JP5652654B2 - Film forming system and film forming method - Google Patents

Film forming system and film forming method Download PDF

Info

Publication number
JP5652654B2
JP5652654B2 JP2011024459A JP2011024459A JP5652654B2 JP 5652654 B2 JP5652654 B2 JP 5652654B2 JP 2011024459 A JP2011024459 A JP 2011024459A JP 2011024459 A JP2011024459 A JP 2011024459A JP 5652654 B2 JP5652654 B2 JP 5652654B2
Authority
JP
Japan
Prior art keywords
substrate
film thickness
film
film forming
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011024459A
Other languages
Japanese (ja)
Other versions
JP2012165214A (en
Inventor
關 仁士
仁士 關
福永 茂樹
茂樹 福永
信也 山本
信也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011024459A priority Critical patent/JP5652654B2/en
Publication of JP2012165214A publication Critical patent/JP2012165214A/en
Application granted granted Critical
Publication of JP5652654B2 publication Critical patent/JP5652654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、基板を成膜するための成膜システム及び成膜方法に関する。   The present invention relates to a film forming system and a film forming method for forming a film on a substrate.

従来の半導体ウエハを処理する装置として、ウエハ上の構造の寸法を測定するための測定手段と、第1の組の処理パラメータ値を用いてウエハ上で第1の処理を行なうための第1の処理手段と、測定手段と第1の処理手段との間でウエハを移送するための移送メカニズムと、移送機構を含み、きれいな環境にある移送機構、測定手段及び第1の処理手段の間に連通可能なチャンバと、寸法の測定に基づいて第1の組の処理パラメータ値を選択するように構成されたプロセッサと、を有する装置が知られている(特許文献1参照)。   As a conventional apparatus for processing a semiconductor wafer, a measuring means for measuring the dimensions of a structure on the wafer and a first process for performing a first process on the wafer using a first set of process parameter values. A processing mechanism, a transfer mechanism for transferring a wafer between the measuring means and the first processing means, and a transfer mechanism including the transfer mechanism, and communicating between the transfer mechanism, the measuring means and the first processing means in a clean environment An apparatus is known having a possible chamber and a processor configured to select a first set of process parameter values based on dimensional measurements (see US Pat.

ここで、プロセッサは、更にウエハの寸法の測定に基づいて第2の組の処理パラメータ値を選択し、且つ第2の組の処理パラメータ値を前に行った処理手段へ与えるように構成されている。   Here, the processor is further configured to select a second set of processing parameter values based on the measurement of the wafer dimensions and to provide the second set of processing parameter values to the previously performed processing means. Yes.

また、チャンバは、第1の処理手段を含む複数の処理手段を取り付けるための本体と、測定手段を収容し、ウエハカセットを取り付けるためのファクトリーインタフェースと、本体とファクトリーインタフェース間に、及び本体とファクトリーインタフェースと連通する移送チャンバと、を有している。移送機構は、測定手段、移送チャンバ及びウエハカッセト間でウエハを移送するための第1のロボット、及び移送チャンバ及び第1の処理手段との間でウエハを移送するための第2のロボットを有している。   The chamber also includes a main body for mounting a plurality of processing means including a first processing means, a factory interface for accommodating the measurement means and mounting the wafer cassette, between the main body and the factory interface, and between the main body and the factory. A transfer chamber in communication with the interface. The transfer mechanism includes a measuring means, a first robot for transferring the wafer between the transfer chamber and the wafer cassette, and a second robot for transferring the wafer between the transfer chamber and the first processing means. ing.

特許文献1の装置によれば、測定されたパラメータは、例えば、異なるオーバエッチング及び/又はエッチング化学のためのエッチングレシピのようなプロセスの調整可能なパラメータにもリンクされる。従って、測定されたパラメータが所望の値からずれているならば、誤差を修正するようにリンクされたエッチングレシピがそのエッチャーにフィードフォワードされ、検査されたロットにおけるウエハを処理するように、レシピが自動的に又はユーザの判断で実現される。従って、本発明のフィードバック及びフィードフォワードは、検査の次のホトレジストの現像及び最終検査において、ロットからロットへのCD(臨界寸法)制御を改善する旨が記載されている(段落(0017)参照)。   According to the device of US Pat. No. 6,057,059, the measured parameters are also linked to process tunable parameters such as, for example, etching recipes for different over-etching and / or etching chemistries. Thus, if the measured parameter deviates from the desired value, the recipe is linked so that the etch recipe linked to correct the error is fed forward to that etcher to process the wafers in the inspected lot. This is realized automatically or at the user's discretion. Thus, the feedback and feedforward of the present invention is described to improve lot-to-lot CD (critical dimension) control in photoresist development and final inspection following inspection (see paragraph (0017)). .

また、特許文献1の装置によれば、ステップ1040で、ウエハに対するエッチングレシピがウエハのCD測定に基づいて選択される。たとえば、上述した図3及び図4(A)、図4(B)の本発明の実施例によるウエハのCD測定データに対して、“署名解析(シグネチャーアナリシス)”が実行される。CD測定からのデータは、変化を調べるためにライブラリーからの参照データと比較され、その後変化はパラメータ化される(すなわち、エッチングプロセスのパラメータへ変換される)。代わりに、ルート結合された波形解析(root
coupled wave analysis: RCWA)が行なわれる。
Further, according to the apparatus of Patent Document 1, in step 1040, an etching recipe for the wafer is selected based on the CD measurement of the wafer. For example, “signature analysis (signature analysis)” is performed on the CD measurement data of the wafer according to the embodiment of the present invention shown in FIGS. 3, 4 (A), and 4 (B). The data from the CD measurement is compared to reference data from the library to examine the change, and then the change is parameterized (ie, converted into etching process parameters). Instead, root combined waveform analysis (root
coupled wave analysis (RCWA).

ここで、与えられた波形に相当するCDは、計算によって、例えば、光学検査手段におけるプロセッサによって得られる。RCWAは、Chateau,
"Algorithm for the rigorous couple-wave analysis of grating
diffraction" Journal of the Optical Society of America, Vol. 11, No. 4
(April 1994) 及びMoharam, "Stable implementation of the rigorous coupled-wave
analysis for surface-relief grating: enhanced transmittance matrix
approach", Journal of the Optical Society of America, Vol. 12, No. 3 (May
1995)、で議論されている。
Here, the CD corresponding to the given waveform is obtained by calculation, for example, by a processor in the optical inspection means. RCWA, Chateau,
"Algorithm for the rigorous couple-wave analysis of grating
diffraction "Journal of the Optical Society of America, Vol. 11, No. 4
(April 1994) and Moharam, "Stable implementation of the rigorous coupled-wave
analysis for surface-relief grating: enhanced transmittance matrix
approach ", Journal of the Optical Society of America, Vol. 12, No. 3 (May
1995).

