JP5668123B2 - Junction structure, electrical contact - Google Patents

Junction structure, electrical contact Download PDF

Info

Publication number
JP5668123B2
JP5668123B2 JP2013227832A JP2013227832A JP5668123B2 JP 5668123 B2 JP5668123 B2 JP 5668123B2 JP 2013227832 A JP2013227832 A JP 2013227832A JP 2013227832 A JP2013227832 A JP 2013227832A JP 5668123 B2 JP5668123 B2 JP 5668123B2
Authority
JP
Japan
Prior art keywords
contact
vacuum
electrical contact
electrical
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013227832A
Other languages
Japanese (ja)
Other versions
JP2014089959A (en
Inventor
茂 菊池
茂 菊池
佐藤 隆
隆 佐藤
歩 森田
歩 森田
岡本 和孝
和孝 岡本
雅人 薮
雅人 薮
土屋 賢治
賢治 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013227832A priority Critical patent/JP5668123B2/en
Publication of JP2014089959A publication Critical patent/JP2014089959A/en
Application granted granted Critical
Publication of JP5668123B2 publication Critical patent/JP5668123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、真空遮断器、真空スイッチギヤ、ガス絶縁スイッチギヤ等に用いられる電力開閉器用の接合構造、電気接点に関する。   The present invention relates to a joining structure and an electrical contact for a power switch used for a vacuum circuit breaker, a vacuum switch gear, a gas insulation switch gear and the like.

真空中で電流を遮断する電力開閉機器は、電気接点を内蔵し、真空封止された容器である真空バルブを備える。電気接点は焼結法や溶浸法などの製造プロセスによって作製され、必要に応じて機械加工される。この電気接点は通電部材とろう付け(一次接合)された後、真空バルブを構成する容器内に組み入れた状態で、真空中において容器をろう付け封止(二次接合)することによって、電気接点は真空バルブ内に内蔵される。このように、一般に電気接点の製造プロセスにおいて、ろう付け工程は通電部材との接合と真空封止接合の少なくとも2段階以上の工程数を要しており、電気接点を含めた真空バルブの製造には多大なコストが費やされる。   A power switching device that cuts off a current in a vacuum includes a vacuum valve that is a vacuum-sealed container with a built-in electrical contact. The electrical contacts are made by a manufacturing process such as a sintering method or an infiltration method, and machined as necessary. After this electrical contact is brazed (primary joining) to the current-carrying member, the container is brazed and sealed (secondary joining) in a vacuum in a state of being incorporated in the container constituting the vacuum valve. Is built in the vacuum valve. As described above, in general, in the electrical contact manufacturing process, the brazing process requires at least two stages of the joining with the current-carrying member and the vacuum sealing joining, and it is necessary to manufacture the vacuum valve including the electrical contact. Is costly.

また、電気接点と通電部材とのろう付けに不備があると、稼働中に電気接点が脱落したり、電流遮断時のアーク加熱あるいは通電中のジュール加熱によってろう材が揮散することで電気的性能が低下したり、製品信頼性が低下する。したがって、ろう付けの中でも一次ろう付けには高い信頼性が求められ、接合部近傍において適正なろう材量を保持するための部位・形状を設けるなど、健全なろう付け状態を得るための形状上の工夫がなされている。   In addition, if there is a deficiency in brazing between the electrical contact and the current-carrying member, the electrical contact may fall off during operation, or the brazing material may be volatilized due to arc heating during current interruption or joule heating during current conduction. Or product reliability decreases. Therefore, high reliability is required for the primary brazing among the brazing, and the shape for obtaining a sound brazing state is provided, such as providing a part / shape for maintaining an appropriate amount of brazing material in the vicinity of the joint. Have been devised.

特開2007−157666号公報JP 2007-157666 A

前記の特許文献1は、ろう付け部の形状を適正化することでろう付け健全性の向上を図っている。しかし、ろう材を用いる限り、その加熱揮散により接合信頼性が低下する可能性がある。また、焼結法や溶浸法による電気接点の製造工程が多大な熱エネルギーを要するため、接点のプロセス自体がコスト増大の要因となっている。   In Patent Document 1, the soundness of brazing is improved by optimizing the shape of the brazing part. However, as long as a brazing material is used, there is a possibility that the bonding reliability is lowered by the heat volatilization. In addition, since the electrical contact manufacturing process by the sintering method or the infiltration method requires a large amount of thermal energy, the contact process itself is a factor in increasing the cost.

本発明の目的は、部材同士を低コストでろう材を用いずに接合することにある。   An object of the present invention is to join members at low cost without using a brazing material.

上記課題を解決するため、本発明の接合構造は、第1部材と、前記第1部材の上に設けられた第2部材と、金属を含む粉末を前記第1部材と前記第2部材との双方にわたって付着堆積させ、熱的・機械的合金化により前記第1部材と前記第2部材とを接合する接点層とを備え、前記第2部材を貫通する前記第1部材または前記第2部材を貫通する前記付着堆積層が前記第2部材と嵌合形状である接合構造を形成し、前記第2部材の一面と前記第1部材の端部とが、前記接合構造で接合されることを特徴とする。 In order to solve the above-described problems, the joining structure of the present invention includes a first member, a second member provided on the first member, and a powder containing metal containing the first member and the second member. A contact layer that adheres and accumulates on both sides and joins the first member and the second member by thermal / mechanical alloying; and the first member or the second member penetrating the second member is provided. the deposition deposited layer penetrating to form a second member and the fitting shape der Ru junction structure, and an end portion of the one surface and the first member of the second member, it is joined by the joining structure Rukoto It is characterized by.

本発明によれば、部材同士を低コストでろう材を用いずに接合することができる。   According to the present invention, members can be joined at low cost without using a brazing material.

本発明に係る接合構造の断面図。Sectional drawing of the junction structure which concerns on this invention. 本発明に係る他の接合構造の断面図。Sectional drawing of the other joining structure which concerns on this invention. 本発明に係る他の接合構造の断面図。Sectional drawing of the other joining structure which concerns on this invention. 本発明に係る他の接合構造の断面図。Sectional drawing of the other joining structure which concerns on this invention. 本発明に係る他の接合構造の断面図。Sectional drawing of the other joining structure which concerns on this invention. 本発明に係る電気接点の構造の断面図。Sectional drawing of the structure of the electrical contact which concerns on this invention. 本発明に係る接点層の斜視図と他の電気接点の構造の断面図。The perspective view of the contact layer which concerns on this invention, and sectional drawing of the structure of another electrical contact. 本発明に係る他の電気接点の構造の断面図。Sectional drawing of the structure of the other electrical contact which concerns on this invention. 本発明に係る電気接点に用いる基材の平面図。The top view of the base material used for the electrical contact which concerns on this invention. 本発明に係る複数組成の接点層を有する電気接点の構造の断面図。Sectional drawing of the structure of the electrical contact which has a contact layer of multiple compositions concerning this invention. 本発明に係る他の接合構造の断面図。Sectional drawing of the other joining structure which concerns on this invention. 第2実施例に係る真空バルブの構造を表わす断面図。Sectional drawing showing the structure of the vacuum valve which concerns on 2nd Example. 第3実施例に係る真空遮断器の構造を表わす断面図。Sectional drawing showing the structure of the vacuum circuit breaker which concerns on 3rd Example. 第3実施例に係る負荷開閉器の構造を表わす断面図。Sectional drawing showing the structure of the load switch which concerns on 3rd Example.

本発明に係る接合構造の断面図を、図1および図2に示す。図1および図2において、1は被接合部材、2は基材、3は付着堆積層、4は基材2に設けられた貫通孔、5は被接合部材1に設けられた凸部である。   1 and 2 are sectional views of the joint structure according to the present invention. 1 and FIG. 2, 1 is a member to be joined, 2 is a base material, 3 is an adhesion deposition layer, 4 is a through hole provided in the base material 2, and 5 is a convex portion provided in the member 1 to be joined. .

図1に示す第1の構造は、基材2の貫通孔4と被接合部材1の凸部5とを嵌め合わせる。凸部5の先端の表面は、基材2の表面より突出していても(X>Y)、同一平面上にあっても(X=Y)、基材2の表面より窪んでいても(X<Y)よい。以下の構造についても同様である。また、被接合部材1と基材2とは、図のような被接合部材1の軸中心で嵌合していなくても良い。被接合部材1と基材2とが接触する部分を嵌合部とし、その嵌合部に付着堆積層3を形成する。基材2と凸部5(被接合部材1)の両部材にわたって、金属を含む粉末を付着堆積させることによって、この付着堆積層3を基材2並びに被接合部材1と接触させるように形成し、熱的・機械的合金化による結合を介して、基材2と被接合部材1を接合することができる。   In the first structure shown in FIG. 1, the through hole 4 of the substrate 2 and the convex portion 5 of the member 1 to be joined are fitted together. Even if the surface of the tip of the convex portion 5 protrudes from the surface of the substrate 2 (X> Y), is on the same plane (X = Y), or is recessed from the surface of the substrate 2 (X <Y) Good. The same applies to the following structures. Moreover, the to-be-joined member 1 and the base material 2 do not need to fit in the axial center of the to-be-joined member 1 like a figure. A portion where the bonded member 1 and the base material 2 come into contact with each other is used as a fitting portion, and the deposited layer 3 is formed on the fitting portion. The adhesion deposition layer 3 is formed so as to be in contact with the substrate 2 and the member 1 to be bonded by depositing and depositing a metal-containing powder over both the substrate 2 and the convex portion 5 (member 1 to be bonded). The base member 2 and the member 1 to be joined can be joined through the bonding by thermal / mechanical alloying.

また、図2に示す第2の構造は、被接合部材1上に基材2を載置し、基材2の貫通孔4と被接合部材1の平坦部とを重ね合わせ、貫通孔4を充填するように金属を含む粉末を付着堆積させる。これによって、付着堆積層3の基材2並びに被接合部材1との熱的・機械的合金化による結合を介して、基材2と被接合部材1を接合するものである。被接合部材1は基材2との接触面が平坦でなく、貫通孔4がさらに下方へ伸びるように窪んでいても良い。これらの構造により、比較的低融点で耐熱性の低いろう材などを用いることなく、基材2と被接合部材1の接合が可能となる。接合した後、基材2表面において突起部となる付着堆積層3を機械加工等で除去し、基材2の表面を平坦化しても接合状態を維持することができる。   Moreover, the 2nd structure shown in FIG. 2 mounts the base material 2 on the to-be-joined member 1, superimposes the through-hole 4 of the base material 2, and the flat part of the to-be-joined member 1, and the through-hole 4 is made. A metal-containing powder is deposited and deposited to fill. In this way, the base material 2 and the member to be joined 1 are joined via the bonding of the adhesion deposition layer 3 to the base material 2 and the member to be joined 1 by thermal / mechanical alloying. The member 1 to be joined may be recessed so that the contact surface with the substrate 2 is not flat and the through hole 4 extends further downward. With these structures, the base member 2 and the member to be joined 1 can be joined without using a brazing material having a relatively low melting point and low heat resistance. After the bonding, the adhesion deposition layer 3 that becomes a protrusion on the surface of the substrate 2 is removed by machining or the like, and the bonding state can be maintained even if the surface of the substrate 2 is flattened.

また、図3に示すように、凸部5の突出部表面粗さを粗くしたり、微小な凹凸を設けることにより、凸部5と付着堆積層3との間での機械的結合(いわゆるアンカー効果)あるいは接触面積を増大することができ、より強固な結合を得ることができる。   Further, as shown in FIG. 3, mechanical coupling between the convex portion 5 and the adhesion deposition layer 3 (so-called anchors) can be achieved by roughening the protrusion surface roughness of the convex portion 5 or providing minute irregularities. Effect) or the contact area can be increased, and a stronger bond can be obtained.

また、図4に示すように、付着堆積層3と接触する被接合部材1の表面を、図3と同様に荒らしたり微小凹凸を設けてもよく、図4および図5に示すように、基材2の貫通孔4にテーパやR部を設けると付着堆積層3と被接合部材1との結合がより強固になる。   Further, as shown in FIG. 4, the surface of the member 1 to be in contact with the adhesion deposition layer 3 may be roughened or provided with minute irregularities in the same manner as in FIG. 3, and as shown in FIGS. When the through hole 4 of the material 2 is provided with a taper or an R portion, the bond between the deposited layer 3 and the member 1 to be joined becomes stronger.

上記の接合構造を利用した本発明の電気接点の構造の断面図を、図6および図8に示す。図6および図8において、1は高伝導性金属からなるカップ形状あるいは棒状の被接合部材、2は高伝導性金属からなる基材、6は耐火性の金属あるいは化合物と高伝導性金属を含み付着堆積層3からなる接点層、7は被接合部材1と基材2の間の空間を補強するための支持部材、8は支持部材7と被接合部材1並びに基材2の間に載置されるろう材、9は被接合部材1と基材2の重ね合わせ部に設けられた位置決めのための段差である。   6 and 8 show cross-sectional views of the structure of the electrical contact of the present invention using the above-described joining structure. 6 and 8, 1 is a cup-shaped or bar-shaped member made of a highly conductive metal, 2 is a base material made of a highly conductive metal, and 6 includes a refractory metal or compound and a highly conductive metal. A contact layer composed of an adhesion deposition layer 3, 7 is a support member for reinforcing the space between the bonded member 1 and the substrate 2, and 8 is placed between the support member 7, the bonded member 1 and the substrate 2. The brazing material 9 is a step for positioning provided in the overlapping portion of the member 1 and the base material 2.

図6および図8それぞれにおいて、(a)は上記接合構造のうちの図1に示した第1の構造により接合する電気接点100および300、(b)は図2に示した第2の構造により接合する電気接点200および400である。いずれの場合にも付着堆積層3が接点層6を兼ねることによって、被接合部材1と基材2との接合、並びに基材2上への接点層3の形成が、上述の接合機構により一つの工程で同時に達成でき、低コストの電気接点の製造、ろう材を用いない接点周辺部材の接合が可能となる。   6 and 8, respectively, (a) is an electrical contact 100 and 300 to be joined by the first structure shown in FIG. 1 of the joining structure, and (b) is a second structure shown in FIG. Electrical contacts 200 and 400 to be joined. In any case, the adhesion deposition layer 3 also serves as the contact layer 6, so that the joining of the member to be joined 1 and the base material 2 and the formation of the contact layer 3 on the base material 2 are all performed by the joining mechanism described above. It can be achieved simultaneously in one process, and it is possible to manufacture low-cost electrical contacts and join contact peripheral members without using brazing material.

なお、支持部材7の上下に載置されるろう材8は、後の真空バルブの封止ろう付け過程において溶融し、支持部材7のろう付け固定に用いられるもので、接点層6の裏面中央に配されるため、稼働中の温度上昇に伴うろう材揮散の影響は小さく、支持部材7の固定に支障がなければ省いてもよい。また、基材2に設けられた段差9は、被接合部材1との位置決め精度に支障がなければ省いてもよい。さらに、図6の構造をもつ電気接点100および200において、用いる基材2の貫通孔4の形状は、図9(a)の平面図に示すような円形で複数の貫通孔4を周方向に均等に設けるほか、図9(b)の平面図に示すような円周に沿った長尺孔としてもよい。これにより接合部寸法が増し、接合強度と通電性の向上に有利となる。   The brazing material 8 placed above and below the support member 7 is melted in the subsequent brazing process of the vacuum valve and used for brazing and fixing the support member 7. Therefore, the influence of the brazing material volatilization accompanying the temperature rise during operation is small, and may be omitted if there is no problem in fixing the support member 7. Further, the step 9 provided on the substrate 2 may be omitted if there is no problem in positioning accuracy with the member 1 to be joined. Furthermore, in the electrical contacts 100 and 200 having the structure of FIG. 6, the shape of the through hole 4 of the base material 2 used is circular as shown in the plan view of FIG. 9A, and a plurality of through holes 4 are arranged in the circumferential direction. In addition to providing them equally, they may be elongated holes along the circumference as shown in the plan view of FIG. This increases the dimensions of the joint, which is advantageous for improving the joint strength and electrical conductivity.

また、図8の構造をもつ電気接点300および400において、基材2と被接合部材1が接する部分(貫通孔4と凸部5、あるいは被接合部材1と基材2の重ね合わせ部)にネジ部を設け、基材2と被接合部材1をネジ締結しておくことにより、後述する接点層6の形成過程における基材2の傾きや脱落を防止することができる。さらに、図6の構造をなす電気接点100および200は、図7に示す構造とすることもできる。すなわち、高伝導性金属からなる網を基材2とし、その上に接点層6を形成する。この際、平坦面に離型剤を塗布した硬質な土台の上に網を置き、その上から粉末を付着堆積させて接点層6を形成する。この接点層6の外径は、カップ形状の被接合部材1の内径より小さくする。網状の基材2と接点層6が一体化した接点層1100を、被接合部材1およびろう材8を配した支持部材7の上に載置し、網状の基材2と被接合部材1が重なる外周部に対して粉末を付着堆積させて締結する(1200)。この構造では基材2が堆積の小さな網状のため、電気接点1200を軽量化でき、使用材料の削減にもつながる。   Further, in the electrical contacts 300 and 400 having the structure of FIG. 8, the portion where the base member 2 and the member to be joined 1 are in contact (the through hole 4 and the convex portion 5, or the overlapping portion of the member to be joined 1 and the base member 2). By providing the screw portion and screwing the base member 2 and the member 1 to be joined together, it is possible to prevent the base member 2 from being inclined or dropped in the process of forming the contact layer 6 described later. Furthermore, the electrical contacts 100 and 200 having the structure shown in FIG. 6 may have the structure shown in FIG. That is, a network made of a highly conductive metal is used as the base material 2, and the contact layer 6 is formed thereon. At this time, the contact layer 6 is formed by placing a net on a hard base coated with a release agent on a flat surface, and depositing and depositing powder from the net. The outer diameter of the contact layer 6 is made smaller than the inner diameter of the cup-shaped member 1 to be joined. The contact layer 1100 in which the net-like base material 2 and the contact layer 6 are integrated is placed on the support member 7 on which the member 1 and the brazing material 8 are arranged. The powder is adhered and deposited on the overlapping outer peripheral portion and fastened (1200). In this structure, since the base material 2 has a small net-like structure, the electrical contact 1200 can be reduced in weight, leading to a reduction in materials used.

本発明の電気接点は、被接合部材1および基材2、あるいは接点層6の一部を構成する高伝導性金属が、CuまたはAgあるいはそれらを主成分とする合金である。これにより、通電に伴う電気接点の温度上昇を抑制し、互いに接触し合う接点層6どうしの溶着を妨げるとともに、良好な通電性能を確保することができる。また、接点層6の一部を構成する耐火性の金属あるいは化合物を、Cr、Co、W、WCのうちの少なくとも1種以上とするものである。これにより、電気接点として必要な耐電圧特性(耐アーク性)や電流遮断特性などを発現することができる。さらに、接点層6をなす付着堆積層3は、粒径が75μm以下で、前記の耐火性の金属あるいは化合物と高伝導性金属の粉末(以下、原料粉と記す)で構成されるものである。これにより、緻密な付着堆積層3が得られるとともに、嵌合部の周囲(図1)あるいは貫通孔4の内部(図2)に対して効率的に原料粉を堆積充填することが可能となり、良好な接合状態が得られる。原料粉の粒径が概ね75μmを超えると粉末粒子の重量が大きくなり、原料粉を付着堆積させるために必要な衝突速度が得られず、また、堆積する粒子間に隙間が形成されやすくなるため、緻密な付着堆積層3が得られない。   In the electrical contact of the present invention, the highly conductive metal constituting part of the member to be bonded 1 and the base material 2 or the contact layer 6 is Cu or Ag or an alloy containing them as a main component. Thereby, while the temperature rise of the electrical contact accompanying electricity supply is suppressed, welding of the contact layers 6 which mutually contact is prevented, and favorable electricity supply performance can be ensured. The refractory metal or compound constituting part of the contact layer 6 is at least one of Cr, Co, W, and WC. Thereby, a withstand voltage characteristic (arc resistance), an electric current interruption characteristic, etc. which are required as an electrical contact can be expressed. Further, the adhesion deposition layer 3 forming the contact layer 6 has a particle size of 75 μm or less and is composed of the above-mentioned refractory metal or compound and highly conductive metal powder (hereinafter referred to as raw material powder). . As a result, a dense adhesion deposition layer 3 can be obtained, and the raw material powder can be efficiently deposited and filled around the fitting portion (FIG. 1) or inside the through hole 4 (FIG. 2). A good bonded state can be obtained. When the particle size of the raw material powder exceeds about 75 μm, the weight of the powder particle becomes large, the collision speed necessary for adhering and depositing the raw material powder cannot be obtained, and a gap is easily formed between the deposited particles. Thus, the dense adhesion deposition layer 3 cannot be obtained.

図10は、径方向に組成の異なる複数の接点層を環状に配した場合の、本発明の電気接点の構造の断面図である。図10において、47は接点層6と組成の異なる第2の接点層、48は接点層6および47いずれとも組成の異なる第3の接点層である。図10(a)は2種類の接点層6および47が中心軸対称に環状に設けられた電気接点800、図10(b)は3種類の接点層6、47および48が中心軸対称に同心円状に設けられた電気接点900、図10(c)は2種類の接点層6および47が中心軸対称に環状に交互に設けられた電気接点1000である。電気接点の電気的性能は、接点の組成により変化する。したがって、組成の異なる複数の接点層を有することによって複数の機能、例えば遮断性能や耐電圧性能、低サージ性などを併せ持つ電気接点を実現することができる。また、この複数組成の接点層を有する電気接点は、図6(a)、(b)、図7(b)、図8(b)の構造にも同様に適用できる。なお、組成の異なる複数の接点層が、中心軸から外周へ向かって放射状に交互に配された電気接点も同様に実現可能である。   FIG. 10 is a cross-sectional view of the structure of the electrical contact of the present invention when a plurality of contact layers having different compositions in the radial direction are arranged in an annular shape. In FIG. 10, 47 is a second contact layer having a composition different from that of the contact layer 6, and 48 is a third contact layer having a composition different from that of the contact layers 6 and 47. FIG. 10A shows an electrical contact 800 in which two types of contact layers 6 and 47 are provided in an annular shape symmetrical with respect to the central axis, and FIG. 10B shows a case where three types of contact layers 6, 47 and 48 are concentric with the central axis symmetrical. FIG. 10C shows an electrical contact 1000 in which two types of contact layers 6 and 47 are alternately provided in an annular shape symmetrically about the central axis. The electrical performance of an electrical contact varies with the composition of the contact. Therefore, by having a plurality of contact layers having different compositions, it is possible to realize an electrical contact having a plurality of functions such as a breaking performance, a withstand voltage performance, and a low surge property. In addition, the electrical contact having a contact layer having a plurality of compositions can be similarly applied to the structures shown in FIGS. 6A, 6B, 7B, and 8B. An electrical contact in which a plurality of contact layers having different compositions are alternately arranged radially from the central axis toward the outer periphery can be similarly realized.

以上のような接合構造および電気接点は、基材2と被接合部材1との嵌合部あるいは重ね合わせ部位に対して、付着堆積層3を構成する原料粉を溶射や爆発圧縮成形などの方法により高速で衝突させ、粉末が塑性変形し、熱的・機械的合金化によって付着堆積させることで得られる。耐火性の金属あるいは化合物は、一般に比較的硬質なため、この粉末を高速で衝突させても塑性変形しにくく、目的とする部位に対してほとんど付着堆積しないが、比較的軟質の高伝導性金属の粉末を含むと、これが耐火性の金属あるいは化合物の粉末を巻き込みながら堆積するため、上記のように各々成分が異なる接点層6、47、48を得ることができる。この粉末を介した熱的・機械的合金化による2つの部材の接合は、図11に示すような被接合部材1と通電部材49との締結にも用いることができる。すなわち、被接合部材1と通電部材49とを密着させて載置した状態で、その接触部の縁に沿って粉末を高速で衝突させ、付着堆積層3を形成することによって両者を締結することができ、これは図6(b)や図7(b)の場合にも適用できる。   The joining structure and the electrical contact as described above are methods such as thermal spraying or explosion compression molding of the raw material powder constituting the deposited layer 3 on the fitting portion or the overlapped portion between the base material 2 and the member 1 to be joined. It is obtained by making the powder collide at high speed, and the powder is plastically deformed and deposited by thermal and mechanical alloying. Since refractory metals or compounds are generally relatively hard, they are not easily plastically deformed even when this powder is struck at high speed, and hardly adhere to the target site, but are relatively soft, highly conductive metals. In this case, the refractory metal or compound powder is deposited while entraining, so that the contact layers 6, 47 and 48 having different components can be obtained as described above. The joining of the two members by thermal / mechanical alloying via the powder can also be used for fastening the member to be joined 1 and the energizing member 49 as shown in FIG. That is, in a state where the member 1 and the energizing member 49 are placed in close contact with each other, the powder is collided at a high speed along the edge of the contact portion, and the deposited layer 3 is formed to fasten them together. This can also be applied to the cases of FIGS. 6B and 7B.

さらに、付着堆積層3をもって形成される接点層6、47、48はそれぞれ、その厚さ方向(電気接点の開閉方向)において組成を段階的あるいは連続的に変化させることができる。例えば、接点層6、47、48を溶射により形成する際、供給する粉末の組成を段階的あるいは連続的に変化させることにより、接点層は厚さ方向に傾斜した組成となる。このとき、基材2側を基材2と密着性の高い高伝導性金属が多い組成とし、接点層6、47、48の表面側を耐火性の金属あるいは化合物が多い組成とすることで、基材2との密着性に優れ、十分な耐電圧特性を有する接点層6、47、48が得られる。   Furthermore, each of the contact layers 6, 47, 48 formed with the adhesion deposition layer 3 can change the composition stepwise or continuously in the thickness direction (opening / closing direction of the electrical contact). For example, when the contact layers 6, 47, 48 are formed by thermal spraying, the composition of the supplied powder is changed stepwise or continuously so that the contact layer has a composition inclined in the thickness direction. At this time, by making the base material 2 side a composition with a large amount of highly conductive metal having high adhesion to the base material 2, and making the surface side of the contact layers 6, 47, 48 a composition with a lot of refractory metals or compounds, Contact layers 6, 47, and 48 having excellent adhesion to the base material 2 and sufficient withstand voltage characteristics are obtained.

本発明に係る真空バルブは、真空容器内に一対の固定側接点及び可動側接点を備えるもので、少なくとも一方の接点に本発明の電気接点を有することにより、真空中での優れた電流遮断性能や耐電圧性能などを発現できる。   The vacuum valve according to the present invention is provided with a pair of fixed-side contact and movable-side contact in a vacuum vessel, and has an electric contact according to the present invention at least at one of the contacts, thereby providing excellent current interruption performance in vacuum. And withstand voltage performance.

本発明に係る真空遮断器は、前記の真空バルブ内の固定側接点及び可動側接点の各々に真空バルブ外に接続された導体端子と、可動側接点を駆動する開閉手段とを備えるもので、この真空バルブが本発明に係る電気接点を有することで、真空遮断器として十分な機能を発揮することができる。   The vacuum circuit breaker according to the present invention comprises a conductor terminal connected to the outside of the vacuum valve to each of the fixed side contact and the movable side contact in the vacuum valve, and an opening / closing means for driving the movable side contact. When this vacuum valve has the electrical contact according to the present invention, a sufficient function as a vacuum circuit breaker can be exhibited.

本発明に係る電力開閉器は、一対の電気接点のうちの一方が本発明の電気接点からなり、一対の電気接点を接触または開離させることにより、電流を通電または遮断する機構を備えたものである。これにより真空、不活性ガス、大気のいずれかの雰囲気中で十分な電流遮断性能など、電力開閉器としての性能を発揮することができる。   A power switch according to the present invention includes a mechanism for energizing or interrupting current by contacting or opening a pair of electrical contacts, one of the pair of electrical contacts being the electrical contact of the present invention. It is. As a result, performance as a power switch such as sufficient current interruption performance in any one of vacuum, inert gas, and air can be exhibited.

以下、発明を実施するための最良の形態を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the invention will be described in detail by way of examples, but the present invention is not limited to these examples.

図8および図10(a)に示す構造で、接点層6が表1に示す組成(分析値)の電気接点300、400および800を作製した。いずれも基材2は直径54mm、厚さ5mm、貫通孔4の内径が12mmで、基材2および被接合部材1は無酸素銅である。また、比較品として、貫通孔4をもたない基材2と凸部5をもたない被接合部材1とをCu−Mn−Ni系ろう材を用いてろう付けした電気接点も作製した。   Electrical contacts 300, 400, and 800 having the structure shown in FIG. 8 and FIG. 10 (a) and the contact layer 6 having the composition (analytical value) shown in Table 1 were produced. In any case, the substrate 2 has a diameter of 54 mm, a thickness of 5 mm, and the inner diameter of the through-hole 4 is 12 mm. The substrate 2 and the bonded member 1 are made of oxygen-free copper. In addition, as a comparative product, an electrical contact was produced by brazing the base member 2 having no through-hole 4 and the member 1 to be joined having no convex portion 5 using a Cu—Mn—Ni brazing material.

まず、本実施例の電気接点300および400の作製方法について説明する。接点層6の組成がCu−Crの場合(表1のNo.1、No.2およびNo.6)、原料粉には粒径範囲が25〜75μmのCu粉末およびCr粉末を、表1に示す接点層6の組成が得られるように配合した混合粉を用いた。接点層6の組成がAg−WCの場合(表1のNo.3およびNo.4)、原料粉には粒径範囲が0.3〜45μmのAg粉末およびWC粉末を、表1に示す接点層6の組成が得られるように配合した混合粉を用いた。これらの混合粉を、基材2と被接合部材1とを組み合わせた状態で、基材2の表面にAr+H2混合ガスを用いて溶射し、衝突させて付着堆積させた。接点層6の組成が表1に示す範囲で連続的に変化したNo.6では、Cu粉末とCr粉末それぞれの供給系統を別個に制御し、接点層6の厚さ方向の組成を基材側から表面側へ段階的または連続的に変化させた。基材2の表面に原料粉を厚さ約3mm堆積させた後、機械加工によって厚さ約2mmまで切削して、接点層6と基材2の合計厚さが約5mmの電気接点300および400を得た。 First, a method for manufacturing the electrical contacts 300 and 400 of this embodiment will be described. When the composition of the contact layer 6 is Cu—Cr (No. 1, No. 2 and No. 6 in Table 1), the raw material powder includes Cu powder and Cr powder having a particle size range of 25 to 75 μm. The mixed powder blended so as to obtain the composition of the contact layer 6 shown was used. When the composition of the contact layer 6 is Ag-WC (No. 3 and No. 4 in Table 1), Ag powder and WC powder having a particle size range of 0.3 to 45 μm are used as the raw material powder. A mixed powder blended so as to obtain the composition of the layer 6 was used. These mixed powders were sprayed onto the surface of the base material 2 using an Ar + H 2 mixed gas in a state where the base material 2 and the member to be joined 1 were combined, and were allowed to collide to be deposited. In No. 6 in which the composition of the contact layer 6 continuously changed within the range shown in Table 1, the supply system of each of the Cu powder and the Cr powder was controlled separately, and the composition in the thickness direction of the contact layer 6 was changed to the substrate side. From the surface side to the surface side. After the raw material powder is deposited on the surface of the base material 2 to a thickness of about 3 mm, it is cut by machining to a thickness of about 2 mm, and the electrical contacts 300 and 400 having a total thickness of the contact layer 6 and the base material 2 of about 5 mm. Got.

次に、本実施例の電気接点800の作製方法(表1のNo.5)について説明する。原料粉には上記の混合粉を用いた。まず、基材2と被接合部材1とを組み合わせた状態で、内径25mmの穴のあいた遮蔽板(マスク)を通して、Ag−WC混合粉を基材2の中央部表面にAr+H2混合ガスを用いて溶射し、衝突させて付着堆積させた。さらに、外径25mmの遮蔽板(マスク)を基材2の中央に配した状態で、Cu−Cr混合粉を同様に溶射して付着堆積させた。その後、上記と同様の機械加工を施し、内周側(約25mm径)にAg−WCの接点層6、外周側にCu−Crの接点層47を有する電気接点800を得た。 Next, a method for producing the electrical contact 800 of this example (No. 5 in Table 1) will be described. The above mixed powder was used as the raw material powder. First, in a state where the base material 2 and the member 1 to be joined are combined, an Ag + WC mixed gas is used on the surface of the central portion of the base material 2 through a shielding plate (mask) having a hole with an inner diameter of 25 mm, and an Ar + H 2 mixed gas is used. Sprayed and collided to deposit. Further, Cu-Cr mixed powder was sprayed and deposited in the same manner in a state where a shielding plate (mask) having an outer diameter of 25 mm was arranged at the center of the substrate 2. Thereafter, machining similar to the above was performed to obtain an electrical contact 800 having an Ag—WC contact layer 6 on the inner peripheral side (about 25 mm diameter) and a Cu—Cr contact layer 47 on the outer peripheral side.

次に、比較品のうち、図8(a)の接合構造をもち、原料粉の粒径範囲が本実施例と異なるNo.9およびNo.10の電気接点300の作製方法について説明する。原料粉には、粒径範囲が45〜105μmおよび80〜150μmのCu粉末とCr粉末の混合粉を用いた。この混合粉を、上記の本実施例と同様の方法で基材2の表面に溶射した後、機械加工によって表面を切削して、接点層6と基材2の合計厚さが約5mmの電気接点300を得た。   Next, a method for producing the electrical contacts 300 of No. 9 and No. 10 that have the joint structure of FIG. As the raw material powder, a mixed powder of Cu powder and Cr powder having a particle size range of 45 to 105 μm and 80 to 150 μm was used. This mixed powder is sprayed onto the surface of the base material 2 in the same manner as in the above-described embodiment, and then the surface is cut by machining so that the total thickness of the contact layer 6 and the base material 2 is about 5 mm. A contact 300 was obtained.

続いて、比較品のうち、基材2と被接合部材1とをろう付けにより接合した電気接点(No.7およびNo.8)の作製方法について説明する。原料粉には、No.1〜No.5と同様のCu−Cr混合粉およびAg−WC混合粉を用いた。これらの混合粉を、上記の本発明品と同様の方法で貫通孔4をもたない基材2の表面に溶射した後、機械加工によって表面を切削して、接点層6の厚さを約2mmとした。この基材2の裏面と被接合部材1の平坦面(直径12mm)の間にCu−Mn−Ni系ろう材(厚さ0.1mm)を載置し、真空加熱炉を用いて約3×10-3Paの真空中で960℃×10分の加熱をして、接点層6を表面に有する基材2と被接合部材1とがろう付けされた電気接点を得た。 Next, a method for producing electrical contacts (No. 7 and No. 8) in which the base member 2 and the member 1 to be joined 1 are joined by brazing will be described. As the raw material powder, the same Cu—Cr mixed powder and Ag—WC mixed powder as in No. 1 to No. 5 were used. After spraying these mixed powders on the surface of the base material 2 having no through-holes 4 in the same manner as the product of the present invention, the surface is cut by machining to reduce the thickness of the contact layer 6 to about 2 mm. A Cu—Mn—Ni brazing material (thickness: 0.1 mm) is placed between the back surface of the substrate 2 and the flat surface (diameter 12 mm) of the member 1 to be joined, and about 3 × using a vacuum heating furnace. Heating was performed at 960 ° C. for 10 minutes in a vacuum of 10 −3 Pa to obtain an electrical contact in which the base material 2 having the contact layer 6 on the surface and the member 1 to be joined were brazed.

以上のように、本実施例に係る接合構造および製造方法により、接点層6の形成と他の部材との接合が同時に実施され、従来のろう付け法と同様の構造の電気接点が得られることが確認された。なお、本実施例における接点層6の形成には溶射法を用いたが、粉末を衝突させて付着堆積する方法であれば他の方法(例えば爆発圧縮成形など)でも同様の電気接点が得られる。   As described above, according to the joining structure and the manufacturing method according to the present embodiment, the formation of the contact layer 6 and the joining with other members are simultaneously performed, and an electrical contact having the same structure as the conventional brazing method can be obtained. Was confirmed. Although the thermal spraying method is used to form the contact layer 6 in this embodiment, the same electrical contact can be obtained by other methods (for example, explosive compression molding, etc.) as long as it is a method in which powder is collided and deposited. .

実施例1で作製した電気接点300、400および800を用いて、真空遮断器における電流遮断機構部である真空バルブを作製した。図12は、本実施例に係る真空バルブ500の構造を示す断面図で、定格仕様は電圧24kV、電流1250A、遮断電流25kAである。図12において、接点層6aおよび6b、基材2aおよび2b、被接合部材1aおよび1bをもって、それぞれ300、400または800の固定側電気接点および可動側電気接点を構成する。10は遮断時の金属蒸気等の飛散を防ぐためにセラミック絶縁筒16の内面に設けられるシールド、11は可動側方向への金属蒸気等の飛散を防ぐ可動側シールド、15はネジ部をもって外部導体と接続するための可動側ホルダー、12a、12bはそれぞれ固定側端板、可動側端板、13は真空バルブ500内を真空に保ったまま可動側ホルダー15を上下させるためのべローズ、14は可動側端板12bと可動側ホルダー15の間の摺動部分を支えるためのガイドである。   Using the electrical contacts 300, 400, and 800 produced in Example 1, a vacuum valve that was a current interruption mechanism in a vacuum circuit breaker was produced. FIG. 12 is a cross-sectional view showing the structure of the vacuum valve 500 according to the present embodiment. The rated specifications are a voltage of 24 kV, a current of 1250 A, and a cutoff current of 25 kA. In FIG. 12, the contact layers 6a and 6b, the substrates 2a and 2b, and the joined members 1a and 1b constitute 300, 400, or 800 fixed-side electric contacts and movable-side electric contacts, respectively. 10 is a shield provided on the inner surface of the ceramic insulating cylinder 16 to prevent scattering of metal vapor or the like when shut off, 11 is a movable side shield that prevents scattering of metal vapor or the like in the movable side direction, and 15 is an external conductor having a threaded portion. Movable side holders for connection, 12a and 12b are fixed end plates, movable side end plates, 13 are bellows for moving the movable side holder 15 up and down while the vacuum valve 500 is kept in vacuum, and 14 is movable This is a guide for supporting a sliding portion between the side end plate 12 b and the movable side holder 15.

以上は比較的融点が低いろう材を用いて高真空中で接合され、内部が高真空に封止される。この真空封止ろう付けの方法は、次の通りである。これらの部材を図12に示す状態で組み上げ、その際、接合を要する箇所に厚さ0.1mmの銀ろう(Ag−Cu系ろう材)を載置した。これを真空加熱炉中で約3×10-3Paの真空中、820℃×12分の加熱をし、真空バルブ500内を真空に保ったまま封止した。 The above is bonded in a high vacuum using a brazing material having a relatively low melting point, and the inside is sealed in a high vacuum. The vacuum sealing brazing method is as follows. These members were assembled in the state shown in FIG. 12, and a silver brazing (Ag—Cu-based brazing material) having a thickness of 0.1 mm was placed at a place where joining was required. This was heated in a vacuum heating furnace in a vacuum of about 3 × 10 −3 Pa at 820 ° C. × 12 minutes, and the vacuum valve 500 was sealed while maintaining the vacuum.

