JP5659693B2 - Condensation method and condensate system - Google Patents

Condensation method and condensate system Download PDF

Info

Publication number
JP5659693B2
JP5659693B2 JP2010238781A JP2010238781A JP5659693B2 JP 5659693 B2 JP5659693 B2 JP 5659693B2 JP 2010238781 A JP2010238781 A JP 2010238781A JP 2010238781 A JP2010238781 A JP 2010238781A JP 5659693 B2 JP5659693 B2 JP 5659693B2
Authority
JP
Japan
Prior art keywords
well
water
pumping
water injection
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010238781A
Other languages
Japanese (ja)
Other versions
JP2012092514A (en
Inventor
奥田 和弘
和弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010238781A priority Critical patent/JP5659693B2/en
Publication of JP2012092514A publication Critical patent/JP2012092514A/en
Application granted granted Critical
Publication of JP5659693B2 publication Critical patent/JP5659693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、復水工法、及び復水システムに関する。   The present invention relates to a condensate method and a condensate system.

地盤の地下水位を低下させる地下水位低下工法として、揚水井から揚水された地下水を、注水井を通じて地中に戻す復水工法が知られている(例えば、特許文献1参照)。特許文献1に記載の復水工法では、粘土層(すなわち、難透水層)よりも浅い位置で揚水井により揚水し、揚水量が少量であれば、粘土層よりも浅層側で注水井により復水し、揚水量が多量であれば、粘土層よりも深層側で注水井により復水する。   As a groundwater level lowering method for lowering the groundwater level of the ground, a condensate method for returning groundwater pumped from a pumping well to the ground through a water injection well is known (see, for example, Patent Document 1). In the condensate construction method described in Patent Document 1, water is pumped by a pumping well at a position shallower than a clay layer (that is, a hardly permeable layer). Condensate, and if the amount of pumped water is large, condensate with a water injection well deeper than the clay layer.

特開2006―77567号公報JP 2006-77567 A

従来は、粘土層が存在しない地中領域に対して復水工法を用いた場合には、当該地中領域で地下水が循環するだけで、地下水位を低下させることができないと考えられていた。そのため、粘土層が存在しない地中領域に対しては復水工法は用いられておらず、揚水した地下水は全て放流していた。しかしながら、地下水の放流量が多くなるほど、ろ過処理費や放流料金(下水道料金)が高額になり、費用負担が大きくなるため、対策が必要であった。   Conventionally, when the condensate method is used for an underground area where no clay layer exists, it has been considered that the groundwater level cannot be lowered simply by circulating groundwater in the underground area. For this reason, the condensate method was not used for underground areas where there was no clay layer, and all of the pumped groundwater was discharged. However, as groundwater discharge increased, filtration costs and discharge charges (sewerage charges) became higher and the cost burden increased, so countermeasures were necessary.

本発明は、上記事情に鑑みてなされたものであり、難透水層が存在しない地中領域に対して地下水位低下工法を実施するに際して、揚水した地下水の処理費用を抑えることを課題とするものである。   This invention is made | formed in view of the said situation, and makes it a subject to hold down the processing cost of the pumped-up groundwater when implementing a groundwater level fall construction method with respect to the underground area | region where a poorly permeable layer does not exist. It is.

上記課題を解決するために、本発明に係る復水工法は、揚水井と注水井とを地中領域に設け、前記揚水井を通じて前記地中領域から揚水した地下水の一部を、前記注水井を通じて前記地中領域へ戻し、その残りを所定の放流先へ送る復水工法であって、前記地中領域は、掘削領域と、該掘削領域の下に位置する深層部とからなり、不透水層が存在せず、縦方向の透水係数が横方向の透水係数よりも小さく、前記揚水井を、前記掘削領域を通って前記深層部に達し、揚水口が前記深層部に位置するように設け、前記注水井を、前記掘削領域を通って前記深層部に達し、注水口が前記深層部において前記揚水口よりも深層側に位置するように設けることを特徴とする。 In order to solve the above problems, a condensate construction method according to the present invention includes a pumping well and a water injection well in an underground region, and a part of groundwater pumped from the underground region through the pumping well is used as the water injection well. Through the underground region, and the rest is sent to a predetermined discharge destination, the underground region comprising an excavation region and a deep layer located below the excavation region, There is no layer, the longitudinal hydraulic conductivity is smaller than the lateral hydraulic conductivity, the pumping well is provided to reach the deep layer through the excavation region, and the pumping port is located in the deep layer , the water injection well, through the excavation area reaches the deep portion, injection port and said Rukoto provided so as to be positioned in the deep side of the pumping port in the deep portion.

上記復水工法において、前記地中領域は、横方向へ広がる粘土シームが混在した透水層であってもよい。 In the condensate method , the underground region may be a water permeable layer in which clay seams spreading in the lateral direction are mixed.

また、上記課題を解決するために、本発明に係る復水システムは、地中領域に設けられた揚水井及び注水井と、前記揚水井を通じて前記地中領域から揚水された地下水の一部を、前記注水井を通じて前記地中領域へ戻す注水管、及び、その残りを所定の放流先へ送る排水管とを備える復水システムであって、前記地中領域は、掘削領域と、該掘削領域の下に位置する深層部とからなり、不透水層が存在せず、縦方向の透水係数が横方向の透水係数よりも小さく、前記揚水井は、前記掘削領域を通って前記深層部に達し、揚水口が前記深層部に位置するように設けられ、前記注水井は、前記掘削領域を通って前記深層部に達し、注水口が前記深層部において前記揚水口よりも深層側に位置するように設けられていることを特徴とする。
In order to solve the above problems, a condensate system according to the present invention includes a pumping well and a water injection well provided in an underground region, and a part of groundwater pumped from the underground region through the pumping well. A condensate system comprising a water injection pipe that returns to the underground area through the water injection well, and a drain pipe that sends the remainder to a predetermined discharge destination, wherein the underground area includes an excavation area and the excavation area A deep water layer located below, there is no impermeable layer, the longitudinal hydraulic conductivity is smaller than the lateral hydraulic conductivity, and the pumping well reaches the deep layer through the excavation area. The water injection well is provided so as to be located in the deep layer portion, the water injection well reaches the deep layer portion through the excavation region, and the water injection port is located in the deep layer portion on the deeper side than the water discharge port. provided to said Rukoto.

本発明によれば、難透水層が存在しない地中領域に対して地下水位低下工法を実施するに際して、揚水した地下水の処理費用を抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, when implementing a groundwater level fall construction method with respect to the underground area | region where a poorly permeable layer does not exist, the processing cost of the pumped-up groundwater can be held down.

一実施形態に係る復水システムの概略を示す断面図である。It is sectional drawing which shows the outline of the condensate system which concerns on one Embodiment. 排水分配部の概略構成を示す図である。It is a figure which shows schematic structure of a waste_water | drain distribution part. 揚水量と注水量と放水量との関係を説明するための図である。It is a figure for demonstrating the relationship between the amount of pumped water, the amount of water injection, and the amount of water discharge. 他の実施形態に係る復水システムの概略を示す断面図である。It is sectional drawing which shows the outline of the condensate system which concerns on other embodiment.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態に係る復水システム10の概略を示す断面図である。この図に示すように、本実施形態に係る復水システム10は、掘削する領域(以下、掘削領域2という)とその深層部の地下水位(図中にWLで示す)を低下させる復水工法を実施するためのシステムである。ここで、掘削領域2とその深層部とこれらの周辺とを含む領域(以下、対象領域という)1と、その周辺の領域とは、粘土層等の難透水層(透水係数が1×10−5〜1×10−7cm/s以下の水が浸透し難い層)が存在しない、砂層等の透水層のみで構成された透水性地盤となっている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an outline of a condensate system 10 according to an embodiment of the present invention. As shown in this figure, the condensate system 10 according to the present embodiment is a condensate method for lowering the area to be excavated (hereinafter referred to as excavation area 2) and the underground water level (indicated by WL in the figure) of the deep layer. It is a system for carrying out. Here, the region which includes the excavation area 2 and the deep portion and these peripheral (hereinafter, the target that region) and 1, and its peripheral region, aquiclude clay layer or the like (hydraulic conductivity is 1 × 10 - 5 to 1 × 10 −7 cm / s or less of water is not easily permeated), and is a water-permeable ground composed only of a water-permeable layer such as a sand layer.

復水システム10は、地下水を揚水するための揚水井(深井戸)20と、揚水井20により揚水された地下水を地中に戻すための注水井30と、揚水された地下水を注水井30と放流先の下水道とに分配する排水分配部40とを備えている。揚水井20と注水井30とは、対象領域1に設けられており、根切り底面3よりも深層側まで削孔されている。ここで、注水井30は、揚水井20よりも深層側まで削孔されており、注水井30の底部の注水口30Aは、揚水井20の底部の揚水口20Aよりも深層側に位置している。   The condensate system 10 includes a pumping well (deep well) 20 for pumping groundwater, a water injection well 30 for returning the groundwater pumped by the pumping well 20 to the ground, and a water injection well 30 for pumping the groundwater. A drainage distribution unit 40 that distributes to the sewerage at the discharge destination is provided. The pumping well 20 and the water injection well 30 are provided in the target region 1 and are drilled to the deeper side than the root cutting bottom surface 3. Here, the water injection well 30 is drilled to the deeper side than the pumping well 20, and the water injection port 30 </ b> A at the bottom of the water injection well 30 is located on the deeper side than the water injection port 20 </ b> A at the bottom of the pumping well 20. Yes.

揚水井20は、ディープウェル工法(重力排水工法)により地下水を揚水するための深井戸であり、その底部には水中ポンプ22が設置され、井戸内には下端にストレーナ24Aを有する揚水管24が挿入されている。また、揚水管24と穿孔壁との間にはフィルター材が充填されている。このような揚水井20では、フィルター材を透過して揚水井20のストレーナ部24A内に流入した地下水が、水中ポンプ22の作用により、揚水管24を通って揚水される。即ち、揚水井20の底部に形成された揚水口20Aから、地下水が揚水される。   The pumping well 20 is a deep well for pumping up groundwater by a deep well method (gravity drainage method). A submersible pump 22 is installed at the bottom of the pumping well 20, and a pumping pipe 24 having a strainer 24A at the lower end is provided in the well. Has been inserted. Further, a filter material is filled between the pumping pipe 24 and the perforated wall. In such a pumping well 20, groundwater that has passed through the filter material and has flowed into the strainer portion 24 </ b> A of the pumping well 20 is pumped through the pumping pipe 24 by the action of the submersible pump 22. That is, groundwater is pumped from a pumping port 20 </ b> A formed at the bottom of the pumping well 20.

注水井30内には、下端にストレーナ部34Aを有する注水管34が挿入されている。また、注水管34のストレーナ部34Aと穿孔壁との間にはフィルター材が充填され、フィルター材の上側にはシール材が充填されている。このような注水井30では、注水管34に送られた地下水が、ストレーナ部34Aからフィルター材を透過して地中に注入される。即ち、注水井30の底部に形成された注水口30Aから、揚水した地下水が、注水される。   A water injection pipe 34 having a strainer portion 34 </ b> A at the lower end is inserted into the water injection well 30. Further, a filter material is filled between the strainer portion 34A of the water injection pipe 34 and the perforated wall, and a sealing material is filled above the filter material. In such a water injection well 30, groundwater sent to the water injection pipe 34 passes through the filter material from the strainer portion 34A and is injected into the ground. That is, the pumped-up groundwater is poured from the water injection port 30 </ b> A formed at the bottom of the water injection well 30.

図2は、排水分配部40の概略構成を示す図である。この図に示すように、排水分配部40は、ノチタンク42と、送水管44A、44Bと、排水管46とを備えている。ノチタンク42は地上に設置されている。また、送水管44Aは、上流端は揚水管24に接続され、下流端はノチタンク42の上部に配されており、揚水管24で揚水された地下水を、ノチタンク42に供給する。また、送水管44Bは、上流端はノチタンク42の底部に接続され、下流端は注水管34に接続されており、ノチタンク42に溜まった地下水を、注水管34に供給する。また、排水管46は、上流端はノチタンク42の上部に接続され、下流端は下水道等の放流先に接続されており、ノチタンク42の水位が排水管46の位置まで上昇した場合に、ノチタンク42内の地下水を放流先に排出する。なお、排水管46の設置高さは、揚水量と柱水量との収支に合わせて適宜設定すればよい。   FIG. 2 is a diagram illustrating a schematic configuration of the drainage distributor 40. As shown in this figure, the drainage distribution section 40 includes a titanium 42, water supply pipes 44 </ b> A and 44 </ b> B, and a drainage pipe 46. Nota titanium 42 is installed on the ground. The upstream end of the water supply pipe 44 </ b> A is connected to the pumping pipe 24, and the downstream end is arranged on the upper part of the notch tank 42. The groundwater pumped by the pumping pipe 24 is supplied to the nototik 42. The water supply pipe 44 </ b> B has an upstream end connected to the bottom portion of the notched titanium 42 and a downstream end connected to the water filling pipe 34, and supplies groundwater accumulated in the notched titanium 42 to the water filling pipe 34. Further, the drain pipe 46 has an upstream end connected to the upper part of the notch 42 and a downstream end connected to a discharge destination such as a sewer. When the water level of the notch 42 rises to the position of the drain pipe 46, the notch 42 The groundwater inside is discharged to the discharge destination. In addition, what is necessary is just to set suitably the installation height of the drain pipe 46 according to the balance of the amount of pumped water and the amount of column water.

図3は、揚水量と注水量と放水量との関係を説明するための図である。この図において矢印の太さで水量を示すように、注水量(図中矢印A)は、揚水量(図中矢印B)及び放水量(図中矢印C)と比して少ない。例えば、揚水された地下水の80〜90%程度が放水されるのに対し、注水されるのは揚水された地下水の10〜20%程度である。なお、揚水量と放水量との比率は、地盤の透水係数や地下水流量等に応じて適宜設定すればよい。   FIG. 3 is a diagram for explaining the relationship among the pumped water amount, the injected water amount, and the discharged water amount. In this figure, the amount of water injected (arrow A in the figure) is smaller than the amount of pumped water (arrow B in the figure) and the amount of water discharged (arrow C in the figure) as indicated by the thickness of the arrow. For example, about 80 to 90% of the pumped ground water is discharged, while about 10 to 20% of the pumped ground water is poured. In addition, what is necessary is just to set suitably the ratio of the amount of pumped water and the amount of discharged water according to the permeability coefficient of ground, a groundwater flow rate, etc.

ここで、上述したように、対象領域1の地盤は、砂層等の透水層のみからなる透水性地盤であり、揚水井20の揚水口20Aと注水井30の注水口30Aとの間に粘土層等の難透水層は存在しない。即ち、注水井30の注水口30Aと揚水井20の揚水口20Aとの間に、注水口30Aから揚水口20Aまでの水の浸透を遮る層が存在しない。このため、注水口30Aから地中に戻された地下水が、揚水口20Aの周辺まで浸透して再び揚水される(即ち、地下水が揚水井20と注水井30とを通じて循環される)だけで、地下水位は低下されないとも考えられる。   Here, as described above, the ground of the target region 1 is a water permeable ground including only a water permeable layer such as a sand layer, and a clay layer is provided between the water inlet 20A of the water well 20 and the water inlet 30A of the water well 30. There is no poorly permeable layer. That is, there is no layer that blocks the penetration of water from the water injection port 30A to the water pumping port 20A between the water injection port 30A of the water injection well 30 and the water pumping port 20A of the water pumping well 20. For this reason, the groundwater returned to the ground from the water inlet 30A penetrates to the periphery of the water pump 20A and is pumped again (that is, the groundwater is circulated through the water well 20 and the water well 30). It is considered that the groundwater level is not lowered.

しかし、図中に拡大して示すように、砂層等の透水層では、横方向へ広がる粘土シーム4が混在しており、上方向についての透水経路は、横方向についての透水経路と比して、狭く、また蛇行することで長くなる。これにより、上方向についての透水係数が横方向についての透水係数よりも小さくなる。このため、図中に破線矢印D、Eの長さで示すように、注水口30Aから上方への水の浸透流速は、注水口30Aから側方への浸透流速と比して格段に遅くなることから(例えば、1/10倍)、注水口30Aから地中に戻された水が、揚水口20Aまで浸透するのには時間がかかる。そして、注水口30Aから地中に戻された水が揚水口20Aまで浸透するまでの間、揚水井20による揚水は進行している。   However, as shown in the enlarged view in the figure, in the water permeable layer such as the sand layer, the clay seam 4 spreading in the lateral direction is mixed, and the water permeable route in the upward direction is compared with the water permeable route in the horizontal direction. Narrow, and longer by meandering. Thereby, the hydraulic conductivity in the upward direction is smaller than the hydraulic conductivity in the lateral direction. For this reason, as shown by the lengths of broken arrows D and E in the figure, the permeation flow rate of water upward from the water injection port 30A is significantly slower than the permeation flow rate from the water injection port 30A to the side. Therefore (for example, 1/10 times), it takes time for the water returned from the water injection port 30A to penetrate into the pumping port 20A. And the pumping by the pumping well 20 is advancing until the water returned to the ground from the water injection port 30A penetrates to the pumping port 20A.

これによって、地下水が揚水井20と注水井30とを通じて循環しないようにしたうえで、揚水と注水とを並行させることができるため、地下水位を低下させながら、揚水した地下水の一部を地中に戻すことができる。従って、難透水層が存在しない対象領域1に対して地下水位低下工法を実施するに際して、地下水の放流量を減らすことができ、ろ過処理費や放流料金(下水道料金)等の揚水した地下水の処理費用を抑えることができる。   This prevents the groundwater from circulating through the pumping well 20 and the water injection well 30, and allows the water pumping and water injection to run in parallel, so that a part of the pumped groundwater is submerged while lowering the groundwater level. Can be returned to. Therefore, when the groundwater level lowering method is implemented for the target area 1 where there is no difficult-to-permeate layer, the groundwater discharge rate can be reduced, and the treated groundwater treatment such as filtration and discharge charges (sewerage charges) can be reduced. Costs can be reduced.

ここで、揚水井20と注水井30との距離が延びるほど、注水口30Aから揚水口20Aまで水が浸透する時間は長くなり、地下水が揚水井20と注水井30とを通じて循環され難くなる。しかし、対象領域1の周辺領域に注水井30を設けることができず、揚水井20と注水井30との双方を対象領域1に設けなければならない等、揚水井20と注水井30との距離を延ばすのに制限がある場合がある。   Here, as the distance between the pumping well 20 and the water injection well 30 increases, the time for water to penetrate from the water injection port 30A to the water pumping port 20A becomes longer, and the groundwater becomes difficult to circulate through the water pumping well 20 and the water injection well 30. However, the distance between the pumping well 20 and the water injection well 30 such that the water injection well 30 cannot be provided in the peripheral region of the target region 1 and both the pumping well 20 and the water injection well 30 must be provided in the target region 1. There may be restrictions on extending the length.

このような場合であっても、本実施形態に係る復水工法及び復水システム10によれば、地下水が揚水井20と注水井30とを通じて循環しないようにしたうえで、揚水と注水とを並行させることができ、以って、地下水位を低下させながら、揚水した地下水の一部を地中に戻すことができる。   Even in such a case, according to the condensate method and the condensate system 10 according to the present embodiment, the groundwater is not circulated through the pumping well 20 and the water injection well 30, and the pumping and water injection are performed. Therefore, a part of the pumped-up groundwater can be returned to the ground while lowering the groundwater level.

図4は、他の実施形態に係る復水システム100の概略を示す断面図である。この図に示すように、本実施形態に係る復水システム100は、掘削領域2とその深層部の地下水位(図中にWLで示す)を低下させる復水工法を実施するためのシステムである。ここで、対象領域101と、その周辺の領域とは、粘土層等の難透水層が存在しない、砂層等の透水層のみで構成された透水性地盤となっている。また、図中破線で示すように、掘削領域2を挟んで図中左右に対向する一方側(図中右側)と他方側(図中左側)とでは、地下水位が異なり、一方側の地下水位が他方側の地下水位よりも高くなっている。このため、対象領域1では、地下水が掘削領域2の一方側から他方側へ流れており、掘削領域2の一方側が地下水流の上流側に相当し、掘削領域2の他方側が地下水流の下流側に相当する。   FIG. 4 is a cross-sectional view showing an outline of a condensate system 100 according to another embodiment. As shown in this figure, the condensate system 100 according to the present embodiment is a system for implementing a condensate method for lowering the groundwater level (indicated by WL in the figure) of the excavation region 2 and its deep layer. . Here, the target region 101 and the surrounding region are permeable ground composed only of a water permeable layer such as a sand layer without a hard water permeable layer such as a clay layer. Moreover, as shown by the broken line in the figure, the groundwater level is different between the one side (right side in the figure) and the other side (left side in the figure) facing the left and right in the figure across the excavation region 2, and the groundwater level on one side Is higher than the groundwater level on the other side. For this reason, in the target region 1, groundwater flows from one side of the excavation region 2 to the other side, one side of the excavation region 2 corresponds to the upstream side of the groundwater flow, and the other side of the excavation region 2 is the downstream side of the groundwater flow It corresponds to.

復水システム100は、掘削領域2に削孔された揚水井20と、掘削領域2の他方側、即ち、地下水流の下流側に掘削された注水井30と、揚水された地下水を注水井30と放流先の下水道とに分配する排水分配部40とを備えている。また、掘削領域2の周囲には遮水性のある山留壁102が構築されている。   The condensate system 100 includes a pumping well 20 drilled in the excavation area 2, a water injection well 30 excavated on the other side of the excavation area 2, that is, a downstream side of the groundwater flow, and a water injection well 30. And a drainage distribution unit 40 that distributes the wastewater to sewerage. In addition, a mountain retaining wall 102 having a water shielding property is constructed around the excavation region 2.

本実施形態においても、注水量は、揚水量及び放水量と比して少ない。例えば、揚水された地下水の80〜90%程度が放水されるのに対し、注水されるのは揚水された地下水の10〜20%程度である。なお、揚水量と放水量との比率は、地下水流量や地盤の透水係数等に応じて適宜設定すればよい。   Also in this embodiment, the amount of water injection is smaller than the amount of pumped water and the amount of water discharged. For example, about 80 to 90% of the pumped ground water is discharged, while about 10 to 20% of the pumped ground water is poured. In addition, what is necessary is just to set suitably the ratio of the amount of pumped water and the amount of discharged water according to a groundwater flow rate, the ground hydraulic conductivity, etc.

ここで、上述したように、対象領域101の地盤は、砂層等の透水層のみからなる透水性地盤であり、揚水井20の揚水口20Aと注水井30の注水口30Aとの間に粘土層等の難透水層は存在しない。このため、地下水が揚水井20と注水井30とを通じて循環されるだけで、地下水位は低下されないとも考えられる。   Here, as described above, the ground of the target region 101 is a water permeable ground including only a water permeable layer such as a sand layer, and a clay layer is formed between the water inlet 20A of the water well 20 and the water inlet 30A of the water well 30. There is no poorly permeable layer. For this reason, it is considered that the groundwater level is not lowered only by circulating the groundwater through the pumping well 20 and the water injection well 30.

しかし、対象領域101では、地下水が揚水井20側から注水井30側へ流れており、注水井30側から揚水井20側への地下水の浸透流速は、揚水井20側から注水井30側への浸透流速と比して格段に遅くなることから、注水口30Aから地中に戻された水が揚水口20Aまで浸透するまでの間、揚水井20による揚水は進行している。   However, in the target region 101, groundwater flows from the pumping well 20 side to the water injection well 30 side, and the infiltration flow rate of the groundwater from the water injection well 30 side to the water pumping well 20 side is from the pumping well 20 side to the water injection well 30 side. Therefore, the pumping by the pumping well 20 is proceeding until the water returned from the water injection port 30A to the ground reaches the pumping port 20A.

これによって、地下水が揚水井20と注水井30とを通じて循環しないようにしたうえで、揚水と注水とを並行させることができるため、地下水位を低下させながら、揚水した地下水の一部を地中に戻すことができる。従って、難透水層が存在しない対象領域101に対して地下水位低下工法を実施するに際して、地下水の放流量を減らすことができ、ろ過処理費や放流料金(下水道料金)等の揚水した地下水の処理費用を抑えることができる。   This prevents the groundwater from circulating through the pumping well 20 and the water injection well 30, and allows the water pumping and water injection to run in parallel, so that a part of the pumped groundwater is submerged while lowering the groundwater level. Can be returned to. Therefore, when the groundwater level lowering method is implemented for the target area 101 where there is no difficult-to-permeate layer, the groundwater discharge rate can be reduced, and the treated groundwater treatment such as filtration costs and discharge charges (sewerage charges) can be reduced. Costs can be reduced.

ここで、揚水井20と注水井30との距離が延びるほど、注水口30Aから揚水口20Aまで水が浸透する時間は長くなり、地下水が揚水井20と注水井30とを通じて循環され難くなる。しかし、対象領域101の周辺領域に注水井30を設けることができず、揚水井20と注水井30との双方を対象領域101に設けなければならない等、揚水井20と注水井30との距離を延ばすのに制限がある場合がある。   Here, as the distance between the pumping well 20 and the water injection well 30 increases, the time for water to penetrate from the water injection port 30A to the water pumping port 20A becomes longer, and the groundwater becomes difficult to circulate through the water pumping well 20 and the water injection well 30. However, the distance between the pumping well 20 and the water injection well 30 such that the water injection well 30 cannot be provided in the peripheral region of the target region 101 and both the pumping well 20 and the water injection well 30 must be provided in the target region 101. There may be restrictions on extending the length.

このような場合であっても、本実施形態に係る復水工法及び復水システム100によれば、地下水が揚水井20と注水井30とを通じて循環しないようにしたうえで、揚水と注水とを並行させることができ、以って、地下水位を低下させながら、揚水した地下水の一部を地中に戻すことができる。   Even in such a case, according to the condensate method and the condensate system 100 according to the present embodiment, the groundwater is not circulated through the pumping well 20 and the water injection well 30, and the pumping and water injection are performed. Therefore, a part of the pumped-up groundwater can be returned to the ground while lowering the groundwater level.

以上、上記の各実施形態では、地下水位低下工法としてディープウェル工法(重力排水工法)を用いた例を挙げて本発明を説明したが、地下水位低下工法としては、ウェルポイント工法(強制排水工法)等の他の工法を用いてもよい。また、上記の実施形態では、注水井30を対象領域1、101に設けたが、対象領域1、101の周辺に設けてもよい。   As described above, in each of the above embodiments, the present invention has been described by using the deep well method (gravity drainage method) as the groundwater level lowering method. However, as the groundwater level lowering method, the well point method (forced drainage method) is used. Other methods such as) may be used. In the above embodiment, the water injection well 30 is provided in the target areas 1 and 101, but may be provided in the periphery of the target areas 1 and 101.

1 対象領域(地中領域)、2 掘削領域、3 根切り底面、4 粘土シーム、10 復水システム、20 揚水井、20A 揚水口、22 水中ポンプ、24 揚水管、30 注水井、30A 注水口、34 注水管、40 排水分配部、42 ノチタンク(貯留槽)、44A 送水管、44B 送水管(第1の送水管)、46 排水管(第2の送水管)、100 復水システム、101 対象領域(地中領域)、102 山留壁 1 target area (underground area), 2 excavation area, 3 root cutting bottom, 4 clay seam, 10 condensate system, 20 pumping well, 20A pumping port, 22 submersible pump, 24 pumping pipe, 30 pumping well, 30A pumping port , 34 Water injection pipe, 40 Drainage distribution section, 42 Notakku (storage tank), 44A Water supply pipe, 44B Water supply pipe (first water supply pipe), 46 Drainage pipe (second water supply pipe), 100 Condensate system, 101 Target Area (underground area), 102 Yamadome wall

Claims (3)

揚水井と注水井とを地中領域に設け、前記揚水井を通じて前記地中領域から揚水した地下水の一部を、前記注水井を通じて前記地中領域へ戻し、その残りを所定の放流先へ送る復水工法であって、
前記地中領域は、掘削領域と、該掘削領域の下に位置する深層部とからなり、不透水層が存在せず、縦方向の透水係数が横方向の透水係数よりも小さく、
前記揚水井を、前記掘削領域を通って前記深層部に達し、揚水口が前記深層部に位置するように設け、
前記注水井を、前記掘削領域を通って前記深層部に達し、注水口が前記深層部において前記揚水口よりも深層側に位置するように設けることを特徴とする復水工法。
A pumping well and a water injection well are provided in the underground area, a part of groundwater pumped from the underground area through the pumping well is returned to the underground area through the water injection well, and the rest is sent to a predetermined discharge destination. Condensation method,
The underground region is composed of an excavation region and a deep layer located below the excavation region, there is no impermeable layer, and the longitudinal hydraulic conductivity is smaller than the lateral hydraulic conductivity,
The pumping well is provided so as to reach the deep layer through the excavation region, and the pumping port is located in the deep layer,
The water injection wells, through the excavation area reaches the deep portion, condensate method of water injection port and said Rukoto provided so as to be positioned in the deep side of the pumping port in the deep portion.
前記地中領域は、横方向へ広がる粘土シームが混在した透水層である請求項1に記載の復水工法。   The condensate construction method according to claim 1, wherein the underground region is a water permeable layer in which clay seams spreading in a lateral direction are mixed. 地中領域に設けられた揚水井及び注水井と、前記揚水井を通じて前記地中領域から揚水された地下水の一部を、前記注水井を通じて前記地中領域へ戻す注水管、及び、その残りを所定の放流先へ送る排水管とを備える復水システムであって、
前記地中領域は、掘削領域と、該掘削領域の下に位置する深層部とからなり、不透水層が存在せず、縦方向の透水係数が横方向の透水係数よりも小さく、
前記揚水井は、前記掘削領域を通って前記深層部に達し、揚水口が前記深層部に位置するように設けられ、
前記注水井は、前記掘削領域を通って前記深層部に達し、注水口が前記深層部において前記揚水口よりも深層側に位置するように設けられていることを特徴とする復水システム。
A pumping well and a water injection well provided in the underground area, a water injection pipe for returning a part of groundwater pumped from the underground area through the pumping well to the underground area through the water injection well, and the rest A condensate system comprising a drain pipe to be sent to a predetermined discharge destination,
The underground region is composed of an excavation region and a deep layer located below the excavation region, there is no impermeable layer, and the longitudinal hydraulic conductivity is smaller than the lateral hydraulic conductivity,
The pumping well reaches the deep layer through the excavation area, and is provided so that the pumping port is located in the deep layer,
Condensate systems wherein the water injection well is through the excavation area reaches the deep portion, injection port, wherein that you have provided so as to be positioned in the deep layer side than the pumping port in the deep portion.
JP2010238781A 2010-10-25 2010-10-25 Condensation method and condensate system Active JP5659693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238781A JP5659693B2 (en) 2010-10-25 2010-10-25 Condensation method and condensate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238781A JP5659693B2 (en) 2010-10-25 2010-10-25 Condensation method and condensate system

Publications (2)

Publication Number Publication Date
JP2012092514A JP2012092514A (en) 2012-05-17
JP5659693B2 true JP5659693B2 (en) 2015-01-28

Family

ID=46386159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238781A Active JP5659693B2 (en) 2010-10-25 2010-10-25 Condensation method and condensate system

Country Status (1)

Country Link
JP (1) JP5659693B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043165B2 (en) * 2012-11-19 2016-12-14 鹿島建設株式会社 Groundwater level rise system, groundwater level rise method
CN103290829B (en) * 2013-05-13 2015-03-25 秦作栋 Method for improving groundwater recharging efficiency by utilizing fluctuating waterflow
CN109707007A (en) * 2019-01-14 2019-05-03 济南大学 It is a kind of to seep anti-filter recharge system certainly applied to river
CN113216325A (en) * 2021-06-01 2021-08-06 中铁四局集团有限公司 Water replenishing and anti-settling method for peripheral stratum of underground station

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140733B2 (en) * 2004-08-12 2008-08-27 東日本旅客鉄道株式会社 Recharge method, water injection control method and water injection control system

Also Published As

Publication number Publication date
JP2012092514A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US8074670B2 (en) Maintaining dynamic water storage in underground porosity reservoirs
JP5731127B2 (en) Geothermal utilization system
JP5291927B2 (en) Fresh water storage and intake system
JP5659693B2 (en) Condensation method and condensate system
JP5430783B2 (en) Fresh water storage system
JP5628014B2 (en) Impermeable wall structure
US11987971B2 (en) Systems and methods for underground storage of storm and other water sources
JP5070694B2 (en) Containment method for contaminated soil and groundwater
KR101127810B1 (en) Method and structure for getting underground water
CN203924210U (en) A kind of pumped well device of sand control
JP4909721B2 (en) Rainwater storage and penetration facility
JPH1113039A (en) Water storage device for river
JP4532337B2 (en) Propile pile sheet pile method capable of treating underground water
JP5929089B2 (en) Liquefaction countermeasure structure and liquefaction countermeasure construction method
JP4471115B2 (en) Groundwater intake facility
CN103726567A (en) Device for draining rain water by utilizing soil layer or rock stratum
JP6184252B2 (en) Water use and flood control system and manufacturing method thereof
JP2002256538A (en) Method and device for returning underground water again underground by pumping up underground water
JP2009097151A (en) Permeable structure
KR101347866B1 (en) Construction method for accelerating inundated type radial collecting well
JP3819902B2 (en) How to reach the shield machine
RU2576121C1 (en) Method of drying closed terrain depressions
JP6306497B2 (en) Well water dissolved oxygen removal system and dissolved oxygen removal method
KR101346632B1 (en) Construction of living organism habitats using porous system and river - front space
JP2013249650A (en) Intake or drainage method utilizing liquefaction countermeasure drain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150