また、図3、図4(A)及び図4(B)の実施例において説明されているように、この解析の結果は、改定されたステッパーの設定を選択するために、ホトセル360にフィードフォワードすることもできる旨が記載されている(段落(0049)参照)。   Also, as described in the embodiments of FIGS. 3, 4A and 4B, the results of this analysis are fed forward to photocell 360 to select the revised stepper settings. It is described that it can also be performed (see paragraph (0049)).

また、特許文献2には、弾性表面波素子の製造方法において、圧電性基板上にインターデジタルトランスデューサ(IDT)電極を形成することが示されている。   Patent Document 2 discloses that an interdigital transducer (IDT) electrode is formed on a piezoelectric substrate in a method for manufacturing a surface acoustic wave element.

特表2005−521235号公表特許公報Patent Publication No. 2005-521235 特開2002−217665号公報JP 2002-217665 A

ところで、特許文献1では、半導体デバイスにおいて、フォトリソグラフィー工程の後でフォトレジストをSEM観察し、エッチングレシピやステッパーの設定などの予め定められた選択情報をフォトリソグラフィー工程が実施される後続のロットにフィードバックしたり、次の工程(エッチング工程)へフィードフォワードすることにより、ロット間のCD(臨界寸法)偏差の低減を図っている。従って、ウエハ毎に対して最適化されているとは言えない。   By the way, in Patent Document 1, in a semiconductor device, a photoresist is observed with an SEM after a photolithography process, and predetermined selection information such as an etching recipe or a stepper setting is applied to a subsequent lot in which the photolithography process is performed. By feeding back or feeding forward to the next process (etching process), the CD (critical dimension) deviation between lots is reduced. Therefore, it cannot be said that it is optimized for each wafer.

また後続のロットにフィードバックすれば後続ロットのCD精度は向上するが、現ロットの補正はできない。現ロットについては次の工程(エッチング)にフィードフォワードして補正することになるが、エッチング時間の調整によってレジスト間距離を調整するには限界がある。エッチング時間が短すぎると、電極(またはレジスト)膜を除去しきれない可能性があるし、長すぎるとウエハなどの下地へのダメージが大きくなる。   Also, feedback to the subsequent lot improves the CD accuracy of the subsequent lot, but the current lot cannot be corrected. The current lot is corrected by feeding forward to the next process (etching), but there is a limit to adjusting the distance between resists by adjusting the etching time. If the etching time is too short, there is a possibility that the electrode (or resist) film cannot be completely removed. If the etching time is too long, damage to the substrate such as a wafer increases.

上記の理由から、周波数特性を製品特性とする電子デバイスにおいては、フォトリソグラフィー工程の後工程は、素子にダメージを与えにくい成膜工程が必要であり、かつ半導体デバイスでは影響の少ない電極膜厚を制御する必要がある。   For the above reasons, in an electronic device having frequency characteristics as a product characteristic, a film forming process that hardly damages the element is necessary as a post process of the photolithography process. Need to control.

そこで、本発明は、上記問題点に鑑み、基板毎に成膜の目標膜厚を設定でき、ひいては電極線幅に対応した膜厚を基板に形成することができる成膜システム及び成膜方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention provides a film forming system and a film forming method capable of setting a target film thickness for each substrate and thus forming a film thickness corresponding to the electrode line width on the substrate. The purpose is to provide.

本発明は、基板上に形成された複数箇所のレジストを測定する測定室と、前記基板を1枚ずつ成膜して前記基板上に電極を形成する枚葉式成膜室と、を有する成膜システムであって、前記基板上にて隣接する前記レジストのレジスト間距離またはレジスト線幅を測定する測定手段を前記測定室に有し、前記測定手段によって測定した前記レジスト間距離または前記レジスト線幅に基づいて、前記基板から作製される電気素子が所定の周波数を得るための最適な電極膜厚を算出する制御手段を有し、前記枚葉式成膜室は、前記基板の電極膜厚が前記制御手段で算出された最適な電極膜厚となるように、前記基板に電極を形成する成膜手段を有することを特徴とする。   The present invention provides a film formation system having a measurement chamber for measuring a plurality of resists formed on a substrate, and a single-wafer film formation chamber for forming electrodes on the substrate by forming the substrates one by one. The measuring chamber has a measuring means for measuring a distance between resists or a resist line width of the resists adjacent on the substrate, and the distance between the resists or the resist line width measured by the measuring means is measured. On the basis of the control means for calculating an optimum electrode film thickness for an electric element manufactured from the substrate to obtain a predetermined frequency, and the single-wafer type film forming chamber has an electrode film thickness of the substrate. It has a film forming means for forming an electrode on the substrate so that the optimum electrode film thickness calculated in (1) is obtained.

この構成によれば、測定室では、測定手段によって基板上に隣接するレジストのレジスト間距離またはレジスト線幅を測定する。そして、測定手段によって測定したレジスト間距離またはレジスト線幅に基づいて、基板から作製される電気素子が所定の周波数を得るための最適な電極膜厚を制御手段で算出する。枚葉式成膜室では、基板の電極膜厚が制御手段で算出された最適膜厚となるように、基板に電極を成膜する。これにより、基板の電極膜厚分布制御が可能になり、電極線幅に応じた最適な電極膜厚を形成して、成膜後の基板の周波数特性を高めることができる。   According to this configuration, in the measurement chamber, the distance between the resists or the resist line width of the resist adjacent on the substrate is measured by the measuring means. Based on the distance between resists or the resist line width measured by the measuring means, the control means calculates an optimum electrode film thickness for an electric element manufactured from the substrate to obtain a predetermined frequency. In the single wafer deposition chamber, the electrodes are deposited on the substrate so that the electrode thickness of the substrate is the optimum thickness calculated by the control means. This makes it possible to control the electrode film thickness distribution of the substrate, and to form an optimum electrode film thickness according to the electrode line width, thereby enhancing the frequency characteristics of the substrate after film formation.

前記測定室では、真空環境において前記基板上の前記レジスト間距離または前記レジスト線幅の測定が行われ、前記枚葉式成膜室では、真空環境において前記基板への成膜が行われ、前記測定室から前記枚葉式成膜室への基板の搬送が、真空環境を保ちながら搬送されることが好ましい。   In the measurement chamber, the distance between the resists or the resist line width on the substrate is measured in a vacuum environment, and in the single-wafer film deposition chamber, the film is deposited on the substrate in a vacuum environment, and the measurement chamber It is preferable that the substrate is transported to the single-wafer film deposition chamber while maintaining a vacuum environment.

この構成によれば、測定室では、真空環境において基板上のレジスト間距離またはレジスト線幅の測定が行われる。枚葉式成膜室では、真空環境において基板への成膜が行われる。さらに、測定室から枚葉式成膜室への基板の搬送が、真空環境を保ちながら搬送される。これにより、大気開放・真空排気による時間を削除することができるため、基板の処理効率を高めることができる。また、成膜システムを測定処理室と枚葉式成膜室とを一体にした構成にすることで、レジストのレジスト間距離の測定データの取り扱いが容易になる。   According to this configuration, in the measurement chamber, the distance between the resists on the substrate or the resist line width is measured in a vacuum environment. In a single wafer deposition chamber, deposition is performed on a substrate in a vacuum environment. Furthermore, the substrate is transported from the measurement chamber to the single wafer deposition chamber while maintaining a vacuum environment. Thereby, the time required for opening to the atmosphere and evacuation can be eliminated, so that the processing efficiency of the substrate can be improved. Further, when the film forming system is configured such that the measurement processing chamber and the single-wafer type film forming chamber are integrated, the measurement data of the resist-to-resist distance can be easily handled.

