JP5655385B2 - Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same - Google Patents

Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same Download PDF

Info

Publication number
JP5655385B2
JP5655385B2 JP2010132697A JP2010132697A JP5655385B2 JP 5655385 B2 JP5655385 B2 JP 5655385B2 JP 2010132697 A JP2010132697 A JP 2010132697A JP 2010132697 A JP2010132697 A JP 2010132697A JP 5655385 B2 JP5655385 B2 JP 5655385B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010132697A
Other languages
Japanese (ja)
Other versions
JP2011256440A (en
Inventor
孝 寒川
孝 寒川
太田 裕樹
裕樹 太田
宇城 工
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010132697A priority Critical patent/JP5655385B2/en
Publication of JP2011256440A publication Critical patent/JP2011256440A/en
Application granted granted Critical
Publication of JP5655385B2 publication Critical patent/JP5655385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐リジング特性に優れたフェライト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel sheet having excellent ridging resistance and a method for producing the same.

フェライト系ステンレス鋼板は、オーステナイト系ステンレス鋼板に比較して安価な材料であり、耐食性に優れていることから、建築材料、輸送機器、家庭電化製品、厨房機器等の様々な用途に使用されている。しかし、フェライト系ステンレス鋼は、加工の際にリジングと呼ばれる表面凹凸が発生しやすいという問題点を有している。   Ferritic stainless steel sheets are cheaper materials than austenitic stainless steel sheets and have excellent corrosion resistance, so they are used in various applications such as building materials, transportation equipment, home appliances, and kitchen equipment. . However, ferritic stainless steel has a problem that surface irregularities called ridging are likely to occur during processing.

リジング現象は、類似な結晶方位を有する冷延鋼板のフェライト粒の集合体(以下、コロニーと呼ぶ。)に起因し、その起源はスラブ凝固時に形成される粗大な柱状晶組織と考えられている。すなわち、粗大な柱状晶組織が、熱間圧延とそれに続く熱延板焼鈍後にも粗大なフェライト粒として残存し、冷間圧延、それに続く仕上焼鈍後に結晶方位の分散が小さい再結晶フェライト粒のコロニーを形成する。   The ridging phenomenon is caused by aggregates of ferrite grains (hereinafter referred to as colonies) of cold-rolled steel sheets having similar crystal orientations, and the origin is considered to be a coarse columnar crystal structure formed during slab solidification. . That is, a coarse columnar crystal structure remains as coarse ferrite grains after hot rolling and subsequent hot-rolled sheet annealing, and a colony of recrystallized ferrite grains with small dispersion of crystal orientation after cold rolling and subsequent finish annealing. Form.

このような仕上焼鈍後のコロニーの形成を抑制して耐リジング特性を改善するために、これまで数多くの技術が報告されている。主な技術として、(a)スラブ組織の高等軸晶率化、(b)熱延板再結晶の促進、(c)冷延板再結晶の促進が挙げられる。   Many techniques have been reported so far in order to improve the ridging resistance by suppressing the formation of colonies after such finish annealing. The main techniques include (a) increasing the equiaxed crystal ratio of the slab structure, (b) promoting hot-rolled sheet recrystallization, and (c) promoting cold-rolled sheet recrystallization.

(a)スラブ組織の高等軸晶率化技術として、特許文献1には、フェライト系ステンレス鋼スラブの連続鋳造時の電磁攪拌推力を45〜130mmHdとして電磁攪拌することでリジングの原因となる柱状晶の伸長肥大化を防止する技術が開示されている。   (A) As a technology for increasing the equiaxed crystal ratio of a slab structure, Patent Document 1 discloses a columnar crystal that causes ridging by electromagnetic stirring with an electromagnetic stirring thrust of 45 to 130 mmHd during continuous casting of a ferritic stainless steel slab. A technique for preventing the enlargement and enlargement of the skin is disclosed.

(b)熱延板再結晶の促進技術として、特許文献2には、フェライト系ステンレス鋼鋼片の熱間圧延にあたり、その粗圧延段階の圧延に際し、前記粗圧延の最終パスの圧下率とその前のパスの圧下率との合計値を70%以上、前記粗圧延の最終パス出側の圧延速度を200m/min以上とし、前記粗圧延の仕上げ温度を1100〜800℃とすることを特徴とする耐リジング性に優れるフェライト系ステンレス鋼板の製造方法が開示されている。   (B) As a technique for promoting hot-rolled sheet recrystallization, Patent Document 2 describes the rolling reduction of the final pass of the rough rolling and the rolling ratio in the rolling of the rough rolling stage in hot rolling of ferritic stainless steel pieces. The total value with the rolling reduction of the previous pass is 70% or more, the rolling speed on the final pass exit side of the rough rolling is 200 m / min or more, and the finishing temperature of the rough rolling is 1100 to 800 ° C. A method for producing a ferritic stainless steel sheet having excellent ridging resistance is disclosed.

(c)冷延板再結晶の促進技術として、特許文献3には、Al:0.08〜0.5質量%を含有するフェライト系ステンレス鋼材を熱間圧延して熱延鋼板とし、該熱延鋼板を焼鈍することなくワ−クロ−ル径300mmφ以上の冷間圧延機で圧下率40%以上の冷間圧延を施して冷延鋼板とし、次いで該冷延鋼板を700〜1050℃の温度範囲で10分間以内の中間焼鈍を行った後、更に40%以上の圧下率で冷間圧延し、仕上焼鈍することを特徴とする表面性状及び加工性のすぐれたフェライト系ステンレス鋼板の製造法が開示されている。   (C) As a technique for promoting cold-rolled sheet recrystallization, Patent Document 3 discloses that a ferritic stainless steel material containing Al: 0.08 to 0.5% by mass is hot-rolled to form a hot-rolled steel sheet. A cold rolled steel sheet is subjected to cold rolling at a rolling reduction of 40% or more with a cold rolling mill having a work diameter of 300 mmφ or more without annealing the rolled steel sheet, and the cold rolled steel sheet is then heated to a temperature of 700 to 1050 ° C. A method for producing a ferritic stainless steel sheet having excellent surface properties and workability is characterized in that after intermediate annealing within 10 minutes in a range, cold rolling is further performed at a reduction rate of 40% or more, and finish annealing is performed. It is disclosed.

特開平4−236717号公報JP-A-4-236717 特開平7−126757号公報JP-A-7-126757 特開昭61−23720号公報Japanese Patent Laid-Open No. 61-23720

特許文献1に開示された技術では、凝固組織の微細化、等軸晶化に電磁攪拌は有効であるが、そのための高額な設備投資が必要となる。   In the technique disclosed in Patent Document 1, electromagnetic stirring is effective for refining the solidification structure and equiaxed crystallization, but it requires expensive capital investment.

また、特許文献2に開示された技術では、熱延中の再結晶および熱延板焼鈍中の再結晶促進に粗圧延の強圧下による熱延歪の増大は効果的である。しかし、Crを多く含有するフェライト系ステンレス鋼では、耐酸化性が良好であるため、表面に生成するスケールが薄く、圧延ロールとの焼き付きによる表面疵、いわゆる肌荒れが生じやすいという問題がある。熱延板に肌荒れが生じると、酸洗で溶解量を増やすために通板速度を低速にする必要が生じたり、さらにひどい場合には、熱延板の表面をグラインダー等により削る必要が生じるため、生産性・経済性が著しく低下するという問題もある。   Further, in the technique disclosed in Patent Document 2, it is effective to increase hot rolling strain due to strong rolling during rough rolling to promote recrystallization during hot rolling and recrystallization during hot rolling sheet annealing. However, since ferritic stainless steel containing a large amount of Cr has good oxidation resistance, there is a problem that the scale generated on the surface is thin, and surface flaws due to seizure with the rolling roll, so-called rough skin, are likely to occur. If the hot-rolled sheet becomes rough, it may be necessary to reduce the sheet-feeding speed to increase the amount of dissolution by pickling, or in severe cases it will be necessary to cut the surface of the hot-rolled sheet with a grinder or the like. There is also a problem that productivity and economy are significantly reduced.

特許文献3に開示された技術では、冷間圧延回数を増やして仕上焼鈍板の再結晶を促進することは効果的であるが、通常の冷延1回の製造法に比べて、中間焼鈍および冷間圧延の工程が増えることにより、大幅に生産性が低下するという問題がある。   In the technique disclosed in Patent Document 3, it is effective to increase the number of cold rolling and promote recrystallization of the finish annealed plate, but compared with the ordinary cold rolling one manufacturing method, intermediate annealing and As the number of cold rolling processes increases, there is a problem that productivity is significantly reduced.

本発明は、上記問題点に鑑み、安価かつ高効率な生産が可能な、耐リジング特性に優れたフェライト系ステンレス鋼板およびその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a ferritic stainless steel sheet having excellent ridging resistance that can be produced at low cost and with high efficiency, and a method for producing the same.

本発明者らは、高額な鋳造設備の導入や生産性の低下を招くことなく製造できる耐リジング特性に優れたフェライト系ステンレス鋼板について鋭意検討を行った結果、
(1)仕上焼鈍板のフェライト粒の平均結晶粒径を15μm以下に制御すれば、優れた耐リジング特性が得られること、
(2)仕上焼鈍板の微細な組織制御は、適量のZrの添加と仕上焼鈍温度の制御により得られ、特殊な鋳造条件や熱延条件、更には冷延回数の増加等は不要であることを知見した。
As a result of earnestly examining the ferritic stainless steel sheet excellent in ridging resistance that can be produced without introducing expensive casting equipment and reducing productivity,
(1) By controlling the average grain size of ferrite grains of the finish annealed plate to 15 μm or less, excellent ridging resistance can be obtained,
(2) Fine structure control of the finish annealed plate can be obtained by adding an appropriate amount of Zr and controlling the finish annealing temperature, and there is no need for special casting conditions, hot rolling conditions, or an increase in the number of cold rolling. I found out.

本発明は、このような知見に基づきなされたもので、その要旨は、以下の通りである。   The present invention has been made based on such knowledge, and the gist thereof is as follows.

第一の発明は、質量%で、C:0.02%以下、Si:0.70%以下、Mn:0.50%以下、P:0.04%以下、S:0.01%以下、Al:0.01〜0.15%、N:0.02%以下、Cr:16〜23%、Ni:0.50%以下、Ti:0.10%以下、Nb:0.01%以下、Zr:0.20〜0.80%、を含有し、残部Feおよび不可避的不純物からなり、仕上焼鈍後のフェライト粒の平均結晶粒径が15μm以下であることを特徴とする耐リジング特性に優れたフェライト系ステンレス鋼板である。   1st invention is the mass%, C: 0.02% or less, Si: 0.70% or less, Mn: 0.50% or less, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.15%, N: 0.02% or less, Cr: 16 to 23%, Ni: 0.50% or less, Ti: 0.10% or less, Nb: 0.01% or less, Zr: 0.20 to 0.80%, comprising the balance Fe and inevitable impurities, and having excellent ridging resistance, characterized in that the average grain size of ferrite grains after finish annealing is 15 μm or less Ferritic stainless steel sheet.

第二の発明は、さらに、質量%で、Cu:0.30〜0.80%、Mo:0.1〜2.5%の中から選ばれる1種または2種を含有することを特徴とする第一の発明に記載の耐リジング特性に優れたフェライト系ステンレス鋼板である。   The second invention is characterized by further containing one or two kinds selected from Cu: 0.30 to 0.80% and Mo: 0.1 to 2.5% by mass%. This is a ferritic stainless steel sheet having excellent ridging resistance as described in the first invention.

第三の発明は、質量%で、C:0.02%以下、Si:0.70%以下、Mn:0.50%以下、P:0.04%以下、S:0.01%以下、Al:0.01〜0.15%、N:0.02%以下、Cr:16〜23%、Ni:0.50%以下、Ti:0.10%以下、Nb:0.01%以下、Zr:0.20〜0.80%、を含有し、残部Feおよび不可避的不純物からなる鋼素材を熱間圧延して熱延鋼板とし、該熱延鋼板を900〜1000℃の温度範囲で焼鈍し、次いで、酸洗、冷間圧延した後に880〜960℃の温度範囲で仕上焼鈍してフェライト粒の平均結晶粒径を15μm以下とすることを特徴とする耐リジング特性に優れたフェライト系ステンレス鋼板の製造方法である。   The third invention is mass%, C: 0.02% or less, Si: 0.70% or less, Mn: 0.50% or less, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.15%, N: 0.02% or less, Cr: 16 to 23%, Ni: 0.50% or less, Ti: 0.10% or less, Nb: 0.01% or less, Zr: 0.20 to 0.80%, a steel material consisting of the balance Fe and inevitable impurities is hot-rolled into a hot-rolled steel sheet, and the hot-rolled steel sheet is annealed at a temperature range of 900 to 1000 ° C. Next, ferritic stainless steel having excellent ridging resistance, characterized in that after pickling and cold rolling, finish annealing is performed in a temperature range of 880 to 960 ° C. to make the average grain size of ferrite grains 15 μm or less. It is a manufacturing method of a steel plate.

第四の発明は、前記鋼素材の製鋼段階で、Zr源としてフェロジルコニウムを溶鋼中に添加することを特徴とする耐ジリング特性に優れたフェライト系ステンレス鋼板の製造方法である。   4th invention is a manufacturing method of the ferritic stainless steel plate excellent in the galling-proof characteristic characterized by adding ferrozirconium as a Zr source in molten steel in the steelmaking stage of the said steel raw material.

第五の発明は、前記鋼素材が、さらに、質量%で、Cu:0.30〜0.80%、Mo:0.1〜2.5%の中から選ばれる1種または2種を含有することを特徴とする第三の発明または第四の発明に記載の耐リジング特性に優れたフェライト系ステンレス鋼板の製造方法である。   According to a fifth aspect of the present invention, the steel material further includes one or two kinds selected from Cu: 0.30 to 0.80% and Mo: 0.1 to 2.5% by mass%. A method for producing a ferritic stainless steel sheet having excellent ridging resistance as described in the third or fourth invention.

本発明により、高額な鋳造設備の導入や生産性の低下を伴わずに、耐リジング特性に優れたフェライト系ステンレス鋼板を製造できる。また、本発明のフェライト系ステンレス鋼板は、耐食性にも極めて優れていることから、建材、建具、電機、産業機械、自動車、厨房用品、貯水器などの分野にも適用可能である。   According to the present invention, a ferritic stainless steel sheet having excellent ridging resistance can be manufactured without introducing expensive casting equipment and reducing productivity. Moreover, since the ferritic stainless steel sheet of the present invention is extremely excellent in corrosion resistance, it can also be applied to fields such as building materials, joinery, electric machinery, industrial machinery, automobiles, kitchen supplies, and water reservoirs.

仕上焼鈍板のフェライト粒の平均結晶粒径とリジング高さの関係を説明する図である。It is a figure explaining the relationship between the average grain size of the ferrite grain of a finish annealing board, and ridging height.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明で最も重要となる仕上焼鈍板のフェライト粒の平均結晶粒径とZr量について説明する。   First, the average grain size and Zr amount of ferrite grains of the finish annealed plate, which are the most important in the present invention, will be described.

リジング現象は、仕上焼鈍板の各フェライト粒の結晶方位による塑性変形能の差によって生じる鋼板表面の凹凸と考えられる。そこで、仕上焼鈍板のフェライト粒を微細化することが、塑性変形時の鋼板表面の凹凸の低減に寄与するものと考え、C、N安定化元素としてZrを含有させることに着目した。   The ridging phenomenon is considered to be unevenness on the surface of the steel sheet caused by the difference in plastic deformability depending on the crystal orientation of each ferrite grain of the finish annealed sheet. Therefore, it was considered that refinement of ferrite grains in the finish-annealed plate contributes to the reduction of irregularities on the surface of the steel plate during plastic deformation, and attention was paid to the inclusion of Zr as a C and N stabilizing element.

Zrは、Nとの結合力がTiよりも強く、粗大なTiNの生成を抑えるために有効に働く。また、CrやNを無害化して溶接部で粒界腐食が生じるのを防ぐ効果もある。さらに、微細なZrNを生成するため、熱延板焼鈍後の組織を微細化し、冷延板焼鈍においても、フェライト粒の粒成長の進行を抑制する。   Zr has a stronger bonding force with N than Ti and works effectively to suppress the formation of coarse TiN. In addition, Cr and N are made harmless, and there is an effect of preventing the occurrence of intergranular corrosion at the weld. Furthermore, in order to produce | generate fine ZrN, the structure | tissue after hot-rolled sheet annealing is refined | miniaturized and progress of the grain growth of a ferrite grain is suppressed also in cold-rolled sheet annealing.

このような仕上焼鈍後の微細化への寄与以外に、C、N安定化元素としてNbを含有した場合のような再結晶温度の上昇もほとんどないため、普通鋼兼用設備である高速冷延板焼鈍ライン(タンデムーCAL)での製造が可能であり、生産性の面からも有利である。   In addition to contributing to refinement after such finish annealing, there is almost no increase in the recrystallization temperature as in the case of containing Nb as a C and N stabilizing element. Manufacture on an annealing line (tandemu CAL) is possible, which is advantageous from the standpoint of productivity.

そこで、表1に示すZr量を変化させた組成を有する鋼を溶製し、スラブとした。該スラブを1170℃まで加熱し、6パスの粗圧延と6パスの仕上圧延により、仕上圧延温度を850℃、巻取温度を450℃とする熱間圧延を行って、板厚4.0mmの熱延板とした。次に、この熱延板を950℃で60秒の熱延板焼鈍を施した後、酸洗し、冷間圧延を行って、板厚0.8mmの冷延板とした。更に、900℃で60秒の仕上焼鈍を施した。得られた仕上焼鈍板のフェライト粒の平均結晶粒径とリジング高さを、以下の方法により測定した。   Therefore, steel having a composition in which the amount of Zr shown in Table 1 was changed was melted to obtain a slab. The slab was heated to 1170 ° C., and hot rolling was performed at a finishing rolling temperature of 850 ° C. and a winding temperature of 450 ° C. by 6 passes of rough rolling and 6 passes of finish rolling, and the plate thickness was 4.0 mm. A hot-rolled sheet was used. Next, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 60 seconds, followed by pickling and cold rolling to obtain a cold-rolled sheet having a thickness of 0.8 mm. Further, finish annealing was performed at 900 ° C. for 60 seconds. The average grain size and ridging height of the ferrite grains of the finished annealed plate were measured by the following method.

仕上焼鈍板のフェライト粒の平均結晶粒径について
平均結晶粒径は、得られた仕上焼鈍板の圧延方向(L方向)の断面において、板厚1/2位置、1/4位置および1/6位置のフェライト結晶粒度をJIS G0552(切断法)に準拠して求めた。
About average crystal grain size of ferrite grains of finish annealed plate The average crystal grain size is the thickness 1/2 position, 1/4 position and 1/6 in the cross section in the rolling direction (L direction) of the obtained finish annealed sheet. The ferrite crystal grain size at the position was determined according to JIS G0552 (cutting method).

フェライト結晶粒度から結晶粒径への換算は、前記JIS G0552に準じて求めた。断面積1mm当たりの結晶粒の数nをもとに、結晶粒を円近似し、
n×r×π=1mm から、結晶粒半径rを求め、結晶粒径(2r)を算出した。
例えば、粒度番号6.0の場合、n=512個、結晶粒径の平均断面積は0.00195mmとなり、平均結晶粒径は49.8μmが得られる。
Conversion from the ferrite crystal grain size to the crystal grain size was determined according to JIS G0552. Based on the number n of crystal grains per 1 mm 2 in cross-sectional area, the crystal grains are circularly approximated,
The crystal grain radius r was determined from n × r 2 × π = 1 mm 2 and the crystal grain size (2r) was calculated.
For example, when the particle size number is 6.0, n = 512, the average cross-sectional area of the crystal grain size is 0.00195 mm 2 , and the average crystal grain size is 49.8 μm.

リジング高さについて
圧延方向と平行にJIS5号引張試験片を採取し、その表面を600番のエメリー紙を用いて研磨した後、20%の引張歪みを付与し、表面粗度計でリジング高さを測定した。JIS B0601:2001で規定される算術平均うねりWaをリジング高さとした。
Waの測定では、測定長16mm、ハイカットフィルターの波長を0.8mm、ローカットフィルターの波長を25mmとした。
About ridging height After collecting JIS No. 5 tensile test piece in parallel with the rolling direction and polishing the surface with No. 600 emery paper, 20% tensile strain was applied, and ridging height was measured with a surface roughness meter. Was measured. The arithmetic mean waviness Wa defined in JIS B0601: 2001 was defined as the ridging height.
In the measurement of Wa, the measurement length was 16 mm, the wavelength of the high cut filter was 0.8 mm, and the wavelength of the low cut filter was 25 mm.

表1および図1に仕上焼鈍板のフェライト粒の平均結晶粒径およびリジング高さを示す。リジング高さが10μm以下を耐リジング特性が良好の判定基準とした。図1から仕上焼鈍板のフェライト粒の平均結晶粒径が15μm以下であれば、リジング高さが10μm以下となり、優れた耐リジング特性が得られることがわかる。したがって、仕上焼鈍板のフェライト粒の平均結晶粒径は15μm以下とする。   Table 1 and FIG. 1 show the average grain size and ridging height of the ferrite grains of the finish annealed plate. A ridging height of 10 μm or less was determined as a criterion for good ridging resistance. As can be seen from FIG. 1, when the average grain size of the ferrite grains of the finish annealed plate is 15 μm or less, the ridging height is 10 μm or less, and excellent ridging resistance is obtained. Accordingly, the average grain size of ferrite grains in the finish annealed plate is set to 15 μm or less.

Zr:0.20〜0.80質量%
次に、仕上焼鈍板のフェライト粒の平均結晶粒径が15μm以下となるためのZr含有量と適正な仕上焼鈍温度範囲を調べるため、表1の鋼No.2、3、5の冷延板を用いて、仕上焼鈍温度を880℃、930℃、960℃、1000℃で60秒焼鈍した仕上焼鈍板を作製し、フェライト粒の平均結晶粒径を評価した。その結果を表2に示す。
Zr: 0.20 to 0.80 mass%
Next, in order to investigate the Zr content and the appropriate finish annealing temperature range for the average grain size of the ferrite grains of the finish annealed plate to be 15 μm or less, the steel Nos. Using 2, 3, and 5 cold-rolled plates, finish annealing plates were annealed at 880 ° C., 930 ° C., 960 ° C., and 1000 ° C. for 60 seconds, and the average grain size of ferrite grains was evaluated. . The results are shown in Table 2.

表2の結果から、Zr量が0.16質量%の仕上焼鈍板(2A〜2D)では、仕上焼鈍温度を880℃まで低温化しても平均結晶粒径が15μmを超えていた。一方、Zr量が0.21質量%の仕上焼鈍板(3A〜3D)では、960℃以下の温度で仕上焼鈍を施した板No.3A、3B、3Cの平均結晶粒径は15μm以下と微細化した。更に、Zr量が0.47質量%の仕上焼鈍板(5A〜5D)では、仕上焼鈍温度を1000℃まで高温化しても平均結晶粒径は15μm以下の値が得られた。   From the results of Table 2, in the finish annealed plates (2A to 2D) having a Zr content of 0.16% by mass, the average crystal grain size exceeded 15 μm even when the finish annealing temperature was lowered to 880 ° C. On the other hand, in the finish annealed plates (3A to 3D) having a Zr amount of 0.21% by mass, the plate No. 1 subjected to finish annealing at a temperature of 960 ° C. or less. The average crystal grain size of 3A, 3B, and 3C was refined to 15 μm or less. Further, in the finish annealing plate (5A to 5D) having a Zr amount of 0.47% by mass, the average grain size was 15 μm or less even when the finish annealing temperature was increased to 1000 ° C.

このことから、仕上焼鈍板のフェライト粒を微細化するのに必要なZr量は0.20質量%以上とする。また、0.80質量%を超えた含有は原料コストの高騰を招くため、Zr量は、0.20〜0.80質量%の範囲とする。   For this reason, the amount of Zr necessary to refine the ferrite grains of the finish-annealed plate is 0.20% by mass or more. Moreover, since inclusion exceeding 0.80 mass% causes the raw material cost to rise, the amount of Zr shall be 0.20-0.80 mass%.

なお、Zrを溶鋼に含有させる際には、原料としてフェロジルコニウムを用いる。Zrは、酸素との親和力が強く、溶鋼の脱酸が不十分な状態で原料を投入したり、スラグ上からフェロジルコニウムを投入するなどすると、その多くが酸化物となってしまい、仕上焼鈍板の結晶粒微細化のために本発明で重要となるZrNの生成の役割を果たさなくなってしまう。このため、フェロジルコニウムの添加にあたっては、例えば、耐火物や鉄で作った筒状のワイヤや鉄製の箱の中にフェロジルコニウムを充填して、溶鋼へ直接投入するなどして、スラグ中の酸素とZrの反応を抑えるよう工夫することが大切である。   When Zr is contained in the molten steel, ferrozirconium is used as a raw material. Zr has a strong affinity with oxygen, and when raw materials are introduced in a state where the deoxidation of molten steel is insufficient, or when ferrozirconium is introduced from the slag, many of them become oxides, and the finish annealing plate Thus, the role of ZrN generation, which is important in the present invention for the refinement of crystal grains, is no longer fulfilled. For this reason, when adding ferrozirconium, for example, ferrozirconium is filled into a cylindrical wire or iron box made of refractory or iron and directly put into the molten steel. It is important to devise to suppress the reaction between Zr and Zr.

Figure 0005655385
Figure 0005655385

Figure 0005655385
Figure 0005655385

仕上焼鈍温度:880〜960℃
仕上焼鈍温度は低温のほうが仕上焼鈍後のフェライト粒が小さくなるが、880℃未満では再結晶が不十分となり、加工性が劣化するため、880℃以上とする。また、960℃を超えて仕上焼鈍した場合、含有するZr量によって、仕上焼鈍板のフェライト粒の平均結晶粒径が15μmを超える場合があるので、仕上焼鈍温度の温度範囲は880〜960℃とする。好ましくは、880〜920℃の範囲である。
Finish annealing temperature: 880-960 ° C
The final annealing temperature is set to 880 ° C. or higher because the ferrite grain after the final annealing becomes smaller at a lower temperature, but recrystallization becomes insufficient at a temperature lower than 880 ° C. and the workability deteriorates. In addition, when the finish annealing is over 960 ° C., the average crystal grain size of the ferrite grains of the finish annealing plate may exceed 15 μm depending on the amount of Zr contained, so the temperature range of the finish annealing temperature is 880 to 960 ° C. To do. Preferably, it is the range of 880-920 degreeC.

以下にその他の成分組成及び製造条件について説明する。   Other component compositions and production conditions will be described below.

なお、以下の成分組成における%は全て質量%とする。   In addition,% in the following component composition shall be mass%.

C:0.02%以下
Cは、強度を高める元素であるが、その量が0.02%を超えると、延性が低下して加工性が劣化する。したがって、C量は0.02%以下とする。
C: 0.02% or less C is an element that increases the strength. However, if its amount exceeds 0.02%, ductility decreases and workability deteriorates. Therefore, the C content is 0.02% or less.

Si:0.70%以下
Siは、脱酸剤として用いられる元素である。しかし、多量に含有すると硬質化して延性が低下する。したがって、Si量は0.70%以下とする。好ましくは、0.30%以下である。
Si: 0.70% or less Si is an element used as a deoxidizer. However, when it contains abundantly, it will harden and ductility will fall. Therefore, the Si content is 0.70% or less. Preferably, it is 0.30% or less.

Mn:0.50%以下
Mnは、鋼の溶製段階で脱酸剤として用いられるが、その量が0.50%を超えると、硫化物として析出し、耐食性を著しく低下させる。従って、Mn量は0.50%以下とする。好ましくは、0.30%以下である。
Mn: 0.50% or less Mn is used as a deoxidizer in the melting stage of steel, but if its amount exceeds 0.50%, it precipitates as a sulfide and significantly reduces the corrosion resistance. Therefore, the amount of Mn is 0.50% or less. Preferably, it is 0.30% or less.

P:0.04%以下
Pが0.04%を超えると、フェライト粒界へ偏析し、脆性破壊を誘起するとともに、硬質化させ、延性を低下させる。したがって、P量は0.04%以下とする。
P: 0.04% or less When P exceeds 0.04%, it segregates to ferrite grain boundaries, induces brittle fracture, hardens, and decreases ductility. Therefore, the P content is 0.04% or less.

S:0.01%以下
Sは、熱間加工性および耐食性の点から少ないほうが好ましい。したがって、S量は0.01%以下とする。好ましくは、0.005%以下である。
S: 0.01% or less S is preferably smaller in terms of hot workability and corrosion resistance. Therefore, the S content is 0.01% or less. Preferably, it is 0.005% or less.

Al:0.01〜0.15%
Alは、溶製段階で鋼の脱酸剤として用いられるが、その効果を得るには0.01%以上必要である。一方、過剰に含有すると粗大なAl系介在物が生成して、表面疵の原因となるとともに、加工性を劣化させる。したがって、Al量は0.01〜0.15%の範囲とする。
Al: 0.01 to 0.15%
Al is used as a deoxidizer for steel in the melting stage, but 0.01% or more is necessary to obtain the effect. On the other hand, if contained excessively, coarse Al-based inclusions are generated, causing surface flaws and degrading workability. Therefore, the Al content is in the range of 0.01 to 0.15%.

N:0.02%以下
Nが0.02%を超えると、Cr窒化物として析出し、硬質化して延性が低下する。したがって、N量は0.02%以下とする。
N: 0.02% or less When N exceeds 0.02%, it precipitates as Cr nitride, hardens, and ductility decreases. Therefore, the N content is 0.02% or less.

Cr:16〜23%
Crは、鋼板表面に不動態皮膜を形成して耐食性を高める元素である。こうした効果を得るには、Cr量を16%以上とする必要がある。一方、Cr量が23%を超えると靭性が低下するほか、強度上昇のため成形性が低下する。したがって、Cr量は16〜23%の範囲とする。
Cr: 16-23%
Cr is an element that improves the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain such an effect, the Cr content needs to be 16% or more. On the other hand, if the Cr content exceeds 23%, the toughness decreases and the formability decreases due to the increase in strength. Therefore, the Cr content is in the range of 16-23%.

Ni:0.50%以下
Niは、隙間腐食を抑制させる効果を有する元素である。しかし、高価であることに加え、その量が0.50%を超えると、硬質化させ、延性を低下させる。したがって、Ni量は0.50%以下とする。
Ni: 0.50% or less Ni is an element having an effect of suppressing crevice corrosion. However, in addition to being expensive, when the amount exceeds 0.50%, it hardens and decreases ductility. Therefore, the Ni content is 0.50% or less.

Ti:0.10%以下
Tiは、溶接部の加工性や耐食性に有害なCやNをTiCやTiNとして無害化して加工性、耐食性を向上させる効果を持つ一方で、粗大なTiNを生成するため、熱延焼鈍板、および仕上焼鈍板のフェライト粒の粗大化を誘起する。仕上焼鈍板のフェライト粒が粗大化した場合は、耐リジング特性が劣化する。したがって、Ti量は0.10%以下とする。
Ti: 0.10% or less Ti has the effect of detoxifying C and N, which are harmful to the workability and corrosion resistance of welds, as TiC and TiN to improve workability and corrosion resistance, while generating coarse TiN Therefore, the ferrite grains of the hot-rolled annealed plate and the finish annealed plate are coarsened. When the ferrite grains of the finish annealed plate are coarsened, the ridging resistance is deteriorated. Therefore, the Ti amount is 0.10% or less.

Nb:0.01%以下
Nbは、微細なNbCを生成し、フェライト結晶粒の微細化には有効であるが、0.01%を超えると再結晶温度を上昇させるため、普通鋼を焼鈍するための高速冷延板焼鈍ラインでは焼鈍が不十分となり、仕上焼鈍板の加工性が低下する。したがって、Nb量は0.01%以下とする。好ましくは、0.005%以下である。
Nb: 0.01% or less Nb produces fine NbC and is effective for refining ferrite crystal grains. However, if it exceeds 0.01%, the recrystallization temperature is raised, so normal steel is annealed. Therefore, in the high-speed cold-rolled sheet annealing line, annealing becomes insufficient, and the workability of the finish-annealed sheet decreases. Therefore, the Nb content is 0.01% or less. Preferably, it is 0.005% or less.

本発明の基本成分元素は以上であるが、更に所望の特性を向上させる場合は、Cu、Moの1種または2種を選択元素として含有することができる。   Although the basic component elements of the present invention are as described above, in order to further improve desired characteristics, one or two of Cu and Mo can be contained as selective elements.

Cu:0.30〜0.80%
Cuは、耐食性を向上させる重要な元素であり、特に隙間腐食を低減させるために必要な元素である。この効果を得るには0.30%以上の含有が必要である。一方、0.80%を超えて含有すると、熱間加工性が劣化するため、Cuを含有する場合は、その量は0.30〜0.80%の範囲とすることが好ましい。更に好ましい範囲は0.30〜0.50%である。
ただし、特に高い耐食性を必要としない場合には、Cuを含有しなくても良い。
Cu: 0.30 to 0.80%
Cu is an important element for improving the corrosion resistance, and is an element necessary particularly for reducing crevice corrosion. In order to obtain this effect, a content of 0.30% or more is necessary. On the other hand, if the content exceeds 0.80%, the hot workability deteriorates. Therefore, when Cu is contained, the amount is preferably in the range of 0.30 to 0.80%. A more preferable range is 0.30 to 0.50%.
However, Cu is not necessarily contained when high corrosion resistance is not required.

Mo:0.1〜2.5%
Moは、耐食性を向上させる元素であり、高い耐食性を必要とする場合には含有することが有効である。一方で、高価な元素であることに加えて、2.5%を超えて含有すると熱延板の靭性を低下させて製造性を低下させる懸念がある。さらに、仕上焼鈍板を硬質化させて、加工性を劣化させるので、Moを含有する場合は、その量は0.1〜2.5%の範囲とすることが好ましい。
Mo: 0.1-2.5%
Mo is an element that improves the corrosion resistance, and it is effective to contain it when high corrosion resistance is required. On the other hand, in addition to being an expensive element, when the content exceeds 2.5%, there is a concern that the toughness of the hot-rolled sheet is lowered and the productivity is lowered. Furthermore, since a finish annealing board is hardened and workability is deteriorated, when it contains Mo, it is preferable to make the quantity into the range of 0.1-2.5%.

なお、残部は、Feおよび不可避的不純物である。ただし、V、Ca、Mg、Bは、不可避的不純物として許容される範囲で含有してもよい。その範囲は、V≦0.3%、Ca≦0.003%、Mg≦0.003%、B≦0.003%である。   The balance is Fe and inevitable impurities. However, V, Ca, Mg, and B may be contained within a range allowed as an inevitable impurity. The ranges are V ≦ 0.3%, Ca ≦ 0.003%, Mg ≦ 0.003%, and B ≦ 0.003%.

熱延板焼鈍温度:900〜1000℃
仕上焼鈍後のフェライト粒の結晶方位を分散させるには、熱延板焼鈍で十分に熱延組織を再結晶させる必要があるので、熱延板焼鈍温度は900℃以上とする。一方、熱延板焼鈍温度が1000℃を超えると結晶粒が粗大化した場合、仕上焼鈍後の結晶粒も大きくなるため、熱延板焼鈍温度は、900〜1000℃の温度範囲とする。好ましくは920〜980℃の範囲である。
Hot-rolled sheet annealing temperature: 900-1000 ° C
In order to disperse the crystal orientation of the ferrite grains after finish annealing, it is necessary to sufficiently recrystallize the hot-rolled structure by hot-rolled sheet annealing, so the hot-rolled sheet annealing temperature is set to 900 ° C. or higher. On the other hand, when the hot rolled sheet annealing temperature exceeds 1000 ° C., when the crystal grains become coarse, the crystal grains after finish annealing also increase, so the hot rolled sheet annealing temperature is set to a temperature range of 900 to 1000 ° C. Preferably it is the range of 920-980 degreeC.

前掲した表3に示す化学成分のフェライト系ステンレス鋼を溶製し、スラブとした後、1170℃に加熱して6パスの粗圧延と6パスの仕上圧延を行って、仕上温度を850℃、巻取温度を450℃として、板厚4.0mmの熱延板とした。   After melting the ferritic stainless steel having the chemical composition shown in Table 3 and making it into a slab, it was heated to 1170 ° C. and subjected to 6-pass rough rolling and 6-pass finish rolling to a finishing temperature of 850 ° C., The coiling temperature was 450 ° C., and a hot-rolled sheet having a thickness of 4.0 mm was obtained.

ついで、表4に示す焼鈍温度で60秒の熱延板焼鈍を行い、冷間圧延を行って、板厚0.8mmの冷延板とした。さらに、表4に示す焼鈍温度で60秒の仕上焼鈍を施して、得られた仕上焼鈍板のフェライト粒の平均結晶粒径とリジング高さを上述した方法で評価した結果を表4に併記する。   Subsequently, hot-rolled sheet annealing was performed for 60 seconds at the annealing temperature shown in Table 4, and cold rolling was performed to obtain a cold-rolled sheet having a thickness of 0.8 mm. Further, Table 4 shows the results of evaluating the average grain size and ridging height of the ferrite grains of the finished annealed plate obtained by performing the finish annealing for 60 seconds at the annealing temperature shown in Table 4 by the method described above. .

Figure 0005655385
Figure 0005655385

Figure 0005655385
Figure 0005655385

仕上焼鈍板のフェライト粒の平均結晶粒径が15μmを超えて、本発明範囲外である鋼No.1、2、3、8、11、12は、リジング高さが10μm以上と耐リジング特性が悪い。これに対して、仕上焼鈍板のフェライト粒の平均結晶粒径が15μm以下で本発明範囲である鋼No.4、5、6、7、9、10、13、14、15は、リジング高さが10μm以下と良好な耐リジング特性を有している。   Steel No. 1 in which the average grain size of ferrite grains of the finish annealed plate exceeds 15 μm and is outside the scope of the present invention. 1, 2, 3, 8, 11, and 12 have a ridging resistance of 10 μm or more and poor ridging resistance. On the other hand, the average grain size of the ferrite grains of the finish annealed plate is 15 μm or less, and steel No. 1 is within the scope of the present invention. 4, 5, 6, 7, 9, 10, 13, 14, and 15 have good ridging resistance with a ridging height of 10 μm or less.

本発明のフェライト系ステンレス鋼板は、耐食性および耐リジング特性に優れていることから、建材、建具、電機、産業機械、自動車、厨房用品、貯水器などの分野にも適用することができる。   Since the ferritic stainless steel sheet of the present invention is excellent in corrosion resistance and ridging resistance, it can be applied to fields such as building materials, joinery, electrical machinery, industrial machinery, automobiles, kitchen supplies, and water reservoirs.

Claims (5)

質量%で、C:0.02%以下、Si:0.70%以下、Mn:0.50%以下、P:0.04%以下、S:0.01%以下、Al:0.01〜0.15%、N:0.02%以下、Cr:19.0〜23%、Ni:0.50%以下、Ti:0.01%以上0.10%以下、Nb:0.001%以上0.01%以下、Zr:0.20〜0.80%、を含有し、残部Feおよび不可避的不純物からなり、仕上焼鈍後のフェライト粒の平均結晶粒径が15μm以下であることを特徴とする耐リジング特性に優れたフェライト系ステンレス鋼板。 In mass%, C: 0.02% or less, Si: 0.70% or less, Mn: 0.50% or less, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.15%, N: 0.02% or less, Cr: 19.0 to 23%, Ni: 0.50% or less, Ti: 0.01% or more and 0.10% or less, Nb: 0.001% or more 0.01% or less, Zr: 0.20 to 0.80%, consisting of the balance Fe and inevitable impurities, the average grain size of ferrite grains after finish annealing being 15 μm or less Ferritic stainless steel sheet with excellent ridging resistance. さらに、質量%で、Cu:0.30〜0.80%、Mo:0.1〜2.5%の中から選ばれる1種または2種を含有することを特徴とする請求項1に記載の耐リジング特性に優れたフェライト系ステンレス鋼板。   Furthermore, it contains 1 type or 2 types chosen from Cu: 0.30-0.80% and Mo: 0.1-2.5% by mass%. Ferritic stainless steel sheet with excellent ridging resistance. 質量%で、C:0.02%以下、Si:0.70%以下、Mn:0.50%以下、P:0.04%以下、S:0.01%以下、Al:0.01〜0.15%、N:0.02%以下、Cr:19.0〜23%、Ni:0.50%以下、Ti:0.01%以上0.10%以下、Nb:0.001%以上0.01%以下、Zr:0.20〜0.80%、を含有し、残部Feおよび不可避的不純物からなる鋼素材を熱間圧延して熱延鋼板とし、該熱延鋼板を900〜1000℃の温度範囲で焼鈍し、次いで、酸洗、冷間圧延した後に880〜960℃の温度範囲で仕上焼鈍してフェライト粒の平均結晶粒径を15μm以下とすることを特徴とする耐リジング特性に優れたフェライト系ステンレス鋼板の製造方法。 In mass%, C: 0.02% or less, Si: 0.70% or less, Mn: 0.50% or less, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.15%, N: 0.02% or less, Cr: 19.0 to 23%, Ni: 0.50% or less, Ti: 0.01% or more and 0.10% or less, Nb: 0.001% or more A steel material containing 0.01% or less, Zr: 0.20 to 0.80%, and the balance Fe and unavoidable impurities is hot-rolled into a hot-rolled steel plate, and the hot-rolled steel plate is 900 to 1000 Ridging resistance characteristics characterized by annealing in a temperature range of ℃, then pickling and cold rolling and then finish annealing in a temperature range of 880 to 960 ° C. to make the average grain size of ferrite grains 15 μm or less Of excellent ferritic stainless steel sheet. 前記鋼素材の製鋼段階で、Zr源としてフェロジルコニウムを溶鋼中に添加することを特徴とする請求項3に記載の耐ジリング特性に優れたフェライト系ステンレス鋼板の製造方法。 The method for producing a ferritic stainless steel sheet having excellent gilding resistance according to claim 3, wherein ferrozirconium is added to the molten steel as a Zr source in the steelmaking stage of the steel material. 前記鋼素材が、さらに、質量%で、Cu:0.30〜0.80%、Mo:0.1〜2.5%の中から選ばれる1種または2種を含有することを特徴とする請求項3または請求項4に記載の耐リジング特性に優れたフェライト系ステンレス鋼板の製造方法。   The steel material further contains one or two kinds selected from Cu: 0.30 to 0.80% and Mo: 0.1 to 2.5% by mass%. The manufacturing method of the ferritic stainless steel plate excellent in the ridging resistance property of Claim 3 or Claim 4.
JP2010132697A 2010-06-10 2010-06-10 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same Active JP5655385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132697A JP5655385B2 (en) 2010-06-10 2010-06-10 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132697A JP5655385B2 (en) 2010-06-10 2010-06-10 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011256440A JP2011256440A (en) 2011-12-22
JP5655385B2 true JP5655385B2 (en) 2015-01-21

Family

ID=45472942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132697A Active JP5655385B2 (en) 2010-06-10 2010-06-10 Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5655385B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099459A1 (en) * 2013-12-24 2015-07-02 (주)포스코 Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor
KR101569589B1 (en) 2013-12-24 2015-11-16 주식회사 포스코 Ferritic stainless steel having excellentridging resistance and menufacturing method there of
ES2822273T3 (en) 2014-09-05 2021-04-30 Jfe Steel Corp Cold Rolled Ferritic Stainless Steel Sheet
JP5846343B1 (en) * 2014-09-05 2016-01-20 Jfeスチール株式会社 Ferritic stainless steel cold rolled steel sheet
JP6836969B2 (en) * 2017-08-02 2021-03-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet
CN113186445A (en) * 2021-03-31 2021-07-30 中北大学 Method for controlling inclusion content of stainless steel product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594445A (en) * 1979-01-13 1980-07-17 Nippon Steel Corp Manufacture of ferritic stainless steel plate for working with superior ridging resistance and surface roughening resistance
JP3411644B2 (en) * 1993-10-29 2003-06-03 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance
JP3446667B2 (en) * 1999-07-07 2003-09-16 住友金属工業株式会社 Ferritic stainless steel, ferritic stainless steel ingot excellent in workability and toughness, and method for producing the same
JP3746045B2 (en) * 2002-03-27 2006-02-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel slabs and steel plates and methods for producing them
JP2008101259A (en) * 2006-10-20 2008-05-01 Sumitomo Metal Ind Ltd METHOD FOR PRODUCING MOLTEN STEEL CONTAINING Zr IN ADDITION TO Cr, AND METHOD FOR INHIBITING CLOGGING OF IMMERSED NOZZLE

Also Published As

Publication number Publication date
JP2011256440A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5167487B2 (en) High strength steel plate with excellent ductility and method for producing the same
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
KR101375600B1 (en) Stainless steel, cold strip produced from said steel, and method for producing a flat steel product from said steel
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
US10550454B2 (en) Cold-rolled ferritic stainless steel sheet
JP2004360003A (en) Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
JP5655385B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
KR101941067B1 (en) Material for cold-rolled stainless steel sheet
KR101850231B1 (en) Ferritic stainless steel and method for producing same
EP2527483A1 (en) High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
JP5825343B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JP4367091B2 (en) High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
WO2019131099A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP2012031469A (en) High-strength cold rolled steel sheet excellent in deep drawability, method of manufacturing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
CN110832102B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
KR20170029601A (en) Ferritic stainless steel sheet
JP2007270168A (en) Method for producing chromium-containing ferritic steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250