JP5673327B2 - Rotating electrical machine rotor - Google Patents

Rotating electrical machine rotor Download PDF

Info

Publication number
JP5673327B2
JP5673327B2 JP2011096441A JP2011096441A JP5673327B2 JP 5673327 B2 JP5673327 B2 JP 5673327B2 JP 2011096441 A JP2011096441 A JP 2011096441A JP 2011096441 A JP2011096441 A JP 2011096441A JP 5673327 B2 JP5673327 B2 JP 5673327B2
Authority
JP
Japan
Prior art keywords
rotor
heat transfer
rotor core
transfer member
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011096441A
Other languages
Japanese (ja)
Other versions
JP2011259691A (en
Inventor
良介 宇鷹
良介 宇鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011096441A priority Critical patent/JP5673327B2/en
Priority to US13/106,151 priority patent/US20110278967A1/en
Publication of JP2011259691A publication Critical patent/JP2011259691A/en
Application granted granted Critical
Publication of JP5673327B2 publication Critical patent/JP5673327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、ハイブリッド車両や電気自動車等の車両等に用いられる回転電機の回転子に関し、特に回転子に埋め込まれた永久磁石の熱を冷却する構造を有する回転電機の回転子に関する。   The present invention relates to a rotor of a rotating electrical machine used for a vehicle such as a hybrid vehicle or an electric vehicle, and more particularly to a rotor of a rotating electrical machine having a structure for cooling the heat of a permanent magnet embedded in the rotor.

従来、車両等に用いられる回転電機(モータ)の回転子として、特許文献1に記載されたものが知られている。この回転子は、円環状の複数の鋼板を回転軸方向に積層して形成され、固定子と径方向に対向するよう配置された回転子コアと、回転子コアの内部にそれぞれ円周方向に所定間隔を空けて配置された永久磁石と、回転子コアの回転軸方向の両端面に当接した状態に配設された円環状のエンドプレートと、を含んで構成されている。   Conventionally, what was described in patent document 1 is known as a rotor of the rotary electric machine (motor) used for a vehicle etc. This rotor is formed by laminating a plurality of annular steel plates in the rotation axis direction, and arranged in a circumferential direction inside the rotor core, and a rotor core arranged to face the stator in the radial direction. The permanent magnet includes a permanent magnet disposed at a predetermined interval, and an annular end plate disposed in contact with both end surfaces of the rotor core in the rotation axis direction.

このような構造の回転子を図8に示す。図8には、回転子1を周方向に所定数分割したうちの1つの扇状部分が示されている。この回転子1においては、当該回転子1が回転した際に、回転子1の外周側に径方向に所定の間隙を介して配置されている図示せぬ円環状の固定子と回転子1との間で、半径方向、周方向及び回転軸方向に磁界が発生する。この磁界の発生に応じて永久磁石2内に渦電流が流れ、永久磁石2がジュール損失によって発熱する。つまり、永久磁石2が起磁力変動により発熱する。この発熱は、図8に矢印Y1で示すように永久磁石2から回転子1のコアを介して回転軸へ伝わり、この際、回転軸に流れている潤滑油での冷却効果も加味して永久磁石2が冷却される。   A rotor having such a structure is shown in FIG. FIG. 8 shows one fan-shaped portion of the rotor 1 divided into a predetermined number in the circumferential direction. In the rotor 1, when the rotor 1 rotates, an annular stator (not shown) and the rotor 1 that are arranged radially on the outer peripheral side of the rotor 1 with a predetermined gap therebetween. The magnetic field is generated in the radial direction, the circumferential direction, and the rotation axis direction. In response to the generation of this magnetic field, an eddy current flows in the permanent magnet 2, and the permanent magnet 2 generates heat due to Joule loss. That is, the permanent magnet 2 generates heat due to the magnetomotive force fluctuation. This heat generation is transmitted from the permanent magnet 2 to the rotating shaft through the core of the rotor 1 as indicated by an arrow Y1 in FIG. 8, and at this time, the cooling effect by the lubricating oil flowing through the rotating shaft is also taken into consideration. The magnet 2 is cooled.

このような回転子の永久磁石の除熱構造として特許文献2に記載の回転電機が有る。この回転電機は、回転軸の一方の内部を回転軸方向に通り、更に回転子コア内を永久磁石の回転軸側の近傍を通過し、更には回転軸の他方の内部を回転軸方向に通って抜ける除熱流路が形成されている。その除熱流路を冷却媒体が流通することにより永久磁石が冷却されるようになっている。   As such a heat removal structure of the permanent magnet of the rotor, there is a rotating electrical machine described in Patent Document 2. This rotating electrical machine passes through the inside of one of the rotating shafts in the direction of the rotating shaft, passes through the rotor core in the vicinity of the rotating shaft side of the permanent magnet, and further passes through the other inside of the rotating shaft in the direction of the rotating shaft. A heat removal flow path is formed. The permanent magnet is cooled as the cooling medium flows through the heat removal passage.

特開2006−353041号公報JP 2006-353041 A 特開2008−219960号公報JP 2008-219960 A

ところで、上記の特許文献1の構造では、永久磁石の回転軸側の熱が回転子コアを介して回転軸に伝わって冷却される。また、特許文献2の構造でも、除熱流路が永久磁石の回転軸側の近傍を通っているので、永久磁石の回転軸側の熱が冷却される。これらのことから永久磁石の回転子外周側の熱は、その逆側(回転軸側)ほどに冷却されない。   By the way, in the structure of the above-mentioned Patent Document 1, heat on the rotating shaft side of the permanent magnet is transmitted to the rotating shaft through the rotor core and cooled. Also in the structure of Patent Document 2, since the heat removal passage passes through the vicinity of the rotating shaft side of the permanent magnet, the heat on the rotating shaft side of the permanent magnet is cooled. For these reasons, the heat on the outer peripheral side of the rotor of the permanent magnet is not cooled as much as the opposite side (rotating shaft side).

回転子では、永久磁石が前述した渦電流によるジュール損失によって発熱するが、特に電機子の起磁力変動の影響を大きく受ける永久磁石の回転子外周側の温度上昇が顕著である。しかし、上記のように永久磁石の回転子外周側はそれほど冷却されないので、この回転子外周側の温度上昇によって、永久磁石の局部的な減磁耐力の低下が懸念されるという問題がある。   In the rotor, the permanent magnet generates heat due to the Joule loss due to the eddy current described above, but the temperature rise on the outer periphery side of the permanent magnet that is greatly influenced by the magnetomotive force fluctuation of the armature is particularly remarkable. However, as described above, the rotor outer peripheral side of the permanent magnet is not cooled so much, and there is a problem that a local demagnetization resistance of the permanent magnet may be lowered due to the temperature increase on the rotor outer peripheral side.

本発明は、このような事情に鑑みてなされたものであり、永久磁石の冷却性能の向上を図り、永久磁石の減磁耐力の局部的な低下を防止し得るようにした回転電機の回転子を提供することを目的とする。   The present invention has been made in view of such circumstances, and the rotor of a rotating electrical machine is designed to improve the cooling performance of the permanent magnet and prevent a local decrease in the demagnetization resistance of the permanent magnet. The purpose is to provide.

上記目的を達成するためになされた請求項1に記載の発明は、円環状の複数の鋼板を回転軸方向に積層して形成され、回転電機の固定子と径方向に対向するよう配置された回転子コアと、前記回転子コアの内部にそれぞれ円周方向に所定間隔を空けて配置された永久磁石と、前記回転子コアの回転軸方向両端面のうちの少なくとも一方の端面に当接した状態に配設された円環状のエンドプレートと、を有する回転電機の回転子において、前記回転子コアには、前記回転子コアを回転軸方向に貫通するとともに、その両端が前記エンドプレートと当接する伝熱部材が配設され、前記伝熱部材は、回転軸方向に複数に分割されて、この分割された各伝熱部材のうち、軸方向に隣接する前記伝熱部材同士は、それぞれの軸方向端面の少なくとも一部にて当接していることを特徴とする。 The invention according to claim 1, which has been made to achieve the above object, is formed by laminating a plurality of annular steel plates in the rotational axis direction, and is arranged so as to face the stator of the rotating electrical machine in the radial direction. Abutted against at least one of the rotor core, the permanent magnets arranged at predetermined intervals in the circumferential direction inside the rotor core, and both end faces in the rotation axis direction of the rotor core In the rotor of the rotating electrical machine having an annular end plate disposed in a state, the rotor core penetrates the rotor core in the direction of the rotation axis, and both ends thereof are in contact with the end plate. A heat transfer member in contact therewith is disposed, and the heat transfer member is divided into a plurality of portions in the rotation axis direction, and among the divided heat transfer members, the heat transfer members adjacent in the axial direction are respectively At least part of the axial end face Wherein the Te abuts.

請求項1に記載の発明によれば、回転電機の作動により回転子が回転した際に、回転子コアに配設された永久磁石が起磁力変動により発熱する。この永久磁石に発生した熱は、回転子コアの鋼板を介して伝熱部材に伝導され、伝熱部材により形成された軸方向に延びる伝熱経路を経由してエンドプレートに伝導される。そして、エンドプレートに伝導された熱は、エンドプレートにより形成された径方向及び周方向に広がる伝熱経路を経由してエンドプレートから外気へ放出され、更にはエンドプレートに当接する他の部材に伝導されることによって除去される。このようにして、永久磁石に発生した熱が伝熱部材を介して効果的に除去されることにより、永久磁石が冷却され、永久磁石の温度上昇が抑制される。したがって、本発明によれば、永久磁石の高温時に発生する減磁耐力の局部的な低下を防止することができる。
また、請求項1に記載の発明によれば、伝熱部材は、回転軸方向に複数に分割されて、この分割された各伝熱部材のうち、軸方向に隣接する伝熱部材同士は、それぞれの軸方向端面の少なくとも一部にて当接している。これにより、複数に分割した伝熱部材を、周方向にスキューさせた状態に配設することによって、騒音の原因となる振動の発生を抑制することができる。
According to the first aspect of the present invention, when the rotor is rotated by the operation of the rotating electrical machine, the permanent magnet disposed in the rotor core generates heat due to the magnetomotive force fluctuation. The heat generated in the permanent magnet is conducted to the heat transfer member through the steel plate of the rotor core, and is conducted to the end plate via the heat transfer path extending in the axial direction formed by the heat transfer member. Then, the heat conducted to the end plate is released from the end plate to the outside air via the heat transfer path formed in the radial direction and the circumferential direction formed by the end plate, and further to other members that contact the end plate. It is removed by being conducted. In this way, the heat generated in the permanent magnet is effectively removed through the heat transfer member, whereby the permanent magnet is cooled and the temperature rise of the permanent magnet is suppressed. Therefore, according to the present invention, it is possible to prevent a local decrease in the demagnetization resistance generated when the permanent magnet is at a high temperature.
Moreover, according to invention of Claim 1, a heat-transfer member is divided | segmented into plurality in the rotating shaft direction, Among these divided | segmented each heat-transfer members, the heat-transfer members adjacent to an axial direction are as follows. They are in contact with at least a part of each axial end face. Thereby, by arranging the heat transfer member divided into a plurality in a skewed state in the circumferential direction, it is possible to suppress the occurrence of vibration that causes noise.

請求項2に記載の発明は、前記伝熱部材は、前記永久磁石よりも径方向固定子側に配置されていることを特徴とする。   The invention according to claim 2 is characterized in that the heat transfer member is arranged on a radial stator side with respect to the permanent magnet.

請求項2に記載の発明によれば、伝熱部材は、特に固定子の起磁力変動の影響を大きく受ける永久磁石の径方向固定子側に配置されているので、永久磁石の冷却を効率よく、より確実に行うことができる。そのため、永久磁石の高温時に発生する減磁耐力の局部的な低下をより確実に防止することが可能となる。   According to the second aspect of the present invention, the heat transfer member is disposed on the radial stator side of the permanent magnet that is particularly greatly affected by the magnetomotive force fluctuation of the stator, so that the permanent magnet can be efficiently cooled. Can be done more reliably. For this reason, it is possible to more surely prevent a local decrease in the demagnetization resistance generated when the permanent magnet is at a high temperature.

請求項3に記載の発明は、前記伝熱部材は、前記回転子コアに配設された2つの前記永久磁石の間の外周側に、前記エンドプレートに両端が当接状態となるように埋め込まれていることを特徴とする。   According to a third aspect of the present invention, the heat transfer member is embedded on the outer peripheral side between the two permanent magnets disposed on the rotor core so that both ends are in contact with the end plate. It is characterized by being.

請求項3に記載の発明によれば、回転子が固定子の内周側に径方向に対向して配置されている場合において、伝熱部材は、特に固定子の起磁力変動の影響を大きく受ける永久磁石の外周側(径方向固定子側)に配置されているので、永久磁石の冷却を効率よく、より確実に行うことができる。   According to the third aspect of the present invention, in the case where the rotor is disposed on the inner peripheral side of the stator so as to face the radial direction, the heat transfer member particularly increases the influence of the magnetomotive force fluctuation of the stator. Since it is arrange | positioned at the outer peripheral side (radial direction stator side) of the permanent magnet to receive, cooling of a permanent magnet can be performed efficiently and more reliably.

請求項4に記載の発明は、前記伝熱部材は、前記回転子コアに配設された2つの前記永久磁石の間の外周側に、前記回転子コアの外周面に一面が表出する状態で前記エンドプレートに両端が当接状態となるように埋め込まれていることを特徴とする。   According to a fourth aspect of the present invention, the heat transfer member is in a state where one surface is exposed on the outer peripheral surface of the rotor core on the outer peripheral side between the two permanent magnets disposed on the rotor core. And embedded in the end plate so that both ends are in contact with each other.

請求項4に記載の発明によれば、上記請求項3と同様に、回転子が固定子の内周側に径方向に対向して配置されている場合において、伝熱部材は、特に固定子の起磁力変動の影響を大きく受ける永久磁石の外周側(径方向固定子側)に配置されているので、永久磁石の冷却を効率よく、より確実に行うことができる。   According to the fourth aspect of the present invention, as in the third aspect, in the case where the rotor is disposed radially opposed to the inner peripheral side of the stator, the heat transfer member is particularly the stator. Since it is arranged on the outer peripheral side (radial stator side) of the permanent magnet that is greatly affected by the magnetomotive force fluctuation, the permanent magnet can be cooled efficiently and more reliably.

請求項5に記載の発明は、前記回転子コアは、軸方向に隣接する2つの前記鋼板の間に設けられた絶縁被膜を有し、前記伝熱部材は、前記絶縁被膜よりも熱伝導率が高い材料で形成されていることを特徴とする。   According to a fifth aspect of the present invention, the rotor core has an insulating coating provided between two steel plates adjacent in the axial direction, and the heat transfer member has a thermal conductivity higher than that of the insulating coating. Is formed of a high material.

請求項5に記載の発明によれば、永久磁石に発生した熱を、より効率よく伝熱部材を介してエンドプレートに伝導することができるので、永久磁石をより効率よく冷却することができる。   According to the fifth aspect of the present invention, since the heat generated in the permanent magnet can be more efficiently conducted to the end plate via the heat transfer member, the permanent magnet can be cooled more efficiently.

請求項6に記載の発明は、前記回転子コアは、軸方向に隣接する2つの前記鋼板の間に設けられた絶縁被膜を有し、前記エンドプレートは、前記絶縁被膜よりも熱伝導率が高い材料で形成されていることを特徴とする。   According to a sixth aspect of the invention, the rotor core has an insulating coating provided between two steel plates adjacent in the axial direction, and the end plate has a thermal conductivity higher than that of the insulating coating. It is characterized by being made of a high material.

請求項6に記載の発明によれば、永久磁石に発生した熱を、より効率よくエンドプレートに伝導し放出することができるので、永久磁石をより効率よく冷却することができる。   According to the sixth aspect of the present invention, the heat generated in the permanent magnet can be conducted and released to the end plate more efficiently, so that the permanent magnet can be cooled more efficiently.

請求項7に記載の発明は、前記エンドプレートは、前記回転子コアの回転軸方向一方の端面のみに配設されていることを特徴とする。   The invention according to claim 7 is characterized in that the end plate is disposed only on one end surface in the rotation axis direction of the rotor core.

請求項7に記載の発明によれば、永久磁石に発生した熱を、伝熱部材及びエンドプレートを介して除去することができるので、永久磁石を効率よく冷却することができる。   According to the seventh aspect of the present invention, since the heat generated in the permanent magnet can be removed via the heat transfer member and the end plate, the permanent magnet can be efficiently cooled.

請求項8に記載の発明は、前記伝熱部材は、前記鋼板よりも電気伝導率の低い材料で形成されていることを特徴とする。   The invention according to claim 8 is characterized in that the heat transfer member is formed of a material having a lower electrical conductivity than the steel plate.

請求項8に記載の発明によれば、伝熱部材は、鋼板よりも電気伝導率の低い材料で形成されているので、回転子の回転により、回転子と固定子との間に発生した磁界の変化に伴って、回転子コアの積層鋼板を流れる渦電流の流れを遮って抑制することができる。これにより、永久磁石が渦電流によるジュール損失によって発熱することを抑制することができる。   According to the invention described in claim 8, since the heat transfer member is formed of a material having a lower electrical conductivity than the steel plate, a magnetic field generated between the rotor and the stator due to the rotation of the rotor. With this change, the flow of eddy current flowing through the laminated steel sheet of the rotor core can be blocked and suppressed. Thereby, it can suppress that a permanent magnet generates heat | fever by the Joule loss by an eddy current.

請求項9に記載の発明は、前記伝熱部材は、前記鋼板よりも透磁率の低い材料で形成されていることを特徴とする。   The invention according to claim 9 is characterized in that the heat transfer member is formed of a material having lower magnetic permeability than the steel plate.

請求項9に記載の発明によれば、上記請求項8と同様に渦電流を抑制することができるので、永久磁石の渦電流による発熱を抑制することができる。   According to the ninth aspect of the present invention, since eddy current can be suppressed as in the case of the eighth aspect, heat generation due to the eddy current of the permanent magnet can be suppressed.

本発明の実施形態に係る回転電機の構成を示す回転軸方向の断面図である。It is sectional drawing of the rotating shaft direction which shows the structure of the rotary electric machine which concerns on embodiment of this invention. 本実施形態に係る回転電機の回転子を周方向に所定数分割したうちの1つの扇状部分を示す部分平面図である。It is a fragmentary top view which shows one fan-shaped part of the rotor of the rotary electric machine which concerns on this embodiment divided into predetermined number in the circumferential direction. 本実施形態に係る回転子において永久磁石に発生した熱の伝導経路を示す回転軸方向の断面図である。It is sectional drawing of the rotating shaft direction which shows the conduction path of the heat which generate | occur | produced in the permanent magnet in the rotor which concerns on this embodiment. 本実施形態に係る回転子において永久磁石に発生した熱の伝導経路を示す説明図である。It is explanatory drawing which shows the conduction path of the heat which generate | occur | produced in the permanent magnet in the rotor which concerns on this embodiment. 本実施形態の応用例1に係る回転子を周方向に所定数分割したうちの1つの扇状部分を示す部分平面図である。It is a fragmentary top view which shows one fan-shaped part of the rotor which concerns on the application example 1 of this embodiment divided into predetermined number in the circumferential direction. 本実施形態の応用例2に係る回転子を周方向に所定数分割したうちの1つの扇状部分を示す部分平面図である。It is a fragmentary top view which shows one fan-shaped part of the rotor which concerns on the application example 2 of this embodiment divided into predetermined number in the circumferential direction. 本実施形態の応用例3に係る回転子の一部を示す図であって、(a)は1つの扇状部分を示す部分平面図、(b)は(a)の破断線に沿って切断した断面図である。It is a figure which shows a part of rotor based on the application example 3 of this embodiment, Comprising: (a) is a fragmentary top view which shows one fan-shaped part, (b) cut | disconnected along the broken line of (a) It is sectional drawing. 従来の回転子を周方向に所定数分割したうちの1つの扇状部分を示す部分平面図である。It is a fragmentary top view which shows one fan-shaped part of the conventional rotor divided | segmented into predetermined number in the circumferential direction.

以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態に係る回転電機の構成を示す回転軸方向の断面図である。図2は、本実施形態に係る回転子を周方向に所定数分割したうちの1つの扇状部分を示す部分平面図である。図3は、本実施形態に係る回転子において永久磁石に発生した熱の伝導経路を示す回転軸方向の断面図である。図4は、本実施形態に係る回転子において永久磁石に発生した熱の伝導経路を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view in the rotation axis direction showing the configuration of the rotating electrical machine according to the present embodiment. FIG. 2 is a partial plan view showing one fan-shaped portion of the rotor according to the present embodiment divided into a predetermined number in the circumferential direction. FIG. 3 is a cross-sectional view in the rotation axis direction showing a conduction path of heat generated in the permanent magnet in the rotor according to the present embodiment. FIG. 4 is an explanatory diagram showing a conduction path of heat generated in the permanent magnet in the rotor according to the present embodiment.

図1に示す回転電機10は、例えばハイブリッド車両や電気自動車等の車両に搭載されて使用されるものであって、固定子コア17及び固定子巻線16を有し電機子として働く固定子18と、回転子コア12及びエンドプレート14を有し界磁として働く回転子15と、固定子18及び回転子15を収容し、締結ボルト(図示せず)よって連結、固定されたフロントハウジング10a及びリアハウジング10b等を含んで構成されている。   A rotating electrical machine 10 shown in FIG. 1 is used by being mounted on a vehicle such as a hybrid vehicle or an electric vehicle, for example, and has a stator core 17 and a stator winding 16 and serves as an armature. A rotor 15 having a rotor core 12 and an end plate 14 and acting as a magnetic field, a stator 18 and the rotor 15, and a front housing 10a connected and fixed by fastening bolts (not shown); The rear housing 10b and the like are included.

固定子18は、円環状に形成されて周方向に配列された複数のスロット(図示せず)を有する固定子コア17と、固定子コア17のスロットに巻装され電力変換用のインバータ(図示せず)に接続された三相の固定子巻線16とを有する。この固定子18は、フロントハウジング10a及びリアハウジング10b間で挟持されることにより固定されており、回転子14の外周側に径方向に所定の隙間を介して配置されている。   The stator 18 is formed in an annular shape and has a stator core 17 having a plurality of slots (not shown) arranged in the circumferential direction, and an inverter for power conversion wound around the slots of the stator core 17 (see FIG. And three-phase stator windings 16 connected to each other. The stator 18 is fixed by being sandwiched between the front housing 10a and the rear housing 10b, and is arranged on the outer peripheral side of the rotor 14 via a predetermined gap in the radial direction.

回転子15は、フロントハウジング10a及びリアハウジング10bに軸受け10cを介して回転自在に支承された回転軸11と一体になって回転するもので、回転軸11の外周面に嵌合固定され、固定子18の内周側に径方向に所定の隙間を介して対向するよう配置された回転子コア12と、回転子コア12の内部にそれぞれ円周方向に所定間隔を空けて配置された複数の永久磁石13と、回転軸11の外周面に嵌合固定されて回転子コア12の回転軸方向両端面に当接した状態に配設された円環状の一対のエンドプレート14,14とを有する。一対のエンドプレート14,14は、例えばアルミやSUSなどの非磁性体により形成されている。   The rotor 15 rotates integrally with the rotating shaft 11 rotatably supported by the front housing 10a and the rear housing 10b via the bearing 10c, and is fitted and fixed to the outer peripheral surface of the rotating shaft 11 and fixed. A rotor core 12 disposed to face the inner peripheral side of the child 18 via a predetermined gap in the radial direction, and a plurality of cores disposed at predetermined intervals in the circumferential direction inside the rotor core 12. The permanent magnet 13 has a pair of annular end plates 14 and 14 that are fitted and fixed to the outer peripheral surface of the rotating shaft 11 and are in contact with both end surfaces of the rotor core 12 in the rotating shaft direction. . The pair of end plates 14 and 14 are formed of a nonmagnetic material such as aluminum or SUS, for example.

回転子コア12は、図4に示すように、回転軸11と嵌合する貫通孔を有する円環状の複数の鋼板12aを回転軸方向に積層して形成されている。そして、回転子コア12の軸方向に隣接する鋼板12aの間には、エポキシやアクリルよりなる絶縁被膜12bが設けられている。この回転子コア12の、固定子18の内周側と径方向に対向する外周側には、回転軸方向に貫通する複数の磁石保持孔12dが円周方向に所定距離を隔てて設けられており、各磁石保持孔12dにそれぞれ永久磁石13が埋め込まれている。本実施形態の場合、ハの字状に配置された一対の永久磁石13,13により1つの磁極が形成されており、複数対の永久磁石13,13によって周方向に極性が交互に異なる複数の磁極(本実施形態では8極(N極:4、S極:4))が形成されている。   As shown in FIG. 4, the rotor core 12 is formed by laminating a plurality of annular steel plates 12 a having through-holes that fit into the rotation shaft 11 in the rotation axis direction. And between the steel plates 12a adjacent to the rotor core 12 in the axial direction, an insulating coating 12b made of epoxy or acrylic is provided. A plurality of magnet holding holes 12d penetrating in the rotational axis direction are provided at a predetermined distance in the circumferential direction on the outer peripheral side of the rotor core 12 that radially faces the inner peripheral side of the stator 18. The permanent magnets 13 are embedded in the respective magnet holding holes 12d. In the case of the present embodiment, one magnetic pole is formed by a pair of permanent magnets 13 and 13 arranged in a letter C shape, and a plurality of pairs of permanent magnets 13 and 13 have a plurality of polarities that are alternately different in the circumferential direction. Magnetic poles (8 poles (N pole: 4, S pole: 4) in this embodiment) are formed.

回転子コア12に配設された各永久磁石13の外周側の近傍には、回転子コア12を回転軸方向に貫通する貫通孔12eが設けられており、各貫通孔12e内には、軸方向に延びる長尺状の伝熱部材21がそれぞれ埋め込まれている。伝熱部材21の回転軸方向両端は、回転子コア12の回転軸方向両側に配設された一対のエンドプレート14,14の内面にそれぞれ当接した状態にされている。   In the vicinity of the outer peripheral side of each permanent magnet 13 disposed in the rotor core 12, a through hole 12e that penetrates the rotor core 12 in the direction of the rotation axis is provided, and each through hole 12e includes a shaft. A long heat transfer member 21 extending in the direction is embedded. Both ends of the heat transfer member 21 in the rotation axis direction are in contact with inner surfaces of the pair of end plates 14 and 14 disposed on both sides of the rotor core 12 in the rotation axis direction.

この伝熱部材21は、高熱伝導率、低電気伝導率(又は高抵抗率)、低透磁率の全てを満たす材料{例えば、PPS(ポリフェニレンサルファイド)樹脂に対し各種フィラーや金属粉等を添加した混合材}、或いは高熱伝導率と低電気伝導率又は低透磁率とを満たす材料により形成されている。但し、高熱伝導率とは、回転子コア12の積層された鋼板12aの間に設けられた絶縁被膜12bよりも熱伝導率が高いことを示す。低電気伝導率とは、鋼板12aよりも電気伝導率が低い(又は、鋼板12aよりも抵抗率が高い)ことを示す。低透磁率とは、鋼板12aよりも透磁率が低いことを示す。   This heat transfer member 21 is a material satisfying all of high thermal conductivity, low electrical conductivity (or high resistivity), and low magnetic permeability {for example, various fillers and metal powders are added to PPS (polyphenylene sulfide) resin. Mixed material} or a material satisfying high thermal conductivity and low electrical conductivity or low magnetic permeability. However, the high thermal conductivity indicates that the thermal conductivity is higher than that of the insulating coating 12b provided between the steel plates 12a on which the rotor core 12 is laminated. The low electrical conductivity indicates that the electrical conductivity is lower than that of the steel plate 12a (or the resistivity is higher than that of the steel plate 12a). The low magnetic permeability indicates that the magnetic permeability is lower than that of the steel plate 12a.

以上のように構成された回転電機10において、回転子15が回転した際に、径方向に対向して配置された回転子15と固定子18との間で、半径方向、周方向及び回転軸方向に磁界が発生し、回転子コア12に配設された永久磁石13が起磁力変動により発熱する。このとき、特に固定子18の起磁力変動の影響を大きく受ける永久磁石13の外周側の温度上昇が顕著となる。これにより、永久磁石13の外周側の熱は、図3及び図4に示すように、回転子コア12の鋼板12aを介して伝熱部材21に伝導され(図3の矢印Y2)、伝熱部材21により形成された回転軸方向に延びる伝熱経路を経由して回転軸方向両側の各エンドプレート14,14に伝導される(図3の矢印Y3)。   In the rotating electrical machine 10 configured as described above, when the rotor 15 rotates, the radial direction, the circumferential direction, and the rotating shaft are arranged between the rotor 15 and the stator 18 that are arranged to face each other in the radial direction. A magnetic field is generated in the direction, and the permanent magnets 13 disposed on the rotor core 12 generate heat due to magnetomotive force fluctuations. At this time, the temperature rise on the outer peripheral side of the permanent magnet 13 that is greatly affected by the magnetomotive force fluctuation of the stator 18 becomes significant. As a result, the heat on the outer peripheral side of the permanent magnet 13 is conducted to the heat transfer member 21 via the steel plate 12a of the rotor core 12 as shown in FIGS. 3 and 4 (arrow Y2 in FIG. 3), and heat transfer. It is conducted to the end plates 14 and 14 on both sides in the direction of the rotation axis through the heat transfer path formed by the member 21 and extending in the direction of the rotation axis (arrow Y3 in FIG. 3).

そして、各エンドプレート14,14に伝導された熱は、各エンドプレート14,14により形成された径方向及び周方向に広がる伝熱経路を経由して各エンドプレート14,14から外気へ放出される。更に本実施形態では、各エンドプレート14,14から各エンドプレート14,14の内周面が当接している回転軸11に熱が伝導される(図3の矢印Y4)ことによっても除去される。このようにして、永久磁石13に発生した熱が伝熱部材21を介して効果的に除去されることにより、永久磁石13が冷却され、永久磁石13の温度上昇が抑制される。   Then, the heat conducted to each end plate 14, 14 is released from each end plate 14, 14 to the outside air via a heat transfer path extending in the radial direction and circumferential direction formed by each end plate 14, 14. The Furthermore, in this embodiment, heat is conducted from each end plate 14, 14 to the rotating shaft 11 with which the inner peripheral surface of each end plate 14, 14 is in contact (arrow Y 4 in FIG. 3), and is removed. . Thus, the heat generated in the permanent magnet 13 is effectively removed through the heat transfer member 21, whereby the permanent magnet 13 is cooled and the temperature rise of the permanent magnet 13 is suppressed.

したがって、本実施形態の回転子15によれば、回転子コア12には、回転子コア12を回転軸方向に貫通するとともに、その両端が一対のエンドプレート14,14と当接する伝熱部材21が配設されているので、回転子15が回転した際に、永久磁石13に発生した熱を、伝熱部材21を介して効果的に冷却することができる。これにより、永久磁石13の高温時に発生する減磁耐力の局部的な低下を防止することができる。   Therefore, according to the rotor 15 of the present embodiment, the rotor core 12 passes through the rotor core 12 in the direction of the rotation axis, and both ends thereof are in contact with the pair of end plates 14, 14. Therefore, when the rotor 15 rotates, the heat generated in the permanent magnet 13 can be effectively cooled via the heat transfer member 21. Thereby, the local fall of the demagnetization proof stress which generate | occur | produces at the time of the high temperature of the permanent magnet 13 can be prevented.

また、伝熱部材21は、特に固定子18の起磁力変動の影響を大きく受ける永久磁石13の外周側(径方向固定子側)に配置されているので、永久磁石13の冷却を効率よく、より確実に行うことができる。そのため、永久磁石13の高温時に発生する減磁耐力の局部的な低下をより確実に防止することが可能となる。   Further, since the heat transfer member 21 is disposed on the outer peripheral side (radial stator side) of the permanent magnet 13 that is particularly greatly affected by the magnetomotive force fluctuation of the stator 18, the permanent magnet 13 is efficiently cooled, This can be done more reliably. Therefore, it is possible to more surely prevent a local decrease in the demagnetization resistance that occurs when the permanent magnet 13 is at a high temperature.

そして、伝熱部材21は、絶縁被膜12bよりも熱伝導率が高い材料で形成されていることから、永久磁石13に発生した熱を、より効率よく伝熱部材21を介してエンドプレート14に伝導することができるので、永久磁石13をより効率よく冷却することができる。   Since the heat transfer member 21 is formed of a material having a higher thermal conductivity than the insulating coating 12b, the heat generated in the permanent magnet 13 is more efficiently transferred to the end plate 14 via the heat transfer member 21. Since it can conduct, the permanent magnet 13 can be cooled more efficiently.

また、エンドプレート14は、絶縁被膜12bよりも熱伝導率が高い材料で形成されていることから、永久磁石13に発生した熱を、より効率よくエンドプレート14に伝導し放出することができるので、永久磁石13をより効率よく冷却することができる。   Moreover, since the end plate 14 is formed of a material having a higher thermal conductivity than the insulating coating 12b, the heat generated in the permanent magnet 13 can be more efficiently conducted to the end plate 14 and released. The permanent magnet 13 can be cooled more efficiently.

また、伝熱部材21は、鋼板12aよりも電気伝導率の低い材料で形成されていることから、回転子15の回転により、回転子15と固定子18との間に発生した磁界の変化に伴って、回転子コア12の積層された鋼板12aを流れる渦電流の流れを遮って抑制することができる。これにより、永久磁石13が渦電流によるジュール損失によって発熱することを抑制することができる。さらに、伝熱部材21は、鋼板12aよりも透磁率の低い材料で形成されていることによっても、上記と同様に、渦電流を抑制することができるので、永久磁石13の渦電流による発熱を抑制することができる。   Further, since the heat transfer member 21 is made of a material having a lower electrical conductivity than the steel plate 12a, the rotation of the rotor 15 causes a change in the magnetic field generated between the rotor 15 and the stator 18. Accordingly, the flow of eddy current flowing through the steel plates 12a on which the rotor core 12 is laminated can be blocked and suppressed. Thereby, it can suppress that the permanent magnet 13 generates heat | fever by the Joule loss by an eddy current. Furthermore, since the heat transfer member 21 is formed of a material having a lower magnetic permeability than the steel plate 12a, the eddy current can be suppressed as described above. Can be suppressed.

なお、上記実施形態では、回転子コア12の回転軸方向両端面に一対のエンドプレート14,14を配設するようにしていたが、何れか一方の端面のみにエンドプレート14を配設するようにしてもよい。この場合にも、上記実施形態の場合と同様に、永久磁石13の外周側の熱を、伝熱部材21及びエンドプレート14を介して回転軸11に伝導させることができるので、永久磁石13を効率よく冷却することができる。   In the above embodiment, the pair of end plates 14 and 14 are disposed on both end surfaces in the rotational axis direction of the rotor core 12, but the end plate 14 is disposed only on one of the end surfaces. It may be. Also in this case, the heat on the outer peripheral side of the permanent magnet 13 can be conducted to the rotating shaft 11 through the heat transfer member 21 and the end plate 14 as in the case of the above embodiment. It can be cooled efficiently.

(応用例1)
図5に示すように、伝熱部材21−1を、回転子コア12に配設された2つの永久磁石13,13の間の外周側に、一対のエンドプレート(図示せず)に両端が当接状態となるように埋め込むようにしてもよい。このようにすれば、回転子15が固定子18の内周側に径方向に対向して配置されている場合において、伝熱部材21−1が、特に、固定子18の起磁力変動の影響を大きく受ける永久磁石13,13の外周側(径方向固定子側)に配置されているので、永久磁石13,13の冷却を効率よく、より確実に行うことができる。
(Application 1)
As shown in FIG. 5, the heat transfer member 21-1 is disposed on the outer peripheral side between the two permanent magnets 13, 13 disposed on the rotor core 12, and both ends of a pair of end plates (not shown). It may be embedded so as to be in a contact state. In this way, when the rotor 15 is disposed radially opposite to the inner peripheral side of the stator 18, the heat transfer member 21-1 is particularly affected by the magnetomotive force fluctuation of the stator 18. Since the permanent magnets 13 and 13 are disposed on the outer peripheral side (radial stator side) of the permanent magnets 13 and 13 that receive a large amount of heat, the permanent magnets 13 and 13 can be cooled efficiently and more reliably.

(応用例2)
図6に示すように、伝熱部材21−2を、回転子コア12に配設された2つの永久磁石13,13の間の外周側に、回転子コア12の外周面に一面が表出する状態で一対のエンドプレート(図示せず)に両端が当接状態となるように埋め込むようにしてもよい。このようにすれば、上記応用例1と同様に、伝熱部材21−2が、特に、固定子18の起磁力変動の影響を大きく受ける永久磁石13,13の外周側に配置されているので、永久磁石13,13の冷却を効率よく、より確実に行うことができる。
(Application example 2)
As shown in FIG. 6, the heat transfer member 21-2 is exposed on the outer peripheral side between the two permanent magnets 13 and 13 disposed on the rotor core 12, and one surface is exposed on the outer peripheral surface of the rotor core 12. In this state, both ends may be embedded in a pair of end plates (not shown). In this way, since the heat transfer member 21-2 is arranged on the outer peripheral side of the permanent magnets 13 and 13 that are greatly affected by the magnetomotive force fluctuation of the stator 18, as in the first application example. The permanent magnets 13 and 13 can be cooled efficiently and more reliably.

(応用例3)
図7(a)(b)に示すように、長尺状の伝熱部材21−3を、回転軸方向に複数に分割し、この分割された各伝熱部材21−3のうち、軸方向に隣接する伝熱部材21−3同士を、それぞれの軸方向端面の少なくとも一部にて当接している状態に配設するようにしてもよい。この場合には、複数に分割された伝熱部材21−3は、周方向にスキューさせた状態に配設されている。このようにすれば、騒音の原因となる振動の発生を抑制することができる。
(Application 3)
As shown to Fig.7 (a) (b), the elongate heat-transfer member 21-3 is divided | segmented into plurality in the rotating shaft direction, and an axial direction is among these divided | segmented each heat-transfer member 21-3. The heat transfer members 21-3 adjacent to each other may be arranged in contact with each other at at least a part of their axial end faces. In this case, the heat transfer member 21-3 divided into a plurality is arranged in a state of being skewed in the circumferential direction. In this way, it is possible to suppress the occurrence of vibration that causes noise.

なお、図7(b)に示すように、複数に分割された伝熱部材21−3が、周方向にスキューさせた状態に配設されていると同時に、長尺状の永久磁石13−1も、伝熱部材21−3と同様に、回転軸方向に複数に分割して、周方向にスキューさせた状態に配設されている。これにより、騒音の原因となる振動の発生を、より確実に抑制できるようにされている。   As shown in FIG. 7B, the heat transfer member 21-3 divided into a plurality is disposed in a state of being skewed in the circumferential direction, and at the same time, the long permanent magnet 13-1. Similarly to the heat transfer member 21-3, the heat transfer member 21-3 is divided into a plurality of pieces in the rotation axis direction and is skewed in the circumferential direction. Thereby, generation | occurrence | production of the vibration which causes a noise can be suppressed more reliably.

10…回転電機、 11…回転軸、 12…回転子コア、 12a…鋼板、 12b…絶縁被膜、 12d…磁石保持孔、 12e…貫通孔、 13,13−1…永久磁石、 14…エンドプレート、 15…回転子、 16…固定子巻線、 17…固定子コア、 18…固定子、 21,21−1,21−2,21−3…伝熱部材。   DESCRIPTION OF SYMBOLS 10 ... Rotary electric machine, 11 ... Rotating shaft, 12 ... Rotor core, 12a ... Steel plate, 12b ... Insulating film, 12d ... Magnet holding hole, 12e ... Through-hole, 13, 13-1 ... Permanent magnet, 14 ... End plate, DESCRIPTION OF SYMBOLS 15 ... Rotor, 16 ... Stator winding, 17 ... Stator core, 18 ... Stator, 21, 21-1, 21-22, 21-3 ... Heat-transfer member.

Claims (9)

円環状の複数の鋼板を回転軸方向に積層して形成され、回転電機の固定子と径方向に対向するよう配置された回転子コアと、
前記回転子コアの内部にそれぞれ円周方向に所定間隔を空けて配置された永久磁石と、
前記回転子コアの回転軸方向両端面のうちの少なくとも一方の端面に当接した状態に配設された円環状のエンドプレートと、を有する回転電機の回転子において、
前記回転子コアには、前記回転子コアを回転軸方向に貫通するとともに、その両端が前記エンドプレートと当接する伝熱部材が配設され
前記伝熱部材は、回転軸方向に複数に分割されて、この分割された各伝熱部材のうち、軸方向に隣接する前記伝熱部材同士は、それぞれの軸方向端面の少なくとも一部にて当接していることを特徴とする回転電機の回転子。
A rotor core formed by laminating a plurality of annular steel plates in the direction of the rotation axis, and arranged to face the stator of the rotating electrical machine in the radial direction;
Permanent magnets arranged at predetermined intervals in the circumferential direction inside the rotor core,
In a rotor of a rotating electrical machine having an annular end plate disposed in contact with at least one end surface of both end surfaces in the rotation axis direction of the rotor core,
The rotor core is provided with a heat transfer member that penetrates the rotor core in the rotation axis direction and whose both ends are in contact with the end plate ,
The heat transfer member is divided into a plurality of portions in the rotation axis direction, and among the divided heat transfer members, the heat transfer members adjacent to each other in the axial direction are at least a part of each axial end surface. the rotor of a rotating electric machine, characterized in that it abuts.
前記伝熱部材は、前記永久磁石よりも径方向固定子側に配置されていることを特徴とする請求項1に記載の回転電機の回転子。   The rotor of a rotating electrical machine according to claim 1, wherein the heat transfer member is disposed on a radial stator side with respect to the permanent magnet. 前記伝熱部材は、前記回転子コアに配設された2つの前記永久磁石の間の外周側に、前記エンドプレートに両端が当接状態となるように埋め込まれていることを特徴とする請求項1または2に記載の回転電機の回転子。   The heat transfer member is embedded on the outer peripheral side between the two permanent magnets arranged in the rotor core so that both ends are in contact with the end plate. Item 3. A rotating electrical machine rotor according to Item 1 or 2. 前記伝熱部材は、前記回転子コアに配設された2つの前記永久磁石の間の外周側に、前記回転子コアの外周面に一面が表出する状態で前記エンドプレートに両端が当接状態となるように埋め込まれていることを特徴とする請求項1または2に記載の回転電機の回転子。   The heat transfer member is in contact with both ends of the end plate on the outer peripheral side between the two permanent magnets disposed on the rotor core in a state where one surface is exposed to the outer peripheral surface of the rotor core. It is embedded so that it may be in a state, The rotor of the rotary electric machine of Claim 1 or 2 characterized by the above-mentioned. 前記回転子コアは、軸方向に隣接する2つの前記鋼板の間に設けられた絶縁被膜を有し、
前記伝熱部材は、前記絶縁被膜よりも熱伝導率が高い材料で形成されていることを特徴とする請求項1〜4のいずれか1項に記載の回転電機の回転子。
The rotor core has an insulating coating provided between two steel plates adjacent in the axial direction;
The rotor of a rotating electrical machine according to any one of claims 1 to 4, wherein the heat transfer member is formed of a material having a higher thermal conductivity than the insulating coating.
前記回転子コアは、軸方向に隣接する2つの前記鋼板の間に設けられた絶縁被膜を有し、
前記エンドプレートは、前記絶縁被膜よりも熱伝導率が高い材料で形成されていることを特徴とする請求項1〜5のいずれか1項に記載の回転電機の回転子。
The rotor core has an insulating coating provided between two steel plates adjacent in the axial direction;
The rotor of a rotating electrical machine according to any one of claims 1 to 5, wherein the end plate is formed of a material having a higher thermal conductivity than the insulating coating.
前記エンドプレートは、前記回転子コアの回転軸方向一方の端面のみに配設されていることを特徴とする請求項1〜6のいずれか1項に記載の回転電機の回転子。   The rotor of a rotating electrical machine according to any one of claims 1 to 6, wherein the end plate is disposed only on one end surface of the rotor core in the rotation axis direction. 前記伝熱部材は、前記鋼板よりも電気伝導率の低い材料で形成されていることを特徴とする請求項1〜7のいずれか1項に記載の回転電機の回転子。   The rotor of a rotating electrical machine according to any one of claims 1 to 7, wherein the heat transfer member is formed of a material having a lower electrical conductivity than the steel plate. 前記伝熱部材は、前記鋼板よりも透磁率の低い材料で形成されていることを特徴とする請求項1〜8のいずれか1項に記載の回転電機の回転子。   The rotor of a rotating electrical machine according to any one of claims 1 to 8, wherein the heat transfer member is formed of a material having a lower magnetic permeability than the steel plate.
JP2011096441A 2010-05-12 2011-04-22 Rotating electrical machine rotor Active JP5673327B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011096441A JP5673327B2 (en) 2010-05-12 2011-04-22 Rotating electrical machine rotor
US13/106,151 US20110278967A1 (en) 2010-05-12 2011-05-12 Rotor for electric rotating machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010110292 2010-05-12
JP2010110292 2010-05-12
JP2011096441A JP5673327B2 (en) 2010-05-12 2011-04-22 Rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JP2011259691A JP2011259691A (en) 2011-12-22
JP5673327B2 true JP5673327B2 (en) 2015-02-18

Family

ID=44911136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096441A Active JP5673327B2 (en) 2010-05-12 2011-04-22 Rotating electrical machine rotor

Country Status (2)

Country Link
US (1) US20110278967A1 (en)
JP (1) JP5673327B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216038B2 (en) * 2010-03-25 2013-06-19 株式会社日立製作所 Rotating motor
US9685829B2 (en) 2012-04-23 2017-06-20 Mitsubishi Electric Corporation Permanent magnet-type rotary electric machine and vehicle drive system
WO2015087445A1 (en) 2013-12-13 2015-06-18 三菱電機株式会社 Embedded permanent magnet-type rotating electrical machine
WO2016057307A1 (en) * 2014-10-09 2016-04-14 Schaeffler Technologies AG & Co. KG Hybrid drive module having a rotor secured to a hub via staking
US11251665B2 (en) 2017-12-21 2022-02-15 Gree Electric Appliances, Inc. Of Zhuhai Motor rotor and permanent magnet motor
CN107994702B (en) * 2017-12-21 2019-04-30 珠海格力电器股份有限公司 Rotor and magneto
JP6688327B2 (en) * 2018-01-30 2020-04-28 本田技研工業株式会社 Rotating electric machine rotor
DE102019109721A1 (en) * 2019-04-12 2020-10-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor for an electric machine
DE102019210609A1 (en) * 2019-07-18 2021-01-21 Mahle International Gmbh Rotor and electric machine
DE102022202481A1 (en) 2022-03-14 2023-09-14 Zf Friedrichshafen Ag Rotor arrangement for an electric machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829207A (en) * 1986-12-09 1989-05-09 Marketing Systems Of The South, Inc. Enhanced electromagnetic radiation transmission device
US6274960B1 (en) * 1998-09-29 2001-08-14 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP3172504B2 (en) * 1998-09-29 2001-06-04 株式会社東芝 Rotor of permanent magnet type reluctance type rotating electric machine
EP1032115B1 (en) * 1999-02-22 2007-04-04 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP3210634B2 (en) * 1999-02-22 2001-09-17 株式会社東芝 Permanent magnet type reluctance type rotating electric machine
JP2004088970A (en) * 2002-08-29 2004-03-18 Hitachi Ltd Stacked iron core and rotating electric machine and transformer using the same
US7067948B2 (en) * 2002-10-18 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Permanent-magnet rotating machine
JP2004248422A (en) * 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
JP4070630B2 (en) * 2003-02-21 2008-04-02 東芝産業機器製造株式会社 Permanent magnet type reluctance type rotating electrical machine
JP2004274968A (en) * 2003-03-12 2004-09-30 Toyoda Mach Works Ltd Rotor for rotating electric machine
US7547999B2 (en) * 2003-04-28 2009-06-16 General Electric Company Superconducting multi-pole electrical machine
JP5212680B2 (en) * 2006-12-12 2013-06-19 日本電産株式会社 motor
JP2010063253A (en) * 2008-09-03 2010-03-18 Toyota Motor Corp Rotor

Also Published As

Publication number Publication date
JP2011259691A (en) 2011-12-22
US20110278967A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5673327B2 (en) Rotating electrical machine rotor
JP4660406B2 (en) Rotating electric machine
US7705503B2 (en) Rotating electrical machine
EP2304862B1 (en) Axial flux machine
JP6042976B2 (en) Rotating electric machine
WO2011114594A1 (en) Permanent magnet-type rotary generator
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
WO2010150492A1 (en) Axial motor
JP5418467B2 (en) Rotating electric machine
WO2014036883A1 (en) Permanent magnet laminated motor
JP5951131B2 (en) Rotating electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP6469964B2 (en) Permanent magnet rotating electric machine
WO2022210237A1 (en) Magnetic geared rotary machine, power generation system, and magnetic pole piece rotor
JP2013059178A (en) Magnetic gear
JP2009142024A (en) Reluctance motor
JP6169496B2 (en) Permanent magnet rotating electric machine
JP5193114B2 (en) Rotor and motor
JP5894359B2 (en) Landel type rotating machine
JP6723478B1 (en) Rotating electric machine
JP2013031287A (en) Surface magnet type permanent magnet rotating electric machine
WO2019171673A1 (en) Axial-gap dynamo-electric machine
JP2024056531A (en) Rotating Electric Machine
CN115995894A (en) Rotary electric machine
CN112968542A (en) Brushless claw-pole motor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250