この場合、前記成膜手段は、成膜物質を収容した射出源と、前記射出源の上方に前記基板を水平に保持しながら自転させる基板回転手段を有し、さらに、前記射出源と前記基板との間に、膜厚補正部材を挿入し成膜を部分的に遮蔽することにより、前記基板の電極膜厚を補正する膜厚補正手段を有し、前記膜厚補正部材は、成膜物質が通過する開口部と、前記成膜物質の通過を阻止する遮蔽部と、を有し、前記膜厚補正部材の座標中心が、前記射出源の中心と前記基板の中心とを結んだ軸線上に一致するように出没可能に設けられ、前記座標中心からの半径距離に応じて、前記開口部の開口率が変化しているものであることが好ましい。 In this case, the film forming means includes an injection source containing a film forming substance, and a substrate rotating means for rotating the substrate while holding the substrate horizontally above the injection source, and further, the injection source and the substrate And a film thickness correcting means for correcting the film thickness of the electrode of the substrate by inserting a film thickness correcting member and partially shielding the film formation. On the axis connecting the center of the injection source and the center of the substrate. It is preferable that the aperture ratio of the opening portion is changed according to the radial distance from the coordinate center .

この構成によれば、膜厚補正手段によって基板の電極膜厚が補正され、容易に最適な電極膜厚にすることができる。   According to this configuration, the electrode film thickness of the substrate is corrected by the film thickness correcting means, and the optimum electrode film thickness can be easily obtained.

また、本発明は、測定室において、基板上に隣接するレジストのレジスト間距離またはレジスト線幅を測定する測定工程と、前記測定工程において測定された前記レジスト間距離または前記レジスト線幅に基づいて、前記基板から作製される電気素子が所定の周波数を得るための最適な電極膜厚を算出する算出工程と、枚葉式成膜室において、前記基板の電極膜厚が前記算出工程で算出された最適膜厚となるように、前記基板に電極が成膜される成膜工程と、を有することを特徴とする。   Further, the present invention is based on the measurement step of measuring the distance between resists or the resist line width of the resist adjacent on the substrate in the measurement chamber, and the distance between resists or the resist line width measured in the measurement step. A calculation step of calculating an optimum electrode film thickness for an electric element manufactured from the substrate to obtain a predetermined frequency; and an optimal electrode thickness of the substrate calculated in the calculation step in a single wafer type film formation chamber And a film forming step of forming an electrode on the substrate so as to have a film thickness.

この場合、前記測定工程では、真空環境において前記基板上の前記レジスト間距離または前記レジスト線幅の測定が行われ、前記成膜工程では、前記枚葉式成膜室の真空環境において前記基板への成膜が行われ、前記測定室から前記枚葉式成膜室への基板の搬送が、真空環境を保ちながら搬送されることが好ましい。   In this case, in the measurement step, the distance between the resists or the resist line width on the substrate is measured in a vacuum environment, and in the film formation step, the substrate is formed in the vacuum environment of the single-wafer type deposition chamber. It is preferable that the film is formed and the substrate is transported from the measurement chamber to the single wafer deposition chamber while maintaining a vacuum environment.

この場合、前記成膜工程では、前記枚葉式成膜室に、成膜物質を収容した射出源と、前記射出源の上方に前記基板を水平に保持しながら自転させる基板回転手段を有し、前記射出源と前記基板との間に、膜厚補正部材を挿入し成膜を部分的に遮蔽することにより、前記基板の電極膜厚を補正する膜厚補正工程が行われ、前記膜厚補正部材は、成膜物質が通過する開口部と、前記成膜物質の通過を阻止する遮蔽部と、を有し、前記膜厚補正部材の座標中心が、前記射出源の中心と前記基板の中心とを結んだ軸線上に一致するように出没可能に設けられ、前記座標中心からの半径距離に応じて、前記開口部の開口率が変化しているものであることが好ましい。 In this case, in the film forming step, the single wafer type film forming chamber has an injection source containing a film forming substance, and a substrate rotating means for rotating the substrate while holding the substrate horizontally above the injection source, A film thickness correction step is performed to correct the electrode film thickness of the substrate by inserting a film thickness correction member between the injection source and the substrate to partially shield the film formation, and the film thickness correction member Has an opening through which the film-forming substance passes and a shielding part that blocks the passage of the film-forming substance, and the coordinate center of the film thickness correcting member is the center of the emission source and the center of the substrate. It is preferable that it is provided so as to be able to appear and move so as to coincide with the axis line connecting the two, and the aperture ratio of the opening portion is changed according to the radial distance from the coordinate center .

本発明によれば、基板毎に成膜の目標膜厚を設定でき、ひいては電極線幅に対応した膜厚を基板に成膜することができる。   According to the present invention, a target film thickness for film formation can be set for each substrate, and a film thickness corresponding to the electrode line width can be formed on the substrate.

本発明の実施形態に係る成膜システムの構成図である。It is a block diagram of the film-forming system which concerns on embodiment of this invention. 基板上に形成されたレジストを示した説明図である。It is explanatory drawing which showed the resist formed on the board | substrate. 基板上のレジスト間に形成された電極とレジストとの位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the electrode formed between the resists on a board | substrate, and a resist. 本発明の実施形態に係る成膜システムの各工程図である。It is each process figure of the film-forming system which concerns on embodiment of this invention. 本発明の実施形態に係る成膜システムの枚葉式成膜装置の概念図である。It is a conceptual diagram of the single-wafer | sheet-fed film-forming apparatus of the film-forming system which concerns on embodiment of this invention. 本発明の実施形態に係る成膜システムの枚葉式成膜装置に用いる膜厚補正部材の開口部の形状を示した平面図である。It is the top view which showed the shape of the opening part of the film thickness correction member used for the single-wafer | sheet-fed film-forming apparatus of the film-forming system which concerns on embodiment of this invention. 本発明の実施形態に係る成膜システムの枚葉式成膜装置に用いる膜厚補正部材の開口部の形状を示した平面図である。It is the top view which showed the shape of the opening part of the film thickness correction member used for the single-wafer | sheet-fed film-forming apparatus of the film-forming system which concerns on embodiment of this invention. 図6の曲線をもとに作製した膜厚補正部材の形状例である。It is an example of the shape of the film thickness correction member produced based on the curve of FIG. 図6の曲線をもとに作製した膜厚補正部材の形状例である。It is an example of the shape of the film thickness correction member produced based on the curve of FIG. 基板の膜厚が断面視にて平坦状となる場合の成膜工程の説明図である。It is explanatory drawing of the film-forming process in case the film thickness of a board | substrate becomes flat shape by sectional view. 図10の成膜工程で使用する膜厚補正部材の形状を示した概念図である。It is the conceptual diagram which showed the shape of the film thickness correction member used at the film-forming process of FIG. 基板の膜厚が断面視にて凸状となる場合の成膜工程の説明図である。It is explanatory drawing of the film-forming process in case the film thickness of a board | substrate becomes convex shape by sectional view. 図12の成膜工程で使用する膜厚補正部材の形状を示した概念図である。It is the conceptual diagram which showed the shape of the film thickness correction member used at the film-forming process of FIG.