得られた真空バルブ500の端子間(被接合部材1aと可動側ホルダー15の間)の電気抵抗値を測定した結果を、表1に併せて示す。なお、この電気抵抗値は、真空バルブ500内が真空であることによる自閉力によって接点層6aおよび6bが閉じた(接触した)状態で測定したもので、電気接点300、400または800を構成する各部材間の接合状態の目安となる。従来の接合方法であるろう付けによって作製した電気接点では、接点層6がCu−Crの場合は12.6μΩ(No.7)、Ag−WCの場合は13.4μΩ(No.8)であった。これに比べ、図8(a)、(b)それぞれの接合構造で作製した電気接点300、400または800を内蔵した本実施例の真空バルブ500(No.1〜No.4、およびNo.6)は、いずれの接点層6の組成の場合も、ろう付けによって作製したNo.7およびNo.8よりも小さな値で、ろう材層を有さないため抵抗が小さい。特に傾斜組成をもつNo.6は、ろう付けの場合(No.7)よりも抵抗は約5%小さくなった。図10(a)の構造を有する電気接点800(No.5)は、No.7とNo.8との間の抵抗値を示した。一方、粒径が本実施例の範囲外である原料粉を用いた比較品の真空バルブ500(No.9およびNo.10)では、従来のろう付け法によるNo.7に比べて抵抗値が大きく、原料粉の粒径が大きくなるにつれて抵抗値が大きくなる傾向が見られた。No.9およびNo.10の接点層6および接合部周辺の断面組織を観察したところ気孔が多く見られ、この気孔は原料粉の粒径が大きくなるにつれて増す傾向が見られた。このことから、原料粉の粒径が大きいと接点層6の緻密化が不足し、これが抵抗値増大の要因となる。したがって、原料粉の粒径は本実施例の範囲にあることが望ましいことが確認された。   Table 1 also shows the results of measuring the electrical resistance value between the terminals of the obtained vacuum valve 500 (between the bonded member 1a and the movable side holder 15). The electrical resistance value is measured in a state in which the contact layers 6a and 6b are closed (contacted) by the self-closing force due to the vacuum inside the vacuum valve 500, and constitutes the electrical contact 300, 400 or 800. It becomes a standard of the joining state between each member to do. In the electrical contact produced by brazing, which is a conventional joining method, the contact layer 6 is 12.6 μΩ (No. 7) when Cu—Cr and 13.4 μΩ (No. 8) when Ag—WC. It was. Compared to this, the vacuum valves 500 (No. 1 to No. 4 and No. 6) of the present embodiment incorporating the electrical contacts 300, 400 or 800 produced by the joint structures of FIGS. ) Is a value smaller than No. 7 and No. 8 produced by brazing for any of the contact layer 6 compositions, and has a low resistance because it has no brazing material layer. In particular, No. 6 having a gradient composition has a resistance of about 5% smaller than that of brazing (No. 7). The electrical contact 800 (No. 5) having the structure of FIG. 10A exhibited a resistance value between No. 7 and No. 8. On the other hand, the comparative vacuum valve 500 (No. 9 and No. 10) using the raw material powder whose particle size is outside the range of the present example has a resistance value as compared with No. 7 by the conventional brazing method. The resistance value increased as the particle size of the raw material powder increased. No. 9 and No. 10 contact layer 6 and the cross-sectional structure around the joint were observed. Many pores were observed, and the pores tended to increase as the particle size of the raw material powder increased. For this reason, when the particle size of the raw material powder is large, the contact layer 6 is insufficiently densified, which causes an increase in the resistance value. Therefore, it was confirmed that the particle size of the raw material powder is desirably within the range of this example.

以上のように、本実施例に係る電気接点がろう材を用いることなく健全な接合状態を有し、従来のろう付け法と同等の電気的性能が得られることが確認された。   As described above, it was confirmed that the electrical contact according to the present example has a sound joined state without using a brazing material, and electrical performance equivalent to that of the conventional brazing method can be obtained.

実施例2で作製した真空バルブ500を、図13に示す構造の真空遮断器600に組込んだ。真空遮断器600は、操作機構部を前面に配置し、背面に真空バルブ500を支持する3相一括型の3組のエポキシ筒17を配置した構造である。真空バルブ500は、絶縁操作ロッド18を介して、操作機構によって開閉される。遮断器が閉路状態の場合、電流は上部端子19、電気接点300、400または800、集電子20、下部端子21を流れる。電極間の接触力は、絶縁操作ロッド18に装着された接触バネ22によって保たれている。電極間の接触力および短絡電流による電磁力は、支えレバー23およびプロップ24で保持されている。投入コイル32を励磁すると開路状態からプランジャ25がノッキングロッド26を介してローラ27を押し上げ、主レバー28を回して電極間を閉じたあと、支えレバー23で保持している。遮断器が引き外し自由状態では、引き外しコイル29が励磁され、引き外しレバー30がプロップ24の係合を外し、主レバー28が回って電極間が開かれる。遮断器が開路状態では、電極間が開かれたあと、リセットバネ31によってリンクが復帰し、同時にプロップ24が係合する。この状態で投入コイル32を励磁すると閉路状態になる。なお、33は排気筒である。   The vacuum valve 500 produced in Example 2 was incorporated in the vacuum circuit breaker 600 having the structure shown in FIG. The vacuum circuit breaker 600 has a structure in which three sets of three-phase epoxy cylinders 17 supporting the vacuum valve 500 are arranged on the rear surface with the operation mechanism portion arranged on the front surface. The vacuum valve 500 is opened and closed by an operating mechanism via the insulating operating rod 18. When the circuit breaker is closed, current flows through the upper terminal 19, the electrical contacts 300, 400 or 800, the current collector 20, and the lower terminal 21. The contact force between the electrodes is maintained by a contact spring 22 attached to the insulating operation rod 18. The contact force between the electrodes and the electromagnetic force due to the short-circuit current are held by the support lever 23 and the prop 24. When the closing coil 32 is excited, the plunger 25 pushes up the roller 27 through the knocking rod 26 from the open circuit state, rotates the main lever 28 to close the space between the electrodes, and then holds it by the support lever 23. When the circuit breaker is free to be tripped, the tripping coil 29 is excited, the tripping lever 30 is disengaged from the prop 24, and the main lever 28 is rotated to open the electrodes. In the open circuit state of the circuit breaker, after the electrodes are opened, the link is restored by the reset spring 31 and the prop 24 is engaged at the same time. When the closing coil 32 is excited in this state, a closed state is obtained. In addition, 33 is an exhaust pipe.

実施例1で作製した電気接点300、400および800を内蔵した真空バルブ500を、真空遮断器600に組込む。この状態で遮断試験に供し、最大遮断電流とさい断電流を測定した結果を表1に併せて示す。本実施例のうち、No.1〜No.4およびNo.6は、従来のろう付けで接合されたCu−Cr、Ag−WCそれぞれの接点層6を有するNo.7、No.8と比べて、最大遮断電流、さい断電流とも同等の値を有し、実用的な性能を有することが確認された。また、複数組成の接点層6および47を有するNo.5は、最大遮断電流とさい断電流の値がNo.7とNo.8との中間値を示し、遮断性能と低サージ性を併せ持つ電気的特性を有することが確認された。   The vacuum valve 500 incorporating the electrical contacts 300, 400 and 800 produced in Example 1 is incorporated in the vacuum circuit breaker 600. Table 1 also shows the results of measuring the maximum breaking current and the breaking current when subjected to a breaking test in this state. In this example, No. 1 to No. 4 and No. 6 are compared with No. 7 and No. 8 having contact layers 6 of Cu—Cr and Ag—WC joined by conventional brazing. Thus, it was confirmed that the maximum breaking current and the breaking current have the same value and have practical performance. No. 5 having the contact layers 6 and 47 having a plurality of compositions has an intermediate value between No. 7 and No. 8 in terms of the maximum breaking current and the breaking current, and has an electrical property having both breaking performance and low surge characteristics. It was confirmed that it has a characteristic.

続いて、実施例2で作製した真空バルブ500を、真空遮断器600以外の真空開閉装置に搭載した。図14は、実施例2で作製した真空バルブ500を搭載した負荷開閉器700である。   Subsequently, the vacuum valve 500 produced in Example 2 was mounted on a vacuum switching device other than the vacuum circuit breaker 600. FIG. 14 shows a load switch 700 equipped with the vacuum valve 500 produced in the second embodiment.

この負荷開閉器は、主回路開閉部に相当する真空バルブ500が、真空封止された外側真空容器34内に複数対収納されたものである。外側真空容器34は、上部板材35と下部板材36及び側部板材37を備え、各板材の周囲(縁)が互いに溶接によって接合されているとともに、設備本体とともに設置されている。   In this load switch, a plurality of pairs of vacuum valves 500 corresponding to main circuit switching units are housed in a vacuum-sealed outer vacuum vessel 34. The outer vacuum vessel 34 includes an upper plate member 35, a lower plate member 36, and a side plate member 37. The periphery (edge) of each plate member is joined to each other by welding and is installed together with the equipment main body.

上部板材35には、上部貫通孔38が形成されており、各上部貫通孔38の縁には環状の絶縁性上部ベース39が各上部貫通孔38を覆うように固定されている。そして、各上部ベース39の中央に形成された円形空間部には、円柱状の可動側電極棒46bが往復動(上下動)自在に挿入されている。すなわち、各上部貫通孔38は上部ベース39と可動側電極棒46bによって閉塞されている。   An upper through hole 38 is formed in the upper plate member 35, and an annular insulating upper base 39 is fixed to an edge of each upper through hole 38 so as to cover each upper through hole 38. A cylindrical movable electrode rod 46b is inserted into a circular space formed at the center of each upper base 39 so as to freely reciprocate (up and down). That is, each upper through hole 38 is closed by the upper base 39 and the movable electrode rod 46b.

可動側電極棒46bの軸方向端部(上部側)は、外側真空容器34の外部に設置される操作器(電磁操作器)に連結されるようになっている。また、上部板材35の下部側には、各上部貫通孔38の縁に沿って外側ベローズ40が往復動(上下動)自在に配置されており、各外側ベローズ40は、軸方向の一端側が上部板材35の下部側に固定され、軸方向の他端側が各可動側電極棒46bの外周面に装着されている。すなわち、外側真空容器34を密閉構造とするために、各上部貫通孔38の縁には各可動側電極棒46bの軸方向に沿って外側ベローズ40が配置されている。また、上部板材35には排気管(図示省略)が連結され、この排気管を介して外側真空容器34内が真空排気されるようになっている。   The axial end (upper side) of the movable electrode rod 46b is connected to an operating device (electromagnetic operating device) installed outside the outer vacuum vessel 34. Further, on the lower side of the upper plate member 35, an outer bellows 40 is disposed so as to freely reciprocate (up and down) along the edge of each upper through hole 38, and each outer bellows 40 has an upper end on the one end side in the axial direction. It is fixed to the lower side of the plate member 35, and the other end side in the axial direction is attached to the outer peripheral surface of each movable electrode rod 46b. That is, in order to make the outer vacuum vessel 34 have a sealed structure, the outer bellows 40 is disposed along the axial direction of each movable electrode rod 46b at the edge of each upper through hole 38. Further, an exhaust pipe (not shown) is connected to the upper plate member 35, and the inside of the outer vacuum vessel 34 is evacuated through the exhaust pipe.

一方、下部板材36には下部貫通孔41が形成されており、各下部貫通孔41の縁には絶縁性ブッシング42が各下部貫通孔41を覆うように固定されている。各絶縁性ブッシング42の底部には、環状の絶縁性下部ベース43が固定されている。そして、各下部ベース43の中央の円形空間部には、円柱状の固定側電極棒46aが挿入されている。すなわち、下部板材36に形成された下部貫通孔41は、それぞれ絶縁性ブッシング42、下部ベース43、及び固定側電極棒46aによって閉塞されている。そして、固定側電極棒46aの軸方向の一端側(下部側)は、外側真空容器34の外部に配置されたケーブル(配電線)に連結されるようになっている。   On the other hand, a lower through hole 41 is formed in the lower plate member 36, and an insulating bushing 42 is fixed to an edge of each lower through hole 41 so as to cover each lower through hole 41. An annular insulating lower base 43 is fixed to the bottom of each insulating bushing 42. A cylindrical fixed electrode rod 46 a is inserted into the circular space at the center of each lower base 43. That is, the lower through-holes 41 formed in the lower plate member 36 are closed by the insulating bushing 42, the lower base 43, and the fixed electrode rod 46a, respectively. One end side (lower side) in the axial direction of the fixed electrode rod 46 a is connected to a cable (distribution line) arranged outside the outer vacuum vessel 34.

外側真空容器34の内部には、負荷開閉器の主回路開閉部に相当する真空バルブ500が収納されており、各可動側電極棒46bは、2つの湾曲部を有するフレキシブル導体(可撓性導体)44を介して互いに連結されている。このフレキシブル導体44は、軸方向において2つの湾曲部を有する導電性板材としての銅板とステンレス板を交互に複数枚積層して構成されている。フレキシブル導体44には貫通孔45が形成されており、各貫通孔45に各可動側電極棒46bを挿入して互いに連結される。   Inside the outer vacuum vessel 34 is housed a vacuum valve 500 corresponding to the main circuit opening / closing portion of the load switch, and each movable electrode bar 46b is a flexible conductor (flexible conductor) having two curved portions. ) 44 to each other. The flexible conductor 44 is configured by alternately laminating a plurality of copper plates and stainless steel plates as conductive plate members having two curved portions in the axial direction. A through hole 45 is formed in the flexible conductor 44, and each movable side electrode rod 46b is inserted into each through hole 45 and connected to each other.

以上のように、実施例2で作製した本発明に係る真空バルブは、真空遮断器や路肩設置変圧器用の負荷開閉器に適用可能であり、これ以外のスイッチギヤなどの各種真空開閉装置にも適用できる。   As described above, the vacuum valve according to the present invention produced in Example 2 can be applied to a load switch for a vacuum circuit breaker or a shoulder mounted transformer, and also to various vacuum switch devices such as switch gears. Applicable.

1、1a、1b 被接合部材
2、2a、2b 基材
3 付着堆積層
4、45 貫通孔
5 凸部
6、6a、6b 接点層
7 支持部材
8 ろう材
9 段差
10 シールド
11 可動側シールド
12a 固定側端板
12b 可動側端板
13 べローズ
14 ガイド
15 可動側ホルダー
16 セラミック絶縁筒
17 エポキシ筒
18 絶縁操作ロッド
19 上部端子
20 集電子
21 下部端子
22 接触バネ
23 支えレバー
24 プロップ
25 プランジャ
26 ノッキングロッド
27 ローラ
28 主レバー
29 引き外しコイル
30 引き外しレバー
31 リセットバネ
32 投入コイル
33 排気筒
34 外側真空容器
35 上部板材
36 下部板材
37 側部板材
38 上部貫通孔
39 上部ベース
40 外側ベローズ
41 下部貫通孔
42 絶縁性ブッシング
43 下部ベース
44 フレキシブル導体
46a 固定側電極棒
46b 可動側電極棒
47 第2の接点層(接点層)
48 第3の接点層(接点層)
49 通電部材
100、200、300、400、800、900、1000、1200 電気接点
500 真空バルブ
600 真空遮断器
700 負荷開閉器
1100 銅網上に形成した接点層(接点層)
DESCRIPTION OF SYMBOLS 1, 1a, 1b Joined member 2, 2a, 2b Base material 3 Adhesion deposition layer 4, 45 Through-hole 5 Protrusion part 6, 6a, 6b Contact layer 7 Support member 8 Brazing material 9 Step 10 Shield 11 Movable side shield 12a Fixed Side end plate 12b Movable side end plate 13 Bellows 14 Guide 15 Movable side holder 16 Ceramic insulating cylinder 17 Epoxy cylinder 18 Insulating operation rod 19 Upper terminal 20 Current collector 21 Lower terminal 22 Contact spring 23 Support lever 24 Prop 25 Plunger 26 Knocking rod 27 Roller 28 Main lever 29 Trip coil 30 Trip lever 31 Reset spring 32 Input coil 33 Exhaust tube 34 Outer vacuum vessel 35 Upper plate member 36 Lower plate member 37 Side plate member 38 Upper through hole 39 Upper base 40 Outer bellows 41 Lower through hole 42 Insulating bushing 43 Lower base 44 Flexible Body 46a fixed side electrode rod 46b movable electrode rod 47 a second contact layer (contact layer)
48 Third contact layer (contact layer)
49 Current-carrying member 100, 200, 300, 400, 800, 900, 1000, 1200 Electrical contact 500 Vacuum valve 600 Vacuum circuit breaker 700 Load switch 1100 Contact layer (contact layer) formed on a copper mesh

Claims (10)

第1部材と、
前記第1部材の上に設けられた第2部材と、
金属を含む粉末を前記第1部材と前記第2部材との双方にわたって付着堆積させ、熱的・機械的合金化により前記第1部材と前記第2部材とを接合する接点層とを備え、
前記第2部材を貫通する前記第1部材または前記第2部材を貫通する前記接点層が前記第2部材と嵌合形状である接合構造を形成し、
前記第2部材の一面と前記第1部材の端部とが、前記接合構造で接合されることを特徴とする電気接点。
A first member;
A second member provided on the first member;
A contact layer that deposits and deposits a metal-containing powder over both the first member and the second member, and joins the first member and the second member by thermal and mechanical alloying;
The first member penetrating the second member or the contact layer penetrating the second member forms a joint structure with the second member;
One surface of the second member and an end of the first member are joined by the joining structure.
前記第1部材がカップ形状または棒状であることを特徴とする請求項1に記載の電気接点。 The electrical contact according to claim 1, wherein the first member has a cup shape or a rod shape. 前記接点層は耐火性の金属あるいは化合物と高伝導性金属とを含むことを特徴とする請求項1に記載の電気接点。   The electrical contact according to claim 1, wherein the contact layer includes a refractory metal or compound and a highly conductive metal. 前記高伝導性金属はCuまたはAgあるいはそれらの合金であり、前記耐火性の金属あるいは化合物はCr、Co、W、WCのうちの少なくとも1種以上であることを特徴とする請求項3に記載の電気接点。   4. The high conductivity metal is Cu or Ag or an alloy thereof, and the refractory metal or compound is at least one of Cr, Co, W, and WC. Electrical contacts. 前記接点層は、前記耐火性の金属あるいは化合物の粉末と前記高伝導性金属の粉末の粒径とが75μm以下であることを特徴とする請求項3または4に記載の電気接点。   5. The electrical contact according to claim 3, wherein the contact layer has a particle size of the powder of the refractory metal or compound and the powder of the highly conductive metal of 75 μm or less. 前記接点層は、径方向において、同心円状に異なる組成で形成されることを特徴とする請求項1乃至5の何れかに記載の電気接点。   The electrical contact according to any one of claims 1 to 5, wherein the contact layer is formed with different compositions concentrically in a radial direction. 前記接点層は、厚さ方向において、その組成が段階的あるいは連続的に変化することを特徴とする請求項1乃至6の何れかに記載の電気接点。   The electrical contact according to claim 1, wherein the composition of the contact layer changes stepwise or continuously in the thickness direction. 真空容器内に一対の固定側接点及び可動側接点を備えた真空バルブにおいて、前記固定側接点及び可動側接点の少なくとも一方が、請求項1乃至7の何れかに記載の電気接点を有する真空バルブ。   8. A vacuum valve having a pair of fixed and movable contacts in a vacuum vessel, wherein at least one of the fixed and movable contacts has an electrical contact according to any one of claims 1 to 7. . 請求項8に記載の真空バルブと、前記真空バルブ内の前記固定側接点及び可動側接点の各々に前記真空バルブ外に接続された導体端子と、前記可動側接点を駆動する開閉手段とを備えた真空遮断器。   9. A vacuum valve according to claim 8, a conductor terminal connected to each of the fixed side contact and the movable side contact in the vacuum valve outside the vacuum valve, and an opening / closing means for driving the movable side contact. Vacuum circuit breaker. 一対の電気接点のうちの一方が請求項1乃至7の何れかに記載の電気接点からなり、真空、不活性ガス、大気のいずれかの雰囲気中で前記一対の電気接点を接触または開離させることにより、電流を通電または遮断する機構を備えた電力開閉器。   One of the pair of electrical contacts comprises the electrical contact according to any one of claims 1 to 7, and the pair of electrical contacts are brought into contact with or separated from each other in an atmosphere of vacuum, inert gas, or air. A power switch provided with a mechanism for energizing or interrupting current.
JP2013227832A 2013-11-01 2013-11-01 Junction structure, electrical contact Expired - Fee Related JP5668123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227832A JP5668123B2 (en) 2013-11-01 2013-11-01 Junction structure, electrical contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227832A JP5668123B2 (en) 2013-11-01 2013-11-01 Junction structure, electrical contact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011210080A Division JP5409739B2 (en) 2011-09-27 2011-09-27 Junction structure, electrical contact, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014089959A JP2014089959A (en) 2014-05-15
JP5668123B2 true JP5668123B2 (en) 2015-02-12

Family

ID=50791673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227832A Expired - Fee Related JP5668123B2 (en) 2013-11-01 2013-11-01 Junction structure, electrical contact

Country Status (1)

Country Link
JP (1) JP5668123B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530815A (en) * 1982-06-29 1985-07-23 Mitsubishi Denki Kabushiki Kaisha Method of producing a contact device for a switch
TW265452B (en) * 1994-04-11 1995-12-11 Hitachi Seisakusyo Kk
JP2000235825A (en) * 1999-02-16 2000-08-29 Hitachi Ltd Electrode member for vacuum circuit-breaker and manufacture thereof
CN1425196A (en) * 1999-11-24 2003-06-18 霍尼韦尔国际公司 Conductive interconnections
JP4455066B2 (en) * 2004-01-08 2010-04-21 株式会社日立製作所 Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same
US20100170937A1 (en) * 2009-01-07 2010-07-08 General Electric Company System and Method of Joining Metallic Parts Using Cold Spray Technique

Also Published As

Publication number Publication date
JP2014089959A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
CN1776855B (en) Electrode, electrical contact and method of manufacturing the same
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
US6437275B1 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
CN104795264A (en) Method for manufacturing arc-resistant copper-tungsten contacts for high-voltage switches
EP0155322B1 (en) Electrode of vacuum breaker
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
JP5409739B2 (en) Junction structure, electrical contact, and manufacturing method thereof
US3828428A (en) Matrix-type electrodes having braze-penetration barrier
US20060081560A1 (en) Vacuum circuit breaker, vacuum interrupter, electric contact and method of manufacturing the same
JP5668123B2 (en) Junction structure, electrical contact
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
JP4988489B2 (en) Electrical contact
JP2012161156A (en) Gas insulation switchgear
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
EP0917171A2 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
JP2004342441A (en) Electric contact and its manifacturing method, vacuum valve using it and each use
CN104117748B (en) A kind of high voltage power transmission and transforming contact and welding method thereof
JP2011014240A (en) Electric contact for vacuum valve, and vacuum switching device using it
JP2010163642A (en) Contact point material for vacuum valve
JP2000149732A (en) Vacuum breaker and vacuum bulb used in it and its electrode
JPH10241512A (en) Vacuum circuit breaker, and vacuum valve and electric contact used for the breaker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees