JP5663345B2 - Refrigerant circuit with compressor abnormality detection function - Google Patents

Refrigerant circuit with compressor abnormality detection function Download PDF

Info

Publication number
JP5663345B2
JP5663345B2 JP2011038689A JP2011038689A JP5663345B2 JP 5663345 B2 JP5663345 B2 JP 5663345B2 JP 2011038689 A JP2011038689 A JP 2011038689A JP 2011038689 A JP2011038689 A JP 2011038689A JP 5663345 B2 JP5663345 B2 JP 5663345B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
detected
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038689A
Other languages
Japanese (ja)
Other versions
JP2012172957A (en
Inventor
弘樹 成安
弘樹 成安
和樹 岩村
和樹 岩村
啓二 杉森
啓二 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2011038689A priority Critical patent/JP5663345B2/en
Publication of JP2012172957A publication Critical patent/JP2012172957A/en
Application granted granted Critical
Publication of JP5663345B2 publication Critical patent/JP5663345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機の異常検知機能を備えた冷媒回路に関するものである。   The present invention relates to a refrigerant circuit having a compressor abnormality detection function.

従来より、冷媒回路において、冷媒の吐出温度の異常低下を検知する構成が開示されている(特許文献1参照)。   2. Description of the Related Art Conventionally, a configuration for detecting an abnormal drop in refrigerant discharge temperature in a refrigerant circuit has been disclosed (see Patent Document 1).

上記従来の冷媒回路は、吸入温度、吐出圧力および吸入圧力の検出値に基づき理論断熱圧縮吐出温度を算出し、この理論断熱圧縮吐出温度から所定値を減じた値を比較用吐出温度として、吐出温度の検出値と比較して異常低下を検知するようになされていた。   The conventional refrigerant circuit calculates the theoretical adiabatic compression discharge temperature based on the detected values of the suction temperature, the discharge pressure and the suction pressure, and uses a value obtained by subtracting a predetermined value from the theoretical adiabatic compression discharge temperature as a comparison discharge temperature. Compared with the detected value of temperature, an abnormal drop was detected.

特開2008−241121号公報JP 2008-241121 A

ところで、上記従来の冷媒回路の場合、各検出値に基づき算出される理論断熱圧縮吐出温度は、断熱圧縮を前提としているが、実際の検出吐出温度は、軸受け摩擦等の圧縮機の機械的な運転損失によって発生する熱の影響も受けるため、理論断熱圧縮吐出温度よりも高温になる。このように、実際の検出吐出温度が理論断熱圧縮吐出温度よりも高温になったとしても、上記従来の冷媒回路は、実際の検出吐出温度の異常低下の検出が課題であるため、実際の検出吐出温度よりも低温の理論断熱圧縮吐出温度からさらに所定値を減じた比較用吐出温度を基準値としても、実際の検出吐出温度の異常低下の検出には何ら不都合は生じない。   By the way, in the case of the conventional refrigerant circuit, the theoretical adiabatic compression / discharge temperature calculated based on each detected value is premised on adiabatic compression, but the actual detected discharge temperature is the mechanical pressure of the compressor such as bearing friction. The temperature is higher than the theoretical adiabatic compression discharge temperature because it is also affected by the heat generated by the operating loss. Thus, even if the actual detected discharge temperature becomes higher than the theoretical adiabatic compression discharge temperature, the above conventional refrigerant circuit has a problem of detecting an abnormal drop in the actual detected discharge temperature. Even if a comparative discharge temperature obtained by further subtracting a predetermined value from the theoretical adiabatic compression discharge temperature lower than the discharge temperature is used as a reference value, there is no inconvenience in detecting an abnormal drop in the actual detected discharge temperature.

しかし、圧縮機の軸受けの異常摩擦や、隙間不良による異常接触などで圧縮機に異常な機械的損失を生じた場合は、機械的な運転損失によって発生する熱の影響がさらに増えるため、圧縮機異常時の検出吐出温度は、理論断熱圧縮吐出温度よりもさらに高温となる。   However, if abnormal mechanical loss occurs in the compressor due to abnormal friction of the bearing of the compressor or abnormal contact due to a gap defect, the effect of heat generated by mechanical operating loss further increases. The detected discharge temperature at the time of abnormality is higher than the theoretical adiabatic compression discharge temperature.

したがって、実際の検出吐出温度は、通常運転時も圧縮機異常時でも、断熱圧縮を前提とする理論断熱圧縮吐出温度よりも高温であるため、実際の検出吐出温度と、断熱圧縮を前提とする理論断熱圧縮吐出温度とを比較しただけでは、圧縮機の異常による検出吐出温度の異常上昇を検出することは非常に困難であった。   Therefore, the actual detected discharge temperature is higher than the theoretical adiabatic compression discharge temperature that assumes adiabatic compression, both during normal operation and when the compressor is abnormal. Only by comparing the theoretical adiabatic compression discharge temperature, it was very difficult to detect an abnormal rise in the detected discharge temperature due to an abnormality in the compressor.

本発明は係る実情に鑑みてなされたものであって、実際の吐出温度の異常上昇を検知するにあたり、断熱圧縮を前提とする理論値に圧縮機の運転効率を加味して圧縮機の異常検知を可能にする構成を提供する。   The present invention has been made in view of the actual situation, and in detecting an abnormal increase in actual discharge temperature, an abnormality in the compressor is detected by adding the operation efficiency of the compressor to a theoretical value on the premise of adiabatic compression. Provide a configuration that enables

上記課題を解決するための本発明の冷媒回路は、圧縮機の吐出経路に温度センサ、圧力センサを設け、吸入経路に温度センサ、圧力センサを設けた冷媒回路において、吐出経路の検知圧力および検知温度、吸入経路の検知圧力および検知温度に基づいて実際の運転効率を算出し、実際の運転効率が最低運転効率よりも所定値未満であるか否かを判定し、実際の運転効率が所定値未満であると判定した場合に圧縮機の異常を検知する制御部を有するものである。 The refrigerant circuit of the present invention to solve the above problems, the temperature sensor in the discharge path of the compressor, the pressure sensor is provided, the temperature sensor to the suction passage, the refrigerant circuit provided with a pressure sensor, the sensed pressure and sensed in the discharge path The actual operating efficiency is calculated based on the temperature, the detected pressure of the suction route, and the detected temperature, it is determined whether the actual operating efficiency is less than a predetermined value from the minimum operating efficiency, and the actual operating efficiency is a predetermined value. And a control unit that detects an abnormality of the compressor when it is determined that the value is less than .

以上述べたように、本発明によると、圧縮機の運転効率を加味した吐出温度の異常上昇の検知により圧縮機の機械的な不具合(圧縮機ロック、軸受け異常など)を早期に検知できる。   As described above, according to the present invention, mechanical malfunctions (compressor lock, bearing abnormality, etc.) of the compressor can be detected at an early stage by detecting an abnormal increase in the discharge temperature in consideration of the operation efficiency of the compressor.

本発明に係る冷媒回路の暖房時の冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating of the refrigerant circuit which concerns on this invention. 本発明に係る冷媒回路の冷房時の冷媒の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant at the time of cooling of the refrigerant circuit which concerns on this invention. 本発明に係る冷媒回路の圧縮機部分の要部構成の概略を示す回路図である。It is a circuit diagram which shows the outline of the principal part structure of the compressor part of the refrigerant circuit which concerns on this invention. 本発明に係る冷媒回路において通常運転時と異常時とにおける圧縮機の吐出温度の違いを説明するモリエル線図である。It is a Mollier diagram explaining the difference of the discharge temperature of the compressor at the time of normal operation and abnormality at the refrigerant circuit which concerns on this invention. 本発明に係る冷媒回路の制御装置のブロック図である。It is a block diagram of the control apparatus of the refrigerant circuit which concerns on this invention.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は冷媒回路1の暖房運転時の冷媒の流れを示し、図2は冷媒回路1の冷房運転時の冷媒の流れを示している。   FIG. 1 shows the refrigerant flow during the heating operation of the refrigerant circuit 1, and FIG. 2 shows the refrigerant flow during the cooling operation of the refrigerant circuit 1.

この冷媒回路1は、圧縮機1a,1bの吐出経路11a,11bに温度センサS1,S2を設け、共通の吐出経路11に圧力センサS3を設け、吸入経路12に温度センサS4、圧力センサS5を設け、圧力センサS3によって検知される吐出経路11の検知圧力PH、圧力センサS5によって検知される吸入経路の検知圧力PL、温度センサS12によって検知される吸入経路の検知温度TS4に基づいて理論断熱圧縮冷媒吐出温度TD1t,TD2tを算出し、吐出経路11a,11bの検知冷媒吐出温度TD1,TD2が理論断熱圧縮冷媒吐出温度TD1t,TD2tよりも所定値以上の高温冷媒吐出温度TD1r,TD2rであるか否かを判定し、所定値以上の高温冷媒吐出温度TD1r,TD2rであると判定した場合に圧縮機1a,1bが異常であることを検知するように構成されている。   The refrigerant circuit 1 includes temperature sensors S1 and S2 in the discharge paths 11a and 11b of the compressors 1a and 1b, a pressure sensor S3 in the common discharge path 11, and a temperature sensor S4 and a pressure sensor S5 in the suction path 12. Theoretical adiabatic compression based on the detected pressure PH of the discharge path 11 detected by the pressure sensor S3, the detected pressure PL of the suction path detected by the pressure sensor S5, and the detected temperature TS4 of the suction path detected by the temperature sensor S12 The refrigerant discharge temperatures TD1t and TD2t are calculated, and whether or not the detected refrigerant discharge temperatures TD1 and TD2 of the discharge paths 11a and 11b are higher than the theoretical adiabatic compression refrigerant discharge temperatures TD1t and TD2t by a predetermined value or higher. If it is determined that the high-temperature refrigerant discharge temperatures TD1r and TD2r are equal to or higher than a predetermined value, the compressor 1 , And it is configured to detect that 1b is abnormal.

温度センサS1,S2は、各圧縮機1a、1bの吐出口から共通の吐出経路11に到る吐出経路11a、11b上であれば、何処に設けてもよい。圧縮機1a,1bが一台しか動いていない場合には、共通の吐出経路11に設けた温度センサS11によって測定される検知冷媒吐出温度TDを、運転中の圧縮機1a,1bの吐出経路11a、11bに設けられた温度センサS1またはS2の検知冷媒吐出温度TD1,TD2としてもよい。   The temperature sensors S1 and S2 may be provided anywhere on the discharge paths 11a and 11b from the discharge ports of the compressors 1a and 1b to the common discharge path 11. When only one compressor 1a, 1b is moving, the detected refrigerant discharge temperature TD measured by the temperature sensor S11 provided in the common discharge path 11 is used as the discharge path 11a of the compressors 1a, 1b during operation. , 11b may be detected refrigerant discharge temperatures TD1, TD2 of the temperature sensor S1 or S2.

圧力センサS3は、圧縮機1a,1bの吐出口から四方弁6に到る吐出経路11a、11bまたは11上であれば、何処に設けてもよい。図1および図2では、吐出経路11aと11bの合流点からオイルセパレータ2へ至るまでの共通の吐出経路11で測定している。この場合、オイルセパレータ2での圧力損失の影響を受けず、測定位置としては好ましい。   The pressure sensor S3 may be provided anywhere as long as it is on the discharge path 11a, 11b or 11 from the discharge ports of the compressors 1a and 1b to the four-way valve 6. In FIG. 1 and FIG. 2, the measurement is performed on the common discharge path 11 from the junction of the discharge paths 11 a and 11 b to the oil separator 2. In this case, it is not affected by the pressure loss in the oil separator 2 and is preferable as a measurement position.

温度センサS12は、アキュームレータ3の下流で圧縮機1a、1bの吸入口への分岐前であれば、吸入経路12の何処に設けてもよい。図1および図2では、吸入経路12に設けられたアキュームレータ3の下流のオイルセパレータ2からのオイル戻しライン18の合流点よりも下流で圧縮機1a、1bの吸入口への分岐前に設けられている。この場合、圧縮機1a、1bの吸入直前の冷媒温度を測定できるので、理論断熱圧縮温度TD1t,TDt2の算出精度が高まり、測定位置としては好ましい。   The temperature sensor S12 may be provided anywhere in the suction path 12 as long as it is downstream of the accumulator 3 and before branching to the suction ports of the compressors 1a and 1b. In FIG. 1 and FIG. 2, it is provided before branching to the suction ports of the compressors 1 a and 1 b downstream from the junction of the oil return line 18 from the oil separator 2 downstream of the accumulator 3 provided in the suction path 12. ing. In this case, since the refrigerant temperature immediately before the suction of the compressors 1a and 1b can be measured, the calculation accuracy of the theoretical adiabatic compression temperatures TD1t and TDt2 is increased, which is preferable as a measurement position.

圧力センサS5は、四方弁6から圧縮機1a、1bの吸入口に到る吸入経路12の何処に設けてもよい。図1および図2では、吸入経路12に設けられたアキュームレータ3よりも上流側に設けられている。この場合、アキュームレータ3での圧力損失の影響を受けず、測定位置としては好ましい。   The pressure sensor S5 may be provided anywhere in the suction path 12 from the four-way valve 6 to the suction ports of the compressors 1a and 1b. In FIG. 1 and FIG. 2, it is provided upstream of the accumulator 3 provided in the suction path 12. In this case, it is not affected by the pressure loss in the accumulator 3, and is preferable as a measurement position.

この冷媒回路1は、冷房運転時は圧縮機1a,1bの吐出ライン11を室外熱交換器4a,4bに接続するとともに圧縮機1a,1bの吸入ライン12を室内熱交換器5に接続し、暖房運転時は圧縮機1a,1bの吐出ライン11を室内熱交換器5に接続するとともに圧縮機1a,1bの吸入ライン12を室外熱交換器4a,4bに接続する四方弁6を設け、圧縮機1a,1bを駆動するエンジン(図示省略)を設け、室外熱交換器4a,4bと室内熱交換器5を接続する液管ライン13にレシーバ7を設け、暖房運転時におけるレシーバ7の下流に室外熱交換器4a,4bと並列にエンジン冷却水によるサブエバポレータ8を設け、サブエバポレータ8の下流ライン14を四方弁6から圧縮機吸入口に至る吸入ライン12に接続し、室外熱交換器4a,4bとレシーバ7の接続ライン15に第1室外電動膨張弁EV1を設け、サブエバポレータ8とレシーバ7の接続ライン16に第2室外電動膨張弁EV2を設け、サブエバポレータ8の下流ライン14と四方弁6から圧縮機吸入口に至る吸入ライン12の接続部下流の冷媒過熱度に基づいて第1室外電動膨張弁EV1の開度を制御するようになされている。   During the cooling operation, the refrigerant circuit 1 connects the discharge lines 11 of the compressors 1a and 1b to the outdoor heat exchangers 4a and 4b and connects the suction lines 12 of the compressors 1a and 1b to the indoor heat exchanger 5, During the heating operation, a four-way valve 6 is provided to connect the discharge lines 11 of the compressors 1a and 1b to the indoor heat exchanger 5 and connect the suction lines 12 of the compressors 1a and 1b to the outdoor heat exchangers 4a and 4b. An engine (not shown) for driving the machines 1a and 1b is provided, a receiver 7 is provided in the liquid pipe line 13 connecting the outdoor heat exchangers 4a and 4b and the indoor heat exchanger 5, and downstream of the receiver 7 during heating operation. A sub-evaporator 8 made of engine cooling water is provided in parallel with the outdoor heat exchangers 4a and 4b, and a downstream line 14 of the sub-evaporator 8 is connected to a suction line 12 extending from the four-way valve 6 to the compressor suction port so that the outdoor heat A first outdoor electric expansion valve EV1 is provided in the connection line 15 between the exchangers 4a and 4b and the receiver 7, a second outdoor electric expansion valve EV2 is provided in the connection line 16 between the sub-evaporator 8 and the receiver 7, and the downstream line of the sub-evaporator 8 is provided. 14 and the opening degree of the first outdoor electric expansion valve EV1 is controlled based on the degree of refrigerant superheating downstream of the connection portion of the suction line 12 from the four-way valve 6 to the compressor suction port.

まず、この冷媒回路1の暖房時および冷房時における冷媒およびオイルの流れについて説明する。   First, the flow of refrigerant and oil during heating and cooling of the refrigerant circuit 1 will be described.

冷媒回路1において、圧縮機1a、1bで圧縮した冷媒は、当該圧縮機1a、1bからの吐出ライン11を介してオイルセパレータ2に導入され、冷媒とオイルに分離される。   In the refrigerant circuit 1, the refrigerant compressed by the compressors 1a and 1b is introduced into the oil separator 2 through the discharge line 11 from the compressors 1a and 1b, and is separated into refrigerant and oil.

このうち、図1に示すように、暖房運転の場合、冷媒は、四方弁6を介して室内熱交換器5で放熱して凝縮液化した後、ブリッジ回路9を経てレシーバ7に貯留される。この液冷媒は、再度ブリッジ回路9を経て電動膨張弁EV1の開度調整により、室外熱交換器4a,4bで蒸発気化した後、アキュームレータ3に入る。この際、冷媒は、圧縮機1a,1bへの吸入ライン12に設けた圧力センサS5から冷媒の飽和蒸気圧温度を算出し、この算出温度よりもアキュームレータ3に入る手前の温度センサS4から測定される実際の冷媒の温度が所定温度以上の過熱度を維持するように電動膨張弁EV1の開度が制御されて供給される。これにより、アキュームレータ3での液バックを監視できる。   Among these, as shown in FIG. 1, in the heating operation, the refrigerant radiates heat in the indoor heat exchanger 5 through the four-way valve 6 to be condensed and liquefied, and then is stored in the receiver 7 through the bridge circuit 9. The liquid refrigerant passes through the bridge circuit 9 again and is evaporated and evaporated in the outdoor heat exchangers 4a and 4b by adjusting the opening degree of the electric expansion valve EV1, and then enters the accumulator 3. At this time, the refrigerant calculates the saturated vapor pressure temperature of the refrigerant from the pressure sensor S5 provided in the suction line 12 to the compressors 1a and 1b, and is measured from the temperature sensor S4 before entering the accumulator 3 from the calculated temperature. The opening degree of the electric expansion valve EV1 is controlled and supplied so that the actual refrigerant temperature maintains a superheat degree equal to or higher than a predetermined temperature. Thereby, the liquid back | bag in the accumulator 3 can be monitored.

それでも、このアキュームレータ3に入る手前の温度センサS4から測定される実際の冷媒の過熱度が所定温度未満の場合は、電動膨張弁EV1の開度を絞る。また、外気温度が低く、室外熱交換器4a、4bで冷媒を十分に蒸発できない場合は、電動膨張弁EV2の開度制御によりサブエバポレータ8へと冷媒を流し、当該サブエバポレータ8においてエンジン(図示省略)の廃熱によって充分に過熱されたガス冷媒としてからアキュームレータ3に供給される。この際、サブエバポレータ8を経て供給される冷媒の温度は温度センサS7によって測定される。
ここで、冷媒を室外熱交換器4a、4bとサブエバポレータ8の両方を使用する場合は、電動膨張弁EV2の開度制御は、温度センサS7から測定される実際の冷媒の温度が温度センサS4から測定される実際の冷媒温度よりも所定温度以上となるように行われる。こうすることで、電動膨張弁EV1の開度を保ちながら、即ち、室外熱交換器4a、4bへの冷媒流量を確保してサブエバポレータ8での圧損を抑えながら、合流後の冷媒の過熱度を所定温度に維持できる。
Still, when the actual superheat degree of the refrigerant measured from the temperature sensor S4 before entering the accumulator 3 is lower than the predetermined temperature, the opening degree of the electric expansion valve EV1 is reduced. Further, when the outdoor air temperature is low and the outdoor heat exchangers 4a and 4b cannot sufficiently evaporate the refrigerant, the refrigerant is caused to flow to the sub-evaporator 8 by controlling the opening degree of the electric expansion valve EV2, and the sub-evaporator 8 performs engine (illustration). It is supplied to the accumulator 3 after being sufficiently heated by the waste heat (not shown). At this time, the temperature of the refrigerant supplied through the sub-evaporator 8 is measured by the temperature sensor S7.
Here, when both the outdoor heat exchangers 4a and 4b and the sub-evaporator 8 are used as the refrigerant, the opening degree control of the electric expansion valve EV2 is based on the actual refrigerant temperature measured from the temperature sensor S7. It is performed so that it may become more than predetermined temperature rather than the actual refrigerant | coolant temperature measured from. In this way, while maintaining the opening degree of the electric expansion valve EV1, that is, while ensuring the refrigerant flow rate to the outdoor heat exchangers 4a and 4b and suppressing the pressure loss in the sub-evaporator 8, the degree of superheat of the refrigerant after merging Can be maintained at a predetermined temperature.

その後、冷媒は、アキュームレータ3から冷媒の吸入ライン12を通って再度圧縮機1a、1bへと吸引される。   Thereafter, the refrigerant is sucked again from the accumulator 3 through the refrigerant suction line 12 to the compressors 1a and 1b.

一方、オイルは、オイルセパレータ2の底部からのオイル戻しライン17に設けられたキャピラリCT0または開閉弁SV0を経た後、開閉弁SV1,SV2、キャピラリCT1,CT2、オイル温度センサS8,S9を経て圧縮機1a、1bへと返送される。また、オイルセパレータ2内の油面付近のオイルは、オイル戻しライン18から開閉弁SV3、キャピラリCT3、オイル温度センサS10を経て冷媒の吸入ライン12から圧縮機1a,1bへと返送される。   On the other hand, the oil passes through the capillary CT0 or the on-off valve SV0 provided in the oil return line 17 from the bottom of the oil separator 2, and then is compressed through the on-off valves SV1, SV2, capillaries CT1, CT2, and oil temperature sensors S8, S9. Returned to machine 1a, 1b. The oil in the vicinity of the oil level in the oil separator 2 is returned from the oil return line 18 to the compressors 1a and 1b from the refrigerant suction line 12 via the on-off valve SV3, capillary CT3, and oil temperature sensor S10.

冷房運転の場合、図2に示すように、冷媒は、四方弁6を介して室外熱交換器4a,4bで放熱して凝縮液化した後、レシーバ7に貯留される。この液冷媒は、ブリッジ回路9を経て電動膨張弁51の開度調整により、室内熱交換器5で蒸発気化した後、アキュームレータ3に入る。このアキュームレータ3に入ったガス冷媒の過熱度が小さすぎる場合は、電動膨張弁EV2の開度制御によりサブエバポレータ8へと冷媒を流し、当該サブエバポレータ8においてエンジン(図示省略)の廃熱によって充分に過熱されたガス冷媒としてからアキュームレータ3に供給される。   In the case of the cooling operation, as shown in FIG. 2, the refrigerant radiates heat in the outdoor heat exchangers 4 a and 4 b through the four-way valve 6 to be condensed and liquefied, and is then stored in the receiver 7. This liquid refrigerant evaporates and evaporates in the indoor heat exchanger 5 by adjusting the opening degree of the electric expansion valve 51 through the bridge circuit 9 and then enters the accumulator 3. When the degree of superheat of the gas refrigerant that has entered the accumulator 3 is too small, the refrigerant is caused to flow to the sub-evaporator 8 by controlling the opening degree of the electric expansion valve EV2, and the sub-evaporator 8 is sufficient due to the waste heat of the engine (not shown). Is supplied to the accumulator 3 after being heated as a gas refrigerant.

この場合もオイルは、オイル戻しライン17に設けられたキャピラリCT0または開閉弁SV0を経た後、開閉弁SV1,SV2、キャピラリCT1,CT2、オイル温度センサS8,S9を経て圧縮機1a、1bへと返送される。また、オイルセパレータ2内の油面付近のオイルは、オイル戻しライン18から開閉弁SV3、キャピラリCT3、オイル温度センサS10を経て冷媒の吸入ライン12から圧縮機1a,1bへと返送される。   Also in this case, the oil passes through the capillary CT0 or the on-off valve SV0 provided in the oil return line 17, and then goes to the compressors 1a and 1b through the on-off valves SV1 and SV2, capillaries CT1 and CT2, and oil temperature sensors S8 and S9. Will be returned. The oil in the vicinity of the oil level in the oil separator 2 is returned from the oil return line 18 to the compressors 1a and 1b from the refrigerant suction line 12 via the on-off valve SV3, capillary CT3, and oil temperature sensor S10.

なお、圧縮機1a,1bは、一台のみで運転する場合もあれば、二台ともに運転する場合もある。一台のみの運転の場合は、開閉弁SV2が閉じられて圧縮機1bへのオイルの供給が停止され、圧縮機1aのみの運転となる。この場合、圧縮機1aから吐出された冷媒は、圧縮機1bの吐出口下流に設けられた逆止弁CV1によって圧縮機1bへの逆流が防止される。開閉弁SV1,SV2の開閉は、それぞれ、圧縮機1a,1bの発停に連動するようになされている。   The compressors 1a and 1b may be operated by only one unit, or may be operated by both units. In the case of operation of only one unit, the on-off valve SV2 is closed, the supply of oil to the compressor 1b is stopped, and only the compressor 1a is operated. In this case, the refrigerant discharged from the compressor 1a is prevented from flowing back to the compressor 1b by the check valve CV1 provided downstream of the discharge port of the compressor 1b. Opening and closing of the on-off valves SV1 and SV2 is interlocked with the start and stop of the compressors 1a and 1b, respectively.

また、上記図1および図2において、冷媒回路1は、一台の室外機Aに対して一台の室内機Bしか接続されていないが、閉鎖弁BV1とBV2との間に複数台の室内機Bが接続可能となされている。また、圧縮機1a,1bは、これら接続された室内機Bの運転状況に応じて1台または2台以上が運転される。   1 and 2, the refrigerant circuit 1 has only one indoor unit B connected to one outdoor unit A, but a plurality of indoor units B are provided between the closing valves BV1 and BV2. Machine B can be connected. Further, one or two or more compressors 1a and 1b are operated according to the operation status of the connected indoor units B.

上記構成において、本発明の冷媒回路1の制御装置10は、圧縮機1a,1bの異常を検知することができるようになされている。   In the above configuration, the control device 10 of the refrigerant circuit 1 according to the present invention can detect an abnormality in the compressors 1a and 1b.

図3は冷媒回路1のうち、圧縮機1a周辺の概略を示し、図4は同圧縮機1aの異常検知を説明するモリエル線図を示し、図5は圧縮機1aの異常を検知する制御装置10のブロック図を示している。以下において、説明の便宜上、圧縮機1aが運転し、圧縮機1bが停止している状態を仮定して圧縮機1aの異常検知について説明する。   FIG. 3 schematically shows the periphery of the compressor 1a in the refrigerant circuit 1, FIG. 4 shows a Mollier diagram for explaining abnormality detection of the compressor 1a, and FIG. 5 shows a control device for detecting abnormality of the compressor 1a. 10 block diagrams are shown. In the following, for convenience of explanation, the abnormality detection of the compressor 1a will be described on the assumption that the compressor 1a is operating and the compressor 1b is stopped.

圧縮機1aの異常を検知する制御装置10には、圧縮機1aの吐出経路11aに設けた温度センサS1からの検知冷媒吐出温度TD1と、吐出経路11に設けた圧力センサS3からの検知吐出圧力PHと、吸入経路12に設けた圧力センサS5からの検知吸入圧力PLと、吸入経路12に設けた温度センサS12からの検知吸入温度TS4とが入力され、これらの入力情報に基づいて圧縮機1aの異常を検知するように構成されている。   The controller 10 that detects an abnormality in the compressor 1a includes a detected refrigerant discharge temperature TD1 from the temperature sensor S1 provided in the discharge path 11a of the compressor 1a and a detected discharge pressure from the pressure sensor S3 provided in the discharge path 11. PH, a detected suction pressure PL from the pressure sensor S5 provided in the suction path 12, and a detected suction temperature TS4 from the temperature sensor S12 provided in the suction path 12 are input, and the compressor 1a is based on these input information. It is configured to detect abnormalities.

制御装置10では、まず、実際の検知冷媒吐出温度TD1が、理論断熱圧縮冷媒吐出温度TD1tよりも異常に高温TD1rであるか否かを判定する。その方法としては、図4に示すように、検知吐出圧力PH、検知吸入圧力PLおよび検知吸入温度TS4に基づいて圧縮機1aの理論断熱圧縮冷媒吐出温度TD1tを算出する。ついで、この算出された理論断熱圧縮冷媒吐出温度TD1tに圧縮機1aの最低運転効率を考慮した通常運転での最高冷媒吐出温度TD1rに換算する。そして、制御装置10では、実際の検知冷媒吐出温度TD1が、理論断熱圧縮冷媒吐出温度TD1tから、最低運転効率で換算した通常運転での最高冷媒吐出温度TD1rまでの範囲内に有るか否かを判定する。   In the control device 10, first, it is determined whether or not the actual detected refrigerant discharge temperature TD1 is abnormally higher than the theoretical adiabatic compression refrigerant discharge temperature TD1t. As the method, as shown in FIG. 4, the theoretical adiabatic compressed refrigerant discharge temperature TD1t of the compressor 1a is calculated based on the detected discharge pressure PH, the detected intake pressure PL, and the detected intake temperature TS4. Subsequently, the calculated theoretical adiabatic compression refrigerant discharge temperature TD1t is converted into the maximum refrigerant discharge temperature TD1r in the normal operation in consideration of the minimum operation efficiency of the compressor 1a. Then, in the control device 10, it is determined whether or not the actual detected refrigerant discharge temperature TD1 is within the range from the theoretical adiabatic compression refrigerant discharge temperature TD1t to the maximum refrigerant discharge temperature TD1r in the normal operation converted by the minimum operation efficiency. judge.

実際の検知冷媒吐出温度TD1が、この範囲内にある場合、制御装置10は、圧縮機1aが通常運転時と判断し、あらかじめ設定した時間毎に上記した判定を繰り返す。   When the actual detected refrigerant discharge temperature TD1 is within this range, the control device 10 determines that the compressor 1a is in a normal operation, and repeats the above determination every preset time.

実際の検知冷媒吐出温度TD1が、この範囲よりも高温である場合、圧縮機1a内部の異常摩擦や異常接触により発生した熱によって冷媒が高温になったものと判断し、制御装置10は、運転中の圧縮機1aが異常運転時であると判断する。   When the actual detected refrigerant discharge temperature TD1 is higher than this range, the controller 10 determines that the refrigerant has become hot due to heat generated by abnormal friction or abnormal contact inside the compressor 1a. It is determined that the compressor 1a in the middle is in abnormal operation.

圧縮機1aが異常運転時であると判断された場合は、その後、圧縮機1aが停止され、圧縮機1bの運転に切り替えられるものであってもよいし、圧縮機1aの停止により冷媒回路1全体を停止させるものであってもよいし、圧縮機1aの異常をアラームやランプで知らせるようにしてもよい。   When it is determined that the compressor 1a is in an abnormal operation, the compressor 1a may be stopped and then switched to the operation of the compressor 1b, or the refrigerant circuit 1 may be stopped by stopping the compressor 1a. The whole may be stopped, or an abnormality of the compressor 1a may be notified by an alarm or a lamp.

なお、上記では、実際の検知冷媒吐出温度TD1が、理論断熱圧縮冷媒吐出温度TD1tから最低運転効率で換算した通常運転での最高冷媒吐出温度TD1rまでの範囲内に有るか否か、その温度差によって判定しているが、実際の検知冷媒吐出温度TD1と、理論断熱圧縮冷媒吐出温度TD1tとを比較した比率によって判定してもよい。すなわち、理論断熱圧縮冷媒吐出温度TD1tの場合の圧縮機1aの運転効率を100とし、この理論断熱冷媒吐出温度TD1tと、実際の検知冷媒吐出温度TD1との比率から、検知冷媒吐出温度TD1の場合の圧縮機1aの実際の運転効率を求める。この実際の運転効率が、あらかじめ設定した運転効率、例えば、100〜75%に有るか否かを判定する。制御装置10は、この範囲内の比率に納まっている場合、通常運転時と判断し、あらかじめ設定した時間毎に上記の判定を繰り返す。最低運転効率よりも所定値未満であれば、圧縮機1aの異常と判断し、制御装置10は、運転中の圧縮機1aの停止指令を出力する。   In the above description, whether or not the actual detected refrigerant discharge temperature TD1 is within the range from the theoretical adiabatic compression refrigerant discharge temperature TD1t to the maximum refrigerant discharge temperature TD1r in the normal operation converted by the minimum operation efficiency, and the temperature difference therebetween. However, the actual detected refrigerant discharge temperature TD1 and the theoretical adiabatic compression refrigerant discharge temperature TD1t may be determined based on a ratio. That is, when the operation efficiency of the compressor 1a at the theoretical adiabatic compressed refrigerant discharge temperature TD1t is 100, the ratio of the theoretical adiabatic refrigerant discharge temperature TD1t to the actual detected refrigerant discharge temperature TD1 is the case of the detected refrigerant discharge temperature TD1. The actual operating efficiency of the compressor 1a is determined. It is determined whether or not the actual operation efficiency is a preset operation efficiency, for example, 100 to 75%. When the control device 10 falls within the ratio within this range, the control device 10 determines that the operation is normal, and repeats the above determination every preset time. If it is less than the predetermined value below the minimum operating efficiency, it is determined that the compressor 1a is abnormal, and the control device 10 outputs a stop command for the compressor 1a during operation.

この制御装置10を備えた冷媒回路1によると、圧縮機1a,1bが完全に故障(いわゆるロック状態)になる前に、圧縮機1a,1bを停止させることができる。すなわち、圧縮機1a,1bの軸受け異常や隙間不良による異常接触などの機械的損失が発生した場合、これによる発熱の影響で冷媒の吐出温度が上昇する。ここで、通常は、冷媒の吐出温度が上昇すると、運転継続をさせるために、液インジェクションなどの過熱防止制御が開始されてしまって、異常が発生した圧縮機1a、1bの運転が継続される。したがって、圧縮機1a,1bのこのような機械的損失による異常は、圧縮機1a,1bが完全に故障するまで見逃され易く、その結果、完全故障後からの復旧に手間を要していた。   According to the refrigerant circuit 1 including the control device 10, the compressors 1a and 1b can be stopped before the compressors 1a and 1b are completely broken (so-called locked state). That is, when a mechanical loss such as an abnormal contact due to a bearing abnormality of the compressors 1a and 1b or a gap defect occurs, the discharge temperature of the refrigerant rises due to the heat generated by this. Here, normally, when the discharge temperature of the refrigerant rises, overheat prevention control such as liquid injection is started to continue the operation, and the operation of the compressors 1a and 1b in which an abnormality has occurred is continued. . Therefore, the abnormality due to such mechanical loss of the compressors 1a and 1b is easily overlooked until the compressors 1a and 1b completely fail, and as a result, it takes time to recover after the complete failure.

しかし、この制御装置10を備えた冷媒回路1によると、機械的損失によって冷媒の吐出温度が上昇したタイミングで圧縮機1a,1bの異常を検知することができるので、圧縮機1a,1bの完全故障を防止し、復旧作業の容易化を図ることができる。   However, according to the refrigerant circuit 1 provided with the control device 10, the abnormality of the compressors 1a and 1b can be detected at the timing when the refrigerant discharge temperature rises due to mechanical loss. Failure can be prevented and recovery work can be facilitated.

なお、上記では、圧縮機1aの異常を検知する場合について述べているが、圧縮機1bの異常を検知する場合も同様である。さらに、圧縮機1a,1bの二台同時運転時に二台の圧縮機1a,1bの異常を検知する場合も同様である。   In addition, although the case where abnormality of the compressor 1a is detected is described above, the same applies to the case where abnormality of the compressor 1b is detected. Further, the same applies to the case where the abnormality of the two compressors 1a and 1b is detected during the simultaneous operation of the two compressors 1a and 1b.

また、圧縮機1a,1bは、3台以上の場合であってもよい。   The compressors 1a and 1b may be three or more.

さらに、上記冷媒回路1における圧縮機1aの異常を検知する制御装置10は、その制御プログラムを、既設の冷媒回路1の制御装置10にインストールすることで、当該既設の冷媒回路1であっても、上記と同様に圧縮機1a,1bの異常を検知することができることとなる。ただし、制御プログラムの実行には、温度センサS1,S2,S12、圧力センサS3,S5からの情報が必要となるため、既設の冷媒回路1にこれらのセンサが無い場合は、これらセンサの取り付けが必要となる。   Furthermore, the control device 10 that detects the abnormality of the compressor 1a in the refrigerant circuit 1 installs the control program in the control device 10 of the existing refrigerant circuit 1, so that the existing refrigerant circuit 1 can be installed. In the same manner as described above, the abnormality of the compressors 1a and 1b can be detected. However, since execution of the control program requires information from the temperature sensors S1, S2, S12 and the pressure sensors S3, S5, if these sensors are not present in the existing refrigerant circuit 1, these sensors must be attached. Necessary.

本発明に係る冷媒回路は、圧縮機を有する冷媒回路を用いた各種空調装置に使用される。   The refrigerant circuit according to the present invention is used in various air conditioners using a refrigerant circuit having a compressor.

1 冷媒回路
10 制御部(制御装置)
11 吐出経路
12 吸入経路
S1 温度センサ(TD1検知用)
S2 温度センサ(TD2検知用)
S3 圧力センサ(PH検知用)
S12 温度センサ(TS4検知用)
S5 圧力センサ(PL検知用)
TD1 圧縮機1aの吐出冷媒の検知温度
TD2 圧縮機1bの吐出冷媒の検知温度
TS4 圧縮機1a、1bの吸入直前の冷媒検知温度
PL 吸入経路の検知圧力
PH 吐出経路の検知圧力
TD1t 理論断熱圧縮冷媒吐出温度
TD2t 理論断熱圧縮冷媒吐出温度
TD1r 通常運転での最高冷媒吐出温度
TD2r 通常運転での最高冷媒吐出温度
1 Refrigerant Circuit 10 Control Unit (Control Device)
11 Discharge path 12 Suction path S1 Temperature sensor (for TD1 detection)
S2 Temperature sensor (for TD2 detection)
S3 Pressure sensor (for PH detection)
S12 Temperature sensor (for TS4 detection)
S5 Pressure sensor (for PL detection)
TD1 Detected temperature of refrigerant discharged from compressor 1a TD2 Detected temperature of refrigerant discharged from compressor 1b TS4 Refrigerant detected temperature just before suction of compressors 1a, 1b PL Detected pressure of suction path PH Detected pressure of discharge path TD1t Theoretical adiabatic compressed refrigerant Discharge temperature TD2t Theoretical adiabatic compression refrigerant discharge temperature TD1r Maximum refrigerant discharge temperature TD2r in normal operation Maximum refrigerant discharge temperature in normal operation

Claims (1)

圧縮機の吐出経路に温度センサ、圧力センサを設け、吸入経路に温度センサ、圧力センサを設けた冷媒回路において、
吐出経路の検知圧力および検知温度、吸入経路の検知圧力および検知温度に基づいて実際の運転効率を算出し、
実際の運転効率が最低運転効率よりも所定値未満であるか否かを判定し、
実際の運転効率が所定値未満であると判定した場合に圧縮機の異常を検知する制御部を有することを特徴とする冷媒回路。
In a refrigerant circuit provided with a temperature sensor and a pressure sensor in the discharge path of the compressor, and provided with a temperature sensor and a pressure sensor in the suction path,
Calculate the actual operating efficiency based on the detection pressure and temperature of the discharge path, the detection pressure and temperature of the suction path,
Determine whether the actual driving efficiency is less than the predetermined value than the minimum driving efficiency,
A refrigerant circuit comprising a control unit that detects an abnormality of a compressor when it is determined that actual operation efficiency is less than a predetermined value .
JP2011038689A 2011-02-24 2011-02-24 Refrigerant circuit with compressor abnormality detection function Active JP5663345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038689A JP5663345B2 (en) 2011-02-24 2011-02-24 Refrigerant circuit with compressor abnormality detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038689A JP5663345B2 (en) 2011-02-24 2011-02-24 Refrigerant circuit with compressor abnormality detection function

Publications (2)

Publication Number Publication Date
JP2012172957A JP2012172957A (en) 2012-09-10
JP5663345B2 true JP5663345B2 (en) 2015-02-04

Family

ID=46976025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038689A Active JP5663345B2 (en) 2011-02-24 2011-02-24 Refrigerant circuit with compressor abnormality detection function

Country Status (1)

Country Link
JP (1) JP5663345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023418A (en) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 Pressure sensor abnormity control method and device and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021211280B4 (en) 2021-10-06 2023-05-04 Glen Dimplex Deutschland Gmbh Method and device for monitoring a refrigerant system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692051U (en) * 1979-12-19 1981-07-22
JPH11248299A (en) * 1998-02-27 1999-09-14 Kawasaki Steel Corp Abnormality decision method for air compressor
JP2008241121A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Malfunction detecting device, malfunction detecting method and control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023418A (en) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 Pressure sensor abnormity control method and device and air conditioner

Also Published As

Publication number Publication date
JP2012172957A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
US11609031B2 (en) Refrigeration cycle apparatus
JP6061819B2 (en) Air conditioner
JP6341808B2 (en) Refrigeration air conditioner
JP5405161B2 (en) Air conditioner and energy equipment
EP3545241B1 (en) A method for handling fault mitigation in a vapour compression system
CN105299841B (en) The fault detection method of the heat exchange valve body of multiple on-line system and its outdoor heat exchanger
CN105299840B (en) The fault detection method of multi-line system and its by-pass valve body
KR20100056204A (en) Multi-air-conditioner and method for diagnosising refrigerants leakage thereof
EP2728285A1 (en) Device and method for detecting abnormality of cooling cycle for refrigerator
JP2007255818A (en) Diagnosing device for refrigerating cycle device, heat source-side unit and use-side unit having diagnosing device, and refrigerating cycle device
ES2883698T3 (en) Method of Detecting Refrigerant Leakage of Air Source Heat Pump System and Such Air Source Heat Pump System
US20200300492A1 (en) Sensor coupling verification in tandem compressor units
JP7118248B2 (en) refrigeration equipment
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
JP2013204863A (en) Multi-air conditioner
JP2010060179A (en) Control device, air conditioner and refrigerating device
JP5663345B2 (en) Refrigerant circuit with compressor abnormality detection function
JP6611929B2 (en) Refrigeration equipment
JP7012867B2 (en) Outdoor unit and refrigeration cycle device equipped with it
JP2020026928A (en) Control device, refrigeration machine, control method and failure detection method
JP2019184150A (en) Air conditioner
JP5577276B2 (en) Engine-driven air conditioner
KR102243654B1 (en) Air conditioner
JP2007057148A (en) Heat pump water heater
JP5683934B2 (en) Engine-driven air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350