JP5654759B2 - Negative electrode structure of lithium ion secondary battery - Google Patents

Negative electrode structure of lithium ion secondary battery Download PDF

Info

Publication number
JP5654759B2
JP5654759B2 JP2010036264A JP2010036264A JP5654759B2 JP 5654759 B2 JP5654759 B2 JP 5654759B2 JP 2010036264 A JP2010036264 A JP 2010036264A JP 2010036264 A JP2010036264 A JP 2010036264A JP 5654759 B2 JP5654759 B2 JP 5654759B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010036264A
Other languages
Japanese (ja)
Other versions
JP2011171246A (en
Inventor
西村 哲郎
哲郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NS Techno KK
Original Assignee
NS Techno KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Techno KK filed Critical NS Techno KK
Priority to JP2010036264A priority Critical patent/JP5654759B2/en
Publication of JP2011171246A publication Critical patent/JP2011171246A/en
Application granted granted Critical
Publication of JP5654759B2 publication Critical patent/JP5654759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池の負電極の組成に関するものである。 The present invention relates to the composition of the negative electrode of a lithium ion secondary battery.

リチウムイオン二次電池は、Liイオンが負電極材料の結晶中の原子間に出入りすることで電気的化学反応が起こることを原理にしている。充電時には、Liイオンはプラスイオンなので正電極側からLiイオンが放出され負電極側に移動する。また、放電時は充電時とは逆に負電極側からLiイオンが放出され正電極側に移動することにより繰り返し使用できる二次電池としての機能を果している。このように、リチウム電池は繰り返し利用することができるので、地球環境に良く、省資源化が求められる中で、比較的大きな電気容量を溜めて使用できるリチウムイオン二次電池への期待は非常に大きいものがある。 Lithium ion secondary batteries are based on the principle that Li ions enter and exit between atoms in the crystal of the negative electrode material to cause an electrochemical reaction. At the time of charging, since Li ions are positive ions, Li ions are released from the positive electrode side and move to the negative electrode side. In addition, the battery functions as a secondary battery that can be used repeatedly by discharging Li ions from the negative electrode side and moving to the positive electrode side, as opposed to charging, during discharging. As described above, since lithium batteries can be used repeatedly, there is a great expectation for lithium ion secondary batteries that can be used with a relatively large electric capacity while being good for the global environment and requiring resource saving. There is a big one.

Liイオンを出し入れすることにより充放電を行うリチウムイオン二次電池に使われる電極材料は「リチウムイオン二次電池用電極材料」と呼ばれる。正電極側の電極材料は、一般にコバルト酸リチウム等が使用されている。負電極側の電極材料は、一般に銅やアルミニウムが電極支持材として使用され、その表面に起電反応を起こさせるグラファイトなどを塗布して電極とすることが多い。電解質にはLiClO4,LiPF6などのLiイオンを含んだ有機電解液がよく採用される。そして電極材料は、より安価で高性能であるとともに発火事故などを引き起こしにくい材料の要求が非常に高くなっている。負電極側の電極材料は、これまで一般的であったグラファイトから錫合金などの新素材を使う試みがあり、単位当たりの電気容量を増やし、より短時間での繰り返し充放電を可能にして高性能かつ長寿命化を計る開発が行なわれている。 An electrode material used for a lithium ion secondary battery that is charged and discharged by taking in and out Li ions is called an “electrode material for a lithium ion secondary battery”. As the electrode material on the positive electrode side, lithium cobalt oxide or the like is generally used. As the electrode material on the negative electrode side, copper or aluminum is generally used as an electrode support material. In many cases, the surface is coated with graphite or the like that causes an electromotive reaction to form an electrode. For the electrolyte, organic electrolytes containing Li ions such as LiClO4 and LiPF6 are often used. As electrode materials, there is a very high demand for materials that are cheaper and have higher performance and are less likely to cause a fire accident. There is an attempt to use a new material such as graphite or tin alloy as the electrode material on the negative electrode side, which has been common until now, increasing the electric capacity per unit and enabling repeated charging and discharging in a shorter time. Developments are underway to improve performance and extend life.

特開平7−176302号公報JP 7-176302 A 特開昭63−121265号公報Japanese Unexamined Patent Publication No. Sho 63-121265

京都大学大学院 小久見 善八 編著、「リチウム二次電池」、株式会社オーム社、2008年3月Zenkaku Okumi, Kyoto University Graduate School, “Lithium Secondary Battery”, Ohm Corporation, March 2008

上記先行技術のうち、特許文献1及び特許文献2はいずれも正電極の素材に関するものである。また、非特許文献1は、負電極に関する記載があるが、グラファイト負電極や、CuSnのリチウム吸蔵に関する記載がされている。しかしながら、Liイオンが負電極中に入り込む充電時には、例えばグラファイトの場合には結晶中にLiイオンが入るために、グラファイトの結晶構造を膨張させ、放電時にはLiイオンが負電極から放出されるので、これを繰り返せば負電極が脆くなるという課題がある。そして、これが電池自体の寿命を決定づけている。 Of the above prior arts, Patent Document 1 and Patent Document 2 both relate to the material of the positive electrode. Further, Non-Patent Document 1, there is a description of the negative electrode, and a graphite negative electrode, is described for lithium absorption of Cu 6 Sn 5. However, at the time of charging in which Li ions enter the negative electrode, for example, in the case of graphite, since Li ions enter the crystal, the crystal structure of graphite is expanded, and during discharge, Li ions are released from the negative electrode. If this is repeated, there is a problem that the negative electrode becomes brittle. This determines the life of the battery itself.

一方、非特許文献1に示された負電極については、CuとSnの金属間化合物であるCuSnを銅板に付着させる構成が開示されている。一般に、このような構成に関する製造方法としては、CuSnの粉末を溶媒で溶き、銅板に塗布した後、乾燥・プレスして密度を上げるという試みがなされている。 On the other hand, the negative electrode shown in Non-Patent Document 1 discloses a configuration in which Cu 6 Sn 5 that is an intermetallic compound of Cu and Sn is attached to a copper plate. In general, as a manufacturing method relating to such a configuration, an attempt is made to increase the density by dissolving Cu 6 Sn 5 powder with a solvent, applying the powder to a copper plate, and then drying and pressing.

しかしながら、従来から知られているリチウムイオン電池は、グラファイト電極であっても、金属電極であっても、繰り返し充放電を行えば徐々に放電時間が短縮されるという基本的な問題は未だに解決していない。従って、リチウムイオン電池に求められることの一つとして、充放電を繰り返しても安定した放電時間を維持することができる負電極を開発することがある。 However, the conventional lithium ion battery, whether it is a graphite electrode or a metal electrode, still solves the basic problem that the discharge time is gradually shortened by repeated charging and discharging. Not. Therefore, one of the requirements for lithium ion batteries is to develop a negative electrode that can maintain a stable discharge time even after repeated charge and discharge.

そこで発明者は、安定した放電時間を達成することに着目して、これを実現することができる負電極材料を種々の実験によって開発した。 Therefore, the inventor has focused on achieving a stable discharge time and developed a negative electrode material capable of realizing this through various experiments.

具体的には、発明者は、CuまたはCuを主要要素とする合金からなる電極に対して、その表面にSn−Cu合金にマンガンを添加した三元合金層を設け、これらの構造によってリチウムイオン二次電池の負電極とした。SnとCuは平衡状態図によれば0.7Cuにおいて共晶反応を生じ、Cuの増加や温度降下に伴ってCuSn金属間化合物を生成する。MnとCuは全率固溶的な挙動を示し、Cuに少量のMnを添加した場合にはMnはCuとは金属間化合物を形成せず、均一に拡散すると考えられる。そして、MnはSn−Cu間でCuSn金属間化合物が形成された場合でも、均一に拡散し、存在すると考えられる。 なお、リチウムイオンがSn−Cu−Mn合金組成に対してどのように反応を行うかについては、発明者は未だ学術的解明を確定していないが、実験によってMn添加による放電の安定化を証明したものである。 Specifically, the inventor provided Cu or a ternary alloy layer in which manganese is added to an Sn—Cu alloy on the surface of an electrode made of Cu or an alloy containing Cu as a main component, and lithium ion is formed by these structures. The negative electrode of the secondary battery was used. According to the equilibrium diagram, Sn and Cu cause a eutectic reaction at 0.7 Cu, and form a Cu 6 Sn 5 intermetallic compound as Cu increases or the temperature drops. Mn and Cu exhibit a solid solution behavior, and when a small amount of Mn is added to Cu, it is considered that Mn does not form an intermetallic compound with Cu and diffuses uniformly. Then, Mn, even if the Cu 6 Sn 5 intermetallic compound is formed between the Sn-Cu, and uniformly diffused, is believed to be present. In addition, although the inventor has not yet confirmed the scientific elucidation about how lithium ions react to the Sn—Cu—Mn alloy composition, the experiment proves the stabilization of discharge by the addition of Mn. It is a thing.

Cuの添加量は、0.1〜3重量%である。Cu又はCuを主要要素とする合金からなる電極の表面層にCuSn金属間化合物を生成することが前提であるが、Cuを0.1重量%添加すればCuSn金属間化合物の生成は十分可能であるので、下限値を0.1重量%とした。上限を3重量%としたのは、Snに3重量%Cuを添加した場合の液相線温度は227〜310℃であるが、ディップないしリフローの工程を採用した場合でも作業上の問題がないことに加え、Cuをこれ以上添加しても特別な作用を期待できないため、これを上限とした。 The addition amount of Cu is 0.1 to 3% by weight. It is a premise that Cu 6 Sn 5 intermetallic compound is generated in the surface layer of the electrode made of Cu or an alloy containing Cu as a main element. However, if 0.1 wt% of Cu is added, Cu 6 Sn 5 intermetallic compound is formed. Is sufficiently possible, so the lower limit was set to 0.1% by weight. The upper limit is 3% by weight. The liquidus temperature when Sn is added to Sn is 227 to 310 ° C., but there is no problem in operation even when a dip or reflow process is adopted. In addition, a special effect cannot be expected even if Cu is added more than this, so this was made the upper limit.

Mnの添加量は、0.0001〜1重量%である。MnはSn−Cu合金に少量添加しても、凝固相に拡散した状態で存在し、Mnの拡散そのものがリチウムイオンの充放電特性に作用すると考えられるので、微量添加であってもその効果を期待することができる。一方、上限については、大量にMnを添加した場合には金属間化合物や酸化物が発生するおそれがあり、この金属間化合物がどのように作用するか未だ明確ではないので、この現象を回避するために1重量%とした。 The amount of Mn added is 0.0001 to 1% by weight. Even if a small amount of Mn is added to the Sn-Cu alloy, it exists in a state of being diffused into the solidified phase, and it is considered that Mn diffusion itself affects the charge / discharge characteristics of lithium ions. You can expect. On the other hand, as for the upper limit, if a large amount of Mn is added, intermetallic compounds and oxides may be generated, and it is not yet clear how this intermetallic compound works, so avoid this phenomenon. Therefore, the content was 1% by weight.

負電極の製造方法は、Cu電極をSn−Cu−Mn溶融合金にディップし、表面にこれを定着させる手段を採用する。ただし、製造方法はディップに限定されるものではなく、CuまたはCuを主要要素とする電極の表面にSn−Cu−Mn合金層を出現させることができる方法であればよく、公知のリフロー法なども適用することができ、前述の金属間化合物の組成を含む粉末、テープ、箔及び溶射等で塗布、接着、圧着するなど、従来から知られている表面処理の手法も含め広く適用可能である。 The negative electrode manufacturing method employs a means for dipping the Cu electrode into a Sn—Cu—Mn molten alloy and fixing it to the surface. However, the manufacturing method is not limited to dip, and any method can be used as long as it is a method capable of causing the Sn—Cu—Mn alloy layer to appear on the surface of the electrode having Cu or Cu as a main element. Can be applied, and can be widely applied including conventionally known surface treatment methods such as coating, bonding, and pressure bonding with powders, tapes, foils and thermal sprays containing the composition of the above-mentioned intermetallic compounds. .

本発明の負電極構造は、従来から知られている溶融錫のディップ工程を大きく変えることなく得ることができる。また、本発明の負電極を採用すれば、繰り返し充放電を行っても、従来のリチウムイオン電池のように放電時間が充放電の回数に応じて短縮化されることはなく、安定した放電時間を稼ぐことができるので、電池自身の長寿命化に資することが可能である。 The negative electrode structure of the present invention can be obtained without greatly changing the conventionally known molten tin dipping process. In addition, if the negative electrode of the present invention is employed, even if charging / discharging is repeated, the discharging time is not shortened according to the number of times of charging / discharging like a conventional lithium ion battery, and the stable discharging time is achieved. Therefore, it is possible to contribute to extending the life of the battery itself.

比較例の金属間化合物の表面観察写真Surface observation photograph of comparative intermetallic compound 本発明の実施例の金属間化合物の表面観察写真(Sn−0.9Cu−0.002Mn)Surface observation photograph (Sn-0.9Cu-0.002Mn) of intermetallic compound of Example of the present invention 本発明の実施例の金属間化合物の表面観察写真(Sn−0.9Cu−0.26Mn)Surface observation photograph (Sn-0.9Cu-0.26Mn) of intermetallic compound of Example of the present invention 実験に用いた模型電池の概略図Schematic diagram of model battery used in the experiment 比較例の電圧変化を示すグラフ(1〜5サイクル目)Graph showing voltage change of comparative example (first to fifth cycles) 比較例の電圧変化を示すグラフ(46〜50サイクル目)Graph showing voltage change of comparative example (46th to 50th cycles) 本発明の実施例の電圧変化を示すグラフ(1〜5サイクル目)The graph which shows the voltage change of the Example of this invention (1-5th cycle) 本発明の実施例の電圧変化を示すグラフ(46〜50サイクル目)The graph which shows the voltage change of the Example of this invention (46th-50th cycle) 比較例の放電容量の計算値を示すグラフ(1〜5サイクル目)The graph which shows the calculated value of the discharge capacity of a comparative example (1-5th cycle) 比較例の放電容量の計算値を示すグラフ(46〜50サイクル目)The graph which shows the calculated value of the discharge capacity of a comparative example (46th to 50th cycles) 本発明の実施例の放電容量の計算値を示すグラフ(1〜5サイクル目)The graph (1-5th cycle) which shows the calculated value of the discharge capacity of the Example of this invention 本発明の実施例の放電容量の計算値を示すグラフ(46〜50サイクル目)The graph which shows the calculated value of the discharge capacity of the Example of this invention (46th-50th cycle)

負電極組成として、Sn−Cuに対してMnを添加した場合の放電安定性について、知見を得るために以下の実験を行った。 In order to obtain knowledge about the discharge stability when Mn is added to Sn—Cu as the negative electrode composition, the following experiment was performed.

本発明の負電極構造を利用した場合の充放電の特性を、負電極として非特許文献に示されたCuSn金属間化合物を定着させたものを比較例とし、さらにMnを添加した本発明のものを実施例として示した。図1は、Sn−0.92Cuである比較例の金属間化合物の表面観察写真(スケールは5μm)、図2、図3はそれぞれ本発明の実施例の表面観察写真(スケールは10μm)であり、それぞれの組成はSn−0.9Cu−0.002Mn、及びSn−0.9Cu−0.26Mnである。これらの写真から明らかなように、単純なCuSn金属間化合物では表面が非平滑な柱状結晶構造が顕著であるのに対して、それぞれの実施例では表面が平滑化しており、Mnの添加がこれらの結晶構造に何らかの変化を与えたことが分かる。そして、実験に際しては、実施例のうち、図2の組成を用いた。それぞれの負電極は、銅板にJIS標準フラックスBを塗布し、255℃で溶融したはんだに10秒ディップし、銅板表面にはんだメッキを行ない、フラックスを洗浄した後に、エッチング液を用いてはんだを溶解除去し、表面に金属間化合物が露出するようにして得た。また、リチウム電池の雰囲気を作成するために、電解液を調合したが、溶質としてヘキサフルオロリン酸リチウム(LiPF)を、溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒を、濃度1mol/dm3に調合して用いた。また、正極及びセパレータには、市販のA&TB社製リチウムイオン電池(LAB503759C2)を分解してそれぞれを取り出して使用した。確認のため、正極をSEM−EDXにて観察し、集電体がAl、正極物質がコバルト酸リチウムであることを確認した。 The charge / discharge characteristics in the case of using the negative electrode structure of the present invention is a comparative example in which a Cu 6 Sn 5 intermetallic compound shown in a non-patent document is fixed as a negative electrode, and Mn is further added. The invention was shown as an example. FIG. 1 is a surface observation photograph (scale is 5 μm) of a comparative intermetallic compound of Sn-0.92Cu, and FIGS. 2 and 3 are surface observation photographs (scale is 10 μm) of an example of the present invention. The respective compositions are Sn-0.9Cu-0.002Mn and Sn-0.9Cu-0.26Mn. As is clear from these photographs, a simple Cu 6 Sn 5 intermetallic compound has a non-smooth columnar crystal structure, whereas each of the examples has a smooth surface. It can be seen that the addition gave some change to these crystal structures. In the experiment, the composition shown in FIG. 2 was used in the examples. Each negative electrode is coated with JIS standard flux B on a copper plate, dipped in solder melted at 255 ° C. for 10 seconds, solder plated on the surface of the copper plate, washed the flux, and then melted the solder using an etching solution. It was removed so that the intermetallic compound was exposed on the surface. Moreover, in order to create the atmosphere of a lithium battery, an electrolyte solution was prepared, but lithium hexafluorophosphate (LiPF 6 ) was used as a solute, and a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) was used as a solvent. A concentration of 1 mol / dm3 was used. For the positive electrode and separator, a commercially available lithium ion battery (LAB503759C2) manufactured by A & TB was disassembled and used. For confirmation, the positive electrode was observed with SEM-EDX, and it was confirmed that the current collector was Al and the positive electrode material was lithium cobaltate.

実験は、精密を期するためにグローブボックス内の乾燥窒素雰囲気中で行ない、図4の模型電池を実験用ビーカ内にて作成し、出力電圧を確認した。図4において、1は本発明の対象である負電極、2は正電極、3はセパレータ、4は電解液である。そして、両電極に直流電源を接続し、充電を行った。充電条件は、印加電圧4.1Vで10分間の充電である。続いて、電源を取り外し、両極間に100kΩの抵抗を接続して、測定電圧が2.6Vに降下するまで放電を行った。その後は、充電時間を1分間として、2.6Vに電圧降下するまでを1サイクルとして実験を50回繰り返した。なお、最初の充放電は結果には算入しない。 The experiment was performed in a dry nitrogen atmosphere in a glove box for the sake of precision, and the model battery of FIG. 4 was prepared in an experimental beaker and the output voltage was confirmed. In FIG. 4, 1 is a negative electrode which is the object of the present invention, 2 is a positive electrode, 3 is a separator, and 4 is an electrolytic solution. Then, a DC power source was connected to both electrodes and charging was performed. The charging condition is charging for 10 minutes at an applied voltage of 4.1V. Subsequently, the power source was removed, a resistance of 100 kΩ was connected between both electrodes, and discharging was performed until the measurement voltage dropped to 2.6V. Thereafter, the experiment was repeated 50 times with a charge time of 1 minute and a cycle until the voltage dropped to 2.6 V. The first charge / discharge is not included in the result.

このように充放電を繰り返して得られた電圧変化のデータを、図5から図8に示す。図5および図6は、比較例における実験結果のグラフであり、図5は1〜5サイクル目を、図6は46〜50サイクル目を示す。図7および図8は、実施例における実験結果のグラフであり、図7は1〜5サイクル目、図8は46〜50サイクル目のグラフである。これらを比較すると、比較例であるCuSn金属間化合物を定着させた負極では、充放電が進むにつれて明らかに1回の放電時間が短縮するのに対して、Mnを添加した実施例では、それぞれの放電時間は比較例よりも短いが、1〜5サイクル目と46〜50サイクル目には差が見られず、極めて安定した放電時間を維持することを確認した。 The voltage change data obtained by repeating charging and discharging in this manner are shown in FIGS. 5 and 6 are graphs of experimental results in the comparative example. FIG. 5 shows the first to fifth cycles, and FIG. 6 shows the 46th to 50th cycles. 7 and FIG. 8 are graphs of experimental results in the examples. FIG. 7 is a graph at the 1st to 5th cycles, and FIG. 8 is a graph at the 46th to 50th cycles. Comparing these, in the negative electrode in which the Cu 6 Sn 5 intermetallic compound as a comparative example was fixed, the discharge time was obviously shortened as the charge and discharge progressed, whereas in the example in which Mn was added, Each discharge time was shorter than that of the comparative example, but no difference was observed between the first to fifth cycles and the 46th to 50th cycles, and it was confirmed that a very stable discharge time was maintained.

次に、図5から図8のデータを基にして、次式によって放電時の電気容量を求め、サイクル当りの放電容量について比較例を図9および図10、実施例を図11および図12に示した。 A・h=T×V/R T:時間(h) V:電位 R:100kΩ Next, based on the data of FIG. 5 to FIG. 8, the electric capacity at the time of discharge is obtained by the following formula, and the discharge capacity per cycle is shown in FIGS. 9 and 10 and the examples in FIG. 11 and FIG. Indicated. A · h = T × V / R T: Time (h) V: Potential R: 100 kΩ

銅板表面にCuSn金属間化合物を定着した負電極を用いた比較例である図9および図10の場合には、第1サイクルでは2.6Vに降下するまでの計算上の放電容量は約1.4μAhであったが、46サイクルを超えた場合は約0.8μAhに減少しているのに対して、Mnを添加した本発明の実施例を示す図11および図12では、1サイクル
と50サイクルの間でほとんど放電容量に減少が見られない。即ち、Mnを添加した本発明の組成では、充放電による電池そのものの劣化を確認しなかった。実施例の負極を用いた場合には、比較例の負極を用いた場合よりも当初放電容量は低いが、充放電を繰り返しても劣化の進行は見られず、経時劣化がないので、充放電容量の安定化に寄与して、電源としての信頼性を長期にわたって維持することができる。
In the case of FIGS. 9 and 10 which are comparative examples using a negative electrode in which a Cu 6 Sn 5 intermetallic compound is fixed on the copper plate surface, the calculated discharge capacity until the voltage drops to 2.6 V in the first cycle is Although it was about 1.4 μAh, it decreased to about 0.8 μAh when it exceeded 46 cycles, whereas in FIG. 11 and FIG. There is almost no reduction in the discharge capacity between 50 and 50 cycles. That is, in the composition of the present invention to which Mn was added, deterioration of the battery itself due to charge / discharge was not confirmed. When the negative electrode of the example is used, the initial discharge capacity is lower than when the negative electrode of the comparative example is used. However, even when charging and discharging are repeated, the deterioration does not progress and there is no deterioration over time. It contributes to the stabilization of the capacity and can maintain the reliability as a power source for a long time.

1 負電極2 正電極3 セパレータ4 電解液 1 Negative electrode 2 Positive electrode 3 Separator 4 Electrolyte

Claims (2)

CuまたはCuを主要要素とする合金からなる電極に、Cu0.1〜3.0重量%、Mn0.0001〜1重量%、残部Snからなる溶融合金を定着・凝固させ、CuSn金属間化合物にMnが均一に拡散した層を含む表面層を有することを特徴とするリチウムイオン二次電池の負電極構造。 Cu 6 Sn 5 metal between Cu and Sn 5 metal is fixed and solidified on the electrode made of Cu or an alloy containing Cu as a main element, Cu 0.1 to 3.0 wt%, Mn 0.0001 to 1 wt%, and remaining Sn A negative electrode structure of a lithium ion secondary battery comprising a surface layer including a layer in which Mn is uniformly diffused in a compound. 請求項1の表面層において、Sn成分を選択的に除去したリチウムイオン二次電池の負電極構造。 The negative electrode structure of the lithium ion secondary battery in which the Sn component is selectively removed in the surface layer according to claim 1 .
JP2010036264A 2010-02-22 2010-02-22 Negative electrode structure of lithium ion secondary battery Expired - Fee Related JP5654759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036264A JP5654759B2 (en) 2010-02-22 2010-02-22 Negative electrode structure of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036264A JP5654759B2 (en) 2010-02-22 2010-02-22 Negative electrode structure of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011171246A JP2011171246A (en) 2011-09-01
JP5654759B2 true JP5654759B2 (en) 2015-01-14

Family

ID=44685131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036264A Expired - Fee Related JP5654759B2 (en) 2010-02-22 2010-02-22 Negative electrode structure of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5654759B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730429B2 (en) * 2000-11-10 2004-05-04 The University Of Chicago Intermetallic negative electrodes for non-aqueous lithium cells and batteries
JP4136674B2 (en) * 2003-01-10 2008-08-20 株式会社神戸製鋼所 Lithium battery negative electrode material and method for producing the same
JP4974450B2 (en) * 2003-09-17 2012-07-11 日立マクセルエナジー株式会社 Nonaqueous secondary battery electrode and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2011171246A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US8841014B1 (en) Liquid metal electrodes for rechargeable batteries
JP5630754B2 (en) Copper current collector for secondary battery having Cu-nitrile compound complex formed on the surface
JP2007123097A (en) Battery
CN102195088A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte
JP2010262862A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP6256001B2 (en) Manufacturing method of secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2020536348A (en) Systems and Methods for Manufacturing Stabilized Lithium Electrodes for Electrochemical Energy Storage Equipment
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP6360831B2 (en) Electrolytic solution and lithium ion secondary battery
WO2017038816A1 (en) Electrolyte solution and lithium ion secondary battery
JP2007317461A (en) Secondary battery
JP4328915B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP6575943B2 (en) Lithium ion secondary battery
JP5634525B2 (en) Lithium primary battery
JP2005228631A (en) Electrolytic solution for secondary battery, and secondary battery using the same
JP2005294013A (en) Precursor battery and nonaqueous electrolyte secondary battery
JP2009016232A (en) Nonaqueous electrolyte secondary battery
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5654759B2 (en) Negative electrode structure of lithium ion secondary battery
JP2007257958A (en) Battery
JP6057208B2 (en) Electroplating solution, method for producing active material for lithium secondary battery, and lithium secondary battery
WO2010055863A1 (en) Negative electrode structure for lithium ion secondary battery, and method for producing same
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141121

R150 Certificate of patent or registration of utility model

Ref document number: 5654759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees