JP5657069B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5657069B2
JP5657069B2 JP2013147447A JP2013147447A JP5657069B2 JP 5657069 B2 JP5657069 B2 JP 5657069B2 JP 2013147447 A JP2013147447 A JP 2013147447A JP 2013147447 A JP2013147447 A JP 2013147447A JP 5657069 B2 JP5657069 B2 JP 5657069B2
Authority
JP
Japan
Prior art keywords
film
insulating film
region
conductive
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013147447A
Other languages
English (en)
Other versions
JP2013243383A (ja
Inventor
岡崎 豊
豊 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2013147447A priority Critical patent/JP5657069B2/ja
Publication of JP2013243383A publication Critical patent/JP2013243383A/ja
Application granted granted Critical
Publication of JP5657069B2 publication Critical patent/JP5657069B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、デュアルゲート薄膜トランジスタを有する半導体装置及びその作製方法に関
する。特には、下部ゲート電極に影響を受けることなく半導体膜を結晶化できる半導体装
置及びその作製方法に関する。
図14は、従来のデュアルゲートTFT(Thin-Film Transistor)を示す断面図である

このデュアルゲートTFTは、基板本体10A、下部ゲート電極33、下部ゲート絶縁
膜34、半導体膜35、第1及び第2絶縁層36a、36bからなる上部ゲート絶縁膜3
6、上部ゲート電極37及び層間絶縁膜38を有し、半導体膜35は、チャネル領域35
a、低濃度ソース領域35bと高濃度ソース領域35dからなるソース領域35x、低濃
度ドレイン領域35cと高濃度ドレイン領域35eからなるドレイン領域35yを備えて
いる。上部ゲート絶縁膜36及び層間絶縁膜38にはコンタクトホール13,14が設け
られており、このコンタクトホール13,14を介してデータ線6a及びソース線6bそ
れぞれが半導体膜35の高濃度ソース領域35d及び高濃度ドレイン領域35eに電気的
に接続されている。
このデュアルゲートTFTの半導体膜35の形成方法について図15を参照しつつ説明
する。図15(a)、(b)は、図14に示すデュアルゲートTFTの半導体膜の形成方
法を説明する断面図である。
図15(a)に示すように、表面を超音波洗浄等により清浄化したガラス基板等からな
る透光性を有する基板本体10Aを用意し、この基板本体10A全面に、スパッタリング
法等によりアルミニウム、タンタル、モリブデン、チタン、クロム等の金属、またはこれ
らの金属のいずれかを主成分とする合金等からなる遮光性を有する10〜500nmの厚
みの導電膜72を形成し、その後、この導電膜72をフォトリソグラフィ法によりパター
ニングすることにより、基板本体10Aの上には遮光性を有する下部ゲート電極33が形
成される。
次いで、この下部ゲート電極33を含む基板本体10A上に、プラズマCVD法等によ
り、酸化珪素(SiO)、窒化珪素(Si)等からなる10〜50nmの厚みの
下部ゲート絶縁膜34を成膜する。
次いで、図15(b)に示すように、下部ゲート絶縁膜34上に、プラズマCVD法等
により、非晶質シリコン(a−Si)からなる10〜100nmの厚みの非晶質半導体膜
73を成膜する。次いで、この非晶質半導体膜73にレーザー光を照射する等して加熱す
ることにより多結晶化し、多結晶シリコンからなる多結晶半導体膜24とする。次いで、
フォトリソグラフィ法により多結晶半導体膜24をパターニングし、島状の半導体膜35
とする(例えば特許文献1参照)。
特開2005-79283号公報(第46段落〜第51段落、図5、図6)
ところで、上記従来のデュアルゲートTFTでは、非晶質半導体膜73にレーザー光を
照射した際、下部ゲート電極33が熱を吸収することにより、非晶質半導体膜73が均一
に結晶化されない可能性がある。これを回避する方法としては下部ゲート絶縁膜34を厚
くすることが考えられる。しかし、下部ゲート絶縁膜34を厚くすると下部ゲート電極3
3に印加する電圧を大きくしなければデュアルゲートTFTが動作しなくなり、消費電力
が増加してしまう。
また、上記従来のデュアルゲートTFTでは、下部ゲート電極33の両端の上方に位置
する非晶質半導体膜73に段差が生じてしまう。このように段差のある非晶質半導体膜7
3を結晶化するために熱を加えたりレーザー光を照射すると、非晶質半導体膜が膜ストリ
ップを起こし易くなる。また、非晶質半導体膜を結晶化するために熱を加えたりレーザー
光を照射すると、溶融して液状化された非晶質半導体膜が段差により矢印のように下部ゲ
ート電極の脇へ流れ込み、多結晶半導体膜24が不均一な形状になることが危惧される。
本発明は上記のような事情を考慮してなされたものであり、その目的は、下部ゲート電
極に影響を受けることなく半導体膜を結晶化できる半導体装置及びその作製方法を提供す
ることにある。
上記課題を解決するため、本発明に係る半導体装置の作製方法は、基板上に剥離層を形
成し、
前記剥離層上に絶縁膜を形成し、
前記絶縁膜上に下部ゲート絶縁膜を形成し、
前記下部ゲート絶縁膜上に非晶質半導体膜を形成し、
前記非晶質半導体膜を結晶化することにより前記下部ゲート絶縁膜上に結晶質半導体膜
を形成し、
前記結晶質半導体膜上に上部ゲート絶縁膜を形成し、
前記上部ゲート絶縁膜上に上部ゲート電極を形成し、
前記剥離層を前記絶縁膜から剥離し、
前記絶縁膜を加工することにより前記下部ゲート絶縁膜を露出させ、
前記露出した下部ゲート絶縁膜に接する下部ゲート電極を形成することを特徴とする。
上記半導体装置の作製方法によれば、基板上に剥離層を形成し、その上に下部ゲート絶
縁膜を形成し、この下部ゲート絶縁膜上に非晶質半導体膜を形成し、この非晶質半導体膜
を結晶化した後に、絶縁膜から剥離層を剥離し、下部ゲート絶縁膜に接する下部ゲート電
極を形成している。このため、非晶質半導体膜の下に下部ゲート電極が存在しない状態で
非晶質半導体膜を結晶化することができる。従って、下部ゲート電極に影響を受けること
なく半導体膜を結晶化することができる。
また、本発明に係る半導体装置の作製方法において、前記結晶質半導体膜はチャネル形
成領域を有しており、前記下部ゲート電極が前記下部ゲート絶縁膜に接する領域は、前記
チャネル形成領域に対応する領域の内側に位置していることも可能である。
また、本発明に係る半導体装置の作製方法において、前記結晶質半導体膜は、チャネル
形成領域及び該チャネル形成領域の外側に形成された低濃度不純物領域を有しており、前
記下部ゲート電極が前記下部ゲート絶縁膜に接する領域は、前記チャネル形成領域と前記
低濃度不純物領域とに対応する領域の内側に位置していることも可能である。
本発明に係る半導体装置の作製方法は、基板上に剥離層を形成し、
前記剥離層上に絶縁膜を形成し、
前記絶縁膜上に非晶質半導体膜を形成し、
前記非晶質半導体膜を結晶化することにより前記絶縁膜上に結晶質半導体膜を形成し、
前記結晶質半導体膜上に上部ゲート絶縁膜を形成し、
前記上部ゲート絶縁膜上に上部ゲート電極を形成し、
前記剥離層を前記絶縁膜から剥離し、
前記絶縁膜に開口部を形成することにより該開口部によって前記結晶質半導体膜を露出
させ、
前記露出した結晶質半導体膜に接する下部ゲート絶縁膜を形成し、
前記下部ゲート絶縁膜に接する下部ゲート電極を形成することを特徴とする。
また、本発明に係る半導体装置の作製方法において、前記結晶質半導体膜はチャネル形
成領域を有しており、前記開口部によって前記結晶質半導体膜が露出した領域は、前記チ
ャネル形成領域に対応する領域の内側に位置していることも可能である。
また、本発明に係る半導体装置の作製方法において、前記結晶質半導体膜は、チャネル
形成領域及び該チャネル形成領域の外側に形成された低濃度不純物領域を有しており、前
記開口部によって前記結晶質半導体膜が露出した領域は、前記チャネル形成領域と前記低
濃度不純物領域とに対応する領域の内側に位置していることも可能である。
本発明に係る半導体装置の作製方法は、基板上に剥離層を形成し、
前記剥離層上に絶縁膜を形成し、
前記絶縁膜上に非晶質半導体膜を形成し、
前記非晶質半導体膜を結晶化することにより前記絶縁膜上に結晶質半導体膜を形成し、
前記結晶質半導体膜上に上部ゲート絶縁膜を形成し、
前記上部ゲート絶縁膜上に上部ゲート電極を形成し、
前記剥離層を前記絶縁膜から剥離し、
前記絶縁膜を加工することにより前記結晶質半導体膜を露出させ、
前記露出した結晶質半導体膜を加工することにより、前記結晶質半導体膜にその膜厚を
薄くした薄膜領域を形成し、
前記薄膜領域に接する下部ゲート絶縁膜を形成し、
前記下部ゲート絶縁膜に接する下部ゲート電極を形成することを特徴とする。
また、本発明に係る半導体装置の作製方法において、前記結晶質半導体膜はチャネル形
成領域を有しており、前記薄膜領域は、前記チャネル形成領域に対応する領域の内側に位
置していることが好ましい。
本発明に係る半導体装置は、絶縁膜と、
前記絶縁膜上に形成された下部ゲート絶縁膜と、
前記下部ゲート絶縁膜上に形成され、非晶質半導体膜が結晶化された結晶質半導体膜と

前記結晶質半導体膜上に形成された上部ゲート絶縁膜と、
前記上部ゲート絶縁膜上に形成された上部ゲート電極と、
前記絶縁膜に形成され、前記下部ゲート絶縁膜下に位置された開口部と、
前記開口部内に形成され、前記下部ゲート絶縁膜に接して形成された下部ゲート電極と

を具備することを特徴とする。
なお、上記半導体装置において、前記絶縁膜は平面上に形成されていることが好ましく
、この場合の平面は、例えばガラス基板などの表面に相当する程度の平面であることを意
味する。このような半導体装置によれば、平面上に絶縁膜を形成し、この絶縁膜上に下部
ゲート絶縁膜を形成し、この下部ゲート絶縁膜上に形成された非晶質半導体膜を結晶化し
ている。このため、非晶質半導体膜の形状を平面上に形成されたものとすることができ、
それにより、従来技術のように下部ゲート電極に影響を受けることなく半導体膜を結晶化
することができる。
また、絶縁膜が平面上に形成されていることが好ましいことは以下の半導体装置におい
ても同様である。
本発明に係る半導体装置は、絶縁膜と、
前記絶縁膜上に形成され、非晶質半導体膜が結晶化された結晶質半導体膜と、
前記結晶質半導体膜上に形成された上部ゲート絶縁膜と、
前記上部ゲート絶縁膜上に形成された上部ゲート電極と、
前記絶縁膜に形成され、前記結晶質半導体膜下に位置された開口部と、
前記開口部内に形成され、前記結晶質半導体膜に接して形成された下部ゲート絶縁膜と

前記開口部内に形成され、前記下部ゲート絶縁膜に接して形成された下部ゲート電極と

を具備することを特徴とする。
また、本発明に係る半導体装置において、前記結晶質半導体膜はチャネル形成領域を有
しており、前記下部ゲート電極が前記下部ゲート絶縁膜に接する領域は、前記チャネル形
成領域に対応する領域の内側に位置していることも可能である。
また、本発明に係る半導体装置において、前記結晶質半導体膜は、チャネル形成領域及
び該チャネル形成領域の外側に形成された低濃度不純物領域を有しており、前記下部ゲー
ト電極が前記下部ゲート絶縁膜に接する領域は、前記チャネル形成領域と前記低濃度不純
物領域とに対応する領域の内側に位置していることも可能である。
本発明に係る半導体装置は、絶縁膜と、
前記絶縁膜上に形成され、非晶質半導体膜が結晶化された結晶質半導体膜と、
前記結晶質半導体膜上に形成された上部ゲート絶縁膜と、
前記上部ゲート絶縁膜上に形成された上部ゲート電極と、
前記絶縁膜に形成され、前記結晶質半導体膜下に位置された開口部と、
前記開口部に繋げられ、前記結晶質半導体膜内に形成された凹部と、
前記凹部上に形成され、前記結晶質半導体膜の膜厚が薄くされた薄膜領域と、
前記凹部内に形成され、前記薄膜領域に接して形成された下部ゲート絶縁膜と、
前記凹部内及び前記開口部内に形成され、前記下部ゲート絶縁膜に接して形成された下
部ゲート電極と、
を具備することを特徴とする。
また、本発明に係る半導体装置において、前記結晶質半導体膜はチャネル形成領域を有
しており、前記薄膜領域は、前記チャネル形成領域に対応する領域の内側に位置している
ことが好ましい。
以上説明したように本発明によれば、下部ゲート電極に影響を受けることなく半導体膜
を結晶化できる半導体装置及びその作製方法を提供することができる。
(A)〜(E)は、本発明の実施の形態1による半導体装置の作製方法を示す断面図である。 (A)〜(C)は、本発明の実施の形態1による半導体装置の作製方法を示すものであり、図1(E)の次の工程を示す断面図である。 (A),(B)は、本発明の実施の形態1による半導体装置の作製方法を示すものであり、図2(C)の次の工程を示す断面図である。 本発明の実施の形態2による半導体装置の作製方法を説明する断面図である。 (A),(B)は、本発明の実施の形態3による半導体装置の作製方法を説明する断面図である。 (A),(B)は、本発明の実施の形態4による半導体装置の作製方法を説明する断面図である。 (A),(B)は、本発明の実施の形態5による半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の使用形態の一例を示す図である。 本発明の半導体装置の使用形態の一例を示す図である。 本発明の半導体装置の作製方法の一例を示す図である。 本発明の半導体装置の作製方法の一例を示す図である。 本発明の半導体装置の作製方法の一例を示す図である。 本発明の半導体装置の作製方法の一例を示す図である。 従来のデュアルゲートTFTを示す断面図である。 (a)、(b)は、図14に示すデュアルゲートTFTの半導体膜の形成方法を説明する断面図である。
以下、図面を参照して本発明の実施の形態について説明する。但し、本発明は多くの異
なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなく
その形態および詳細を変更し得ることは当業者であれば容易に理解される。従って、本実
施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するた
めの全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰
り返しの説明は省略する。
(実施の形態1)
図1〜図3は、本発明の実施の形態1による半導体装置の作製方法を示す断面図である
まず、基板101上に剥離層102、絶縁膜107、下部ゲート絶縁膜103、半導体
膜104を積層させて形成する(図1(A)参照)。剥離層102、絶縁膜107、下部
ゲート絶縁膜103及び半導体膜104は連続して形成することができる。連続して形成
することにより、大気に曝されないため不純物の混入を防ぐことができる。
基板101は、ガラス基板、石英基板、金属基板やステンレス基板、本工程の処理温度
に耐えうる耐熱性があるプラスチック基板等を用いるとよい。このような基板であれば、
その面積や形状に大きな制限はないため、例えば、1辺が1メートル以上であって、矩形
状のものを用いれば、生産性を格段に向上させることができる。
なお、本工程では、剥離層102を基板101の全面に設けているが、必要に応じて、
基板101の全面に剥離層を設けた後に、選択的にエッチングして剥離層102を選択的
に設けてもよい。また、基板101に接するように剥離層102を形成しているが、必要
に応じて、基板101に接するように酸化珪素(SiOx)膜、酸化窒化珪素(SiOx
Ny)(x>y)膜、窒化珪素(SiNx)膜、窒化酸化珪素(SiNxOy)(x>y
)膜等の絶縁膜を形成し、当該絶縁膜に接するように剥離層102を形成してもよい。
剥離層102は、金属膜や金属膜と金属酸化膜の積層構造等を用いることができる。金
属膜としては、タングステン(W)、モリブデン(Mo)、チタン(Ti)、タンタル(
Ta)、ニオブ(Nb)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)
、亜鉛(Zn)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミ
ウム(Os)、イリジウム(Ir)から選択された元素または前記元素を主成分とする合
金材料若しくは化合物材料からなる膜を単層又は積層して形成する。また、これらの材料
は、スパッタリング法やプラズマCVD法等の各種CVD法等を用いて形成することがで
きる。金属膜と金属酸化膜の積層構造としては、上述した金属膜を形成した後に、酸素雰
囲気化またはNO雰囲気下におけるプラズマ処理、酸素雰囲気下またはNO雰囲気下
における加熱処理を行うことによって、金属膜表面に当該金属膜の酸化物または酸化窒化
物を設けることができる。また、金属膜を形成した後に、オゾン水等の酸化力の強い溶液
で表面を処理することにより、金属膜表面に当該金属膜の酸化物又は酸化窒化物を設ける
ことができる。
絶縁膜107は、スパッタリング法やプラズマCVD法等により、珪素の酸化物または
珪素の窒化物を含む膜を、単層又は積層で形成する。絶縁膜107が2層構造の場合、例
えば、1層目として窒化酸化珪素膜を形成し、2層目として酸化窒化珪素膜を形成すると
よい。絶縁膜107が3層構造の場合、1層目の絶縁膜として酸化珪素膜を形成し、2層
目の絶縁膜として窒化酸化珪素膜を形成し、3層目の絶縁膜として酸化窒化珪素膜を形成
するとよい。または、1層目の絶縁膜として酸化窒化珪素膜を形成し、2層目の絶縁膜と
して窒化酸化珪素膜を形成し、3層目の絶縁膜として酸化窒化珪素膜を形成するとよい。
絶縁膜107は、基板101からの不純物の侵入を防止するブロッキング膜として機能す
る。
半導体膜104は、スパッタリング法、LPCVD法、プラズマCVD法等により、2
5〜200nm(好ましくは30〜150nm)の厚さで形成する。半導体膜104とし
ては、例えば、非晶質珪素膜を形成すればよい。
次に、非晶質半導体膜104にレーザー光を照射して結晶化を行う。なお、レーザー光
の照射と、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属
元素を用いる熱結晶化法とを組み合わせた方法等により非晶質半導体膜104の結晶化を
行ってもよい。その後、得られた結晶質半導体膜を所望の形状にエッチング加工して、結
晶質半導体膜104a、104bを形成し、当該半導体膜104a、104bを覆うよう
に上部ゲート絶縁膜105を形成した後、導電膜106を形成する(図1(B)参照)。
結晶質半導体膜104a、104bの作製工程の一例を以下に簡単に説明すると、まず
、プラズマCVD法を用いて、膜厚50〜60nmの非晶質半導体膜104(例えば、非
晶質珪素膜)を形成する。次に、結晶化を助長する金属元素であるニッケルを含む溶液を
非晶質半導体膜上に保持させた後、非晶質半導体膜に脱水素化の処理(500℃、1時間
)と、熱結晶化の処理(550℃、4時間)を行って結晶質半導体膜を形成する。その後
、レーザー発振器から発振したレーザー光を照射し、フォトリソグラフィ法を用いること
よって結晶質半導体膜104a、104bを形成する。なお、結晶化を助長する金属元素
を用いる熱結晶化を行わずに、レーザー光の照射だけで非晶質半導体膜の結晶化を行って
もよい。
レーザー発振器から発振させるレーザー光としては、連続発振型のレーザー光(CWレ
ーザー光)やパルス発振型のレーザー光(パルスレーザー光)を用いることができる。こ
こで用いることができるレーザー光は、Arレーザー、Krレーザー、エキシマレーザー
などの気体レーザー、単結晶のYAG、YVO、フォルステライト(MgSiO
、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO
、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er
、Tm、Taのうち1種または複数種添加されているものを媒質とするレーザー、ガラス
レーザー、ルビーレーザー、アレキサンドライトレーザー、Ti:サファイアレーザー、
銅蒸気レーザーまたは金蒸気レーザーのうち一種または複数種から発振されるものを用い
ることができる。このようなレーザー光の基本波、及びこれらの基本波の第2高調波から
第4高調波のレーザー光を照射することで、大粒径の結晶を得ることができる。例えば、
Nd:YVOレーザー(基本波1064nm)の第2高調波(532nm)や第3高調
波(355nm)を用いることができる。このときレーザーのパワー密度は0.01〜1
00MW/cm程度(好ましくは0.1〜10MW/cm)が必要である。そして、
走査速度を10〜2000cm/sec程度として照射する。なお、単結晶のYAG、Y
VO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結
晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパン
トとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加
されているものを媒質とするレーザー、Arイオンレーザー、またはTi:サファイアレ
ーザーは、連続発振をさせることが可能であり、Qスイッチ動作やモード同期などを行う
ことによって10MHz以上の発振周波数でパルス発振をさせることも可能である。10
MHz以上の発振周波数でレーザー光を発振させると、半導体膜がレーザーによって溶融
してから固化するまでの間に、次のパルスが半導体膜に照射される。従って、発振周波数
が低いパルスレーザーを用いる場合と異なり、半導体膜中において固液界面を連続的に移
動させることができるため、走査方向に向かって連続的に成長した結晶粒を得ることがで
きる。
導電膜106は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデ
ン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等か
ら選択された元素でなる膜、またはこれらの元素の窒化物でなる膜(代表的には、窒化タ
ンタル、窒化タングステン膜、窒化チタン膜)、または前記元素を組み合わせた合金膜(
代表的にはMo−W合金、Mo−Ta合金)、または前記元素のシリサイド膜(代表的に
はタングステンシリサイド膜、チタンシリサイド膜、ニッケルシリサイド膜)を用いるこ
とができる。また、導電膜106は、複数の導電膜を積層させた構造で設けてもよく、例
えば、膜厚が20nm〜100nmの窒化タンタル膜と、膜厚が100nm〜400nm
のタングステン膜を順に積層させた構造で設けることができる。タングステンや窒化タン
タルは、耐熱性が高いため、導電膜を形成した後に、熱活性化を目的とした加熱処理を行
うことができる。
次に、導電膜106を選択的にエッチングすることにより、半導体膜104a上に上部
ゲート絶縁膜105を介して導電膜106a、半導体膜104b上に上部ゲート絶縁膜1
05を介して導電膜106bを残存させるとともに、半導体膜が形成されていない領域に
おける上部ゲート絶縁膜105上に導電膜106cを残存させる(図1(C)参照)。導
電膜106a、106bは、後に完成するトランジスタにおいて上部ゲート電極として機
能しうる。また、導電膜106cは、配線として機能しうる。
次に、導電膜106a、106bをマスクとして、半導体膜104a、104bに不純
物元素を導入し、半導体膜104a、104bに不純物領域108を形成する(図1(D
)参照)。
導入する不純物元素は、n型の不純物元素又はp型の不純物元素を用いる。n型の不純
物元素としては、リン(P)やヒ素(As)等を用いることができる。p型の不純物元素
としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることがで
きる。ここでは、半導体膜104a、104bにリン(P)を導入し、n型の不純物領域
108を形成する場合について示す。
次に、上部ゲート絶縁膜105と導電膜106a、106b、106cを覆うように、
絶縁膜を形成する。絶縁膜は、プラズマCVD法やスパッタリング法等により、珪素、珪
素の酸化物又は珪素の窒化物の無機材料を含む膜や、有機樹脂などの有機材料を含む膜を
、単層又は積層して形成する。次に、絶縁膜を、垂直方向を主体とした異方性エッチング
により選択的にエッチングして、導電膜106a、106b、106cの側面に接する絶
縁膜109(サイドウォールともよばれる)を形成する(図1(E)参照)。絶縁膜10
9は、後にLDD(Lightly Doped drain)領域を形成する際のドー
ピング用のマスクとして用いる。
次に、導電膜106a、106b及び絶縁膜109をマスクとして用いて、半導体膜1
04a、104bに不純物元素を導入することにより、チャネル形成領域110、第1の
不純物領域110b、第2の不純物領域110cを形成する(図2(A)参照)。第1の
不純物領域110bはトランジスタのソース領域又はドレイン領域として機能し、第2の
不純物領域110cはLDD領域として機能しうる。また、第2の不純物領域110cに
含まれる不純物元素の濃度は、第1の不純物領域110bに含まれる不純物元素の濃度よ
り低くなるよう設ける。
本実施の形態では、第2の不純物領域110cを設けた構成を示したが、第2の不純物
領域110cを設けない構成としてもよい。この場合、絶縁膜109を設けない構成とす
ることができる。
次に、導電膜106a、106b、106cを覆うように絶縁膜111を形成し、当該
絶縁膜111上に薄膜トランジスタ120a、120bのソース電極又はドレイン電極と
して機能しうる導電膜112を形成する(図2(B)参照)。
絶縁膜111は、CVD法、スパッタリング法、SOG法、液滴吐出法、スクリーン印
刷法等により、珪素の酸化物や珪素の窒化物等の無機材料、ポリイミド、ポリアミド、ベ
ンゾシクロブテン、アクリル、エポキシ等の有機材料やシロキサン材料等により、単層ま
たは積層で形成する。また、絶縁膜111は積層構造としてもよく、例えば、1層目を窒
化酸化珪素膜で形成し、2層目を酸化窒化珪素膜で形成することができる。
導電膜112は、フォトリソグラフィ法により絶縁膜111等をエッチングして、第1
の不純物領域110bを露出させるコンタクトホールを形成した後、当該コンタクトホー
ルを介して第1の不純物領域110bにおける半導体膜と電気的に接続するように導電膜
を形成し、当該導電膜を選択的にエッチングして形成する。なお、導電膜を形成する前に
、コンタクトホールにおいて露出した半導体膜104a、104bの表面にシリサイドを
形成してもよい。
導電膜112は、CVD法やスパッタリング法等により、アルミニウム(Al)、タン
グステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(
Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオ
ジウム(Nd)、炭素(C)、シリコン(Si)から選択された元素、又はこれらの元素
を主成分とする合金材料若しくは化合物材料で、単層又は積層で形成する。アルミニウム
を主成分とする合金材料とは、例えば、アルミニウムを主成分としニッケルを含む材料、
又は、アルミニウムを主成分とし、ニッケルと、炭素と珪素の一方又は両方とを含む合金
材料に相当する。導電膜112は、例えば、バリア膜とアルミニウムシリコン(Al−S
i)膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン(Al−Si)膜と窒化
チタン膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、チタン、チタン
の窒化物、モリブデン、又はモリブデンの窒化物からなる薄膜に相当する。アルミニウム
やアルミニウムシリコンは抵抗値が低く、安価であるため、導電膜112を形成する材料
として最適である。また、上層と下層のバリア層を設けると、アルミニウムやアルミニウ
ムシリコンのヒロックの発生を防止することができる。また、還元性の高い元素であるチ
タンからなるバリア膜を形成すると、結晶質半導体膜上に薄い自然酸化膜ができていたと
しても、この自然酸化膜を還元し、結晶質半導体膜と良好なコンタクトをとることができ
る。
次に、絶縁膜111、導電膜112を覆うように絶縁膜113を形成した後、薄膜トラ
ンジスタ120a、120b等を含む素子形成層114を基板101から剥離する。具体
的には、絶縁膜107から剥離層102を剥離する(図2(C)参照)。
なお、本実施の形態では、素子形成層114を基板101から剥離しているが、これに
限定されるものではなく、基板101及び剥離層102を、研削処理、研磨処理又は化学
処理によるエッチングを行うことにより除去しても良い。
この後、剥離により露出した素子形成層114を、図2(C)に示す状態と上下を逆に
して転置した後、素子形成層114の裏面側(ここでは、絶縁膜107の露出面側)から
加工して下部ゲート電極115a,115b及び導電膜(配線)115c〜115eを形
成する。なお、上記のように上下を逆にして転置しているため、後述する図3に示す工程
を説明する際には、図3とは上下関係を逆に説明する。
詳細には、絶縁膜107の露出面にフォトレジスト膜(図示せず)を塗布し、このフォ
トレジスト膜を露光、現像することにより、絶縁膜107の露出面にはレジストパターン
が形成される。このレジストパターンをマスクとして絶縁膜107をエッチングすること
により、絶縁膜107には下部ゲート絶縁膜103を介してチャネル形成領域110上に
位置する開口部103a,103bが形成される。開口部103a,103bによって露
出される下部ゲート絶縁膜103は、チャネル形成領域110に対応する領域と同じかそ
れより内側にあって小さい領域である。
次いで、前記レジストパターンを剥離する。
次に、絶縁膜107の露出面にフォトレジスト膜(図示せず)を塗布し、このフォトレ
ジスト膜を露光、現像することにより、絶縁膜107の露出面にはレジストパターンが形
成される。このレジストパターンをマスクとして絶縁膜107、下部ゲート絶縁膜103
及び上部ゲート絶縁膜105をエッチングすることにより、絶縁膜107、下部ゲート絶
縁膜103及び上部ゲート絶縁膜105には導電膜106c上に位置する開口部103c
が形成される。次いで、前記レジストパターンを剥離する。
次に、開口部103a〜103c内及び絶縁膜107上に導電膜を形成した後、この導
電膜を選択的にエッチングすることにより、チャネル形成領域110上に下部ゲート絶縁
膜103を介して導電膜115a,115bを残存させ、導電膜106c上に導電膜11
5cを残存させ、絶縁膜107上に導電膜115d,115eを残存させる(図3(A)
参照)。導電膜115a,115bは、下部ゲート電極として機能しうる。また、導電膜
115c,115d,115eは、配線として機能しうる。下部ゲート電極として機能す
る導電膜115a,115bは、チャネル形成領域110と同じ大きさ又はチャネル形成
領域110より小さい大きさであってチャネル形成領域110の内側に位置することが好
ましい。
前記導電膜は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン
(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等から
選択された元素でなる膜、またはこれらの元素の窒化物でなる膜(代表的には、窒化タン
タル、窒化タングステン膜、窒化チタン膜)、または前記元素を組み合わせた合金膜(代
表的にはMo−W合金、Mo−Ta合金)、または前記元素のシリサイド膜(代表的には
タングステンシリサイド膜、チタンシリサイド膜、ニッケルシリサイド膜)を用いること
ができる。また、前記導電膜は、複数の導電膜を積層させた構造で設けてもよく、例えば
、膜厚が20nm〜100nmの窒化タンタル膜と、膜厚が100nm〜400nmのタ
ングステン膜を順に積層させた構造で設けることができる。タングステンや窒化タンタル
は、耐熱性が高いため、導電膜を形成した後に、熱活性化を目的とした加熱処理を行うこ
とができる。
上記のようにしてデュアルゲートTFTを作製することができる。
次に、導電膜115a〜115eを覆うように絶縁膜116を形成し、当該絶縁膜11
6上に配線として機能しうる導電膜117を形成する(図3(B)参照)。
絶縁膜116は、CVD法、スパッタリング法、SOG法、液滴吐出法、スクリーン印
刷法等により、珪素の酸化物や珪素の窒化物等の無機材料、ポリイミド、ポリアミド、ベ
ンゾシクロブテン、アクリル、エポキシ等の有機材料やシロキサン材料等により、単層ま
たは積層で形成する。また、絶縁膜116は積層構造としてもよく、例えば、1層目を窒
化酸化珪素膜で形成し、2層目を酸化窒化珪素膜で形成することができる。
導電膜117は、フォトリソグラフィ法により絶縁膜116等をエッチングして、導電
膜115d,115eを露出させるコンタクトホール116a,116bを形成した後、
当該コンタクトホール116a,116bを介して導電膜115d,115eと電気的に
接続するように導電膜を形成し、当該導電膜を選択的にエッチングして形成する。
導電膜117は、CVD法やスパッタリング法等により、アルミニウム(Al)、タン
グステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(
Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオ
ジウム(Nd)、炭素(C)、シリコン(Si)から選択された元素、又はこれらの元素
を主成分とする合金材料若しくは化合物材料で、単層又は積層で形成する。アルミニウム
を主成分とする合金材料とは、例えば、アルミニウムを主成分としニッケルを含む材料、
又は、アルミニウムを主成分とし、ニッケルと、炭素と珪素の一方又は両方とを含む合金
材料に相当する。導電膜117は、例えば、バリア膜とアルミニウムシリコン(Al−S
i)膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン(Al−Si)膜と窒化
チタン膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、チタン、チタン
の窒化物、モリブデン、又はモリブデンの窒化物からなる薄膜に相当する。アルミニウム
やアルミニウムシリコンは抵抗値が低く、安価であるため、導電膜112を形成する材料
として最適である。また、上層と下層のバリア層を設けると、アルミニウムやアルミニウ
ムシリコンのヒロックの発生を防止することができる。また、還元性の高い元素であるチ
タンからなるバリア膜を形成すると、導電膜115d,115e上に薄い自然酸化膜がで
きていたとしても、この自然酸化膜を還元し、導電膜115d,115eと良好なコンタ
クトをとることができる。
上記実施の形態1によれば、基板101上に剥離層102を形成し、その上にTFTを
作製した後に、剥離層102から剥離して転置し、裏面側から加工して下部ゲート電極1
15a,115bを形成することにより、デュアルゲートTFTを作製している。そのた
め、非晶質半導体膜104の下に下部ゲート絶縁膜と下部ゲート電極が存在しない状態で
非晶質半導体膜104を結晶化することができる。即ち、非晶質半導体膜104を結晶化
するときに下部ゲート絶縁膜と下部ゲート電極の影響を受けることがない。
また、上記実施の形態1では、両面に配線106c,112,115c〜115e,1
17を形成しているため、デバイスの面積を縮小することができる。
また、上記実施の形態1では、下部ゲート電極に電圧をかけることによりしきい値電圧
Vthをシフトさせる(調整する)こともできる。また、上部ゲート電極及び下部ゲート電
極それぞれに電圧をかけることにより、上下でチャネルが形成され、その結果、大きなオ
ン電流を得ることができる。
(実施の形態2)
図4は、本発明の実施の形態2による半導体装置の作製方法を説明する断面図である。
図4に示す工程は、図3(A)に示す工程に対応するものであり、図3と同一部分には同
一符号を付し、実施の形態1と異なる部分についてのみ説明する。
絶縁膜107に、下部ゲート絶縁膜103を介してチャネル形成領域110上に位置す
る開口部103a,103bを形成する。この開口部103a,103bによって露出す
る下部ゲート絶縁膜103は、チャネル形成領域110に対応する領域より外側まで広が
っており、且つ、チャネル形成領域110と第2の不純物領域(LDD領域)110cと
に対応する領域と同じかそれより内側にあって小さい領域である(図4参照)。
上記実施の形態2においても実施の形態1と同様の効果を得ることができる。
(実施の形態3)
図5(A),(B)は、本発明の実施の形態3による半導体装置の作製方法を説明する
断面図である。図5に示す工程は、図3(A)に示す工程に対応するものであり、図3と
同一部分には同一符号を付し、実施の形態1と異なる部分についてのみ説明する。
実施の形態1では、図1(A)に示す工程で、剥離層102上に絶縁膜107を形成し
、この絶縁膜107上に下部ゲート絶縁膜103を形成し、この下部ゲート絶縁膜103
上に半導体膜104を形成しているが、本実施の形態では、実施の形態1でいう下部ゲー
ト絶縁膜103を下部ゲート絶縁膜として用いず単に絶縁膜として用いることとする。つ
まり、本実施の形態における図1(A)に示す工程では、剥離層102上に絶縁膜107
を形成し、この絶縁膜107上に絶縁膜103を形成し、この絶縁膜103上に半導体膜
104を形成しているものとする。
絶縁膜107,103をエッチングすることにより、絶縁膜107,103にはチャネ
ル形成領域110上に位置する開口部103a,103b及び配線106c上に位置する
開口部103cが形成される。開口部103a,103bによって露出される半導体膜は
、チャネル形成領域110に対応する領域と同じかそれより内側にあって小さい領域であ
る(図5(A)参照)。
次に、絶縁膜107上及び開口部103a,103b,103c内に下部ゲート絶縁膜
103fを形成する(図5(A)参照)。この下部ゲート絶縁膜103fの膜厚は、実施
の形態1における下部ゲート絶縁膜より薄いものである。
この後、下部ゲート絶縁膜103f及び上部ゲート絶縁膜105をエッチングすること
により、下部ゲート絶縁膜103f及び上部ゲート絶縁膜105に開口部が形成され、こ
の開口部によって配線106cが露出される。次いで、下部ゲート絶縁膜103f上及び
導電膜106c上に、実施の形態1と同様の方法で下部ゲート電極115a,115b及
び導電膜(配線)115c〜115eを形成する。これにより、前記開口部内で導電膜1
15cが配線106cに電気的に接続される(図5(B)参照)。このようにしてデュア
ルゲートTFTを作製することができる。
上記実施の形態3においても実施の形態1と同様の効果を得ることができる。
また、上記実施の形態3では、下部ゲート絶縁膜103fの膜厚を実施の形態1におけ
るそれより薄くしているため、実施の形態1に比べてデバイスの消費電力を低くすること
ができる。
また、本実施の形態では、図5(A)に示す工程で下部ゲート絶縁膜103fを形成し
ているのは、上述したように実施の形態1における下部ゲート絶縁膜より膜厚の薄い下部
ゲート絶縁膜103fを形成するためである。
詳細に説明すると、実施の形態1のように図1(A)に示す工程で実施の形態3のよう
な膜厚の薄い下部ゲート絶縁膜を形成した場合、図3(A)に示す工程で絶縁膜107に
開口部103a,103bを形成するためのエッチングを行った際に、前記開口部内の前
記膜厚の薄い下部ゲート絶縁膜がエッチング除去されてしまることがあるからである。
これに対し、実施の形態3のように図5(A)に示す工程で膜厚の薄い下部ゲート絶縁
膜103fを形成し、この下部ゲート絶縁膜103f上に下部ゲート電極115a,11
5bを形成した場合、前記膜厚の薄い下部ゲート絶縁膜103fを確実に形成することが
可能となる。
なお、本実施の形態3では、剥離層102上に絶縁膜107を形成し、この絶縁膜10
7上に絶縁膜103を形成し、この絶縁膜103上に半導体膜104を形成するが、剥離
層102上に絶縁膜107を形成し、この絶縁膜107上に半導体膜104を形成するこ
とも可能である。即ち、絶縁膜103を形成しないことも可能である。
(実施の形態4)
図6(A),(B)は、本発明の実施の形態4による半導体装置の作製方法を説明する
断面図である。図6(A),(B)に示す工程は、図5(A),(B)に示す工程に対応
するものであり、図5と同一部分には同一符号を付し、実施の形態3と異なる部分につい
てのみ説明する。
絶縁膜107,103の開口部103a,103bによって露出される半導体膜は、チ
ャネル形成領域110に対応する領域より外側まで広がっており、且つ、チャネル形成領
域110と第2の不純物領域(LDD領域)110cとに対応する領域と同じかそれより
内側にあって小さい領域である(図6(A)参照)。
上記実施の形態4においても実施の形態3と同様の効果を得ることができる。
(実施の形態5)
図7(A),(B)は、本発明の実施の形態5による半導体装置の作製方法を説明する
断面図である。図7(A),(B)に示す工程は、図5(A),(B)に示す工程に対応
するものであり、図5と同一部分には同一符号を付し、実施の形態3と異なる部分につい
てのみ説明する。
絶縁膜107,103、上部ゲート絶縁膜105及び結晶質半導体膜をエッチングする
ことにより、絶縁膜107,103及び結晶質半導体膜にはチャネル形成領域110上に
位置する開口部103a,103bが形成され、絶縁膜107,103及び上部ゲート絶
縁膜105には配線106c上に位置する開口部103cが形成される。前記開口部10
3a,103bそれぞれによって露出された結晶質半導体膜は、その膜厚が薄くされた薄
膜領域110aが形成される(図7(A)参照)。
詳細には、まず結晶質半導体膜と導電膜106cとにエッチング選択比のある条件でエ
ッチングを行うことにより絶縁膜107,103及び上部ゲート絶縁膜105をエッチン
グし、続いて、導電膜106cと絶縁膜とにエッチング選択比のある条件でエッチングを
行うことにより結晶質半導体膜をエッチングする。これにより、開口部103a〜103
cが形成される。開口部103a,103bによって露出された結晶質半導体膜の薄膜領
域110aは、チャネル形成領域110に対応する領域と同じかそれより内側にあって小
さい領域である(図7(A)参照)。
次に、絶縁膜107上及び開口部103a〜103c内に下部ゲート絶縁膜103fを
形成する。この下部ゲート絶縁膜103fの膜厚は、実施の形態1における下部ゲート絶
縁膜より薄いものである。
この後、下部ゲート絶縁膜103fをエッチングすることにより、下部ゲート絶縁膜1
03fに開口部が形成され、この開口部によって配線106cが露出される。次いで、下
部ゲート絶縁膜103f上及び導電膜106c上に、実施の形態1と同様の方法で下部ゲ
ート電極115a,115b及び導電膜(配線)115c〜115eを形成する。これに
より、前記開口部内で導電膜115cが配線106cに電気的に接続される(図7(B)
参照)。このようにしてデュアルゲートTFTを作製することができる。
上記実施の形態5においても実施の形態3と同様の効果を得ることができる。
また、上記実施の形態5では、チャネル形成領域110に対応する領域の結晶質半導体
膜に、その膜厚を薄くした薄膜領域110aを形成することにより、S値を小さくするこ
とができ、その結果、実施の形態3に比べてデバイスの消費電力を低くすることができる
また、上記実施の形態5では、上記のように膜厚を薄くした薄膜領域110aを形成す
ることにより、上下の反転チャネルが重なりあい易くなり、ドレインからソースへの電界
の侵入を減少させ、短チャネル効果を抑制することができる。なお、この短チャネル効果
を抑制するという効果は、薄膜領域110aを形成した本実施の形態において得られ易く
なるものであるが、実施の形態1〜4においても結晶質半導体膜の膜厚などの条件によっ
ては得ることができるものである。
(実施の形態6)
実施の形態6では、上記実施の形態1〜5で示した半導体装置の使用形態の一例につい
て説明する。具体的には、非接触でデータの入出力が可能である半導体装置の適用例に関
して図8及び図9を参照して以下に説明する。非接触でデータの入出力が可能である半導
体装置は利用の形態によっては、RFIDタグ、IDタグ、ICタグ、ICチップ、RF
タグ、無線タグ、電子タグまたは無線チップともよばれる。
半導体装置80は、非接触でデータを交信する機能を有し、高周波回路81、電源回路
82、リセット回路83、クロック発生回路84、データ復調回路85、データ変調回路
86、他の回路の制御を行う制御回路87、記憶回路88およびアンテナ89を有してい
る(図8(A))。高周波回路81はアンテナ89より信号を受信して、データ変調回路
86より受信した信号をアンテナ89から出力する回路であり、電源回路82は受信信号
から電源電位を生成する回路であり、リセット回路83はリセット信号を生成する回路で
あり、クロック発生回路84はアンテナ89から入力された受信信号を基に各種クロック
信号を生成する回路であり、データ復調回路85は受信信号を復調して制御回路87に出
力する回路であり、データ変調回路86は制御回路87から受信した信号を変調する回路
である。また、制御回路87としては、例えばコード抽出回路91、コード判定回路92
、CRC判定回路93および出力ユニット回路94が設けられている。なお、コード抽出
回路91は制御回路87に送られてきた命令に含まれる複数のコードをそれぞれ抽出する
回路であり、コード判定回路92は抽出されたコードとリファレンスに相当するコードと
を比較して命令の内容を判定する回路であり、CRC回路は判定されたコードに基づいて
送信エラー等の有無を検出する回路である。
次に、上述した半導体装置の動作の一例について説明する。まず、アンテナ89により
無線信号が受信される。無線信号は高周波回路81を介して電源回路82に送られ、高電
源電位(以下、VDDと記す)が生成される。VDDは半導体装置80が有する各回路に
供給される。また、高周波回路81を介してデータ復調回路85に送られた信号は復調さ
れる(以下、復調信号)。さらに、高周波回路81を介してリセット回路83およびクロ
ック発生回路84を通った信号及び復調信号は制御回路87に送られる。制御回路87に
送られた信号は、コード抽出回路91、コード判定回路92およびCRC判定回路93等
によって解析される。そして、解析された信号にしたがって、記憶回路88内に記憶され
ている半導体装置の情報が出力される。出力された半導体装置の情報は出力ユニット回路
94を通って符号化される。さらに、符号化された半導体装置80の情報はデータ変調回
路86を通って、アンテナ89により無線信号に載せて送信される。なお、半導体装置8
0を構成する複数の回路においては、低電源電位(以下、VSS)は共通であり、VSS
はGNDとすることができる。
このように、リーダ/ライタから半導体装置80に信号を送り、当該半導体装置80か
ら送られてきた信号をリーダ/ライタで受信することによって、半導体装置のデータを読
み取ることが可能となる。
また、半導体装置80は、各回路への電源電圧の供給を電源(バッテリー)を搭載せず
電磁波により行うタイプとしてもよいし、電源(バッテリー)を搭載して電磁波又は電源
(バッテリー)により各回路に電源電圧を供給するタイプとしてもよい。
上記実施の形態1〜5で示した作製方法を高周波回路81、電源回路82、リセット回
路83、クロック発生回路84、データ復調回路85、データ変調回路86、制御回路8
7、記憶回路に適用することによって、半導体装置を得ることができる。
次に、非接触でデータの入出力が可能な半導体装置の使用形態の一例について説明する
。表示部3210を含む携帯端末の側面には、リーダ/ライタ3200が設けられ、品物
3220の側面には半導体装置3230が設けられる(図8(B))。品物3220が含
む半導体装置3230にリーダ/ライタ3200をかざすと、表示部3210に品物の原
材料や原産地、生産工程ごとの検査結果や流通過程の履歴等、更に商品の説明等の商品に
関する情報が表示される。また、商品3260をベルトコンベアにより搬送する際に、リ
ーダ/ライタ3240と、商品3260に設けられた半導体装置3250を用いて、該商
品3260の検品を行うことができる(図8(C))。このように、システムに半導体装
置を活用することで、情報の取得を簡単に行うことができ、高機能化と高付加価値化を実
現する。
また、上述した非接触データの入出力が可能である半導体装置における信号の伝送方式
は、電磁結合方式、電磁誘導方式またはマイクロ波方式等を用いることができる。伝送方
式は、実施者が使用用途を考慮して適宜選択すればよく、伝送方式に伴って最適なアンテ
ナを設ければよい。
例えば、半導体装置における信号の伝送方式として、電磁結合方式または電磁誘導方式
(例えば13.56MHz帯)を適用する場合には、磁界密度の変化による電磁誘導を利
用するため、アンテナとして機能する導電膜を輪状(例えば、ループアンテナ)、らせん
状(例えば、スパイラルアンテナ)に形成する。
また、半導体装置における信号の伝送方式として、マイクロ波方式(例えば、UHF帯
(860〜960MHz帯)、2.45GHz帯等)を適用する場合には、信号の伝送に
用いる電磁波の波長を考慮してアンテナとして機能する導電層の長さ等の形状を適宜設定
すればよく、例えば、アンテナとして機能する導電膜を線状(例えば、ダイポールアンテ
ナ)、平坦な形状(例えば、パッチアンテナ)またはリボン型の形状等に形成することが
できる。また、アンテナとして機能する導電膜の形状は線状に限られず、電磁波の波長を
考慮して曲線状や蛇行形状またはこれらを組み合わせた形状で設けてもよい。なお、アン
テナとして機能する導電膜をどのような形状に設けた場合であっても、上記実施の形態で
示したように、素子群を貼り合わせて設ける際に素子群に加わる圧力をモニタリングして
素子群に過度の圧力が加わらないように制御することにより素子群の破損等を防止するこ
とができる。
アンテナとして機能する導電膜は、CVD法、スパッタリング法、スクリーン印刷やグ
ラビア印刷等の印刷法、液滴吐出法、ディスペンサ法、メッキ法等を用いて、導電性材料
により形成する。導電性材料は、アルミニウム(Al)、チタン(Ti)、銀(Ag)、
銅(Cu)、金(Au)、白金(Pt)ニッケル(Ni)、パラジウム(Pd)、タンタ
ル(Ta)、モリブデン(Mo)から選択された元素、又はこれらの元素を主成分とする
合金材料若しくは化合物材料で、単層構造又は積層構造で形成する。
例えば、スクリーン印刷法を用いてアンテナとして機能する導電膜を形成する場合には
、粒径が数nmから数十μmの導電体粒子を有機樹脂に溶解または分散させた導電性のペ
ーストを選択的に印刷することによって設けることができる。導電体粒子としては、銀(
Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、白金(Pt)、パラジウム(Pd
)、タンタル(Ta)、モリブデン(Mo)およびチタン(Ti)等のいずれか一つ以上
の金属粒子やハロゲン化銀の微粒子、または分散性ナノ粒子を用いることができる。また
、導電性ペーストに含まれる有機樹脂は、金属粒子のバインダー、溶媒、分散剤および被
覆材として機能する有機樹脂から選ばれた一つまたは複数を用いることができる。代表的
には、エポキシ樹脂、シリコーン樹脂等の有機樹脂が挙げられる。また、導電膜の形成に
あたり、導電性のペーストを押し出した後に焼成することが好ましい。例えば、導電性の
ペーストの材料として、銀を主成分とする微粒子(例えば粒径1nm以上100nm以下
)を用いる場合、150〜300℃の温度範囲で焼成することにより硬化させて導電膜を
得ることができる。また、はんだや鉛フリーのはんだを主成分とする微粒子を用いてもよ
く、この場合は粒径20μm以下の微粒子を用いることが好ましい。はんだや鉛フリーは
んだは、低コストであるといった利点を有している。
なお、上述した以外にも可撓性を有する半導体装置の用途は広範にわたり、非接触で対
象物の履歴等の情報を明確にし、生産・管理等に役立てる商品であればどのようなものに
も適用することができる。例えば、紙幣、硬貨、有価証券類、証書類、無記名債券類、包
装用容器類、書籍類、記録媒体、身の回り品、乗物類、食品類、衣類、保健用品類、生活
用品類、薬品類及び電子機器等に設けて使用することができる。これらの例に関して図9
を用いて説明する。
紙幣、硬貨とは、市場に流通する金銭であり、特定の地域で貨幣と同じように通用する
もの(金券)、記念コイン等を含む。有価証券類とは、小切手、証券、約束手形等を指す
(図9(A))。証書類とは、運転免許証、住民票等を指す(図9(B))。無記名債券
類とは、切手、おこめ券、各種ギフト券等を指す(図9(C))。包装用容器類とは、お
弁当等の包装紙、ペットボトル等を指す(図9(D))。書籍類とは、書物、本等を指す
(図9(E))。記録媒体とは、DVDソフト、ビデオテープ等を指す(図9(F))。
乗物類とは、自転車等の車両、船舶等を指す(図9(G))。身の回り品とは、鞄、眼鏡
等を指す(図9(H))。食品類とは、食料品、飲料等を指す。衣類とは、衣服、履物等
を指す。保健用品類とは、医療器具、健康器具等を指す。生活用品類とは、家具、照明器
具等を指す。薬品類とは、医薬品、農薬等を指す。電子機器とは、液晶表示装置、EL表
示装置、テレビジョン装置(テレビ受像機、薄型テレビ受像機)、携帯電話機等を指す。
紙幣、硬貨、有価証券類、証書類、無記名債券類等に半導体装置80を設けることによ
り、偽造を防止することができる。また、包装用容器類、書籍類、記録媒体等、身の回り
品、食品類、生活用品類、電子機器等に半導体装置80を設けることにより、検品システ
ムやレンタル店のシステムなどの効率化を図ることができる。乗物類、保健用品類、薬品
類等に半導体装置80を設けることにより、偽造や盗難の防止、薬品類ならば、薬の服用
の間違いを防止することができる。半導体装置80の設け方としては、物品の表面に貼っ
たり、物品に埋め込んだりして設ける。例えば、本ならば紙に埋め込んだり、有機樹脂か
らなるパッケージなら当該有機樹脂に埋め込んだりするとよい。可撓性を有する半導体装
置を用いることによって、紙等に設けた場合であっても、上記実施の形態で示した構造を
有する半導体装置を用いて半導体装置を設けることにより、当該半導体装置に含まれる素
子の破損等を防止することができる。
このように、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、電子
機器等に半導体装置を設けることにより、検品システムやレンタル店のシステムなどの効
率化を図ることができる。また乗物類に半導体装置を設けることにより、偽造や盗難を防
止することができる。また、動物等の生き物に埋め込むことによって、個々の生き物の識
別を容易に行うことができる。例えば、家畜等の生き物にセンサーを備えた半導体装置を
埋め込むことによって、生まれた年や性別または種類等はもちろん体温等の健康状態を容
易に管理することが可能となる。
なお、本実施の形態は、本明細書の他の実施の形態で示した半導体装置の構成や作製方
法と組み合わせて行うことができる。つまり、上記実施の形態1〜5で示した半導体装置
の構成を本実施の形態で示した半導体装置に適用することができる。
(実施の形態7)
本実施の形態では、上記実施の形態6で示した非接触でデータの入出力が可能である半
導体装置の作製方法に関して図10〜図13を参照して説明する。なお、本実施の形態で
は、薄膜トランジスタ等の素子を一度支持基板(仮基板)に設けた後、可撓性を有する基
板に転置して半導体装置を作製する場合に関して説明する。
まず、基板301の一表面に絶縁膜302を介して剥離層303を形成し、続けて下地
膜として機能する絶縁膜304と下部ゲート絶縁膜103と半導体膜305(例えば、非
晶質シリコンを含む膜、非晶質半導体膜)を積層して形成する(図10(A)参照)。な
お、絶縁膜302、剥離層303、絶縁膜304、下部ゲート絶縁膜103及び半導体膜
305は、連続して形成することができる。
基板301は、上記実施の形態1で示した基板101と同様のものを用いればよい。
絶縁膜302、絶縁膜304は、CVD法やスパッタリング法等を用いて、酸化シリコ
ン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜等を用いて形成する。
例えば、絶縁膜302又は絶縁膜304を2層構造とする場合、第1層目の絶縁膜として
窒化酸化シリコン膜を形成し、第2層目の絶縁膜として酸化窒化シリコン膜を形成すると
よい。また、第1層目の絶縁膜として窒化シリコン膜を形成し、第2層目の絶縁膜として
酸化シリコン膜を形成してもよい。
剥離層303は、上記実施の形態1で示した剥離層102と同様のものを用いればよい
。また、下部ゲート絶縁膜103は、上記実施の形態1で用いたものと同様のものを用い
ればよい。
非晶質半導体膜305は、スパッタリング法、LPCVD法、プラズマCVD法等によ
り、25〜200nm(好ましくは30〜150nm)の厚さで形成する。
次に、非晶質半導体膜305にレーザー光を照射して結晶化を行う。なお、レーザー光
の照射と、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属
元素を用いる熱結晶化法とを組み合わせた方法等により非晶質半導体膜305の結晶化を
行ってもよい。その後、得られた結晶質半導体膜を所望の形状にエッチングして、半導体
膜305a〜半導体膜305fを形成し、当該半導体膜305a〜305fを覆うように
ゲート絶縁膜306を形成する(図10(B)参照)。
ゲート絶縁膜306は、CVD法やスパッタリング法等を用いて、酸化シリコン、窒化
シリコン、酸化窒化シリコン、窒化酸化シリコン等の絶縁材料を用いて形成する。例えば
、ゲート絶縁膜306を2層構造とする場合、第1層目の絶縁膜として酸化窒化シリコン
膜を形成し、第2層目の絶縁膜として窒化酸化シリコン膜を形成するとよい。また、第1
層目の絶縁膜として酸化シリコン膜を形成し、第2層目の絶縁膜として窒化シリコン膜を
形成してもよい。
なお、本実施の形態では、半導体膜305fを容量素子の電極として利用するため、当
該半導体膜305fに不純物元素を導入する。具体的には、ゲート絶縁膜306の形成前
または形成後に、半導体膜305a〜305eをレジストで覆い、イオンドープ法または
イオン注入法により半導体膜305fにn型またはp型の不純物元素を選択的に導入する
ことができる。n型の不純物元素としては、リン(P)やヒ素(As)等を用いることが
できる。p型の不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(
Ga)等を用いることができる。ここでは、n型の不純物元素であるリン(P)を用い、
半導体膜305fに選択的に導入する。
次に、ゲート絶縁膜306上に、第1の導電膜と第2の導電膜とを積層して形成する。
ここでは、第1の導電膜は、CVD法やスパッタリング法等により、20〜100nmの
厚さで形成する。第2の導電膜は、100〜400nmの厚さで形成する。第1の導電膜
と第2の導電膜は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデ
ン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等か
ら選択された元素又はこれらの元素を主成分とする合金材料若しくは化合物材料で形成す
る。または、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体材
料により形成する。第1の導電膜と第2の導電膜の組み合わせの例を挙げると、窒化タン
タル膜とタングステン膜、窒化タングステン膜とタングステン膜、窒化モリブデン膜とモ
リブデン膜等が挙げられる。タングステンや窒化タンタルは、耐熱性が高いため、第1の
導電膜と第2の導電膜を形成した後に、熱活性化を目的とした加熱処理を行うことができ
る。また、2層構造ではなく、3層構造の場合は、モリブデン膜とアルミニウム膜とモリ
ブデン膜の積層構造を採用するとよい。
次に、フォトリソグラフィ法を用いてレジストからなるマスクを形成し、ゲート電極と
ゲート線を形成するためのエッチング処理を行って、半導体膜305a〜305fの上方
にゲート電極307を形成する。ここでは、ゲート電極307として、第1の導電膜30
7aと第2の導電膜307bの積層構造で設けた例を示している。
次に、ゲート電極307をマスクとして半導体膜305a〜305fに、イオンドープ
法またはイオン注入法により、n型の不純物元素を低濃度に添加し、その後、フォトリソ
グラフィ法によりレジストからなるマスクを選択的に形成して、p型の不純物元素を高濃
度に添加する。ここでは、n型の不純物元素であるリン(P)を用い、1×1015〜1
×1019/cmの濃度で含まれるように半導体膜305a〜305fにゲート電極3
07をマスクとして選択的に導入し、n型の不純物領域308を形成する。続いて、半導
体膜305a、305b、305d、305fをレジストで覆い、p型の不純物元素であ
るボロン(B)を、1×1019〜1×1020/cmの濃度で含まれるように選択的
に半導体膜305c、305eに導入し、p型の不純物領域309を形成する(図10(
C)参照)。
続いて、ゲート絶縁膜306とゲート電極307を覆うように、絶縁膜を形成する。絶
縁膜は、プラズマCVD法やスパッタリング法等により、シリコン、シリコンの酸化物又
はシリコンの窒化物の無機材料を含む膜や、有機樹脂などの有機材料を含む膜を、単層又
は積層して形成する。次に、絶縁膜を、垂直方向を主体とした異方性エッチングにより選
択的にエッチングして、ゲート電極307の側面に接する絶縁膜310(サイドウォール
ともよばれる)を形成する。絶縁膜310は、LDD(Lightly Doped d
rain)領域を形成する際のドーピング用のマスクとして用いる。
続いて、フォトリソグラフィ法により形成したレジストからなるマスクと、ゲート電極
307および絶縁膜310をマスクとして用いて、半導体膜305a、305b、305
d、305fにn型の不純物元素を高濃度に添加して、n型の不純物領域311を形成す
る。ここでは、n型の不純物元素としてリン(P)を用い、1×1019〜1×1020
/cmの濃度で含まれるように半導体膜305a、305b、305d、305fに選
択的に導入し、不純物領域308より高濃度のn型の不純物領域311を形成する。
以上の工程により、デュアルゲートの一方のゲート電極が形成されたまでのnチャネル
型薄膜トランジスタ300a、300b、300dと、pチャネル型薄膜トランジスタ3
00c、300eと、容量素子300fが形成される(図10(D)参照)。
nチャネル型薄膜トランジスタ300aは、ゲート電極307と重なる半導体膜305
aの領域にチャネル形成領域が形成され、ゲート電極307及び絶縁膜310と重ならな
い領域にソース領域又はドレイン領域を形成する不純物領域311が形成され、絶縁膜3
10と重なる領域であってチャネル形成領域と不純物領域311の間に低濃度不純物領域
(LDD領域)が形成されている。また、nチャネル型薄膜トランジスタ300b、30
0dも同様にチャネル形成領域、低濃度不純物領域及び不純物領域311が形成されてい
る。
pチャネル型薄膜トランジスタ300cは、ゲート電極307と重なる半導体膜305
cの領域にチャネル形成領域が形成され、ゲート電極307と重ならない領域にソース領
域又はドレイン領域を形成する不純物領域309が形成されている。また、pチャネル型
薄膜トランジスタ300eも同様にチャネル形成領域及び不純物領域309が形成されて
いる。なお、ここでは、pチャネル型薄膜トランジスタ300c、300eには、LDD
領域を設けていないが、pチャネル型薄膜トランジスタにLDD領域を設けてもよいし、
nチャネル型薄膜トランジスタにLDD領域を設けない構成としてもよい。
次に、半導体膜305a〜305f、ゲート電極307等を覆うように、絶縁膜を単層
または積層して形成し、当該絶縁膜上に薄膜トランジスタ300a〜300eのソース領
域又はドレイン領域を形成する不純物領域309、311、容量素子300fの一方の電
極と電気的に接続する導電膜313を形成する(図11(A)参照)。絶縁膜は、CVD
法、スパッタリング法、SOG法、液滴吐出法、スクリーン印刷法等により、シリコンの
酸化物やシリコンの窒化物等の無機材料、ポリイミド、ポリアミド、ベンゾシクロブテン
、アクリル、エポキシ等の有機材料やシロキサン材料等により、単層または積層で形成す
る。ここでは、当該絶縁膜を2層で設け、1層目の絶縁膜312aとして窒化酸化シリコ
ン膜で形成し、2層目の絶縁膜312bとして酸化窒化シリコン膜で形成する。また、導
電膜313は、薄膜トランジスタ300a〜300eのソース電極又はドレイン電極を形
成しうる。なお、シロキサン材料とは、Si−O−Si結合を含む材料に相当する。シロ
キサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基とし
て、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。
置換基として、フルオロ基を用いることもできる。または置換基として、少なくとも水素
を含む有機基と、フルオロ基とを用いてもよい。
なお、絶縁膜312a、312bを形成する前、または絶縁膜312a、312bのう
ちの1つまたは複数の薄膜を形成した後に、半導体膜の結晶性の回復や半導体膜に添加さ
れた不純物元素の活性化、半導体膜の水素化を目的とした加熱処理を行うとよい。加熱処
理には、熱アニール、レーザーアニール法またはRTA法などを適用するとよい。
導電膜313は、CVD法やスパッタリング法等により、アルミニウム(Al)、タン
グステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(
Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオ
ジウム(Nd)、炭素(C)、シリコン(Si)から選択された元素、又はこれらの元素
を主成分とする合金材料若しくは化合物材料で、単層又は積層で形成する。アルミニウム
を主成分とする合金材料とは、例えば、アルミニウムを主成分としニッケルを含む材料、
又は、アルミニウムを主成分とし、ニッケルと、炭素とシリコンの一方又は両方とを含む
合金材料に相当する。導電膜313は、例えば、バリア膜とアルミニウムシリコン(Al
−Si)膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン(Al−Si)膜と
窒化チタン(TiN)膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、
チタン、チタンの窒化物、モリブデン、又はモリブデンの窒化物からなる薄膜に相当する
。アルミニウムやアルミニウムシリコンは抵抗値が低く、安価であるため、導電膜313
を形成する材料として最適である。また、上層と下層のバリア層を設けると、アルミニウ
ムやアルミニウムシリコンのヒロックの発生を防止することができる。また、還元性の高
い元素であるチタンからなるバリア膜を形成すると、結晶質半導体膜上に薄い自然酸化膜
ができていたとしても、この自然酸化膜を還元し、結晶質半導体膜と良好なコンタクトを
とることができる。
次に、導電膜313を覆うように、絶縁膜314を形成し、当該絶縁膜314上に、薄
膜トランジスタ300aのソース電極又はドレイン電極を形成する導電膜313と電気的
に接続する導電膜316を形成する。導電膜316は、上述した導電膜313で示したい
ずれかの材料を用いて形成することができる。
続いて、導電膜316にアンテナとして機能する導電膜317が電気的に接続されるよ
うに形成する(図11(B)参照)。
絶縁膜314は、CVD法やスパッタリング法等により、酸化シリコン、窒化シリコン
、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダ
イヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポ
リビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂
等のシロキサン材料からなる単層または積層構造で設けることができる。
導電膜317は、CVD法、スパッタリング法、スクリーン印刷やグラビア印刷等の印
刷法、液滴吐出法、ディスペンサ法、メッキ法等を用いて、導電性材料により形成する。
導電性材料は、アルミニウム(Al)、チタン(Ti)、銀(Ag)、銅(Cu)、金(
Au)、白金(Pt)ニッケル(Ni)、パラジウム(Pd)、タンタル(Ta)、モリ
ブデン(Mo)から選択された元素、又はこれらの元素を主成分とする合金材料若しくは
化合物材料で、単層構造又は積層構造で形成する。
例えば、スクリーン印刷法を用いてアンテナとして機能する導電膜317を形成する場
合には、粒径が数nmから数十μmの導電体粒子を有機樹脂に溶解または分散させた導電
性のペーストを選択的に印刷することによって設けることができる。導電体粒子としては
、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、白金(Pt)、パラジウム
(Pd)、タンタル(Ta)、モリブデン(Mo)およびチタン(Ti)等のいずれか一
つ以上の金属粒子やハロゲン化銀の微粒子、または分散性ナノ粒子を用いることができる
。また、導電性ペーストに含まれる有機樹脂は、金属粒子のバインダー、溶媒、分散剤お
よび被覆材として機能する有機樹脂から選ばれた一つまたは複数を用いることができる。
代表的には、エポキシ樹脂、シリコーン樹脂等の有機樹脂が挙げられる。また、導電膜の
形成にあたり、導電性のペーストを押し出した後に焼成することが好ましい。例えば、導
電性のペーストの材料として、銀を主成分とする微粒子(例えば粒径1nm以上100n
m以下)を用いる場合、150〜300℃の温度範囲で焼成することにより硬化させて導
電膜を得ることができる。また、はんだや鉛フリーのはんだを主成分とする微粒子を用い
てもよく、この場合は粒径20μm以下の微粒子を用いることが好ましい。はんだや鉛フ
リーのはんだは、低コストであるといった利点を有している。
次に、導電膜317を覆うように絶縁膜318を形成した後、薄膜トランジスタ300
a〜300e、容量素子300f、導電膜317等を含む層(以下、「素子形成層319
」と記す)を基板301から剥離する。ここでは、レーザー光(例えばUV光)を照射す
ることによって、薄膜トランジスタ300a〜300e、容量素子300fを避けた領域
に開口部を形成後(図11(C)参照)、基板301から素子形成層319を剥離するこ
とができる。なお、素子形成層319を剥離する際に、水等の液体で濡らしながら行うこ
とによって、静電気により素子形成層319に設けられた薄膜トランジスタの破壊を防止
することができる。また、素子形成層319が剥離された基板301を再利用することに
よって、コストの削減をすることができる。
絶縁膜318は、CVD法やスパッタリング法等により、酸化シリコン、窒化シリコン
、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダ
イヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポ
リビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂
等のシロキサン材料からなる単層または積層構造で設けることができる。
本実施の形態では、レーザー光の照射により素子形成層319に開口部を形成した後に
、当該素子形成層319の一方の面(絶縁膜318の露出した面)に第1のシート材32
0を貼り合わせた後、基板301から素子形成層319を剥離する(図12(A)参照)
次に、素子形成層319の他方の面(剥離により露出した面)からレーザー光を照射し
てレーザーアニールを行うことによって、半導体膜305a〜305fの活性化を行う(
図12(B)参照)。なお、レーザーアニールと同時に熱処理を行ってもよい。
また、レーザーアニールを行う前に、例えば、窒化珪素膜を露出した素子形成層319
の他方の面に形成した後、窒素雰囲気下で加熱処理を行うことによって、半導体膜305
a〜305fに脱水素化処理を行ってもよい。脱水素化処理により、レーザー照射時に水
素が突沸して半導体膜の結晶状態を乱すことを防ぐことができる。半導体膜305a〜3
05fに脱水素化処理を行った後にレーザーアニールを行うことによって、半導体膜の結
晶状態をより良くすることが可能となる。
なお、本実施の形態では、図12(B)に示す工程でレーザーアニールを行っているが、
図12(B)の工程は必ずしも必要ではなく、この工程を省略することも可能である。
次に、絶縁膜304の露出面にフォトレジスト膜(図示せず)を塗布し、このフォトレ
ジスト膜を露光、現像することにより、絶縁膜304の露出面にはレジストパターンが形
成される。このレジストパターンをマスクとして絶縁膜304をエッチングすることによ
り、絶縁膜304には下部ゲート絶縁膜103を介してチャネル形成領域上に位置する開
口部304a〜304e及び容量素子に位置する開口部304fが形成される。開口部3
04a〜304eによって露出される下部ゲート絶縁膜103は、チャネル形成領域に対
応する領域と同じかそれより内側にあって小さい領域である。次いで、前記レジストパタ
ーンを剥離する。
次に、開口部304a〜304f内及び絶縁膜304上に導電膜を形成した後、この導
電膜を選択的にエッチングすることにより、チャネル形成領域上に下部ゲート絶縁膜10
3を介して導電膜322a〜322eを残存させ、容量素子の導電膜322fを残存させ
る(図13参照)。導電膜322a〜322eは、下部ゲート電極として機能しうる。ま
た、導電膜322fは、容量素子の電極として機能しうる。下部ゲート電極として機能す
る導電膜322a〜322eは、チャネル形成領域と同じ大きさ又はチャネル形成領域よ
り小さい大きさであってチャネル形成領域の内側に位置することが好ましい。
前記導電膜は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン
(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等から
選択された元素でなる膜、またはこれらの元素の窒化物でなる膜(代表的には、窒化タン
タル、窒化タングステン膜、窒化チタン膜)、または前記元素を組み合わせた合金膜(代
表的にはMo−W合金、Mo−Ta合金)、または前記元素のシリサイド膜(代表的には
タングステンシリサイド膜、チタンシリサイド膜、ニッケルシリサイド膜)を用いること
ができる。また、前記導電膜は、複数の導電膜を積層させた構造で設けてもよく、例えば
、膜厚が20nm〜100nmの窒化タンタル膜と、膜厚が100nm〜400nmのタ
ングステン膜を順に積層させた構造で設けることができる。タングステンや窒化タンタル
は、耐熱性が高いため、導電膜を形成した後に、熱活性化を目的とした加熱処理を行うこ
とができる。
上記のようにしてデュアルゲートTFTを作製することができる。
次に、導電膜322a〜322fを覆うように絶縁膜323を形成する(図13参照)
絶縁膜323は、CVD法やスパッタリング法等により、酸化シリコン、窒化シリコン
、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダ
イヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポ
リビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂
等のシロキサン材料からなる単層または積層構造で設けることができる。
絶縁膜323上に、第2のシート材321を貼り合わせた後、加熱処理と加圧処理の一
方又は両方を行って第2のシート材321を貼り合わせる(図13参照)。第1のシート
材320、第2のシート材321として、ホットメルトフィルム等を用いることができる
また、第1のシート材320、第2のシート材321として、静電気等を防止する帯電
防止対策を施したフィルム(以下、帯電防止フィルムと記す)を用いることもできる。帯
電防止フィルムとしては、帯電防止可能な材料を樹脂中に分散させたフィルム、及び帯電
防止可能な材料が貼り付けられたフィルム等が挙げられる。帯電防止可能な材料が設けら
れたフィルムは、片面に帯電防止可能な材料を設けたフィルムであってもよいし、両面に
帯電防止可能な材料を設けたフィルムであってもよい。さらに、片面に帯電防止可能な材
料が設けられたフィルムは、帯電防止可能な材料が設けられた面をフィルムの内側になる
ように層に貼り付けてもよいし、フィルムの外側になるように貼り付けてもよい。なお、
帯電防止可能な材料はフィルムの全面、あるいは一部に設けてあればよい。ここでの帯電
防止可能な材料としては、金属、インジウムと錫の酸化物(ITO)、両性界面活性剤や
陽イオン性界面活性剤や非イオン性界面活性剤等の界面活性剤用いることができる。また
、他にも帯電防止材料として、側鎖にカルボキシル基および4級アンモニウム塩基をもつ
架橋性共重合体高分子を含む樹脂材料等を用いることができる。これらの材料をフィルム
に貼り付けたり、練り込んだり、塗布することによって帯電防止フィルムとすることがで
きる。帯電防止フィルムで封止を行うことによって、商品として取り扱う際に、外部から
の静電気等によって半導体素子に悪影響が及ぶことを抑制することができる。
なお、本実施の形態で示した半導体装置の構成は、様々な形態をとることができる。つ
まり、本実施の形態では、図3(A)に示す半導体装置とほぼ同様の構成を採用している
が、これに限定されるものではなく、他の構成の半導体装置を採用することも可能である
。例えば、図3(B)に示す半導体装置の構成と同様の構成を採用しても良いし、実施の
形態2〜5のいずれかの半導体装置の構成を採用しても良い。
なお、本発明は上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱し
ない範囲内で種々変更して実施することが可能である。例えば、上述した実施の形態を相
互に組み合わせて実施することも可能である。
80 半導体装置
81 高周波回路
82 電源回路
83 リセット回路
84 クロック発生回路
85 データ復調回路
86 データ変調回路
87 制御回路
88 記憶回路
89 アンテナ
91 コード抽出回路
92 コード判定回路
93 CRC判定回路
94 出力ユニット回路
101 基板
102 剥離層
103 下部ゲート絶縁膜
103a〜103c 開口部
103f 下部ゲート絶縁膜
104 半導体膜
104a,104b 結晶質半導体膜
105 上部ゲート絶縁膜
106 導電膜
106a,106b 導電膜(上部ゲート電極)
106c 導電膜(配線)
107 絶縁膜
108 低濃度不純物領域
109 絶縁膜
110 チャネル形成領域
110b 高濃度不純物領域
110c 低濃度不純物領域
111,113,116 絶縁膜
112 導電膜
114 素子形成層
115a,115b 導電膜(下部ゲート電極)
115c〜115e,117 導電膜(配線)
120a,120b 薄膜トランジスタ
300a〜300c,300e 薄膜トランジスタ
300f 容量素子
301 基板
302,304 絶縁膜
303 剥離層
304a〜304f 開口部
305,305a〜305f 半導体膜
306 ゲート絶縁膜
307 ゲート電極
307a,307b 導電膜
308,309 不純物領域
310,312a,312b,314,318,323 絶縁膜
311 不純物領域
313,316,317 導電膜
319 素子形成層
320,321 シート材
322a〜322e 導電膜(下部ゲート電極)
322f 導電膜
3200 リーダ/ライタ
3210 表示部
3220 品物
3230,3250 半導体装置
3240 リーダ/ライタ
3260 商品

Claims (2)

  1. 第1のゲート電極と、
    前記第1のゲート電極上方の第1の絶縁膜と、
    前記第1の絶縁膜上方で、前記第1のゲート電極と重なる領域を有する半導体層と、
    前記半導体層上方の第2の絶縁膜と、
    前記第2の絶縁膜上方で、前記半導体層と重なる領域を有する第2のゲート電極と、を有し、
    前記第1のゲート電極は、前記第1の絶縁膜、前記半導体層、及び前記第2の絶縁膜を介して前記第2のゲート電極と重なる領域を有し、
    前記半導体層は、チャネル形成領域において、第1の膜厚を有する第1の領域と、前記第1の膜厚よりも小さい第2の膜厚を有する第2の領域と、を有し、
    前記第2の領域は、前記半導体層の一部が除去された領域であり、
    前記半導体層の一部が除去された前記領域は、前記半導体層の前記第1の絶縁膜と向き合う側の表面に設けられており、
    前記第1のゲート電極は、第1の絶縁膜を介して前記第2の領域と重なる領域を有し、
    前記第2のゲート電極は、第2の絶縁膜を介して前記第2の領域と重なる領域を有し、
    前記半導体層の前記第2の絶縁膜と向き合う側の表面は、平面を有することを特徴とする半導体装置。
  2. 第1のゲート電極と、
    1の導電層と、
    前記第1のゲート電極上方及び前記第1の導電層上方の第1の絶縁膜と、
    前記第1の絶縁膜上方で、前記第1のゲート電極と重なる領域を有する半導体層と、
    前記半導体層上方の第2の絶縁膜と、
    前記第2の絶縁膜上方で、前記半導体層と重なる領域を有する第2のゲート電極と、
    前記第2の絶縁膜上方の第2の導電層と、を有し、
    前記第1のゲート電極と前記第1の導電層とは、同じ導電膜を加工する工程を経て設けられたものであり、
    前記第2のゲート電極と前記第2の導電層とは、同じ導電膜を加工する工程を経て設けられたものであり、
    前記第1のゲート電極は、前記第1の絶縁膜、前記半導体層、及び前記第2の絶縁膜を介して前記第2のゲート電極と重なる領域を有し、
    前記第1の導電層は、前記第1の絶縁層に設けられた開口を介して前記第2の導電層と電気的に接続されており、
    前記半導体層は、チャネル形成領域において、第1の膜厚を有する第1の領域と、前記第1の膜厚よりも小さい第2の膜厚を有する第2の領域と、を有し、
    前記第2の領域は、前記半導体層の一部が除去された領域であり、
    前記半導体層の一部が除去された前記領域は、前記半導体層の前記第1の絶縁膜と向き合う側の表面に設けられており、
    前記第1のゲート電極は、第1の絶縁膜を介して前記第2の領域と重なる領域を有し、
    前記第2のゲート電極は、第2の絶縁膜を介して前記第2の領域と重なる領域を有し、
    前記半導体層の前記第2の絶縁膜と向き合う側の表面は、平面を有することを特徴とする半導体装置。
JP2013147447A 2013-07-16 2013-07-16 半導体装置 Active JP5657069B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147447A JP5657069B2 (ja) 2013-07-16 2013-07-16 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147447A JP5657069B2 (ja) 2013-07-16 2013-07-16 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007185597A Division JP5322408B2 (ja) 2007-07-17 2007-07-17 半導体装置及びその作製方法

Publications (2)

Publication Number Publication Date
JP2013243383A JP2013243383A (ja) 2013-12-05
JP5657069B2 true JP5657069B2 (ja) 2015-01-21

Family

ID=49843921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147447A Active JP5657069B2 (ja) 2013-07-16 2013-07-16 半導体装置

Country Status (1)

Country Link
JP (1) JP5657069B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700695B (zh) * 2013-12-25 2017-11-03 深圳市华星光电技术有限公司 低温多晶硅薄膜及其制备方法、晶体管
KR102658051B1 (ko) * 2021-02-03 2024-04-17 한국전자통신연구원 화합물 반도체 소자
US11916140B2 (en) 2021-02-03 2024-02-27 Electronics And Telecommunications Research Institute Compound semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483348A (ja) * 1990-07-26 1992-03-17 Fujitsu Ltd 半導体装置及びその製造方法
JPH05291577A (ja) * 1992-04-09 1993-11-05 Fujitsu Ltd 半導体装置及びその製造方法
JP2000323716A (ja) * 1999-05-12 2000-11-24 Sony Corp 半導体装置およびその製造方法
JP2001053281A (ja) * 1999-08-11 2001-02-23 Sony Corp Soi型半導体装置及びその製造方法
US6952023B2 (en) * 2001-07-17 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2006191127A (ja) * 2001-07-17 2006-07-20 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Also Published As

Publication number Publication date
JP2013243383A (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5322408B2 (ja) 半導体装置及びその作製方法
JP5252947B2 (ja) 半導体装置の作製方法
US7683838B2 (en) Semiconductor device
US7767516B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of antenna
JP4942998B2 (ja) 半導体装置及び半導体装置の作製方法
US8716834B2 (en) Semiconductor device including antenna
US8353459B2 (en) Semiconductor device and method for manufacturing the same
JP4827618B2 (ja) アンテナの作製方法、半導体装置の作製方法
JP5089033B2 (ja) 半導体装置の作製方法
KR101377426B1 (ko) 반도체 장치
JP5100012B2 (ja) 半導体装置及びその作製方法
JP5657069B2 (ja) 半導体装置
JP5350616B2 (ja) 半導体装置
JP5030470B2 (ja) 半導体装置の作製方法
JP5388433B2 (ja) 半導体装置の作製方法
JP4908936B2 (ja) 半導体装置の作製方法
JP5105918B2 (ja) 半導体装置の作製方法
KR20080074800A (ko) 반도체 장치
JP2007273968A (ja) 半導体装置及びその作製方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5657069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250