JP5654369B2 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
JP5654369B2
JP5654369B2 JP2011018288A JP2011018288A JP5654369B2 JP 5654369 B2 JP5654369 B2 JP 5654369B2 JP 2011018288 A JP2011018288 A JP 2011018288A JP 2011018288 A JP2011018288 A JP 2011018288A JP 5654369 B2 JP5654369 B2 JP 5654369B2
Authority
JP
Japan
Prior art keywords
plate
ceramic plate
bonding
laminated material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018288A
Other languages
Japanese (ja)
Other versions
JP2011183798A (en
Inventor
大介 采野
大介 采野
茂 大山
茂 大山
篤史 大滝
篤史 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011018288A priority Critical patent/JP5654369B2/en
Publication of JP2011183798A publication Critical patent/JP2011183798A/en
Application granted granted Critical
Publication of JP5654369B2 publication Critical patent/JP5654369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

この発明は、積層材およびその製造方法に関し、たとえばLEDやパワーデバイスなどの半導体素子の冷却を行うのに用いられる積層材およびその製造方法に関する。   The present invention relates to a laminated material and a manufacturing method thereof, and relates to a laminated material used for cooling a semiconductor element such as an LED or a power device, and a manufacturing method thereof.

この明細書において、元素記号で表現された材料は純材料を意味するが、不可避の不純物を含有する工業的な純材料も含むものとする。   In this specification, a material represented by an element symbol means a pure material, but also includes an industrial pure material containing inevitable impurities.

また、この明細書および特許請求の範囲において、放電プラズマ焼結法とは、実際に粉末を焼結する方法に限定されるものではなく、放電プラズマ焼結の原理を利用した方法を意味するものとする。   Further, in this specification and claims, the discharge plasma sintering method is not limited to a method of actually sintering powder, but means a method utilizing the principle of discharge plasma sintering. And

さらに、この明細書および特許請求の範囲において、「融点」という用語は、合金の場合には、固相線温度を意味するものとする。   Further, in this specification and claims, the term “melting point” is intended to mean the solidus temperature in the case of alloys.

近年、電力の送変電、鉄道車両の駆動制御、自動車のエンジン制御やインバータ駆動、エアコンや太陽光発電用インバータなどに、電力を変換制御するパワーデバイスが用いられている。   2. Description of the Related Art In recent years, power devices that convert and control electric power are used for power transmission / transformation, railway vehicle drive control, automobile engine control and inverter drive, air conditioners, inverters for solar power generation, and the like.

このパワーデバイスはスイッチング時の発熱が大きく、そのため、パワーデバイスの冷却効率を向上させることは、その機能を維持するためにきわめて重要な課題となっている。   Since this power device generates a large amount of heat during switching, improving the cooling efficiency of the power device is an extremely important issue in order to maintain its function.

パワーデバイスの冷却のために放熱器が用いられる。パワーデバイスと放熱器とを備えたパワーモジュールでは、パワーデバイスと放熱器との間に、互いに積層状に配置されたセラミック板と金属板とを含む積層材が配置されている。この積層材は、熱的には伝導体であるが電気的には絶縁体として機能する性質を有するものであり、すなわち熱伝導性絶縁基板として用いられている。   A radiator is used to cool the power device. In a power module including a power device and a radiator, a laminated material including a ceramic plate and a metal plate that are arranged in a laminated manner is disposed between the power device and the radiator. This laminated material is a conductor thermally but has a property of functioning electrically as an insulator, that is, it is used as a thermally conductive insulating substrate.

この積層材を製造する従来技術として、特開2004−328012号公報(特許文献1)や特開2000−256081号公報(特許文献2)に示すように、金属板とセラミック板との接合を行う場合、金属板とセラミック板との間の界面にAgやTi等の活性金属を含んだろう材を配置するか(Cu、Al接合)、Al−Si合金のろう材を配置する(Al接合)ことが知られている。金属板としては、Al板やCu板が用いられている。   As a conventional technique for manufacturing this laminated material, as shown in Japanese Patent Application Laid-Open No. 2004-328012 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-256081 (Patent Document 2), a metal plate and a ceramic plate are joined. In this case, a brazing material containing an active metal such as Ag or Ti is arranged at the interface between the metal plate and the ceramic plate (Cu, Al bonding) or an Al-Si alloy brazing material (Al bonding). It is known. As the metal plate, an Al plate or a Cu plate is used.

さらに、セラミック板の両面にそれぞれAl板が接合されてなる積層材では、パワーデバイスをはんだ付けにより実装する前に、積層材のAl板の表面に選択的にNi層をコートする、例えばNiめっき層を形成することで、はんだ接合性を向上させている。例えば、特開2009−147123号公報(特許文献3)では、半導体素子の電極に電気的配線または冷却部材としての金属部品をはんだ付けにて接合する場合、はんだ層と電極との間に金属保護膜としてNiめっき膜を形成することが開示されている。   Furthermore, in a laminated material in which Al plates are bonded to both surfaces of a ceramic plate, a Ni layer is selectively coated on the surface of the Al plate of the laminated material before mounting the power device by soldering, for example, Ni plating By forming the layer, the solderability is improved. For example, in Japanese Patent Application Laid-Open No. 2009-147123 (Patent Document 3), when a metal part as an electrical wiring or a cooling member is joined to an electrode of a semiconductor element by soldering, metal protection is provided between the solder layer and the electrode. It is disclosed that a Ni plating film is formed as a film.

特開2004−328012号公報JP 2004-328012 A 特開2000−256081号公報JP 2000-256081 A 特開2009−147123号公報JP 2009-147123 A

しかしながら、上記方法では、金属板とセラミック板との間の接合界面にろう材層が形成されるため接合界面の接合信頼性を損なう恐れがある。例えば、Al板とセラミック板との接合を行うためには、接合界面にAl−Si合金のろう材層が形成されるが、Al−Si合金はAl板のAlよりも硬いため、高温−低温の冷熱サイクルに伴う接合界面に働く応力が非常に大きなものとなる。その結果、界面付近で材料破壊が発生してAl板とセラミック板とが剥離する。   However, in the above method, since a brazing filler metal layer is formed at the bonding interface between the metal plate and the ceramic plate, the bonding reliability of the bonding interface may be impaired. For example, in order to perform bonding between an Al plate and a ceramic plate, a brazing filler metal layer of Al—Si alloy is formed at the bonding interface. However, since the Al—Si alloy is harder than Al of the Al plate, high temperature-low temperature The stress acting on the joint interface accompanying the thermal cycle is extremely large. As a result, material destruction occurs near the interface, and the Al plate and the ceramic plate are separated.

また、Al板表面にNiめっき層を形成するためには、たとえばAl板表面の粗さが小さいことなどの制約があり、この制約のためにAl板表面に対して機械的・化学的前処理を施さなければならず、その結果、Al板表面にNi層を形成するコストが高くなる問題があった。   In addition, in order to form the Ni plating layer on the Al plate surface, there are restrictions such as the roughness of the Al plate surface being small. For this restriction, mechanical and chemical pretreatment is performed on the Al plate surface. As a result, there is a problem that the cost of forming the Ni layer on the surface of the Al plate is increased.

さらに、Al板表面に部分的にまたはある面だけを選択的にNi層を形成したいときは、Niめっきではマスキング工程が必須となり、製造コストが高くなる問題もあった。   Furthermore, when it is desired to selectively form a Ni layer partially or only on a certain surface on the surface of the Al plate, a masking process is essential in Ni plating, which increases the manufacturing cost.

本発明は、上述した技術背景に鑑みてなされたもので、その目的は、金属板とセラミック板との間の界面剥離を防止することができるし、製造コストの低減を図ることができ、更に、放熱特性を向上させることができる積層材およびその製造方法を提供することにある。   The present invention has been made in view of the above-described technical background, and the object thereof is to prevent interfacial peeling between the metal plate and the ceramic plate, and to reduce the manufacturing cost. An object of the present invention is to provide a laminated material capable of improving heat dissipation characteristics and a method for manufacturing the same.

本発明は以下の手段を提供する。   The present invention provides the following means.

[1] セラミック板の一方の片面にCuまたはCu合金からなるCu板が、セラミック板の他方の片面にAlまたはAl合金からなるAl板が、放電プラズマ焼結法によりそれぞれ接合されていることを特徴とする積層材。   [1] A Cu plate made of Cu or Cu alloy is bonded to one side of the ceramic plate, and an Al plate made of Al or Al alloy is bonded to the other side of the ceramic plate by a discharge plasma sintering method. Characteristic laminate material.

[2] セラミック板の一方の片面にCu板が、セラミック板とCu板との間の接合界面にろう材を介さないで、直接的に接合されている前項1記載の積層材。   [2] The laminated material according to item 1 above, wherein the Cu plate is directly joined to one surface of the ceramic plate without a brazing filler metal at the joining interface between the ceramic plate and the Cu plate.

[3] セラミック板の他方の片面にAl板が、セラミック板とAl板との間の接合界面にろう材を介さないで、直接的に接合されている前項1又は2記載の積層材。   [3] The laminated material according to 1 or 2 above, wherein the Al plate is directly joined to the other one surface of the ceramic plate without a brazing filler metal at the joining interface between the ceramic plate and the Al plate.

[4] セラミック板が、AlN、Al23、Si34、SiC、Y23、CaO、BNおよびBeOよりなる群から選ばれた1種の材料からなる前項1〜3のうちのいずれかに記載の積層材。 [4] Of the preceding items 1 to 3 , wherein the ceramic plate is made of one material selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN and BeO. The laminated material in any one of.

[5] セラミック板と、CuまたはCu合金からなるCu板とを、セラミック板の一方の片面上にCu板が配置されるように積層する第1積層工程と、
セラミック板とCu板との第1積層体を1対の放電プラズマ焼結用電極間に配置する第1積層体配置工程と、
両電極間の導通を確保した状態で、両電極間にパルス電流を通電することにより、第1積層体のセラミック板とCu板とを接合する第1接合工程と、
第1接合工程により得られたセラミック板とCu板との接合体と、AlまたはAl合金からなるAl板とを、接合体のセラミック板の他方の片面上にAl板が配置されるように積層する第2積層工程と、
接合体とAl板との第2積層体を1対の放電プラズマ焼結用電極間に配置する第2積層体配置工程と、
両電極間の導通を確保した状態で、両電極間にパルス電流を通電することにより、第2積層体のセラミック板とAl板とを接合する第2接合工程と、を含むことを特徴とする積層材の製造方法。
[5] A first laminating step of laminating a ceramic plate and a Cu plate made of Cu or Cu alloy so that the Cu plate is disposed on one side of the ceramic plate;
A first laminate arrangement step of arranging a first laminate of a ceramic plate and a Cu plate between a pair of discharge plasma sintering electrodes;
A first joining step for joining the ceramic plate and the Cu plate of the first laminate by passing a pulse current between the electrodes in a state in which conduction between the two electrodes is ensured;
A laminated body of a ceramic plate and a Cu plate obtained by the first joining step and an Al plate made of Al or an Al alloy are laminated so that the Al plate is disposed on the other surface of the ceramic plate of the joined body. A second laminating step,
A second laminate arrangement step of arranging the second laminate of the joined body and the Al plate between a pair of discharge plasma sintering electrodes;
A second joining step of joining the ceramic plate and the Al plate of the second laminate by passing a pulse current between the electrodes in a state in which conduction between the two electrodes is ensured. A method for producing a laminated material.

[6] 第1接合工程では、接合を、Cu板の融点よりも低い温度で行うとともに、
第2接合工程では、接合を、Al板の融点よりも低い温度で行う前項5記載の積層材の製造方法。
[6] In the first joining step, joining is performed at a temperature lower than the melting point of the Cu plate,
6. The method for manufacturing a laminated material according to 5 above, wherein in the second bonding step, the bonding is performed at a temperature lower than the melting point of the Al plate.

[7] 第1接合工程では、接合を、第1積層体をその積層方向の両側から10〜100MPaで加圧しながら行うとともに、
第2接合工程では、接合を、第2積層体をその積層方向の両側から10〜100MPaで加圧しながら行う前項5または6記載の積層材の製造方法。
[7] In the first bonding step, the bonding is performed while pressing the first stacked body at 10 to 100 MPa from both sides in the stacking direction,
7. The method for producing a laminated material according to 5 or 6 above, wherein in the second joining step, the joining is performed while pressing the second laminated body at 10 to 100 MPa from both sides in the laminating direction.

[8] 第1接合工程では、接合を、不活性ガス雰囲気中または真空雰囲気中で行うとともに、
第2接合工程では、接合を、不活性ガス雰囲気中または真空雰囲気中で行う前項5〜7のうちのいずれかに記載の積層材の製造方法。
[8] In the first bonding step, bonding is performed in an inert gas atmosphere or a vacuum atmosphere,
8. The method for manufacturing a laminated material according to any one of 5 to 7 above, wherein in the second bonding step, bonding is performed in an inert gas atmosphere or a vacuum atmosphere.

[1]〜[3]の積層材によれば、放電プラズマ焼結法によりセラミック板の所定の面にそれぞれCu板およびAl板が接合されているので、セラミック板と金属板(即ちCu板、Al板)との間の接合界面に、AgやTi等の活性金属を含むろう材を配置する必要なく、即ち直接接合が可能となる。そのため、冷熱サイクルに伴うセラミック板と金属板との間の界面剥離が抑制され、もって接合信頼性が向上する。さらに、ろう材を使用しないので、積層材の製造コストの低減を図ることができる。   According to the laminated material of [1] to [3], since the Cu plate and the Al plate are respectively joined to the predetermined surfaces of the ceramic plate by the discharge plasma sintering method, the ceramic plate and the metal plate (that is, the Cu plate, It is not necessary to arrange a brazing material containing an active metal such as Ag or Ti at the bonding interface with the Al plate), that is, direct bonding is possible. For this reason, interfacial delamination between the ceramic plate and the metal plate due to the cooling / heating cycle is suppressed, thereby improving the bonding reliability. Furthermore, since no brazing material is used, the manufacturing cost of the laminated material can be reduced.

さらに、[1]〜[3]の積層材によれば、セラミック板の一方の片面にCu板が接合されることで、放熱特性が向上するとともに、Cu板に直接的にはんだ付けができるので、Al板では必須となっていたはんだ接合性を向上させるためのNiめっき工程を必要としない。これにより、製造コストの更なる低減を図ることができる。しかも、セラミック板の他方の片面にAl板が接合されているので、例えば、AlやAl合金製ヒートシンクなどの放熱部材をろう付けなどの金属的な接合によりAl板に貼り付けることができ、その結果、軽量で且つ放熱特性が向上したパワーデバイス冷却部材(パワーモジュール用ベース)を得ることができる。   Furthermore, according to the laminated material of [1] to [3], since the Cu plate is bonded to one side of the ceramic plate, the heat dissipation characteristics are improved and the Cu plate can be directly soldered. In addition, the Ni plating process for improving the solderability, which is essential for the Al plate, is not required. Thereby, the manufacturing cost can be further reduced. Moreover, since the Al plate is bonded to the other surface of the ceramic plate, for example, a heat radiating member such as a heat sink made of Al or Al alloy can be attached to the Al plate by metal bonding such as brazing. As a result, a power device cooling member (base for power module) that is lightweight and has improved heat dissipation characteristics can be obtained.

[4]の積層材によれば、セラミック板がAlN、Al23、Si34、SiC、Y23、CaO、BNおよびBeOよりなる群から選ばれた1種の材料からなるので、Cu板を配線層として利用することができるし、セラミック板を電気絶縁性能に優れた電気絶縁層として利用することができる。したがって、例えば、積層材のAl板の表面にAlやAl合金製ヒートシンクなどの放熱部材をろう付けすることにより、半導体モジュール用ベースとしてたとえばパワーモジュール用ベースを形成することができる。そして、このベースの積層材のCu板に半導体素子としてたとえばパワーデバイスを実装することで半導体モジュールとしてパワーモジュールを製造することができる。このパワーモジュールによれば、パワーデバイスと放熱部材との間には、Cu板、セラミック板およびAl板が配置されているだけなので、パワーデバイスから放熱部材までの熱伝導の経路が短くなり、パワーデバイスから発せられる熱の放熱性能が向上する。また、金属板(即ちCu板、Al板)とセラミック板との間には熱伝導率の低いろう材を介在させる必要はなく、両金属板とセラミック板との間の熱伝導性が優れたものになる。 According to the laminated material of [4], the ceramic plate is made of one material selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN and BeO. Therefore, a Cu plate can be used as a wiring layer, and a ceramic plate can be used as an electrical insulation layer having excellent electrical insulation performance. Therefore, for example, a power module base can be formed as a semiconductor module base by brazing a heat radiating member such as a heat sink made of Al or an Al alloy to the surface of the Al plate of the laminated material. And a power module can be manufactured as a semiconductor module by mounting, for example, a power device as a semiconductor element on the Cu plate of the base laminate. According to this power module, the Cu plate, the ceramic plate, and the Al plate are only arranged between the power device and the heat radiating member, so the heat conduction path from the power device to the heat radiating member is shortened. The heat dissipation performance of the heat generated from the device is improved. Moreover, it is not necessary to interpose a brazing material having low thermal conductivity between the metal plate (ie, Cu plate, Al plate) and the ceramic plate, and the thermal conductivity between the two metal plates and the ceramic plate is excellent. Become a thing.

[5]の積層材の製造方法によれば、[1]〜[4]の積層材をろう材を用いなくても製造することができ、そのため、温度変化によるセラミックと金属板(即ちCu板、Al板)との間の接合界面の接合信頼性を高めることができる。さらに、ろう材を使用しないので、積層材を安価に製造することができる。   According to the method for producing a laminated material of [5], the laminated materials of [1] to [4] can be produced without using a brazing material. Therefore, a ceramic and a metal plate (that is, a Cu plate) due to temperature change. The bonding reliability of the bonding interface with the Al plate can be improved. Furthermore, since no brazing material is used, the laminated material can be manufactured at low cost.

[6]の積層材の製造方法によれば、第1接合工程での接合時に、Cu板の部分的な溶融などによる変形を防止することができるし、第2接合工程での接合時に、Al板の部分的な溶融などによる変形を防止することができる。   According to the method for manufacturing a laminated material of [6], it is possible to prevent deformation due to partial melting of the Cu plate at the time of joining in the first joining step, and Al at the time of joining in the second joining step. Deformation due to partial melting of the plate can be prevented.

ここで、第1接合工程では、接合温度は、933〜1073℃(好ましくは950〜1000℃)の範囲内に設定されるのが良い。第2接合工程では、接合温度は510〜650℃(好ましくは520〜600℃)の範囲内に設定されるのが良い。   Here, in the first bonding step, the bonding temperature may be set within a range of 933 to 1073 ° C. (preferably 950 to 1000 ° C.). In the second bonding step, the bonding temperature may be set in the range of 510 to 650 ° C. (preferably 520 to 600 ° C.).

[7]の積層材の製造方法によれば、Cu板とセラミック板との間での接合欠陥の発生を効果的に防止することができるし、Al板とセラミック板との間での接合欠陥の発生を効果的に防止することができる。   According to the method for manufacturing a laminated material of [7], it is possible to effectively prevent the occurrence of a bonding defect between the Cu plate and the ceramic plate, and the bonding defect between the Al plate and the ceramic plate. Can be effectively prevented.

[8]の積層材の製造方法によれば、Cu板とセラミック板との間での接合欠陥の発生を効果的に防止することができるし、Al板とセラミック板との間での接合欠陥の発生を効果的に防止することができる。   According to the method for manufacturing a laminated material of [8], it is possible to effectively prevent the occurrence of a bonding defect between the Cu plate and the ceramic plate, and the bonding defect between the Al plate and the ceramic plate. Can be effectively prevented.

図1は、本発明の一実施形態の積層材を示す垂直断面図である。FIG. 1 is a vertical sectional view showing a laminated material according to an embodiment of the present invention. 図2は、同積層材の製造過程における第1接合工程を示す垂直断面図である。FIG. 2 is a vertical sectional view showing a first joining step in the manufacturing process of the laminated material. 図3は、第1接合工程により得られた接合体を示す垂直断面図である。FIG. 3 is a vertical cross-sectional view showing the joined body obtained by the first joining process. 図4は、同積層材の製造過程における第2接合工程を示す垂直断面図である。FIG. 4 is a vertical sectional view showing a second joining step in the manufacturing process of the laminated material. 図5は、比較例1の積層材を示す垂直断面図である。FIG. 5 is a vertical sectional view showing the laminated material of Comparative Example 1. 図6は、比較例2の積層材を示す垂直断面図である。FIG. 6 is a vertical sectional view showing the laminated material of Comparative Example 2.

以下、この発明の一実施形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

なお、以下の説明において、各図面の上下を上下というものとする。また、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。
実施形態1
図1〜4は、本発明の一実施形態の積層材およびその製造方法を説明するための図である。本実施形態は、積層材が、半導体素子(例:パワーデバイス)が実装される絶縁基板として利用可能なものである場合について示している。
In the following description, the top and bottom of each drawing is referred to as the top and bottom. Moreover, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.
Embodiment 1
1-4 is a figure for demonstrating the laminated material of one Embodiment of this invention, and its manufacturing method. This embodiment shows a case where the laminated material can be used as an insulating substrate on which a semiconductor element (eg, a power device) is mounted.

図1に示すように、本実施形態の積層材(1)は、少なくとも1枚のセラミック板(4)と、セラミック板(4)の一方の片側に配置された少なくとも1枚のCuまたはCu合金からなるCu板(2)と、セラミック板(4)の他方の片側に配置された少なくとも1枚のAlまたはAl合金からなるAl板(3)とが、積層されたものである。   As shown in FIG. 1, the laminated material (1) of this embodiment includes at least one ceramic plate (4) and at least one Cu or Cu alloy disposed on one side of the ceramic plate (4). The Cu plate (2) made of the above and the Al plate (3) made of at least one Al or Al alloy disposed on the other side of the ceramic plate (4) are laminated.

この積層材(1)では、セラミック板(4)は水平状に配置されている。Cu板(2)はセラミック板(4)の上面(4a)上にセラミック板(4)と隣接して配置されている。Al板(3)はセラミック板(4)の下面(4a)上にセラミック板(4)と隣接して配置されている。そして、互いに隣り合う板どうし(2,4)(4,3)が放電プラズマ焼結法により接合されている。したがって、Cu板(2)は積層材(1)の上側の最外側に配置されており、セラミック板(4)はCu板(2)とAl板(3)との間に配置されており、Al板(3)は積層材(1)の下側の最外側に配置されている。セラミック板(4)とCu板(2)とが放電プラズマ焼結法により接合されているので、セラミック板(4)の上面(4a)にCu板(2)が、セラミック板(4)とCu板(2)との間にろう材を介することなく、すなわち直接的に接合されている。また同じく、セラミック板(4)とAl板(3)とが放電プラズマ焼結法により接合されているので、セラミック板(4)の下面(4a)にAl板(3)が、セラミック板(4)とAl板(3)との間にろう材を介することなく、すなわち直接的に接合されている。   In this laminated material (1), the ceramic plate (4) is arranged horizontally. The Cu plate (2) is disposed adjacent to the ceramic plate (4) on the upper surface (4a) of the ceramic plate (4). The Al plate (3) is disposed adjacent to the ceramic plate (4) on the lower surface (4a) of the ceramic plate (4). The adjacent plates (2, 4), (4, 3) are joined together by the spark plasma sintering method. Therefore, the Cu plate (2) is arranged on the uppermost outer side of the laminate (1), and the ceramic plate (4) is arranged between the Cu plate (2) and the Al plate (3), The Al plate (3) is disposed on the outermost side below the laminated material (1). Since the ceramic plate (4) and the Cu plate (2) are joined by the discharge plasma sintering method, the Cu plate (2) is bonded to the upper surface (4a) of the ceramic plate (4), the ceramic plate (4) and the Cu plate (4). It is joined directly to the plate (2) without a brazing material. Similarly, since the ceramic plate (4) and the Al plate (3) are joined by the discharge plasma sintering method, the Al plate (3) is attached to the lower surface (4a) of the ceramic plate (4). ) And the Al plate (3) without a brazing material, that is, directly joined.

ここでは、1枚のセラミック板(4)が1枚のCu板(2)と1枚のAl板(3)との間に位置するように積層されるとともに、互いに隣り合うCu板(2)とセラミック板(4)およびセラミック板(4)とAl板(3)とが放電プラズマ焼結法により順次(段階的に)接合されたものである。また、この積層材(1)は三層構造である。   Here, one ceramic plate (4) is laminated so as to be positioned between one Cu plate (2) and one Al plate (3), and adjacent Cu plates (2). And the ceramic plate (4), and the ceramic plate (4) and the Al plate (3) are sequentially (stepwise) joined by the discharge plasma sintering method. Further, the laminated material (1) has a three-layer structure.

積層材(1)の上下両面、すなわちCu板(2)の上面およびAl板(3)の下面の平面度は、それぞれ100μm以下である。   The flatness of the upper and lower surfaces of the laminated material (1), that is, the upper surface of the Cu plate (2) and the lower surface of the Al plate (3) is 100 μm or less, respectively.

Cu板(2)は、上述したようにCuまたはCu合金からなる。Al板(3)は、上述したようにAlまたはAl合金からなる。因みに、Cu板(2)およびAl板(3)を構成する材料の融点は、それぞれ、Cu:1083℃、Al:660℃であり、Cu合金およびAl合金の融点は、通常、それぞれ、CuおよびAlの融点よりも低い。   The Cu plate (2) is made of Cu or a Cu alloy as described above. The Al plate (3) is made of Al or an Al alloy as described above. Incidentally, the melting points of the materials constituting the Cu plate (2) and the Al plate (3) are Cu: 1083 ° C. and Al: 660 ° C., respectively, and the melting points of the Cu alloy and the Al alloy are usually Cu and Lower than the melting point of Al.

Cu板(2)およびAl板(3)の厚みは3mm以下(好ましくは200μm以上)であることが良い。Cu板(2)およびAl板(3)は、公知の適当な方法で形成される。   The thicknesses of the Cu plate (2) and the Al plate (3) are preferably 3 mm or less (preferably 200 μm or more). The Cu plate (2) and the Al plate (3) are formed by a known appropriate method.

セラミック板(4)は、AlN、Al23、Si34、SiC、Y23、CaO、BNおよびBeOよりなる群から選ばれた1種の電気絶縁性材料からなる。セラミック板(4)の厚みは1mm以下(好ましくは300μm以上)であることが好ましい。セラミック板(4)は、たとえば、AlN、Al23、Si34、SiC、Y23、CaO、BNおよびBeOよりなる群から選ばれた1種の材料の粉末を、適当な焼結助剤を用いて放電プラズマ焼結法により焼結することにより形成される。また、セラミック板(4)は、AlN、Al23、Si34、SiC、Y23、CaO、BNおよびBeOよりなる群から選ばれた1種の材料の粉末を用いて熱間静水圧プレス(HIP)することにより形成されていてもよい。 The ceramic plate (4) is made of one kind of electrically insulating material selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN and BeO. The thickness of the ceramic plate (4) is preferably 1 mm or less (preferably 300 μm or more). The ceramic plate (4) is made of, for example, powder of one material selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN, and BeO. It is formed by sintering by a discharge plasma sintering method using a sintering aid. The ceramic plate (4) is heated using powder of one material selected from the group consisting of AlN, Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN and BeO. It may be formed by hot isostatic pressing (HIP).

ここで、各セラミック材料の融点または分解点は、AlN:2200℃、Al:2050℃、Si:1900℃、SiC:2000℃、Y:2400℃、CaO:2570℃、BN:3000℃、BeO:2570℃であり、Cu板(2)およびAl板(3)を構成する材料の融点よりも高くなっている。 Here, the melting point or decomposition point of each ceramic material is AlN: 2200 ° C., Al 2 O 3 : 2050 ° C., Si 3 N 4 : 1900 ° C., SiC: 2000 ° C., Y 2 O 3 : 2400 ° C., CaO: 2570. ° C, BN: 3000 ° C, BeO: 2570 ° C, which are higher than the melting points of the materials constituting the Cu plate (2) and the Al plate (3).

Cu板(2)、Al板(3)およびセラミック板(4)の形状は、それぞれ平面視で例えば四角形状である。ただし本発明では、Cu板(2)、Al板(3)およびセラミック板(4)は、平面視で四角形状であることに限定されるものではなく、その他に、多角形状、円形状、楕円形状、または、任意の曲線で囲まれた形状であっても良い。さらに、これらの板(2)(3)(4)は、同一形状であっても良いし、相似形状であっても良いし、異形形状であっても良い。   The shapes of the Cu plate (2), the Al plate (3), and the ceramic plate (4) are, for example, quadrangular in plan view. However, in the present invention, the Cu plate (2), the Al plate (3), and the ceramic plate (4) are not limited to a quadrangular shape in plan view, and other than that, a polygonal shape, a circular shape, an elliptical shape It may be a shape or a shape surrounded by an arbitrary curve. Further, these plates (2), (3), and (4) may have the same shape, similar shapes, or irregular shapes.

セラミック板(4)の上面(4a)および下面(4a)の外形寸法は、それぞれCu板(2)の下面およびAl板(3)の上面の外形寸法よりも少し大きくなっている。   The outer dimensions of the upper surface (4a) and the lower surface (4a) of the ceramic plate (4) are slightly larger than the outer dimensions of the lower surface of the Cu plate (2) and the upper surface of the Al plate (3), respectively.

そして、セラミック板(4)におけるCu板(2)と接合された側の面(即ち、セラミック板(4)の上面(4a))の外周縁(4z)よりも内側に、Cu板(2)のセラミック板(4)との接合面(2a)(即ち、Cu板(2)の下面)が位置している。さらに、セラミック板(4)におけるAl板(3)と接合された側の面(即ち、セラミック板(4)の下面(4a))の外周縁(4z)よりも内側に、Al板(3)のセラミック板(4)との接合面(3a)(即ち、Al板(3)の下面)が位置している。   Then, on the inner side of the outer peripheral edge (4z) of the surface of the ceramic plate (4) joined to the Cu plate (2) (that is, the upper surface (4a) of the ceramic plate (4)), the Cu plate (2) The bonding surface (2a) with the ceramic plate (4) (that is, the lower surface of the Cu plate (2)) is located. Further, on the inner side of the outer peripheral edge (4z) of the surface of the ceramic plate (4) joined to the Al plate (3) (that is, the lower surface (4a) of the ceramic plate (4)), the Al plate (3) The bonding surface (3a) with the ceramic plate (4) (that is, the lower surface of the Al plate (3)) is located.

本実施形態の積層材(1)では、セラミック板(4)におけるCu板(2)と接合された側の面は、セラミック板(4)の上面(4a)である。セラミック板(4)におけるAl板(3)と接合された側の面は、セラミック板(4)の下面(4a)である。さらに、セラミック板(4)の上面(4a)はCu板(2)との隣接面でもあり、またセラミック板(4)の下面(4a)はAl板(3)との隣接面でもある。また、Cu板(2)のセラミック板(4)との接合面(2a)は、Cu板(2)の下面である。Al板(3)のセラミック板(4)との接合面(3a)は、Al板(3)の上面である。   In the laminated material (1) of the present embodiment, the surface of the ceramic plate (4) that is joined to the Cu plate (2) is the upper surface (4a) of the ceramic plate (4). The surface of the ceramic plate (4) on the side joined to the Al plate (3) is the lower surface (4a) of the ceramic plate (4). Further, the upper surface (4a) of the ceramic plate (4) is also a surface adjacent to the Cu plate (2), and the lower surface (4a) of the ceramic plate (4) is also a surface adjacent to the Al plate (3). Further, the bonding surface (2a) between the Cu plate (2) and the ceramic plate (4) is the lower surface of the Cu plate (2). The joint surface (3a) between the Al plate (3) and the ceramic plate (4) is the upper surface of the Al plate (3).

図1に示すように、セラミック板(4)の上面(4a)の外周縁(4z)からCu板(2)の接合面(2a)までの距離dは、0.5mm以上であることが望ましく、また同じく、セラミック板(4)の下面(4a)の外周縁(4z)からAl板(3)の接合面(3a)までの距離dは、0.5mm以上であることが望ましい。こうすることにより、Cu板(2)の外周縁部からの漏電を確実に防止することができる。なお、距離dの上限は特に限定されるものではなく、通常2.0mm位である。   As shown in FIG. 1, the distance d from the outer peripheral edge (4z) of the upper surface (4a) of the ceramic plate (4) to the bonding surface (2a) of the Cu plate (2) is preferably 0.5 mm or more. Similarly, the distance d from the outer peripheral edge (4z) of the lower surface (4a) of the ceramic plate (4) to the joining surface (3a) of the Al plate (3) is preferably 0.5 mm or more. By doing so, it is possible to reliably prevent leakage from the outer peripheral edge of the Cu plate (2). The upper limit of the distance d is not particularly limited, and is usually about 2.0 mm.

図示は省略したが、積層材(1)の一応用例(用途例)を以下にあげる。   Although illustration is omitted, one application example (use example) of the laminated material (1) is given below.

積層材(1)は、例えば、電気鉄道車両などの電動機の電力変換装置に使用されるMOSFET、IGBTおよびダイオードなどの半導体素子が実装される基板あるいは冷却部材に用いられる。半導体素子としては、電力の送変電制御装置、鉄道車両の駆動制御装置、自動車のエンジン制御装置、インバータ駆動装置、家庭用エアコン制御装置、太陽光発電用制御装置などに用いられるパワーデバイスが、作動の際のスイッチング時の発熱が大きいために好適に挙げられる。パワーデバイスの冷却には放熱器が使用される。パワーデバイスと放熱器とを備えたパワーモジュールでは、一般に、パワーデバイスと放熱器との間に、熱的には伝導体であるが電気的には絶縁体として機能する性質を有する積層材が配置されている。この積層材として、本実施形態の積層材(1)が好適に用いられる。具体的には、積層材(1)は、Cu板(2)を備えているので、直接はんだ付けが可能な配線層を有する熱伝導性絶縁基板として好適に用いられる。さらに、積層材(1)は、Cu板(2)が半導体素子と隣接するので、半導体素子から発せられる熱を効率的に拡散することができ、そのため、放熱特性が良い配線層を有する絶縁基板としても用いられる。さらに、積層材(1)は、Cu板(2)の配置側とは反対側にAl板(3)を備えているので、軽量で放熱性の良いAlまたはAl合金製ヒートシンクをろう付けなどの金属的な接合によりAl板(3)に貼り付けることができる。これにより、半導体素子から発せられる熱を効率良くヒートシンクに伝えて放熱しうる放熱部材を構成することができる。   The laminated material (1) is used for, for example, a substrate or a cooling member on which semiconductor elements such as MOSFETs, IGBTs, and diodes used in electric power converters for electric motors such as electric railway vehicles are mounted. As semiconductor elements, power devices used in power transmission / transformation control devices, railway vehicle drive control devices, automobile engine control devices, inverter drive devices, home air conditioner control devices, solar power generation control devices, etc. operate. The heat generation at the time of switching at the time of switching is preferably mentioned. A radiator is used to cool the power device. In a power module including a power device and a radiator, generally, a laminated material having a property that functions thermally as an insulator but electrically functions as an insulator is disposed between the power device and the radiator. Has been. As this laminated material, the laminated material (1) of the present embodiment is preferably used. Specifically, since the laminated material (1) includes the Cu plate (2), it is suitably used as a thermally conductive insulating substrate having a wiring layer that can be directly soldered. Furthermore, since the laminated material (1) has the Cu plate (2) adjacent to the semiconductor element, the heat generated from the semiconductor element can be efficiently diffused, and therefore, the insulating substrate having a wiring layer with good heat dissipation characteristics Also used as Furthermore, since the laminated material (1) includes the Al plate (3) on the side opposite to the side on which the Cu plate (2) is disposed, a lightweight and heat radiating heat sink made of Al or Al alloy is brazed. It can be attached to the Al plate (3) by metallic bonding. Thereby, the heat radiating member which can transmit the heat | fever emitted from a semiconductor element to a heat sink efficiently and can radiate | emit can be comprised.

次に、積層材(1)の製造方法について、図2〜4を参照して説明する。   Next, the manufacturing method of a laminated material (1) is demonstrated with reference to FIGS.

すなわち、CuまたはCu合金からなり、かつ一般的な製法で作製されたCu板(2)と、AlまたはAl合金からなり、かつ一般的な製法で作製されたAl板(3)と、AlN、Al、Si、SiC、Y、CaO、BNおよびBeOよりなる群から選ばれた1種の材料からなり、かつ一般的な製法で作製されたセラミック板(4)とを用意する。 That is, a Cu plate (2) made of Cu or Cu alloy and manufactured by a general manufacturing method, an Al plate (3) made of Al or Al alloy and manufactured by a general manufacturing method, AlN, Ceramic plate made of one material selected from the group consisting of Al 2 O 3 , Si 3 N 4 , SiC, Y 2 O 3 , CaO, BN and BeO and manufactured by a general manufacturing method (4) And prepare.

ここで、Cu板(2)およびAl板(3)の表面粗さは、それぞれ算術平均粗さ(Ra)で1.0μm以下であることが好ましく、厚みは3mm以下であることが好ましい。セラミック板(4)の表面粗さは、算術平均粗さ(Ra)で1.5μm以下であることが好ましく、厚みは1mm以下であることが好ましい。   Here, the surface roughness of the Cu plate (2) and the Al plate (3) is preferably 1.0 μm or less in terms of arithmetic average roughness (Ra), and the thickness is preferably 3 mm or less. The surface roughness of the ceramic plate (4) is preferably 1.5 μm or less in arithmetic mean roughness (Ra), and the thickness is preferably 1 mm or less.

ついで、放電プラズマ焼結装置の導電性を有する筒状の黒鉛製焼結用ダイ(10)内に、セラミック板(4)とCu板(2)とを、セラミック板(4)の上面(4a)上にCu板(2)がセラミック板(4)と隣接して配置されるように、且つ、セラミック板(4)の上面(4a)の外周縁(4z)よりも内側にCu板(2)の下面からなる接合予定面(2b)が位置するように積層して配置する。このように、セラミック板(4)とCu板(2)とが積層されることで第1積層体(60)が形成される。互いに隣り合う板どうし(2,4)は面接触している。ダイ(10)の上下方向の高さは、Cu板(2)およびセラミック板(4)の厚みの合計よりも高くなっており、ダイ(10)の上下両端部は、Cu板(2)およびセラミック板(4)よりも上下方向外側に突出している。ついで、ダイ(10)内におけるCu板(2)およびセラミック板(4)からなる第1積層体(60)の上下両側にそれぞれ黒鉛製パンチ(11)(12)を配置するとともに、上パンチ(11)の上面および下パンチ(12)の下面にそれぞれ電極(13)(14)を電気的に接触させる。この状態では、両パンチ(11)(12)およびダイ(10)によって両電極(13)(14)間の導通が確保される。   Next, in the cylindrical graphite sintering die (10) having electrical conductivity of the discharge plasma sintering apparatus, the ceramic plate (4) and the Cu plate (2) are placed on the upper surface of the ceramic plate (4) (4a The Cu plate (2) is disposed adjacent to the ceramic plate (4) and on the inner side of the outer peripheral edge (4z) of the upper surface (4a) of the ceramic plate (4). ) Are arranged so that the planned joining surface (2b) consisting of the lower surface of the substrate is positioned. Thus, a 1st laminated body (60) is formed by laminating | stacking a ceramic board (4) and Cu board (2). Adjacent plates (2, 4) are in surface contact. The vertical height of the die (10) is higher than the total thickness of the Cu plate (2) and the ceramic plate (4). It protrudes outward in the vertical direction from the ceramic plate (4). Next, graphite punches (11) and (12) are arranged on both upper and lower sides of the first laminate (60) made of the Cu plate (2) and the ceramic plate (4) in the die (10), and the upper punch ( The electrodes (13) and (14) are brought into electrical contact with the upper surface of 11) and the lower surface of the lower punch (12), respectively. In this state, conduction between the electrodes (13) and (14) is ensured by the punches (11) and (12) and the die (10).

なお本発明では、第1積層体(60)は、積層構造が保たれていれば積層順番が上下逆転しても良い。さらに、第1積層体(60)を複数個、ダイ(10)内に上下方向に重ねるように配置しても良い。この場合、隣り合う第1積層体(60)どうしの間には、ダイ(10)と同等な材料で作製された板材をスペーサーとして設置することが望ましい。さらに、両電極(13)(14)間には、第1積層体(60)を1つ以上含んだダイ(10)と両パンチ(11)(12)とからなる群を、複数個並列に並べて配置しても良い。   In the present invention, the stacking order of the first stacked body (60) may be reversed as long as the stacked structure is maintained. Further, a plurality of the first laminated bodies (60) may be arranged so as to be stacked in the vertical direction in the die (10). In this case, it is desirable to install a plate material made of a material equivalent to the die (10) as a spacer between the adjacent first stacked bodies (60). Furthermore, between the electrodes (13) and (14), a plurality of groups consisting of a die (10) including one or more first laminated bodies (60) and punches (11) (12) are arranged in parallel. They may be arranged side by side.

ついで、1〜10Paの真空雰囲気中、または窒素やアルゴンなどの不活性ガス雰囲気中において、第1積層体(60)を上下両パンチ(11)(12)または両電極(13)(14)により上下両方向、すなわち第1積層体(60)の積層方向の両側から加圧しつつ、両電極(13)(14)間にパルス電流を通電することにより、Cu板(2)の融点よりも低い温度に加熱昇温するとともに、当該温度に所定時間保持し、これによりセラミック板(4)とCu板(2)とを接合する。この工程を放電プラズマ焼結法による「第1接合工程」という。こうして、図3に示した二層構造の接合体(61)が得られる。   Next, in a vacuum atmosphere of 1 to 10 Pa, or in an inert gas atmosphere such as nitrogen or argon, the first laminate (60) is moved by the upper and lower punches (11) (12) or both electrodes (13) (14). A temperature lower than the melting point of the Cu plate (2) by applying a pulse current between both electrodes (13) and (14) while applying pressure from both the top and bottom directions, that is, from both sides of the first laminate (60) in the stacking direction. In addition, the temperature is raised and held at the temperature for a predetermined time, thereby joining the ceramic plate (4) and the Cu plate (2). This process is referred to as a “first bonding process” by a discharge plasma sintering method. In this way, the joined body (61) having the two-layer structure shown in FIG. 3 is obtained.

なお、第1積層体(60)を複数個、ダイ(10)内に重ねるように配置した場合、接合体(61)は複数個同時に製造される。また、両電極(13)(14)間に、第1積層体(60)を含んだダイ(10)と両パンチ(11)(12)とからなる群を、複数個並列に並べて配置した場合、接合体(61)は複数個同時に製造される。   When a plurality of first laminated bodies (60) are arranged so as to be stacked in the die (10), a plurality of joined bodies (61) are manufactured simultaneously. When a plurality of groups consisting of a die (10) including the first laminate (60) and both punches (11) (12) are arranged in parallel between the electrodes (13) (14) A plurality of joined bodies (61) are manufactured simultaneously.

上述した第1接合工程での接合条件は、Cu板(2)およびセラミック板(4)の材料や寸法に応じて異なるが、たとえば通電するパルス電流1000〜30000A、加圧力10〜100MPa、接合温度933〜1073℃(好ましくは950〜1000℃)、接合温度保持時間1〜30minである。   The bonding conditions in the first bonding step described above vary depending on the materials and dimensions of the Cu plate (2) and the ceramic plate (4), but for example, a pulse current of 1000 to 30000A to be energized, a pressure of 10 to 100 MPa, a bonding temperature It is 933-1073 degreeC (preferably 950-1000 degreeC), and joining temperature holding time is 1-30 minutes.

図3に示した第1接合体(61)では、セラミック板(4)の上面(4a)にCu板(2)が、セラミック板(4)とCu板(2)との間の接合界面にろう材を介することなく、すなわち直接的に接合されている。さらに、Cu板(2)のセラミック面(4)との接合面(2a)は、セラミック板(4)の上面(4a)の外周縁(4z)よりも内側に位置している。   In the first joined body (61) shown in FIG. 3, the Cu plate (2) is placed on the upper surface (4a) of the ceramic plate (4) at the joining interface between the ceramic plate (4) and the Cu plate (2). It is joined directly without the brazing material. Furthermore, the joint surface (2a) with the ceramic surface (4) of the Cu plate (2) is located inside the outer peripheral edge (4z) of the upper surface (4a) of the ceramic plate (4).

ついで、図4に示すように、放電プラズマ焼結装置の黒鉛製焼結用ダイ(10)内に、接合体(61)とAl板(3)とを、接合体(61)のセラミック板(4)の下面(4a)上にAl板(3)が配置されるように、且つ、セラミック板(4)の下面(4a)の外周縁(4z)よりも内側にAl板(3)の上面からなる接合予定面(3b)が位置するように積層して配置する。このように、接合体(61)とAl板(3)とが積層されることで第2積層体(62)が形成される。互いに隣り合う板どうし(61,3)は面接触している。ダイ(10)の上下方向の高さは、接合体(61)およびAl板(3)の厚みの合計よりも高くなっており、ダイ(10)の上下両端部は、接合体(61)のCu板(2)およびAl板(3)よりも上下方向外側に突出している。ついで、ダイ(10)内における接合体(61)およびAl板(3)からなる第2積層体(62)の上下両側に黒鉛製パンチ(11)(12)を配置するとともに、上パンチ(11)の上面および下パンチ(12)の下面にそれぞれ電極(13)(14)を電気的に接触させる。この状態では、両パンチ(11)(12)およびダイ(10)によって両電極(13)(14)間の導通が確保される。   Next, as shown in FIG. 4, the joined body (61) and the Al plate (3) are placed in the graphite sintering die (10) of the discharge plasma sintering apparatus, and the joined body (61) ceramic plate ( The upper surface of the Al plate (3) so that the Al plate (3) is disposed on the lower surface (4a) of 4) and inside the outer peripheral edge (4z) of the lower surface (4a) of the ceramic plate (4) Laminated and arranged so that the planned joining surface (3b) is located. In this way, the second laminate (62) is formed by laminating the joined body (61) and the Al plate (3). Adjacent plates (61, 3) are in surface contact. The height in the vertical direction of the die (10) is higher than the total thickness of the joined body (61) and the Al plate (3), and the upper and lower end portions of the die (10) are connected to the joined body (61). It protrudes outward in the vertical direction from the Cu plate (2) and the Al plate (3). Next, graphite punches (11) and (12) are arranged on the upper and lower sides of the second laminate (62) made of the joined body (61) and the Al plate (3) in the die (10), and the upper punch (11 The electrodes (13) and (14) are brought into electrical contact with the upper surface of) and the lower surface of the lower punch (12), respectively. In this state, conduction between the electrodes (13) and (14) is ensured by the punches (11) and (12) and the die (10).

なお本発明では、第2積層体(62)は、積層構造が保たれていれば積層順番が上下逆転しても良い。さらに、第2積層体(62)を複数個、ダイ(10)内に上下方向に重ねるように配置しても良い。この場合、隣り合う第2積層体(62)どうしの間には、ダイ(10)と同等な材料で作製された板材をスペーサーとして設置することが望ましい。さらに、両電極(13)(14)間には、第2積層体(62)を1つ以上含んだダイ(10)と両パンチ(11)(12)とからなる群を、複数個並列に並べて配置しても良い。   In the present invention, the stacking order of the second stacked body (62) may be reversed as long as the stacked structure is maintained. Further, a plurality of second stacked bodies (62) may be arranged so as to be stacked in the vertical direction in the die (10). In this case, it is desirable to install a plate material made of a material equivalent to the die (10) as a spacer between the adjacent second stacked bodies (62). Furthermore, between the electrodes (13) and (14), a plurality of groups consisting of a die (10) including one or more second laminated bodies (62) and punches (11) (12) are arranged in parallel. They may be arranged side by side.

ついで、1〜10Paの真空雰囲気中、または窒素やアルゴンなどの不活性ガス雰囲気中において、第2積層体(62)を上下両パンチ(11)(12)または両電極(13)(14)により上下両方向、すなわち第2積層体(62)の積層方向の両側から加圧しつつ、両電極(13)(14)間にパルス電流を通電することにより、Al板(3)の融点よりも低い温度に加熱昇温するとともに、当該温度に所定時間保持し、これにより第2積層体(62)のセラミック板(4)とAl板(3)とを接合する。この工程を放電プラズマ焼結法による「第2接合工程」という。こうして、図1に示した所望する積層材(1)が製造される。   Next, in a vacuum atmosphere of 1 to 10 Pa, or in an inert gas atmosphere such as nitrogen or argon, the second laminated body (62) is moved by the upper and lower punches (11) (12) or both electrodes (13) (14). A temperature lower than the melting point of the Al plate (3) by applying a pulse current between the electrodes (13) and (14) while applying pressure from both sides in the vertical direction, that is, from both sides of the second laminate (62). In addition, the temperature is raised and held at the temperature for a predetermined time, thereby joining the ceramic plate (4) and the Al plate (3) of the second laminate (62). This process is referred to as a “second bonding process” by a discharge plasma sintering method. In this way, the desired laminated material (1) shown in FIG. 1 is manufactured.

なお、第2積層体(62)を複数個、ダイ(10)内に重ねるように配置した場合、積層材(1)は複数個同時に製造される。また、両電極(13)(14)間に、第2積層体(62)を含んだダイ(10)と両パンチ(11)(12)とからなる群を、複数個並列に並べて配置した場合、積層材(1)は複数個同時に製造される。   When a plurality of second laminated bodies (62) are arranged so as to be stacked in the die (10), a plurality of laminated materials (1) are manufactured simultaneously. When a plurality of groups of dies (10) including the second laminate (62) and punches (11) (12) are arranged in parallel between the electrodes (13) (14) A plurality of laminated materials (1) are manufactured simultaneously.

上述した第2接合工程での接合条件は、接合体(61)のセラミック板(4)およびAl板(3)の材料や寸法に応じて異なるが、たとえば通電するパルス電流1000〜30000A、加圧力10〜100MPa、接合温度510〜650℃(好ましくは520〜600℃)、接合温度保持時間1〜30minである。   The joining conditions in the second joining step described above vary depending on the materials and dimensions of the ceramic plate (4) and the Al plate (3) of the joined body (61). The bonding temperature is 10 to 100 MPa, the bonding temperature is 510 to 650 ° C. (preferably 520 to 600 ° C.), and the bonding temperature holding time is 1 to 30 min.

ここで、Al板(3)の融点は一般にCu板(2)の融点よりも低いことから、本実施形態のようにAl板(3)とセラミック板(4)との接合をCu(2)とセラミック板(4)との接合の後で行うことにより、Cu板(2)とセラミック板(4)との接合の際にAl板(3)が溶融するのを回避することができ、これにより、接合状態が良好な所望する三層構造(Cu/セラミック/Al)の積層材(1)を確実に得ることができる。   Here, since the melting point of the Al plate (3) is generally lower than the melting point of the Cu plate (2), the bonding of the Al plate (3) and the ceramic plate (4) as in this embodiment is performed using Cu (2). This is performed after joining the ceramic plate (4) to avoid melting the Al plate (3) when the Cu plate (2) and the ceramic plate (4) are joined. Thus, it is possible to reliably obtain a desired laminated material (1) having a three-layer structure (Cu / ceramic / Al) having a good bonding state.

なお、Cu板(2)およびAl板(3)とセラミック板(4)とが接合されるメカニズムは明確ではないが、次の通りであると考えられる。   The mechanism by which the Cu plate (2) and Al plate (3) and the ceramic plate (4) are joined is not clear, but is considered as follows.

すなわち、金属板(即ちCu板(2)、Al板(3))とセラミック板(4)との積層体を積層方向の両側から加圧すると、金属板が降伏することにより、金属板を構成する材料がセラミック板(4)表面の微小な凹部に入り込み、金属板とセラミック板(4)との接触面積が大きくなる。この状態で、放電プラズマ焼結装置の両電極(13)(14)間にパルス電流を通電し、金属板を加熱すると、金属板が軟化して金属板とセラミック板(4)との接触面積が一層大きくなる。このとき、金属板表面とセラミック板(4)表面との接触部付近において放電プラズマが放射されると、金属板表面の酸化皮膜が破壊、除去されるので、活性な表面が露出する。この金属板の活性面がセラミック板(4)の表面と接触すると、物質拡散により金属板とセラミック板(4)とが接合されると考えられる。   That is, when a metal plate (ie, Cu plate (2), Al plate (3)) and ceramic plate (4) are pressed from both sides in the stacking direction, the metal plate yields to form the metal plate. The material to be entered enters a minute recess on the surface of the ceramic plate (4), and the contact area between the metal plate and the ceramic plate (4) increases. In this state, when a pulse current is applied between both electrodes (13) and (14) of the spark plasma sintering apparatus and the metal plate is heated, the metal plate softens and the contact area between the metal plate and the ceramic plate (4) Becomes even larger. At this time, when discharge plasma is emitted in the vicinity of the contact portion between the surface of the metal plate and the surface of the ceramic plate (4), the oxide film on the surface of the metal plate is destroyed and removed, so that the active surface is exposed. When the active surface of the metal plate comes into contact with the surface of the ceramic plate (4), it is considered that the metal plate and the ceramic plate (4) are joined by material diffusion.

以上で本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々に変更可能である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and can be variously modified.

以下、この発明による積層材の具体的実施例について、比較例とともに説明する。   Hereinafter, specific examples of the laminated material according to the present invention will be described together with comparative examples.

<実施例1>
この実施例の積層材は、上記実施形態の積層材(1)である。
<Example 1>
The laminated material of this example is the laminated material (1) of the above embodiment.

純度99.5質量%のCuからなりかつ縦32mm、横26mm、厚み0.6mmの1枚のCu板(2)と、純度99.99質量%のAlからなりかつ縦32mm、横26mm、厚み0.6mの1枚のAl板(3)と、縦34mm、横28mm、厚み0.635mmの1枚のAlN製セラミック板(4)とを用意した。そして、Cu板(2)、Al板(3)およびセラミック板(4)の表面に、有機溶剤を用いて脱脂処理を施した。なお、酸化皮膜の除去処理は施していない。Cu板(2)の両面の表面粗さは、算術平均粗さでRa1.1μmm、Al板(3)の両面の表面粗さは、算術平均粗さでRa0.9μm、セラミック板(4)の両面の表面粗さは、算術平均粗さでRa0.8μmであった。Raは、JIS(日本工業規格) B 0601:1994に準拠して測定した。   One Cu plate (2) made of Cu with a purity of 99.5% by mass and 32 mm long, 26 mm wide and 0.6 mm thick, and made of Al with a purity of 99.99 mass% 32 mm long, 26 mm wide, thickness One 0.6 m Al plate (3) and one AlN ceramic plate (4) 34 mm long, 28 mm wide and 0.635 mm thick were prepared. And the degreasing | defatting process was performed using the organic solvent on the surface of Cu board (2), Al board (3), and ceramic board (4). In addition, the removal process of an oxide film is not given. The surface roughness of both surfaces of the Cu plate (2) is Ra 1.1 μmm in terms of arithmetic average roughness, the surface roughness of both surfaces of the Al plate (3) is Ra 0.9 μm in terms of arithmetic average roughness, and the ceramic plate (4). The surface roughness of both surfaces was Ra 0.8 μm in terms of arithmetic average roughness. Ra was measured according to JIS (Japanese Industrial Standards) B 0601: 1994.

ついで、図2に示すように、焼結用ダイ(10)内に、セラミック板(4)とCu板(2)とを、セラミック板(4)の上面(4a)上にCu板(2)がセラミック板(4)と隣接して配置されるように、且つ、セラミック板(4)の上面(4a)の外周縁(4z)よりも内側にCu板(2)の下面からなる接合予定面(2b)が位置するように積層して配置した。このとき、セラミック板(4)の重心位置とCu板(2)の重心位置とが厚さ方向に一致するようにこれらの板(4)(2)を配置した。そして、ダイ(10)内におけるCu板(2)およびセラミック板(4)からなる第1積層体(60)の上下両側にそれぞれ黒鉛製パンチ(11)(12)を配置するとともに、上パンチ(11)の上面および下パンチ(12)の下面にそれぞれ電極(13)(14)を電気的に接触させた。この状態では、両パンチ(11)(12)およびダイ(10)によって両電極(13)(14)間の導通が確保される。   Next, as shown in FIG. 2, the ceramic plate (4) and the Cu plate (2) are placed in the sintering die (10), and the Cu plate (2) is placed on the upper surface (4a) of the ceramic plate (4). Are arranged adjacent to the ceramic plate (4), and are to be joined from the lower surface of the Cu plate (2) inside the outer peripheral edge (4z) of the upper surface (4a) of the ceramic plate (4). The layers were stacked so that (2b) was positioned. At this time, these plates (4) and (2) were arranged so that the center of gravity of the ceramic plate (4) and the center of gravity of the Cu plate (2) coincided with each other in the thickness direction. Then, graphite punches (11) and (12) are arranged on both upper and lower sides of the first laminate (60) made of the Cu plate (2) and the ceramic plate (4) in the die (10), and the upper punch ( The electrodes (13) and (14) were brought into electrical contact with the upper surface of 11) and the lower surface of the lower punch (12), respectively. In this state, conduction between the electrodes (13) and (14) is ensured by the punches (11) and (12) and the die (10).

ついで、1〜10Paの真空雰囲気中において、第1積層体(60)を上下両パンチ(11)(12)により上下両側から20MPaの圧力で加圧しつつ、両電極(13)(14)間に最大2500Aのパルス電流を通電することにより第1積層体(60)を室温から25分間かけて950℃まで加熱するとともに、950℃で5分間保持し、これにより、Cu板(2)とセラミック板(4)とを接合した[第1接合工程]。ついで、両電極(13)(14)間の通電を停止した後、冷却することにより、図3に示した二層構造の接合体(61)を製造した。   Next, in a vacuum atmosphere of 1 to 10 Pa, the first laminated body (60) is pressed between the upper and lower punches (11) and (12) at a pressure of 20 MPa from the upper and lower sides, and between the electrodes (13) and (14). The first laminated body (60) is heated from room temperature to 950 ° C. over 25 minutes by energizing a pulse current of a maximum of 2500 A, and held at 950 ° C. for 5 minutes, whereby the Cu plate (2) and the ceramic plate (4) was joined [first joining step]. Next, the energization between the electrodes (13) and (14) was stopped, and then cooled to produce the joined body (61) having the two-layer structure shown in FIG.

ついで、同じく図4に示すように、焼結用ダイ(10)内に、接合体(61)とAl板とを、接合体(61)のセラミック板(4)の下面(4a)上にAl板(3)がセラミック板(4)と隣接して配置されるように、且つ、セラミック板(4)の下面(4a)の外周縁(4z)よりも内側にAl板(3)の接合予定面(3b)が位置するように積層して配置した。そして、ダイ(10)内における接合体(61)およびAl板(3)からなる第2積層体(62)の上下両側にそれぞれ黒鉛製パンチ(11)(12)を配置するとともに、上パンチ(11)の上面および下パンチ(12)の下面にそれぞれ電極(13)(14)を電気的に接触させた。この状態では、両パンチ(11)(12)およびダイ(10)によって両電極(13)(14)間の導通が確保される。   Next, as shown in FIG. 4, the joined body (61) and the Al plate are placed in the sintering die (10), and the lower surface (4a) of the ceramic plate (4) of the joined body (61) is made of Al. The Al plate (3) is to be joined so that the plate (3) is disposed adjacent to the ceramic plate (4) and inside the outer peripheral edge (4z) of the lower surface (4a) of the ceramic plate (4). The layers (3b) were laminated so as to be positioned. Then, graphite punches (11) and (12) are arranged on both upper and lower sides of the second laminate (62) made of the joined body (61) and the Al plate (3) in the die (10), and the upper punch ( The electrodes (13) and (14) were brought into electrical contact with the upper surface of 11) and the lower surface of the lower punch (12), respectively. In this state, conduction between the electrodes (13) and (14) is ensured by the punches (11) and (12) and the die (10).

ついで、1〜10Paの真空雰囲気中において、第2積層体(62)を上下両パンチ(11)(12)により上下両側から20MPaの圧力で加圧しつつ、両電極(13)(14)間に最大1500Aのパルス電流を通電することにより第2積層体(62)を室温から10分間かけて550℃まで加熱するとともに、550℃で5分間保持し、これにより、第2積層体(62)のセラミック板(4)とAl板(3)とを接合した[第2接合工程]。ついで、両電極(13)(14)間の通電を停止した後、冷却することにより、図1に示した所望する三層構造の積層材(1)を製造した。   Next, in a vacuum atmosphere of 1 to 10 Pa, the second laminate (62) is pressed between the upper and lower punches (11) and (12) at a pressure of 20 MPa from the upper and lower sides, and between the electrodes (13) and (14). The second laminate (62) is heated from room temperature to 550 ° C. over 10 minutes by passing a pulse current of 1500 A at the maximum and held at 550 ° C. for 5 minutes, whereby the second laminate (62) The ceramic plate (4) and the Al plate (3) were joined [second joining step]. Subsequently, the energization between the electrodes (13) and (14) was stopped, and then cooled to produce the desired three-layered laminate (1) shown in FIG.

製造された積層材(1)では、Cu板(2)とセラミック板(4)との接合、および、Al板(3)とセラミック板(4)との接合を、いずれも放電プラズマ焼結法により行っているので、ろう材を用いる必要がなく、そのため、積層材(1)の製造コストを低減できた。   In the manufactured laminated material (1), the joining of the Cu plate (2) and the ceramic plate (4) and the joining of the Al plate (3) and the ceramic plate (4) are both performed by the discharge plasma sintering method. Therefore, it was not necessary to use a brazing material, so that the manufacturing cost of the laminated material (1) could be reduced.

また、積層材(1)の両面の平面度を測定したところ、70μmであった。さらに、積層材(1)におけるCu板(2)とセラミック板(4)との接合状態およびAl板(3)とセラミック板(4)との接合状態を確認するため、積層材(1)の断面観察を行ったところ、接合界面には欠陥が見られず、良好な接合が行われていた。   Further, the flatness of both surfaces of the laminate (1) was measured and found to be 70 μm. Furthermore, in order to confirm the bonding state between the Cu plate (2) and the ceramic plate (4) and the bonding state between the Al plate (3) and the ceramic plate (4) in the laminated material (1), the lamination material (1) When the cross section was observed, no defects were found at the bonding interface, and good bonding was performed.

また、積層材(1)について、−40℃⇔125℃、1000サイクルという試験条件の冷熱サイクル試験を行った。そして、Cu板(2)とセラミック板(4)との間の接合界面、および、Al板(3)とセラミック板(4)との間の接合界面における剥離の有無を調べた。その結果を表1中の「剥離」欄に示す。同欄に示すように、それぞれの接合界面に剥離は発生していなかった。   In addition, the laminated material (1) was subjected to a cooling / heating cycle test under the test conditions of −40 ° C. to 125 ° C. and 1000 cycles. Then, the presence or absence of peeling at the bonding interface between the Cu plate (2) and the ceramic plate (4) and the bonding interface between the Al plate (3) and the ceramic plate (4) was examined. The results are shown in the “Peel” column in Table 1. As shown in the same column, no peeling occurred at each bonding interface.

また、積層材(1)のAl板(3)の表面にAl製水冷式シートシンクをろう付けし、次いで積層材(1)のCu板(2)の表面に半導体素子をはんだ付けした。そして、積層材(1)の放熱性能として熱抵抗を調べた。その結果を表1中の「放熱性能」欄に示す。同欄に示すように、半導体素子直下にAlよりも熱伝導率が2倍程度大きいCu板(2)が配置されているので、放熱性能が高く、半導体素子から発する熱を効率的に放熱することができた。さらに、この積層材(1)では、半導体素子をはんだ付けする前にNiめっきを施す必要がないので、積層材(1)の製造コストを更に低減できた。さらに、積層材(1)のAl板(3)の表面にシートシンクをろう付けする際においては、積層材(1)とヒートシンクとを金属的に接合することができた。   Also, an Al water-cooled sheet sink was brazed to the surface of the Al plate (3) of the laminate (1), and then a semiconductor element was soldered to the surface of the Cu plate (2) of the laminate (1). The thermal resistance was examined as the heat dissipation performance of the laminate (1). The results are shown in the “Heat dissipation performance” column of Table 1. As shown in the same column, a Cu plate (2) whose thermal conductivity is about twice as high as that of Al is arranged directly under the semiconductor element, so that the heat dissipation performance is high and the heat generated from the semiconductor element is efficiently radiated. I was able to. Further, in this laminated material (1), since it is not necessary to perform Ni plating before soldering the semiconductor element, the manufacturing cost of the laminated material (1) can be further reduced. Further, when the sheet sink was brazed to the surface of the Al plate (3) of the laminated material (1), the laminated material (1) and the heat sink could be joined metallically.

<実施例2>
両電極(13)(14)間でのパルス電流の通電を窒素からなる不活性ガス雰囲気中で行ったことを除いては、実施例1と同様にして三層構造の積層材(1)を製造した。
<Example 2>
A laminated material (1) having a three-layer structure was formed in the same manner as in Example 1 except that the pulse current was passed between the electrodes (13) and (14) in an inert gas atmosphere made of nitrogen. Manufactured.

製造された積層材(1)の両面の平面度を測定したところ、72μmであった。さらに、積層材(1)におけるCu板(2)とセラミック板(4)との接合状態およびAl板(3)とセラミック板(4)との接合状態を確認するため、積層材(1)の断面観察を行ったところ、接合界面には欠陥が見られず、良好な接合が行われていた。   It was 72 micrometers when the flatness of both surfaces of the manufactured laminated material (1) was measured. Furthermore, in order to confirm the bonding state between the Cu plate (2) and the ceramic plate (4) and the bonding state between the Al plate (3) and the ceramic plate (4) in the laminated material (1), the lamination material (1) When the cross section was observed, no defects were found at the bonding interface, and good bonding was performed.

また、積層材(1)について、実施例1の冷熱サイクル試験と同じ試験条件で冷熱サイクル試験を行った。そして、Cu板(2)とセラミック板(4)との間の接合界面、および、Al板(3)とセラミック板(4)との間の接合界面における剥離の有無を調べた。その結果を表1中の「剥離」欄に示す。同欄に示すように、それぞれの接合界面に剥離は発生しなかった。   Moreover, about the laminated material (1), the thermal cycle test was done on the same test conditions as the thermal cycle test of Example 1. FIG. Then, the presence or absence of peeling at the bonding interface between the Cu plate (2) and the ceramic plate (4) and the bonding interface between the Al plate (3) and the ceramic plate (4) was examined. The results are shown in the “Peel” column in Table 1. As shown in the same column, no peeling occurred at each bonding interface.

また、積層材(1)のAl板(3)の表面にAl製水冷式シートシンクをろう付けし、次いで積層材(1)のCu板(2)の表面に半導体素子をはんだ付けした。そして、積層材(1)の放熱性能(熱抵抗)を調べた。その結果を表1中の「放熱性能」欄に示す。同欄に示すように、実施例2の積層材(1)でも放熱性能が高く、半導体素子から発する熱を効率的に放熱することができた。さらに、この積層材(1)では、半導体素子をはんだ付けする前にNiめっきを施す必要がないので、積層材(1)の製造コストを更に低減できた。さらに、積層材(1)のAl板(3)の表面にシートシンクをろう付けする際においては、積層材(1)とヒートシンクとを金属的に接合することができた。   Also, an Al water-cooled sheet sink was brazed to the surface of the Al plate (3) of the laminate (1), and then a semiconductor element was soldered to the surface of the Cu plate (2) of the laminate (1). And the heat dissipation performance (thermal resistance) of the laminated material (1) was examined. The results are shown in the “Heat dissipation performance” column of Table 1. As shown in the same column, the laminated material (1) of Example 2 also had high heat dissipation performance, and was able to efficiently dissipate heat generated from the semiconductor element. Further, in this laminated material (1), since it is not necessary to perform Ni plating before soldering the semiconductor element, the manufacturing cost of the laminated material (1) can be further reduced. Further, when the sheet sink was brazed to the surface of the Al plate (3) of the laminated material (1), the laminated material (1) and the heat sink could be joined metallically.

<比較例1>
図5に示した三層構造の積層材(101A)を次のように製造した。
<Comparative Example 1>
A laminated material (101A) having a three-layer structure shown in FIG. 5 was produced as follows.

実施例1で用いたAl板(3)およびセラミック板(4)と同じ材料・形状からなる2枚のAl板(103)および1枚のセラミック板(104)を用意した。すなわち、Al板(103)は、純度99.99質量%のAlからなりかつその形状が縦32mm、横26mm、厚み0.6mmである。セラミック板(104)は、AlNからなりかつその形状が縦34mm、横28mm、厚み0.635mmである。そして、セラミック板(104)の両面にそれぞれAl板(103)を、各Al板(103)とセラミック板(104)との間に介在させたAl−Si合金からなるろう材によりろう付けし、これにより、図5に示した積層材(101A)を製造した。   Two Al plates (103) and one ceramic plate (104) made of the same material and shape as the Al plate (3) and ceramic plate (4) used in Example 1 were prepared. That is, the Al plate (103) is made of Al having a purity of 99.99% by mass, and the shape thereof is 32 mm in length, 26 mm in width, and 0.6 mm in thickness. The ceramic plate (104) is made of AlN, and its shape is 34 mm long, 28 mm wide, and 0.635 mm thick. Then, the Al plate (103) is brazed to both surfaces of the ceramic plate (104) with a brazing material made of an Al-Si alloy interposed between each Al plate (103) and the ceramic plate (104), Thereby, the laminated material (101A) shown in FIG. 5 was manufactured.

製造された積層材(101A)について、実施例1の冷熱サイクル試験と同じ試験条件で冷熱サイクル試験を行った。そして、各Al板(103)とセラミック板(104)との間の接合界面における剥離の有無を調べた。その結果を表1中の「剥離」欄に示す。同欄に示すように、それぞれの接合界面に剥離が発生した。   The manufactured laminate (101A) was subjected to a thermal cycle test under the same test conditions as the thermal cycle test of Example 1. Then, the presence or absence of peeling at the bonding interface between each Al plate (103) and the ceramic plate (104) was examined. The results are shown in the “Peel” column in Table 1. As shown in the same column, peeling occurred at each bonding interface.

また、積層材(101A)の一方のAl板(103)の表面にAl製水冷式シートシンクをろう付けし、次いで積層材(101A)の他方のAl板(103)の表面にNiめっきを施してNiめっき層を形成し、その後、Niめっき層の表面に半導体素子をはんだ付けした。そして、積層材(101A)の放熱性能(熱抵抗)を調べた。その結果を表1中の「放熱性能」欄に示す。同欄に示すように、積層材(101A)の放熱性能が実施例1および2の積層材(1)よりも悪かった。さらに、この積層材(101A)では、半導体素子をはんだ付けする前にNiめっきを施す必要があったので、積層材(101A)の製造コストを増加した。   Also, an Al water-cooled sheet sink is brazed to the surface of one Al plate (103) of the laminated material (101A), and then Ni plating is applied to the surface of the other Al plate (103) of the laminated material (101A). Then, a Ni plating layer was formed, and then a semiconductor element was soldered to the surface of the Ni plating layer. And the heat dissipation performance (thermal resistance) of the laminated material (101A) was examined. The results are shown in the “Heat dissipation performance” column of Table 1. As shown in the same column, the heat dissipation performance of the laminate (101A) was worse than that of the laminates (1) of Examples 1 and 2. Further, in this laminated material (101A), since it was necessary to perform Ni plating before soldering the semiconductor element, the manufacturing cost of the laminated material (101A) was increased.

<比較例2>
図6に示した三層構造の積層材(101B)を次のように製造した。
<Comparative example 2>
A laminate (101B) having a three-layer structure shown in FIG. 6 was produced as follows.

実施例1で用いたCu板(2)およびセラミック板(4)と同じ材料・形状からなる2枚のCu板(102)および1枚のセラミック板(104)を用意した。すなわち、Cu板(102)は、純度99.5質量%のCuからなりかつその形状が縦32mm、横26mm、厚み0.6mmである。セラミック板(104)は、AlNからなりかつその形状が縦34mm、横28mm、厚み0.635mmである。そして、セラミック板(104)の両面にそれぞれCu板(102)を、各Cu板(102)とセラミック板(104)との間に介在させたTiとAgからなる活性金属を含んだろう材によりろう付けし、これにより、図6に示した積層材(101B)を製造した。   Two Cu plates (102) and one ceramic plate (104) made of the same material and shape as the Cu plate (2) and ceramic plate (4) used in Example 1 were prepared. That is, the Cu plate (102) is made of Cu having a purity of 99.5% by mass, and the shape thereof is 32 mm in length, 26 mm in width, and 0.6 mm in thickness. The ceramic plate (104) is made of AlN, and its shape is 34 mm long, 28 mm wide, and 0.635 mm thick. Then, a Cu plate (102) is provided on both sides of the ceramic plate (104), and a material containing an active metal composed of Ti and Ag interposed between each Cu plate (102) and the ceramic plate (104). The laminated material (101B) shown in FIG. 6 was manufactured by brazing.

製造された積層材(101B)について、実施例1の冷熱サイクル試験と同じ試験条件で冷熱サイクル試験を行った。そして、各Cu板(102)とセラミック板(104)との間の接合界面における剥離の有無を調べた。その結果を表1中の「剥離」欄に示す。同欄に示すように、それぞれの接合界面に剥離が発生した。   The manufactured laminate (101B) was subjected to a thermal cycle test under the same test conditions as the thermal cycle test of Example 1. Then, the presence or absence of peeling at the joint interface between each Cu plate (102) and the ceramic plate (104) was examined. The results are shown in the “Peel” column in Table 1. As shown in the same column, peeling occurred at each bonding interface.

また、積層材(101B)の一方のCu板(102)の表面にAl製水冷式シートシンクを熱伝導グリースで接着し、次いで積層材(101B)の他方のCu板(102)の表面に半導体素子をはんだ付けした。そして、積層材(101B)の放熱性能(熱抵抗)を調べた。その結果を表1中の「放熱性能」欄に示す。同欄に示すように、積層材(101B)の放熱性能が実施例1および2の積層材(1)よりも悪かった。   Also, a water-cooled sheet sink made of Al is adhered to the surface of one Cu plate (102) of the laminated material (101B) with thermal grease, and then the semiconductor is formed on the surface of the other Cu plate (102) of the laminated material (101B). The element was soldered. And the heat dissipation performance (thermal resistance) of the laminated material (101B) was examined. The results are shown in the “Heat dissipation performance” column of Table 1. As shown in the same column, the heat dissipation performance of the laminated material (101B) was worse than that of the laminated materials (1) of Examples 1 and 2.

Figure 0005654369
Figure 0005654369

本発明による積層材は、たとえばパワーデバイスなどの半導体素子を冷却するのに好適に用いられる。   The laminated material according to the present invention is suitably used for cooling a semiconductor element such as a power device.

(1):積層材
(2):Cu板
(3):Al板
(4):セラミック板
(1): Laminated material
(2): Cu plate
(3): Al plate
(4): Ceramic plate

Claims (4)

セラミック板と、CuまたはCu合金からなるCu板とを、セラミック板の一方の片面上にCu板が配置されるように積層する第1積層工程と、
セラミック板とCu板との第1積層体を1対の放電プラズマ焼結用電極間に配置する第1積層体配置工程と、
両電極間の導通を確保した状態で、両電極間にパルス電流を通電することにより、第1積層体のセラミック板とCu板とを接合する第1接合工程と、
第1接合工程により得られたセラミック板とCu板との接合体と、AlまたはAl合金からなるAl板とを、接合体のセラミック板の他方の片面上にAl板が配置されるように積層する第2積層工程と、
接合体とAl板との第2積層体を1対の放電プラズマ焼結用電極間に配置する第2積層体配置工程と、
両電極間の導通を確保した状態で、両電極間にパルス電流を通電することにより、第2積層体のセラミック板とAl板とを接合する第2接合工程と、を含むことを特徴とする積層材の製造方法。
A first laminating step of laminating a ceramic plate and a Cu plate made of Cu or Cu alloy so that the Cu plate is disposed on one side of the ceramic plate;
A first laminate arrangement step of arranging a first laminate of a ceramic plate and a Cu plate between a pair of discharge plasma sintering electrodes;
A first joining step for joining the ceramic plate and the Cu plate of the first laminate by passing a pulse current between the electrodes in a state in which conduction between the two electrodes is ensured;
A laminated body of a ceramic plate and a Cu plate obtained by the first joining step and an Al plate made of Al or an Al alloy are laminated so that the Al plate is disposed on the other surface of the ceramic plate of the joined body. A second laminating step,
A second laminate arrangement step of arranging the second laminate of the joined body and the Al plate between a pair of discharge plasma sintering electrodes;
A second joining step of joining the ceramic plate and the Al plate of the second laminate by passing a pulse current between the electrodes in a state in which conduction between the two electrodes is ensured. A method for producing a laminated material.
第1接合工程では、接合を、Cu板の融点よりも低い温度で行うとともに、
第2接合工程では、接合を、Al板の融点よりも低い温度で行う請求項記載の積層材の製造方法。
In the first joining step, joining is performed at a temperature lower than the melting point of the Cu plate,
In the second joining step, joining the method for producing a laminated material according to claim 1, wherein at a temperature lower than the melting point of the Al plate.
第1接合工程では、接合を、第1積層体をその積層方向の両側から10〜100MPaで加圧しながら行うとともに、
第2接合工程では、接合を、第2積層体をその積層方向の両側から10〜100MPaで加圧しながら行う請求項または記載の積層材の製造方法。
In the first bonding step, the bonding is performed while pressing the first stacked body at 10 to 100 MPa from both sides in the stacking direction,
The method for manufacturing a laminated material according to claim 1 or 2 , wherein in the second bonding step, the bonding is performed while pressing the second stacked body from 10 to 100 MPa from both sides in the stacking direction.
第1接合工程では、接合を、不活性ガス雰囲気中または真空雰囲気中で行うとともに、
第2接合工程では、接合を、不活性ガス雰囲気中または真空雰囲気中で行う請求項のうちのいずれかに記載の積層材の製造方法。
In the first bonding step, bonding is performed in an inert gas atmosphere or a vacuum atmosphere,
The method for manufacturing a laminated material according to any one of claims 1 to 3 , wherein in the second bonding step, bonding is performed in an inert gas atmosphere or a vacuum atmosphere.
JP2011018288A 2010-02-09 2011-01-31 Laminate production method Active JP5654369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018288A JP5654369B2 (en) 2010-02-09 2011-01-31 Laminate production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010026647 2010-02-09
JP2010026647 2010-02-09
JP2011018288A JP5654369B2 (en) 2010-02-09 2011-01-31 Laminate production method

Publications (2)

Publication Number Publication Date
JP2011183798A JP2011183798A (en) 2011-09-22
JP5654369B2 true JP5654369B2 (en) 2015-01-14

Family

ID=44790629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018288A Active JP5654369B2 (en) 2010-02-09 2011-01-31 Laminate production method

Country Status (1)

Country Link
JP (1) JP5654369B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012102611B4 (en) * 2012-02-15 2017-07-27 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
KR101447086B1 (en) * 2013-02-18 2014-10-06 한국생산기술연구원 Metal-ceramic laminar composites and the manufacturing method of the same
JP6300229B2 (en) * 2014-02-14 2018-03-28 島根県 Laminated body and method for producing the same
KR101531312B1 (en) * 2014-03-18 2015-06-25 한국생산기술연구원 Cu-Ceramic laminar composites and the manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756200B2 (en) * 2000-09-04 2011-08-24 Dowaメタルテック株式会社 Metal ceramic circuit board
WO2009119438A1 (en) * 2008-03-25 2009-10-01 昭和電工株式会社 Insulating substrate and method for producing the same

Also Published As

Publication number Publication date
JP2011183798A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
KR102300972B1 (en) Substrate unit for power modules, and power module
EP3208839B1 (en) Substrate with cooler for power modules and method for producing same
KR102422607B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP5918008B2 (en) Manufacturing method of cooler
JP5759902B2 (en) Laminate and method for producing the same
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
JP5989465B2 (en) Insulating substrate manufacturing method
JP5654369B2 (en) Laminate production method
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP2019087586A (en) Method of manufacturing insulated circuit board, method of manufacturing insulated circuit board with heat sink, insulated circuit board, insulated circuit board with heat sink, and method of manufacturing laminated structure of insulated circuit board
JP5947090B2 (en) Insulating substrate manufacturing method
JP2011071260A (en) Laminating material and manufacturing method thereof, and insulated laminating material and manufacturing method thereof
JP5739179B2 (en) Laminate and method for producing the same
JP2017063143A (en) Light-emitting module with cooler and manufacturing method for light-emitting module with cooler
JP2012094679A (en) Substrate manufacturing method
JP5869781B2 (en) Method for manufacturing laminated material for insulating substrate
JP6008544B2 (en) Insulating substrate manufacturing method
JP5917992B2 (en) Insulating substrate manufacturing method
JP5666372B2 (en) Laminated material for insulating substrates
JP2017063127A (en) Substrate for light-emitting module, light-emitting module, substrate for light-emitting module with cooler, and manufacturing method of substrate for light-emitting module
JP5722646B2 (en) Laminate production method
JP2018041868A (en) Heat dissipation substrate
JP2019087608A (en) Conjugate, insulation circuit board, insulation circuit board with heat sink, heat sink, and manufacturing method of conjugate, manufacturing method of insulation circuit board, manufacturing method of insulation circuit board with heat sink, and manufacturing method of heat sink
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
WO2016060079A1 (en) Substrate with cooler for power modules and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350