滅菌装置としては、例えば、除菌ユニットと、殺菌ユニットを備えたものを用いる
まず、除菌ユニットで除菌を行う。除菌ユニットは、0.2〜0.8μm程度の微細な孔を有するフィルターを備える。除菌ユニットでは、混合水をろ過して細菌等の微生物を除去する。
そして、殺菌ユニットで殺菌を行う。殺菌ユニットは、除菌ユニットで除去しきれなかった微生物をほぼ完全に死滅させる機能を果たす。
殺菌ユニットとしては、例えば、UV灯を備える殺菌ユニットを用いる。
In step 106, the fresh water for dilution and the mixed water of raw water are sterilized by filtration.
Filtration sterilization can be performed using a conventionally known apparatus.
As such a filtration sterilization apparatus, for example, a device provided with a sterilization unit and a sterilization unit is used .
First, sterilization is performed in a sterilization unit. The sterilization unit includes a filter having fine pores of about 0.2 to 0.8 μm. In the sterilization unit, the mixed water is filtered to remove microorganisms such as bacteria.
And it sterilizes with a sterilization unit. The sterilization unit functions to almost completely kill microorganisms that could not be removed by the sterilization unit.
As the sterilization unit, for example, a sterilization unit including a UV lamp is used.

工程108では、処理後得られる飲料水をボトリングする。
すなわち、飲料水として提供するために、ペットボトル等に封入する。このための装置は、従来知られているものを用いることができる。
In step 108, the drinking water obtained after the treatment is bottled.
That is, in order to provide as drinking water, it encloses in a plastic bottle etc. A conventionally known device can be used for this purpose.

以上説明した実施の形態に係る飲料水の製造方法によって得られる飲料水は、軟水タイプであり、おいしく(飲み易く)、かつ、他の自然から得た飲料水よりも細胞活性を高くでき、有用成分の細胞への取り込みを促進できる。
このことを、次に、以下の実施例について説明する。
Drinking water obtained by the method for producing drinking water according to the embodiment described above is a soft water type, is delicious (easy to drink), and has higher cell activity than other drinking water obtained from nature, useful. Incorporation of components into cells can be promoted.
This will now be described for the following examples.

細胞活性評価
正常ヒト皮膚由来線維芽細胞を各種の水で培養し、細胞活性の変化を評価した。
Cell activity evaluation Normal human skin-derived fibroblasts were cultured in various waters, and changes in cell activity were evaluated.

1.評価培地の組成(用いた水の種類)
PBS(リン酸緩衝液)、水道水(東京都港区の上水道)、海洋深層水(原水、伊豆赤沢深層水)、同海洋深層水の逆浸透(RO)膜処理水、及び同海洋深層水の電気透析(ED)処理による2価陽イオン濃縮水
1. Composition of evaluation medium (type of water used)
PBS (phosphate buffer), tap water (water supply in Minato-ku, Tokyo), deep sea water (raw water, Izu Akazawa deep water), reverse osmosis (RO) membrane treatment water of the deep sea water, and deep sea water Divalent cation concentrated water by electrodialysis (ED) treatment

2.培地の作製方法
各種水を除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium Various water was sterilized and filtered (0.2 μm) and used for the test.

3.培養条件、方法
ヒト正常線維芽細胞を2万個/穴になるように96穴マイクロプレートに播種して24時間前培養(5%CO、37℃)を行なった。
前培養終了後、培地を除去して各種の水に置換して、これらの水だけでさらに1時間評価培養(5%CO、37℃)を行なった。
3. Culture Conditions and Methods Normal human fibroblasts were seeded in a 96-well microplate at 20,000 cells / well and pre-cultured (5% CO 2 , 37 ° C.) for 24 hours.
After completion of the preculture, the medium was removed and replaced with various types of water, and evaluation culture (5% CO 2 , 37 ° C.) was further performed with these waters alone for 1 hour.

4.実験方法(観察方法、計測方法、計算や判定の方法)
評価培養終了後、MTT還元法により細胞の活性を測定した。
なお、比較対象として通常培地作製に用いる再蒸留水で作製したPBS(等張リン酸緩衝液、pH6.9)を用いて同様に培養した細胞の活性を100として算出し、T検定により有意差を判定した。
なお、ここでMTT還元法とは、細胞の増殖、活性及び毒性を調べるために広く用いられているアッセイ方法である。細胞内に取り込まれたMTT[3−(4, 5−ジメチル−チアゾール−2−イル)−2, 5−ジフェニルテトラゾリウムブロマイド]は,ミトコンドリアにある脱水素酵素により還元され、ホルマザン色素が生じ、これを比色法(吸光度570nm)で定量する。色素量は代謝活性のある細胞数と相関するため、得られた値は生細胞数つまり活性のある細胞の数に対応する値である。
4). Experimental method (observation method, measurement method, calculation and judgment method)
After the evaluation culture, the cell activity was measured by the MTT reduction method.
For comparison, the activity of cells cultured in the same manner using PBS (isotonic phosphate buffer, pH 6.9) prepared with double-distilled water used for preparation of a normal medium was calculated as 100, and a significant difference was obtained by T test. Was judged.
Here, the MTT reduction method is an assay method widely used for examining cell proliferation, activity and toxicity. MTT [3- (4,5-dimethyl-thiazol-2-yl) -2,5-diphenyltetrazolium bromide] taken up into cells is reduced by dehydrogenase in mitochondria to produce a formazan dye. Is quantified by a colorimetric method (absorbance 570 nm). Since the amount of pigment correlates with the number of metabolically active cells, the obtained value is a value corresponding to the number of living cells, that is, the number of active cells.

5.評価結果
評価結果を図2に示す。
日常飲用されている水道水では、1時間後には細胞活性が半減した。
しかし、伊豆赤沢海洋深層水の原水(図中、原水)では、その細胞活性は低下しなかった。
一方、伊豆赤沢海洋深層水を逆浸透膜処理した淡水(図中、RO淡水)では、水道水同様1時間後に細胞活性は半減した。
また、伊豆赤沢海洋深層水を電気透析して得られる2価陽イオン濃縮水(図中、EDミネラル水)でも細胞活性は有意に低下した。
この結果から、伊豆赤沢海洋深層水(原水)のミネラル成分を全て除去する。または、人為的かつ適当に濃縮しただけでは身体に良い水はならないことが了解された。
5. Evaluation results The evaluation results are shown in FIG.
In tap water used for daily drinking, cell activity was halved after 1 hour.
However, the cell activity of Izu Akazawa deep sea water (raw water in the figure) did not decrease.
On the other hand, in fresh water (RO fresh water in the figure) treated with reverse osmosis membrane of Izu Akazawa deep sea water, the cell activity was halved after 1 hour like tap water.
In addition, the cell activity was significantly reduced even with divalent cation concentrated water (ED mineral water in the figure) obtained by electrodialyzing Izu Akazawa Deep Sea Water.
From this result, all mineral components of Izu Akazawa deep sea water (raw water) are removed. It was also understood that artificially and appropriately concentrated water does not provide good water for the body.

コラーゲンの合成促進能評価(高濃度側)
コラーゲン合成量について、海洋深層水の添加割合による影響を試した。本実施例2は、海洋深層水を0〜50体積%の範囲で行った。
Evaluation of ability to promote collagen synthesis (high concentration side)
The effect of the addition ratio of deep sea water on the amount of collagen synthesis was tested. The present Example 2 performed deep seawater in the range of 0-50 volume%.

1.培地の組成
イーグルMEM培地(日水製薬製)
1. Medium composition Eagle MEM medium (Nissui Pharmaceutical)

2.培地の作製方法
伊豆赤沢海洋深層水を逆浸透膜処理した淡水を希釈用水として、0(無添加)、5、10、15、20、25、30、35、40、45、50体積%の各濃度で伊豆赤沢海洋深層水の原水を添加した。
各濃度の混合水が0.94体積%になるようにイーグルMEM培地を溶解し、200mM/Lグルタミン(和光純薬製)と5%牛胎仔血清(GIBCO社製)を添加混合した後、除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium 0 (no addition), 5, 10, 15, 20, 25, 30, 35, 40, 45, 50% by volume of fresh water obtained by reverse osmosis membrane treatment of Izu Akazawa deep sea water as dilution water The raw water of Izu Akazawa Deep Sea Water was added at a concentration.
After dissolving Eagle MEM medium so that the mixed water of each concentration is 0.94% by volume, 200 mM / L glutamine (manufactured by Wako Pure Chemical Industries) and 5% fetal calf serum (manufactured by GIBCO) are added and mixed. Bacteria filtration (0.2 μm) was used for the test.

3.培養条件、方法
ヒト正常線維芽細胞を2万個/穴になるように96穴マイクロプレートに播種し、24時間前培養後各種の水で作製した培地に交換した。これに20μg/mlとなるようにビタミンC(水溶性安定化誘導体,リン酸‐アスコルビルマグネシウム)を添加してさらに48時間評価のための培養を行った。
3. Culture conditions and method: Normal human fibroblasts were seeded in a 96-well microplate at 20,000 cells / well and replaced with media prepared with various waters after 24 hours of pre-culture. Vitamin C (water-soluble stabilized derivative, phosphate-ascorbyl magnesium) was added thereto so that the concentration was 20 μg / ml, and the culture for evaluation was further performed for 48 hours.

4.実験方法(観察方法、計測方法、計算や判定の方法)
評価培養終了後、各穴から培地を除去し、PBS(等張リン酸緩衝液)で洗浄後、コラーゲン・ステインキット(コスモバイオ社製)を用いて線維芽細胞が産生したコラーゲン及び非コラーゲン量を測定した。
なお、比較対象として通常培地作製に用いる再蒸留水で作製した培地を用いて同様に培養したビタミンC添加系で得られたコラーゲン及び非コラーゲン量を100として算出し、T検定により有意差を判定した。また、非コラーゲン量は、ビタミンCの添加以外の要因によるコラーゲンの増加がないことを確認するために算出を行なっている。
4). Experimental method (observation method, measurement method, calculation and judgment method)
After completion of the evaluation culture, the medium is removed from each well, washed with PBS (isotonic phosphate buffer), and collagen and non-collagen produced by fibroblasts using a collagen stain kit (Cosmo Bio) Was measured.
In addition, the amount of collagen and non-collagen obtained in a vitamin C addition system cultured in the same manner using a medium prepared with double-distilled water used for normal medium preparation as a comparison target is calculated as 100, and a significant difference is determined by T test. did. The amount of non-collagen is calculated to confirm that there is no increase in collagen due to factors other than the addition of vitamin C.

5.評価結果
コラーゲンの合成量を、図3に示す。この結果から、コラーゲンの合成量は、高濃度側では、海洋深層水の添加による有意な差はなかった。
5. Evaluation Results The amount of collagen synthesis is shown in FIG. From this result, there was no significant difference in the amount of collagen synthesis due to the addition of deep ocean water on the high concentration side.

コラーゲンの合成促進能評価(低濃度側)
コラーゲン合成量について、海洋深層水の添加割合による影響を試した。本実施例3では、海洋深層水を0〜1.0体積%の範囲で添加した。
Evaluation of ability to promote collagen synthesis (low concentration)
The effect of the addition ratio of deep sea water on the amount of collagen synthesis was tested. In Example 3, deep ocean water was added in the range of 0 to 1.0% by volume.

1.培地の組成
イーグルMEM培地(日水製薬製)
1. Medium composition Eagle MEM medium (Nissui Pharmaceutical)

2.培地の作製方法
伊豆赤沢海洋深層水を逆浸透膜処理した淡水を希釈用水として、0(無添加)、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0体積%の各濃度で伊豆赤沢海洋深層水の原水を添加した。
各濃度の混合水が0.94体積%になるようにイーグルMEM培地を溶解し、200mM/Lグルタミン(和光純薬製)と5%牛胎仔血清(GIBCO社製)を添加混合した後、除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium 0 (no addition), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 fresh water obtained by reverse osmosis membrane treatment of Izu Akazawa deep sea water was used as dilution water The raw water of Izu Akazawa Deep Sea Water was added at each concentration of 0.7, 0.8, 0.9, and 1.0 vol%.
After dissolving Eagle MEM medium so that the mixed water of each concentration is 0.94% by volume, 200 mM / L glutamine (manufactured by Wako Pure Chemical Industries) and 5% fetal calf serum (manufactured by GIBCO) are added and mixed. Bacteria filtration (0.2 μm) was used for the test.

3.培養条件、方法
ヒト正常線維芽細胞を2万個/穴になるように96穴マイクロプレートに播種し、24時間前培養後各種の水で作製した培地に交換した。これに20μg/mlとなるようにビタミンC(水溶性安定化誘導体,リン酸‐アスコルビルマグネシウム)を添加してさらに48時間評価のための培養を行った。
3. Culture conditions and method: Normal human fibroblasts were seeded in a 96-well microplate at 20,000 cells / well and replaced with media prepared with various waters after 24 hours of pre-culture. Vitamin C (water-soluble stabilized derivative, phosphate-ascorbyl magnesium) was added thereto so that the concentration was 20 μg / ml, and the culture for evaluation was further performed for 48 hours.

4.実験方法(観察方法、計測方法、計算や判定の方法)
評価培養終了後、各穴から培地を除去し、PBS(等張リン酸緩衝液)で洗浄後、コラーゲン・ステインキット(コスモバイオ社製)を用いて線維芽細胞が産生したコラーゲン及び非コラーゲン量を測定した。
なお、比較対象として通常培地作製に用いる再蒸留水で作製した培地を用いて同様に培養したビタミンC添加系で得られたコラーゲン及び非コラーゲン量を100として算出し、T検定により有意差を判定した。また、非コラーゲン量は、ビタミンCの添加以外の要因によるコラーゲンの増加がないことを確認するために算出を行なっている。
4). Experimental method (observation method, measurement method, calculation and judgment method)
After completion of the evaluation culture, the medium is removed from each well, washed with PBS (isotonic phosphate buffer), and collagen and non-collagen produced by fibroblasts using a collagen stain kit (Cosmo Bio) Was measured.
In addition, the amount of collagen and non-collagen obtained in a vitamin C addition system cultured in the same manner using a medium prepared with double-distilled water used for normal medium preparation as a comparison target is calculated as 100, and a significant difference is determined by T test. did. The amount of non-collagen is calculated to confirm that there is no increase in collagen due to factors other than the addition of vitamin C.

5.評価結果
コラーゲンの合成量を、図4に示す。この結果から、コラーゲンの合成量は、低濃度側では、0.5〜1体積%の割合で海洋深層水を添加した場合に、はっきりと有意な結果を得ることができた。
実施例2と、実施例3の結果から、希釈用淡水に海洋深層水の原水を0.01〜5.0体積%の割合で添加することが好適であり、より好適には、0.1〜0.9体積%の割合で添加することが好適であると判断した。
5. Evaluation Results The amount of collagen synthesis is shown in FIG. From this result, it was possible to obtain a clearly significant result when the deep sea water was added at a rate of 0.5 to 1% by volume on the low concentration side of the collagen synthesis amount.
From the results of Example 2 and Example 3, it is preferable to add the raw water of deep ocean water to the fresh water for dilution at a ratio of 0.01 to 5.0% by volume, more preferably 0.1%. It was judged that it was preferable to add at a ratio of ˜0.9% by volume.

コラーゲンの合成促進能評価(表層水)
コラーゲン合成量について、表層水の添加割合による影響を試した。本実施例4では、表層水を0〜1.0体積%の範囲で添加した。
Evaluation of ability to promote collagen synthesis (surface water)
The effect of the ratio of surface water addition on the amount of collagen synthesis was tested. In Example 4, surface layer water was added in the range of 0 to 1.0% by volume.

1.培地の組成
イーグルMEM培地(日水製薬製)
1. Medium composition Eagle MEM medium (Nissui Pharmaceutical)

2.培地の作製方法
伊豆赤沢で採取した表層水を逆浸透膜処理した淡水を希釈用水として、0(無添加)、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0体積%の各濃度で、伊豆赤沢で採取した表層水を添加した。
各濃度の混合水が0.94体積%になるようにイーグルMEM培地を溶解し、200mM/Lグルタミン(和光純薬製)と5%牛胎仔血清(GIBCO社製)を添加混合した後、除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium 0 (no addition), 0.1, 0.2, 0.3, 0.4, 0.5, 0 as fresh water obtained by reverse osmosis membrane treatment of surface water collected at Izu Akazawa Surface water collected at Izu Akazawa was added at concentrations of 0.6, 0.7, 0.8, 0.9, and 1.0 vol%.
After dissolving Eagle MEM medium so that the mixed water of each concentration is 0.94% by volume, 200 mM / L glutamine (manufactured by Wako Pure Chemical Industries) and 5% fetal calf serum (manufactured by GIBCO) are added and mixed. Bacteria filtration (0.2 μm) was used for the test.

3.培養条件、方法
ヒト正常線維芽細胞を2万個/穴になるように96穴マイクロプレートに播種し、24時間前培養後各種の水で作製した培地に交換した。これに20μg/mlとなるようにビタミンC(水溶性安定化誘導体,リン酸‐アスコルビルマグネシウム)を添加してさらに48時間評価のための培養を行った。
3. Culture conditions and method: Normal human fibroblasts were seeded in a 96-well microplate at 20,000 cells / well and replaced with media prepared with various waters after 24 hours of pre-culture. Vitamin C (water-soluble stabilized derivative, phosphate-ascorbyl magnesium) was added thereto so that the concentration was 20 μg / ml, and the culture for evaluation was further performed for 48 hours.

4.実験方法(観察方法、計測方法、計算や判定の方法)
評価培養終了後、各穴から培地を除去し、PBS(等張リン酸緩衝液)で洗浄後、コラーゲン・ステインキット(コスモバイオ社製)を用いて線維芽細胞が産生したコラーゲン及び非コラーゲン量を測定した。
なお、比較対象として通常培地作製に用いる再蒸留水で作製した培地を用いて同様に培養したビタミンC添加系で得られたコラーゲン及び非コラーゲン量を100として算出し、T検定により有意差を判定した。また、非コラーゲン量は、ビタミンCの添加以外の要因によるコラーゲンの増加がないことを確認するために算出を行なっている。
4). Experimental method (observation method, measurement method, calculation and judgment method)
After completion of the evaluation culture, the medium is removed from each well, washed with PBS (isotonic phosphate buffer), and collagen and non-collagen produced by fibroblasts using a collagen stain kit (Cosmo Bio) Was measured.
In addition, the amount of collagen and non-collagen obtained in a vitamin C addition system cultured in the same manner using a medium prepared with double-distilled water used for normal medium preparation as a comparison target is calculated as 100, and a significant difference is determined by T test. did. The amount of non-collagen is calculated to confirm that there is no increase in collagen due to factors other than the addition of vitamin C.

5.評価結果
コラーゲンの合成量を、図5に示す。この結果から、表層水では、その添加による有意な差はなかった。
なお、図6は、図4の海洋深層水の添加によるコラーゲン合成量への影響に関する結果と、図5の表層水の添加によるコラーゲン合成量への影響に関する結果を取り出して表したものである。
本実施例4により、海洋深層水の添加によるコラーゲン合成への優れた作用が明らかである。
5. Evaluation Results The amount of collagen synthesis is shown in FIG. From this result, in surface layer water, there was no significant difference by the addition.
6 shows the results regarding the effect on the amount of collagen synthesis due to the addition of deep sea water in FIG. 4 and the results regarding the effect on the amount of collagen synthesis due to the addition of surface water in FIG.
This Example 4 clearly shows an excellent effect on collagen synthesis by the addition of deep ocean water.

コラーゲンの合成促進能評価
各種の水で調製した培地に対する、安定化ビタミンC添加によるヒト皮膚由来線維芽細胞のコラーゲン合成促進作用を調べた。
Evaluation of collagen synthesis promotion ability Collagen synthesis promotion action of human skin-derived fibroblasts by addition of stabilized vitamin C was examined on media prepared with various waters.

1.培地の組成
イーグルMEM培地(日水製薬製)
1. Medium composition Eagle MEM medium (Nissui Pharmaceutical)

2.培地の作製方法
伊豆赤沢海洋深層水を逆浸透膜処理した淡水を希釈用水として、0.5体積%の濃度で伊豆赤沢海洋深層水の原水を添加したもの(硬度32mg/L)を本発明で得られた海洋深層水として用いた。
その他は、各々、硬度が、24、60、38、304mg/Lの陸水起源のナチュラルミネラルウォーターを用いた。
各濃度の水が0.94体積%になるようにイーグルMEM培地を溶解し、200mM/Lグルタミン(和光純薬製)と5%牛胎仔血清(GIBCO社製)を添加混合した後、除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium In the present invention, Izu Akazawa Deep Sea Water treated with reverse osmosis membrane was used as dilution water, and Izu Akazawa Deep Sea Water was added at a concentration of 0.5% by volume (hardness 32 mg / L). It was used as the obtained deep ocean water.
In other cases, natural mineral water derived from land water having a hardness of 24, 60, 38, and 304 mg / L was used.
Eagle MEM medium is dissolved so that each concentration of water is 0.94% by volume, 200 mM / L glutamine (manufactured by Wako Pure Chemical Industries) and 5% fetal calf serum (GIBCO) are added and mixed, and then sterilized. It filtered (0.2 micrometer) and used for the test.

3.培養条件、方法
ヒト正常線維芽細胞を2万個/穴になるように96穴マイクロプレートに播種し、24時間前培養後各種の水で作製した培地に交換した。これに20μg/mlとなるようにビタミンC(水溶性安定化誘導体,リン酸‐アスコルビルマグネシウム)を添加してさらに48時間評価のための培養を行った。
3. Culture conditions and method: Normal human fibroblasts were seeded in a 96-well microplate at 20,000 cells / well and replaced with media prepared with various waters after 24 hours of pre-culture. Vitamin C (water-soluble stabilized derivative, phosphate-ascorbyl magnesium) was added thereto so that the concentration was 20 μg / ml, and the culture for evaluation was further performed for 48 hours.

4.実験方法(観察方法、計測方法、計算や判定の方法)
評価培養終了後、各穴から培地を除去し、PBS(等張リン酸緩衝液)で洗浄後、コラーゲン・ステインキット(コスモバイオ社製)を用いて線維芽細胞が産生したコラーゲンを測定した。
なお、比較対象として通常培地作製に用いる再蒸留水で作製した培地を用いて同様に培養したビタミンC添加系で得られたコラーゲン量を100として算出し、T検定により有意差を判定した。
4). Experimental method (observation method, measurement method, calculation and judgment method)
After the evaluation culture was completed, the medium was removed from each well, washed with PBS (isotonic phosphate buffer), and then collagen produced by fibroblasts was measured using a collagen stain kit (manufactured by Cosmo Bio).
In addition, the amount of collagen obtained by the vitamin C addition system similarly cultured using the medium produced with the double distilled water used for normal medium preparation as a comparison object was computed as 100, and the significant difference was determined by T test.

5.評価結果
コラーゲンの合成量を、図7に示す。
本発明に係る飲料水では、他の陸水起源のいわゆるミネラルウォーターに比べて顕著に高いコラーゲン合成促進作用を示した。このことから本発明に係る飲料水は他の陸水起源の水よりもビタミンCの細胞内取り込みを亢進させることが示唆された。
5. Evaluation Results The amount of collagen synthesized is shown in FIG.
The drinking water according to the present invention showed a significantly higher collagen synthesis promoting action than so-called mineral water of other land water origin. From this, it was suggested that the drinking water according to the present invention enhances the intracellular uptake of vitamin C as compared to other terrestrial water.

細胞内チロシナーゼ活性抑制評価
各種の水で調製した培地で培養したB16細胞に対するアルブチン添加による美白作用を調べた。B16細胞は旺盛なメラニン産生能を持つことから、美白剤の開発にとって重要な培養細胞である。
Inhibition of intracellular tyrosinase activity The whitening effect of arbutin addition on B16 cells cultured in media prepared with various waters was examined. Since B16 cells have a vigorous ability to produce melanin, they are important cultured cells for the development of whitening agents.

1.培地の組成
イーグルMEM培地(日水製薬製)
1. Medium composition Eagle MEM medium (Nissui Pharmaceutical)

2.培地の作製方法
伊豆赤沢海洋深層水を逆浸透膜処理した淡水を希釈用水として、0.5体積%の濃度で伊豆赤沢海洋深層水の原水を添加したもの(硬度32mg/L)を本発明で得られた海洋深層水として用いた。
その他は、各々、硬度が、24、60、38、304mg/Lの陸水起源のナチュラルミネラルウォーターを用いた。
各濃度の水が0.94体積%になるようにイーグルMEM培地を溶解し、200mM/Lグルタミン(和光純薬製)と5%牛胎仔血清(GIBCO社製)を添加混合した後、除菌ろ過(0.2μm)して試験に供した。
2. Preparation method of culture medium In the present invention, Izu Akazawa Deep Sea Water treated with reverse osmosis membrane was used as dilution water, and Izu Akazawa Deep Sea Water was added at a concentration of 0.5% by volume (hardness 32 mg / L). It was used as the obtained deep ocean water.
In other cases, natural mineral water derived from land water having a hardness of 24, 60, 38, and 304 mg / L was used.
Eagle MEM medium is dissolved so that each concentration of water is 0.94% by volume, 200 mM / L glutamine (manufactured by Wako Pure Chemical Industries) and 5% fetal calf serum (GIBCO) are added and mixed, and then sterilized. It filtered (0.2 micrometer) and used for the test.

3.培養条件、方法
メラニン産生能が高いB16細胞を2万個/穴になるように96穴マイクロプレートに播種し、24時間前培養後各種の水で作製した培地に交換した。美白剤であるアルブチンを最終濃度が1.5mMになるように添加して48時間評価のための培養を行った細胞内のチロシナーゼ活性を測定した。
3. Culture conditions and method B16 cells having high melanin production ability were seeded in a 96-well microplate so that the number of B16 cells was 20,000 cells / hole, and the medium was replaced with a medium prepared with various waters after 24 hours of preculture. Arbutin, a whitening agent, was added to a final concentration of 1.5 mM, and the tyrosinase activity in the cells cultured for 48 hours for evaluation was measured.

4.実験方法(観察方法、計測方法、計算や判定の方法)
なお各種の水におけるアルブチンの細胞内チロシナーゼ活性(Dopa反応法で測定)抑制効果については、通常B16細胞用培地の調製に用いられる再蒸留水を用いて評価した際の効果を100として算出した。
4). Experimental method (observation method, measurement method, calculation and judgment method)
The inhibitory effect of arbutin on intracellular tyrosinase activity (measured by the Dopa reaction method) in various waters was calculated with the effect when evaluated using double-distilled water usually used for the preparation of a medium for B16 cells.

5.評価結果
試験結果を、図8に示す。
本発明に係る飲料水では、最も高い細胞内チロシナーゼ活性抑制効果を示し、その効果は他の陸水起源のいわゆるミネラルウォーターに比べて顕著であった。このことから、本発明に係る飲料水は他の陸水起源の水よりもアルブチンの細胞内への取り込みを亢進させることが示された。
5. Evaluation results The test results are shown in FIG.
In the drinking water which concerns on this invention, the highest intracellular tyrosinase activity inhibitory effect was shown, The effect was remarkable compared with what is called mineral water of other land water origin. From this, it was shown that the drinking water according to the present invention enhances the uptake of arbutin into cells more than other terrestrial water-derived water.

飲料水の電気電導率及び硬度とおいしさの評価
伊豆赤沢海洋深層水を逆浸透膜処理した淡水を希釈用水として、0(無添加)、1.0体積%(試験例1)、0.9体積%(試験例2)、0.8体積%(試験例3)、0.7体積%(試験例4)、0.6体積%(試験例5)、0.5体積%(試験例6)、0.4体積%(試験例7)の各濃度で伊豆赤沢海洋深層水の原水を添加した。各々についてサンプルを3点採取した。
試験例1〜7について、電気電導率、硬度、pHを測定した。各試験例についてサンプルを3点採取し、平均値を取った。
そして、20代男性15人がおいしさの順位評点を付けた。順位評点は、1位に10点、以降順位が下がる毎に1点を減点して付与することとした。
その結果を表1に示す

Figure 0005674286
Evaluation of electric conductivity, hardness and taste of drinking water 0 (no additive), 1.0 vol% (Test Example 1), 0.9% as fresh water obtained by reverse osmosis membrane treatment of Izu Akazawa Deep Sea Water Volume% (Test Example 2), 0.8 volume% (Test Example 3), 0.7 volume% (Test Example 4), 0.6 volume% (Test Example 5), 0.5 volume% (Test Example 6) ), Raw water of Izu Akazawa deep sea water was added at each concentration of 0.4% by volume (Test Example 7). Three samples were taken for each.
About Test Examples 1-7, the electrical conductivity, hardness, and pH were measured. Three samples were collected for each test example and averaged.
And 15 men in their 20s gave a ranking of deliciousness. The ranking score is 10 points for the first place, and 1 point is deducted every time the ranking is lowered.
The results are shown in Table 1.
Figure 0005674286

本発明者らが検証したところ、伊豆赤沢海洋深層水を淡水化して得られる希釈用淡水に伊豆赤沢海洋深層水の原水を0.01〜5.0体積%の割合で添加した場合、製品として得られる飲料水は、0.6mg/L〜320mg/Lの硬度を有し、0.1mS/cm〜1mS/cmの電気伝導率を有している。したがって、本発明に係る飲料水は、この範囲の硬度、電気伝導率を好適には備える。
0.01体積%に満たない割合で添加した場合、細胞に対する効果を期待することが困難である。また、320mg/Lを超える硬度の飲料水は、味の低下を引き起こすおそれがある。また、1mS/cmを超える電気電導度では、細胞に対する効果が減少するおそれがある。
As a result of verification by the present inventors, when raw water of Izu Akazawa Deep Sea Water is added to fresh water for dilution obtained by desalinating Izu Akazawa Deep Sea Water at a ratio of 0.01 to 5.0 vol%, as a product The resulting drinking water has a hardness of 0.6 mg / L to 320 mg / L and an electrical conductivity of 0.1 mS / cm to 1 mS / cm. Therefore, the drinking water according to the present invention suitably has hardness and electric conductivity in this range.
When added at a ratio of less than 0.01% by volume, it is difficult to expect an effect on cells. Moreover, there exists a possibility that the drinking water of hardness exceeding 320 mg / L may cause the fall of a taste. Moreover, there exists a possibility that the effect with respect to a cell may reduce in the electrical conductivity exceeding 1 mS / cm.

また、本発明者らが検証したところ、伊豆赤沢海洋深層水を淡水化して得られる希釈用淡水に伊豆赤沢海洋深層水の原水を0.1〜0.9体積%の割合で添加した場合、製品として得られる飲料水は、6mg/L〜60mg/Lの硬度を有し、0.3mS/cm〜0.5mS/cmの電気伝導率を有している。したがって、本発明に係る飲料水は、この範囲の硬度、電気伝導率をさらに好適には備える。表1の試験結果によれば、この範囲にある試験例6、7は、最も良好な軟水であり、試験例1〜7中、最も好まれていることが了解される。 Moreover, when the present inventors verified, when Izu Akazawa deep sea water was added to the fresh water for dilution obtained by desalinating Izu Akazawa deep sea water at a ratio of 0.1 to 0.9 vol%, The drinking water obtained as a product has a hardness of 6 mg / L to 60 mg / L and an electrical conductivity of 0.3 mS / cm to 0.5 mS / cm. Therefore, the drinking water according to the present invention more suitably has hardness and electric conductivity in this range. According to the test results of Table 1, it is understood that Test Examples 6 and 7 in this range are the best soft water and are most preferred among Test Examples 1 to 7.

100 採水工程
102 逆浸透ろ過工程
104 希釈・均一混合工程
106 ろ過滅菌工程
108 ボトリング工程
100 Water Collection Process 102 Reverse Osmosis Filtration Process 104 Dilution / Uniform Mixing Process 106 Filtration Sterilization Process 108 Bottling Process

Claims (1)

伊豆赤沢海洋深層水を逆浸透膜法で淡水化して希釈用淡水を得る工程と、該希釈用淡水に伊豆赤沢海洋深層水の原水を0.1〜0.9体積%の割合で添加する工程と、しかる後に、上記希釈用淡水と上記原水の混合水を、除菌ユニットによりろ過して微生物を除去することにより除菌し、さらに除菌後の上記混合水を、UV灯を備える殺菌ユニットにより殺菌する、ろ過滅菌工程とを備え、上記伊豆赤沢海洋深層水が、伊豆赤沢沖の水深800mから汲み上げられた海洋深層水であることを特徴とする飲料水の製造方法。 The process of obtaining fresh water for dilution by desalting Izu Akazawa deep sea water by reverse osmosis membrane method, and adding raw water of Izu Akazawa deep sea water to the fresh water for dilution at a ratio of 0.1 to 0.9% by volume Thereafter, the mixed water of the dilution fresh water and the raw water is sterilized by removing the microorganisms by filtration through a sterilizing unit, and the sterilized unit further equipped with a UV lamp A method for producing drinking water, characterized in that the Izu Akazawa Deep Sea Water is deep sea water drawn from a depth of 800 m off Izu Akazawa.
JP2009130597A 2009-05-29 2009-05-29 Method for producing drinking water Active JP5674286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130597A JP5674286B2 (en) 2009-05-29 2009-05-29 Method for producing drinking water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130597A JP5674286B2 (en) 2009-05-29 2009-05-29 Method for producing drinking water

Publications (2)

Publication Number Publication Date
JP2010274214A JP2010274214A (en) 2010-12-09
JP5674286B2 true JP5674286B2 (en) 2015-02-25

Family

ID=43421669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130597A Active JP5674286B2 (en) 2009-05-29 2009-05-29 Method for producing drinking water

Country Status (1)

Country Link
JP (1) JP5674286B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180527B (en) * 2011-03-03 2013-01-09 中国神华能源股份有限公司 Water mixing device and sea water desalinizing system comprising same
JP6083698B2 (en) * 2012-12-13 2017-02-22 奥長良川名水株式会社 Method for producing soft drink with sealed container and soft drink with sealed container
JP6677443B2 (en) * 2014-11-14 2020-04-08 株式会社ダイセル Composition for high absorption of carotenoids
JP6905720B2 (en) * 2017-01-25 2021-07-21 大日本除蟲菊株式会社 Human pest repellent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634237B2 (en) * 1999-06-14 2005-03-30 株式会社浅川自然食品工業 Drinking water
JP2001310192A (en) * 2000-05-02 2001-11-06 Nippon Shoji:Kk Method for manufacturing ocean mineral component- containing water
JP2002330736A (en) * 2001-05-09 2002-11-19 Ryujin Customer Service:Kk Refreshing beverage, method and system for producing the same
JP2003024939A (en) * 2001-07-16 2003-01-28 Toray Ind Inc Water making method and water making apparatus
JP4088788B2 (en) * 2003-09-01 2008-05-21 株式会社伊豆深層水 Drinking water and method for producing the same
JP2006151920A (en) * 2004-10-27 2006-06-15 Asakawa Shizen Shokuhin Kogyo:Kk Method for producing drinking water having maintaining effect on homeostasis
JP2007029899A (en) * 2005-07-28 2007-02-08 Hakatako Kanri Kk Mineral water

Also Published As

Publication number Publication date
JP2010274214A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
Ding et al. Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products
Jeong et al. Foulant analysis of a reverse osmosis membrane used pretreated seawater
Bu et al. The combination of coagulation and ozonation as a pre-treatment of ultrafiltration in water treatment
JP5479361B2 (en) Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
TWI344941B (en) Method and apparatus for desalinating sea water
Szymanska et al. Hybrid ozonation–microfiltration system for the treatment of surface water using ceramic membrane
Goncharuk et al. The use of redox potential in water treatment processes
Alshahri et al. Advanced coagulation using in-situ generated liquid ferrate, Fe (VI), for enhanced pretreatment in seawater RO desalination during algal blooms
Nam et al. Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment
JP5674286B2 (en) Method for producing drinking water
Vasyukova et al. Removal of natural organic matter and trihalomethane formation potential in a full-scale drinking water treatment plant
Maeng et al. The growth of Scenedesmus quadricauda in RO concentrate and the impacts on refractory organic matter, Escherichia coli, and trace organic compounds
Lapin et al. Biochemical effects of molecular hydrogen in aqueous systems
Rahmah et al. Membrane technology in deep seawater exploration: A mini review
Sillanpaa et al. NOM removal by electrochemical methods
JP2010132602A (en) Normal saline solution based on deep ocean water and method for producing normal saline solution
JP2011078914A (en) Method of manufacturing water for living body containing stabilized ozone-nanobubble nucleus and water for living body
László et al. Purification of thermal wastewater by membrane separation and ozonation
Su et al. Identifying active concentrations of biopolymers for enhancing membrane nanofiltration performance: From bench-scale tests to real production considerations
WO2007058314A1 (en) Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product
Babel et al. A study on membrane fouling due to algal deposition
KR100969657B1 (en) A method to produce a spirulina algae using deep sea water
JP3353810B2 (en) Reverse osmosis seawater desalination system
Gomes et al. Cork Boiling wastewater treatment in pilot constructed wetlands
JP4088788B2 (en) Drinking water and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350