本発明の実施形態に係る成膜システム及び成膜方法について、図面を参照して説明する。本発明は、ウエハ(以下、「基板」と称する)に対して1枚ずつ成膜する枚葉式成膜室を有している。以下の実施形態では、枚葉式成膜室を前提として説明する。なお、本実施形態の「枚葉式成膜室」では、蒸着処理、あるいはスパッタリング処理などいわゆる物理蒸着処理も行われる。   A film forming system and a film forming method according to an embodiment of the present invention will be described with reference to the drawings. The present invention has a single-wafer type film forming chamber for forming films one by one on a wafer (hereinafter referred to as “substrate”). In the following embodiments, description will be made on the premise of a single-wafer film deposition chamber. In the “single-wafer film forming chamber” of this embodiment, a so-called physical vapor deposition process such as a vapor deposition process or a sputtering process is also performed.

図1に示すように、成膜システム100は、測定室102と、枚葉式成膜室104と、ロードロック室106と、前処理室108と、搬送室110と、排気系112と、これらを統制する制御部114と、を有している。図2は、基板18上に形成されたレジスト19を示し、図3は基板18上のレジスト19間に形成された電極21とレジスト19との位置関係を示している。   As shown in FIG. 1, the film forming system 100 includes a measurement chamber 102, a single wafer film forming chamber 104, a load lock chamber 106, a pretreatment chamber 108, a transfer chamber 110, an exhaust system 112, and these controls. And a control unit 114. FIG. 2 shows the resist 19 formed on the substrate 18, and FIG. 3 shows the positional relationship between the electrode 21 and the resist 19 formed between the resists 19 on the substrate 18.

図1、図2及び図3に示すように、測定室102は、真空環境において、電極21を形成するための複数のレジスト19のレジスト間距離Dまたはレジスト線幅Wを測定する部屋である。なお、電極21とは、例えば、圧電性の基板18上に形成されるインターデジタルトランスデューサ(IDT)電極である。測定室102は、基板18上に隣接するレジスト19のレジスト間距離Dを測定する走査電子顕微鏡(SEM)116が収容されている。走査電子顕微鏡116によって測定した基板18上のレジスト間距離Dは、データとして後述する制御部114に出力される。測定室102では、基板1枚ごとに、レジスト間距離Dを測定する。上記ではレジスト間距離Dを直接測定する例を示したが、レジスト線幅Wを測定した後、計算によりレジスト間距離Dを算出してもよい。   As shown in FIGS. 1, 2, and 3, the measurement chamber 102 is a chamber for measuring the inter-resist distance D or the resist line width W of the plurality of resists 19 for forming the electrodes 21 in a vacuum environment. The electrode 21 is, for example, an interdigital transducer (IDT) electrode formed on the piezoelectric substrate 18. The measurement chamber 102 accommodates a scanning electron microscope (SEM) 116 that measures the inter-resist distance D of the resist 19 adjacent on the substrate 18. The inter-resist distance D on the substrate 18 measured by the scanning electron microscope 116 is output as data to the control unit 114 described later. In the measurement chamber 102, the inter-resist distance D is measured for each substrate. Although the example in which the resist distance D is directly measured has been described above, the resist distance D may be calculated by calculating the resist line width W.

枚葉式成膜室104は、真空環境において、圧電性の基板18を1枚ずつ成膜する部屋である。枚葉式成膜室104の内部構造の詳細については後述する。   The single wafer deposition chamber 104 is a chamber for depositing the piezoelectric substrates 18 one by one in a vacuum environment. Details of the internal structure of the single wafer deposition chamber 104 will be described later.

前処理室108は、真空環境において、基板18に加熱、Arボンバードなどのクリーニング処理を前処理として行う部屋である。   The pretreatment chamber 108 is a chamber in which a cleaning process such as heating and Ar bombardment is performed on the substrate 18 as a pretreatment in a vacuum environment.

ロードロック室106は、搬送室110を大気に開放しないことを目的に設けられた真空部屋である。ロードロック室106と搬送室110とはゲートバルブ(図示省略)で仕切られている。ロードロック室106には、基板搬送機構(図示省略)が設けられており、処理前、処理後の基板18の出し入れを行う。   The load lock chamber 106 is a vacuum chamber provided for the purpose of not opening the transfer chamber 110 to the atmosphere. The load lock chamber 106 and the transfer chamber 110 are partitioned by a gate valve (not shown). The load lock chamber 106 is provided with a substrate transport mechanism (not shown), and the substrate 18 before and after processing is taken in and out.

搬送室110は、基板18を各部屋間に搬送するための部屋である。搬送室110には、基板搬送機構118が収容されており、基板搬送機構118によって基板18の搬送が実行される。   The transfer chamber 110 is a room for transferring the substrate 18 between the rooms. A substrate transport mechanism 118 is accommodated in the transport chamber 110, and the substrate 18 is transported by the substrate transport mechanism 118.

排気系112とは、枚葉式成膜室104の内部の環境を調整するものである。すなわち、枚葉式成膜室104の内部を真空状態にしたり、あるいは大気に開放にすることができる。   The exhaust system 112 is for adjusting the environment inside the single-wafer film deposition chamber 104. That is, the inside of the single-wafer film deposition chamber 104 can be evacuated or opened to the atmosphere.

制御部114は、成膜システム100全体を統制するものであり、特に、測定室102で測定されたレジスト19のレジスト間距離Dまたはレジスト線幅Wに基づいて、基板18から作製される電気素子が所定の周波数特性を得るための最適な電極膜厚(適宜、「最適膜厚」と称する)を算出する。制御部114は、基板1枚ごとの最適な電極膜厚を算出する。詳細には、測定室102で測定されたレジスト19のレジスト間距離Dまたはレジスト線幅Wに基づいて、成膜後の電極21の線幅を推定し、推定した線幅により電気素子の目標周波数に合わせるための電極膜厚を算出する。なお、制御部114は、算出した電極21の最適膜厚に基づいた制御信号を生成して枚葉式成膜室104の各構成部材に出力し、各構成部材の駆動を制御する。   The control unit 114 controls the entire film forming system 100, and in particular, an electrical element manufactured from the substrate 18 based on the resist distance D or resist line width W of the resist 19 measured in the measurement chamber 102. Calculates an optimum electrode film thickness (referred to as “optimum film thickness” as appropriate) for obtaining a predetermined frequency characteristic. The control unit 114 calculates an optimum electrode film thickness for each substrate. Specifically, the line width of the electrode 21 after film formation is estimated based on the inter-resist distance D or the resist line width W of the resist 19 measured in the measurement chamber 102, and the target frequency of the electric element is estimated based on the estimated line width. The electrode film thickness for adjusting to is calculated. The control unit 114 generates a control signal based on the calculated optimum film thickness of the electrode 21 and outputs the control signal to each constituent member of the single-wafer film deposition chamber 104 to control driving of each constituent member.

また、制御部114には、膜厚検出部25(図5参照)から出力された膜厚に関するデータ信号が出力される。制御部114は、このデータ信号に基づいて、枚葉式成膜室104の各構成部材の駆動を制御する。これにより、枚葉式成膜室104で成膜されている基板18の膜厚を推定でき、成膜されている基板18の膜厚が最適膜厚となるように制御することができる。   Further, a data signal related to the film thickness output from the film thickness detecting unit 25 (see FIG. 5) is output to the control unit 114. Based on this data signal, the control unit 114 controls the drive of each component of the single-wafer film deposition chamber 104. Thereby, the film thickness of the substrate 18 formed in the single-wafer type film forming chamber 104 can be estimated, and the film thickness of the substrate 18 formed can be controlled to be an optimum film thickness.

次に、枚葉式成膜室104について詳細に説明する。   Next, the single wafer deposition chamber 104 will be described in detail.

図5に示すように、枚葉式成膜室104は、枚葉式成膜装置10を備えている。枚葉式成膜装置10は、成膜物質Gを収容した射出源12の上方に出没するシャッタ部材14を備えている。射出源12は、成膜物質Gを入れる、るつぼ状の収容部材からなり例えば、ハースライナーが用いられる。シャッタ部材14は、水平方向(図5中矢印X方向)に移動可能に設けられており、射出源12と基板保持部材16との間で成膜物質Gを遮断して基板18に対する付着を阻止しあるいは成膜物質Gの基板18に対する付着を許容する。   As shown in FIG. 5, the single wafer deposition chamber 104 includes a single wafer deposition apparatus 10. The single wafer type film forming apparatus 10 includes a shutter member 14 that appears and disappears above an injection source 12 that contains a film forming substance G. The injection source 12 is made of a crucible-like housing member into which the film-forming substance G is put, for example, a hearth liner is used. The shutter member 14 is provided so as to be movable in the horizontal direction (arrow X direction in FIG. 5), and blocks the film-forming substance G between the injection source 12 and the substrate holding member 16 to prevent adhesion to the substrate 18. Alternatively, the deposition material G is allowed to adhere to the substrate 18.

枚葉式成膜装置10は、基板18を水平に保持するための基板保持部材16を備えている。基板保持部材16は、基板保持部材16を回転軸30の軸回りに回転可能に駆動する駆動装置32が機械的に接続されている。これにより、基板保持部材16によって水平に保持された基板18を回転(自転)させることができる。   The single wafer deposition apparatus 10 includes a substrate holding member 16 for holding the substrate 18 horizontally. The substrate holding member 16 is mechanically connected to a driving device 32 that drives the substrate holding member 16 so as to be rotatable about the axis of the rotation shaft 30. Thereby, the substrate 18 held horizontally by the substrate holding member 16 can be rotated (autorotated).

枚葉式成膜装置10は、成膜される基板18の膜の膜厚を測定するための膜厚検出部25が設けられている。膜厚検出部25は、水晶振動子27を備えており、水晶振動子27に付着した成膜物質Gを計測することにより、基板18の膜厚を推定する。具体的には、膜厚検出部25は、水晶振動子27に付着した成膜物質Gの重さによって、発振周波数が低くなることを利用し、逆に発振周波数を正確に測定することによって、成膜物質Gの重さ、すなわち膜厚を計算する。なお、膜厚検出部25による膜厚の検出結果は、データ信号として制御部114に出力される。   The single wafer type film forming apparatus 10 is provided with a film thickness detecting unit 25 for measuring the film thickness of the film of the substrate 18 to be formed. The film thickness detection unit 25 includes a crystal resonator 27, and estimates the film thickness of the substrate 18 by measuring the film forming substance G adhering to the crystal resonator 27. Specifically, the film thickness detection unit 25 utilizes the fact that the oscillation frequency is lowered by the weight of the film-forming substance G attached to the crystal resonator 27, and conversely, by accurately measuring the oscillation frequency, The weight of the film forming substance G, that is, the film thickness is calculated. The detection result of the film thickness by the film thickness detector 25 is output to the controller 114 as a data signal.

図5乃至図7に示すように、枚葉式成膜装置10は、基板18に形成される膜18Aの膜厚を制御するための膜厚補正部材20を備えている。膜厚補正部材20は、射出源12と基板保持部材16との間に出没可能に設けられている。図6における膜厚補正部材20の座標中心Oが射出源12と基板18の中心とを結んだ軸線と一致するように、膜厚補正部材20が配置される。膜厚補正部材20は、成膜物質Gが通過する開口部20Aと、成膜物質Gの通過を阻止する遮蔽部20Bと、を有している。膜厚補正部材20の座標中心Oからの任意の半径位置における周長に対し、その周長のうち開口部20Aの占める円弧長の割合を開口率と定義する。この開口率は、膜厚補正部材20の形状によって変化する。なお、膜厚補正部材20の詳細な形状については、後述する。   As shown in FIGS. 5 to 7, the single wafer deposition apparatus 10 includes a film thickness correcting member 20 for controlling the film thickness of the film 18 </ b> A formed on the substrate 18. The film thickness correcting member 20 is provided between the injection source 12 and the substrate holding member 16 so as to be able to appear and retract. The film thickness correction member 20 is arranged so that the coordinate center O of the film thickness correction member 20 in FIG. 6 coincides with the axis connecting the injection source 12 and the center of the substrate 18. The film thickness correcting member 20 has an opening 20A through which the film forming substance G passes and a shielding part 20B that prevents the film forming substance G from passing therethrough. The ratio of the arc length occupied by the opening 20A to the circumference at an arbitrary radial position from the coordinate center O of the film thickness correction member 20 is defined as the aperture ratio. The aperture ratio varies depending on the shape of the film thickness correction member 20. The detailed shape of the film thickness correcting member 20 will be described later.

なお、図6は、膜厚補正部材であって、次数n=2、基板外周部での開口率k(R)=0.5として、射出源と基板との間の距離T、膜厚補正部材の設置位置、を実用的な値で与え、分割数mを1、2、4とした場合の膜厚補正部材の開口部の形状を示した平面図である。   FIG. 6 shows a film thickness correction member, where the order n = 2, the aperture ratio k (R) = 0.5 at the outer periphery of the substrate, and the distance T between the injection source and the substrate, and the film thickness correction. It is the top view which showed the shape of the opening part of the film thickness correction member when the installation position of a member is given by a practical value and division | segmentation number m is set to 1, 2, and 4. FIG.

図7は、膜厚補正部材であって、膜厚補正部材が無い場合の基板の膜厚がCOSθ則の次数n=3であったとし、これをより凸部状な次数n=9の膜厚分布にするときの膜厚補正部材の形状であって、分割数mを1、2、4とした場合の膜厚補正部材の開口部の形状を示した平面図である。 FIG. 7 is a film thickness correcting member, and the film thickness of the substrate without the film thickness correcting member is assumed to be the order n = 3 of the COS n θ rule, and this is a more convex order n = 9. FIG. 6 is a plan view showing the shape of the film thickness correction member when the film thickness distribution is set to 1, and the shape of the opening of the film thickness correction member when the division number m is 1, 2, and 4;

膜厚補正部材20は、ハンド部22により保持されている。ハンド部22は、回転アーム24により回転軸26の軸回りに回転するように構成されている。回転アーム24は、駆動部28と機械的に接続されており、駆動部28からの駆動力により回転軸26の軸回りに回転する。これにより、膜厚補正部材20は、射出源12と基板保持部材16との間に出没可能となる。   The film thickness correction member 20 is held by the hand unit 22. The hand unit 22 is configured to rotate around the axis of the rotation shaft 26 by the rotation arm 24. The rotary arm 24 is mechanically connected to the drive unit 28 and rotates around the axis of the rotary shaft 26 by the driving force from the drive unit 28. As a result, the film thickness correction member 20 can appear and disappear between the injection source 12 and the substrate holding member 16.

ここで、膜厚補正部材20の形状について詳細に説明する。   Here, the shape of the film thickness correction member 20 will be described in detail.

先ず、膜厚補正部材20がない状態で基板18に成膜を行い、基板18に形成される膜18Aの膜厚分布を基板保持部材16の外縁空間に設置された膜厚検出部25にて測定しながら、基板18に形成される膜18Aの膜厚分布を把握する。このとき、基板18の中心からの距離rの関数として、膜厚分布f(r)と測定されたとする。ここで、基板18の中心r=0において、f(r)=1と規格化しておく。   First, a film is formed on the substrate 18 without the film thickness correction member 20, and the film thickness distribution of the film 18 </ b> A formed on the substrate 18 is detected by the film thickness detection unit 25 installed in the outer edge space of the substrate holding member 16. While measuring, the film thickness distribution of the film 18A formed on the substrate 18 is grasped. At this time, it is assumed that the film thickness distribution f (r) is measured as a function of the distance r from the center of the substrate 18. Here, at the center r = 0 of the substrate 18, f (r) = 1 is standardized.

基板18の目標膜厚分布を断面視にて平坦状の分布とする場合には、膜厚補正部材20の開口率をk(r)とすると、

Figure 0005652654
で与えられる(式(1)とする)。ここで、Rは、基板の外周部の径であり、外周部での開口率k(R)は、適当に決定する。 When the target film thickness distribution of the substrate 18 is a flat distribution in a cross-sectional view, if the aperture ratio of the film thickness correction member 20 is k (r),
Figure 0005652654
(Equation (1)). Here, R is the diameter of the outer peripheral portion of the substrate, and the aperture ratio k (R) at the outer peripheral portion is appropriately determined.

基板18の目標膜厚分布を、膜厚補正部材20がないときよりもさらに凸部状の分布とする場合には、目標膜厚分布をG×g(r)とする。ここで、g(0)=1であり、Gは基板の中心r=0における目標膜厚である。このとき、膜厚補正部材20の開口率をk(r)とすると、

Figure 0005652654
で与えられる(式(2)とする)。 In the case where the target film thickness distribution of the substrate 18 is a convex-shaped distribution more than when the film thickness correction member 20 is not provided, the target film thickness distribution is set to G × g (r). Here, g (0) = 1, and G is the target film thickness at the center r = 0 of the substrate. At this time, when the aperture ratio of the film thickness correction member 20 is k (r),
Figure 0005652654
(Equation (2)).

基板18の目標膜厚分布を凹部状の分布とする場合は、基板18の目標膜厚分布をG×g(r)とする。ここで、g(R)=1であり、Gは基板の外周部r=Rにおける目標膜厚である。このとき、膜厚補正部材20の開口率をk(r)とすると、

Figure 0005652654
で与えられる(式(3)とする)。ここで、基板18の外周部での開口率k(R)は適当に決める必要がある。 When the target film thickness distribution of the substrate 18 is a concave distribution, the target film thickness distribution of the substrate 18 is set to G × g (r). Here, g (R) = 1, and G is the target film thickness at the outer peripheral portion r = R of the substrate. At this time, when the aperture ratio of the film thickness correction member 20 is k (r),
Figure 0005652654
(Assuming equation (3)). Here, the aperture ratio k (R) at the outer peripheral portion of the substrate 18 needs to be determined appropriately.

次に、基板18の断面視にて平坦な膜厚分布を得る場合の具体的な膜厚補正部材20の形状例を示す。   Next, a specific example of the shape of the film thickness correction member 20 when a flat film thickness distribution is obtained in a cross-sectional view of the substrate 18 is shown.

蒸発源(射出源)が点源であり、蒸発分布がいわゆるCOSθ則に従うものとすると、

Figure 0005652654
となる。ここでTは、射出源12と基板18との間の距離である。 If the evaporation source (injection source) is a point source and the evaporation distribution conforms to the so-called COS n θ law,

Figure 0005652654
It becomes. Here, T is the distance between the injection source 12 and the substrate 18.

これを平坦状の分布をねらう場合の開口率の式(1)に用いると、基板設置位置での開口率k(r)が求まる。実際の膜厚補正部材20は、射出源12と基板18との間に設置されるので、基板上rの位置での開口率は、射出源中心へ収れんする直線で膜厚補正部材20上に射影された位置における半径での開口率を与えることになる。膜厚補正部材の設置位置での半径と開口率を改めてrおよびk(r)とすることにする。   If this is used in the expression (1) of the aperture ratio when aiming at a flat distribution, the aperture ratio k (r) at the substrate installation position can be obtained. Since the actual film thickness correction member 20 is installed between the injection source 12 and the substrate 18, the aperture ratio at the position r on the substrate is a straight line that converges to the center of the injection source on the film thickness correction member 20. The aperture ratio at the radius at the projected position is given. The radius and the aperture ratio at the installation position of the film thickness correction member are again set to r and k (r).

膜厚補正部材20の開口部20Aの分割数をm(mは自然数)とすると、一開口部の開口率はk(r)/mとなるので、開口部形状が軸対称であるようにすると、開口部エッジの座標を(x,y)とすると、

Figure 0005652654
となる。 If the division number of the opening 20A of the film thickness correction member 20 is m (m is a natural number), the opening ratio of one opening is k (r) / m, so that the opening shape is made axially symmetric. When the coordinates of the opening edge are (x, y),
Figure 0005652654
It becomes.

これを次数n=2、基板外周部での開口率k(R)=0.5として、射出源12と基板18との間の距離T、膜厚補正部材20の設置位置、を実用的な値で与え分割数mをm=1、2、4とした場合の膜厚補正部材20の開口部形状を図6に例示する。   Assuming that the order is n = 2 and the aperture ratio k (R) = 0.5 at the outer periphery of the substrate, the distance T between the emission source 12 and the substrate 18 and the installation position of the film thickness correction member 20 are practical. FIG. 6 illustrates the shape of the opening of the film thickness correcting member 20 when the division number m is given by value and m = 1, 2, and 4.

次に、膜厚補正部材20が無いときより、さらに凸部状となる膜厚分布をねらう場合の膜厚補正部材20の形状例を示す。   Next, an example of the shape of the film thickness correction member 20 in the case of aiming at the film thickness distribution having a convex shape as compared with the case without the film thickness correction member 20 is shown.

膜厚補正部材20が無い場合の基板18の膜厚がCOSθ則の次数n=3であったとし、これをより凸部状な次数n=9の膜厚分布にするときの膜厚補正部材20の形状であって、分割数mをm=1、2、4とした場合の膜厚補正部材20の開口部形状を図7に例示する。 Thickness when the film thickness of the substrate 18 when there is no film thickness correcting member 20 is that a degree n = 3 in COS n theta law, to do this more film thickness distribution of the protrusion shaped as orders n = 9 The shape of the correction member 20 and the opening shape of the film thickness correction member 20 when the division number m is m = 1, 2, 4 are illustrated in FIG.

次に、膜厚補正部材20の実際の形状例について説明する。図8及び図9は、図6の曲線をもとに作製した、実際の膜厚補正部材20の形状例である。図8は、m=1の場合であり、図9は、m=2の場合である。膜厚補正部材20には外周部があり、その外周部は図5のハンド部22により把持される。なお、基板18の成膜領域は、膜厚補正部材20の外周部より内側にある。膜厚補正部材20の開口部(抜き)の開口率は、中心から径方向外側に進むにつれ大きくなっている。蒸発源と回転する基板18との間に膜厚補正部材20を挿入し、成膜を部分的に遮蔽することにより、基板18の径方向の膜厚分布を補正する。   Next, an actual shape example of the film thickness correction member 20 will be described. 8 and 9 are examples of the shape of the actual film thickness correcting member 20 produced based on the curve of FIG. FIG. 8 shows a case where m = 1, and FIG. 9 shows a case where m = 2. The film thickness correcting member 20 has an outer peripheral portion, and the outer peripheral portion is gripped by the hand portion 22 of FIG. The film formation region of the substrate 18 is inside the outer peripheral portion of the film thickness correction member 20. The aperture ratio of the opening (extraction) of the film thickness correction member 20 increases as it progresses radially outward from the center. A film thickness correction member 20 is inserted between the evaporation source and the rotating substrate 18 to partially shield the film formation, thereby correcting the film thickness distribution in the radial direction of the substrate 18.

枚葉式成膜室104における枚葉式成膜方法は、以下の5つの工程を有している。
1.基板保持部材16に基板18がセットされた後、基板18の回転が開始する。
2.シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上に位置させて通路を閉じ、膜厚補正部材20を射出源12と基板18の中心とを結んだ軸線上から退避させる。
3.射出源12中の成膜物質Gを電子ビームで加熱することで成膜物質の蒸発を開始する。
4.シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上から退避させて通路を開くことで基板18上に成膜物質Gの蒸着を開始する。
5.膜厚部材部材20を退避させた状態の成膜工程において基板18上に成膜された特定部分の膜厚が所定の値に達した時点で(換言すれば、平坦状な膜厚を作成する場合であれば、基板中心部が所定膜厚に到達した時点で)、膜厚補正部材20を射出源12と基板18の中心とを結んだ軸線上に挿入する。なお、膜厚部材部材20の形状は、目標とする膜厚分布が得られる形状のものを適宜選択する。本実施形態では、膜厚分布が断面視にて平坦状とする場合、凸部状とする場合、凹部状とする場合の3パターンの膜厚補正部材20の形状が上記各式により特定される。
6.基板18に形成された膜18Aの膜厚が目標とした膜厚分布に到達した時点で、シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上に位置させて通路を閉じ、成膜作業を終了する。
The single wafer deposition method in the single wafer deposition chamber 104 has the following five steps.
1. After the substrate 18 is set on the substrate holding member 16, the rotation of the substrate 18 is started.
2. The shutter member 14 is positioned on the axis connecting the emission source 12 and the center of the substrate 18 to close the passage, and the film thickness correcting member 20 is retracted from the axis connecting the emission source 12 and the center of the substrate 18.
3. The deposition material G in the injection source 12 is heated by an electron beam to start evaporation of the deposition material.
4). The shutter member 14 is retracted from the axis connecting the injection source 12 and the center of the substrate 18 to open the passage, thereby starting deposition of the film-forming substance G on the substrate 18.
5. When the film thickness of a specific part formed on the substrate 18 reaches a predetermined value in the film formation process in the state in which the film thickness member 20 is retracted (in other words, a flat film thickness is created. If this is the case, the film thickness correcting member 20 is inserted on the axis connecting the injection source 12 and the center of the substrate 18 when the central portion of the substrate reaches the predetermined film thickness. In addition, the shape of the film thickness member 20 is selected as appropriate so that the target film thickness distribution can be obtained. In the present embodiment, when the film thickness distribution is flat in a cross-sectional view, the shape of the film thickness correction member 20 in the case of the convex shape, or the concave shape is specified by the above formulas. .
6). When the film thickness of the film 18A formed on the substrate 18 reaches the target film thickness distribution, the shutter member 14 is positioned on the axis line connecting the emission source 12 and the center of the substrate 18, and the passage is closed. Finish the film forming operation.

(基板の膜厚分布を断面視にて平坦状とする場合)
具体的には、図10(A)、(B)に示すように、基板18に形成される膜18Aの膜厚が断面視にて平坦状となる膜厚分布を得る場合には、式(1)で特定される開口率の膜厚補正部材20(図11参照)を用いる。すなわち、図11に示すように、膜厚補正部材20は、射出源12と基板18の中心とを結んだ軸線からの半径距離に応じて、開口部20Aの開口率が次第に大きくなるものである。先ずは、膜厚補正部材20が無い状態で成膜した後、基板18の中心部の膜18Aの膜厚が所定膜厚に到達したときに、射出源12と基板18の中心とを結んだ軸線上に膜厚補正部材20を挿入し、成膜工程を継続する。そして、基板18に形成される膜18Aの膜厚が断面視にて平坦状となる目標の膜厚分布に到達したときに、シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上に挿入して、成膜物質Gを遮断し、成膜工程を終了する。成膜物質Gを遮断するタイミングは、予め求めた付加膜厚と時間の関係からタイマーで設定してもよい。
(When the film thickness distribution of the substrate is flat when viewed in cross section)
Specifically, as shown in FIGS. 10A and 10B, when obtaining a film thickness distribution in which the film thickness of the film 18A formed on the substrate 18 is flat in a cross-sectional view, the expression ( The film thickness correcting member 20 (see FIG. 11) having the aperture ratio specified in 1) is used. That is, as shown in FIG. 11, in the film thickness correction member 20, the aperture ratio of the opening 20A gradually increases in accordance with the radial distance from the axis connecting the emission source 12 and the center of the substrate 18. . First, after film formation without the film thickness correction member 20, when the film thickness of the film 18A at the center of the substrate 18 reaches a predetermined film thickness, the injection source 12 and the center of the substrate 18 are connected. The film thickness correcting member 20 is inserted on the axis, and the film forming process is continued. Then, when the film thickness of the film 18A formed on the substrate 18 reaches a target film thickness distribution that is flat in a cross-sectional view, the axis connecting the shutter member 14 with the center of the emission source 12 and the substrate 18 The film is inserted on the line to block the film forming substance G, and the film forming process is completed. The timing for blocking the film forming substance G may be set by a timer from the relationship between the additional film thickness obtained in advance and the time.

なお、図10(C)に示すように、基板18に形成される膜18Aの膜厚が断面視にて平坦状となる所定の膜厚分布に到達した後、膜厚補正部材20をそのまま挿入した状態で、成膜作業を継続すると、基板18の膜厚分布が断面視にて凹部状となるようにすることもできる。   As shown in FIG. 10C, after the film thickness of the film 18A formed on the substrate 18 reaches a predetermined film thickness distribution that is flat in a sectional view, the film thickness correction member 20 is inserted as it is. If the film forming operation is continued in this state, the film thickness distribution of the substrate 18 can be formed in a concave shape in a sectional view.

(基板の膜厚分布を断面視にて凹部状とする場合)
基板18に形成される膜18Aの膜厚が凹部状となる膜厚分布を得る場合には、式(3)で特定される開口率の膜厚補正部材20を用いる。すなわち、膜厚補正部材20は、射出源12と基板18の中心とを結んだ軸線からの半径距離に応じて、開口部20Aの開口率が次第に大きくなるものである。先ずは、膜厚補正部材20が無い状態で成膜した後、基板18の中心部の膜18Aの膜厚が所定膜厚に到達したときに、射出源12と基板18の中心とを結んだ軸線上に膜厚補正部材20を挿入し、成膜工程を継続する。そして、基板18に形成される膜18Aの膜厚が凹部状となる目標の膜厚分布に到達したときに、シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上に挿入して、成膜物質Gを遮断し、成膜工程を終了する。成膜物質Gを遮断するタイミングは、予め求めた付加膜厚と時間の関係からタイマーで設定してもよい。
(When the film thickness distribution of the substrate is recessed in the cross-sectional view)
When obtaining a film thickness distribution in which the film 18A formed on the substrate 18 has a concave shape, the film thickness correction member 20 having an aperture ratio specified by the expression (3) is used. That is, the film thickness correction member 20 has an opening ratio of the opening 20A that gradually increases in accordance with the radial distance from the axis connecting the emission source 12 and the center of the substrate 18. First, after film formation without the film thickness correction member 20, when the film thickness of the film 18A at the center of the substrate 18 reaches a predetermined film thickness, the injection source 12 and the center of the substrate 18 are connected. The film thickness correcting member 20 is inserted on the axis, and the film forming process is continued. Then, when the film thickness of the film 18A formed on the substrate 18 reaches the target film thickness distribution having a concave shape, the shutter member 14 is inserted on the axis connecting the emission source 12 and the center of the substrate 18. Then, the film forming substance G is shut off, and the film forming process is completed. The timing for blocking the film forming substance G may be set by a timer from the relationship between the additional film thickness obtained in advance and the time.

(基板の膜厚分布を断面視にて凸部状とする場合)
図12に示すように、基板18に形成される膜18Aの膜厚が凸部状となる膜厚分布を得る場合には、式(2)で特定される開口率の膜厚補正部材20(図13参照)を用いる。すなわち、図13に示すように、膜厚補正部材20は、射出源12と基板18の中心とを結んだ軸線からの半径距離に応じて、開口部20Aの開口率が次第に小さくなるものである。先ずは、膜厚補正部材20が無い状態で成膜した後、基板18の外周部の膜18Aの膜厚が所定膜厚に到達したときに、射出源12と基板18の中心とを結んだ軸線上に膜厚補正部材20を挿入し、成膜工程を継続する。そして、基板18に形成される膜18Aの膜厚が凸部状となる目標の膜厚分布に到達したときに、シャッタ部材14を射出源12と基板18の中心とを結んだ軸線上に挿入して、成膜物質Gを遮断し、成膜工程を終了する。成膜物質Gを遮断するタイミングは、予め求めた付加膜厚と時間の関係からタイマーで設定してもよい。
(When the film thickness distribution of the substrate is convex in cross-sectional view)
As shown in FIG. 12, in the case of obtaining a film thickness distribution in which the film 18A formed on the substrate 18 has a convex shape, the film thickness correcting member 20 (with the aperture ratio specified by Expression (2)). 13). That is, as shown in FIG. 13, the film thickness correction member 20 has an opening ratio of the opening portion 20 </ b> A that gradually decreases according to the radial distance from the axis connecting the emission source 12 and the center of the substrate 18. . First, after film formation without the film thickness correction member 20, when the film thickness of the film 18A on the outer periphery of the substrate 18 reaches a predetermined film thickness, the injection source 12 and the center of the substrate 18 are connected. The film thickness correcting member 20 is inserted on the axis, and the film forming process is continued. When the film thickness of the film 18 </ b> A formed on the substrate 18 reaches a target film thickness distribution that has a convex shape, the shutter member 14 is inserted on the axis connecting the emission source 12 and the center of the substrate 18. Then, the film forming substance G is shut off, and the film forming process is completed. The timing for blocking the film forming substance G may be set by a timer from the relationship between the additional film thickness obtained in advance and the time.

本実施形態の成膜システム及び成膜システムを用いた成膜方法について説明する。   A film forming system and a film forming method using the film forming system of this embodiment will be described.

(本発明の経緯)
特開2002−217665号公報の図5のように弾性表面波素子の製造方法において、圧電性基板上にインターデジタルトランスデューサ(IDT)電極等が形成されるが、上記電極の膜厚や線幅が基礎的な弾性表面波素子の特性に大きな影響を与えることがわかっている。また、同公報の図6のように弾性表面波素子の周波数特性には、電極の膜厚/線幅の比が大きな影響を与えることもわかっている。従って電極の膜厚の規格範囲は非常に狭いため、これらの範囲に制御することは非常に困難であった(同公報の段落(0002)〜(0005)参照)。
(Background of the present invention)
As shown in FIG. 5 of Japanese Patent Laid-Open No. 2002-217665, an interdigital transducer (IDT) electrode or the like is formed on a piezoelectric substrate in a method for manufacturing a surface acoustic wave element. It has been found that it has a great influence on the characteristics of basic surface acoustic wave devices. Further, as shown in FIG. 6 of the same publication, it is also known that the ratio of the electrode film thickness / line width greatly affects the frequency characteristics of the surface acoustic wave element. Therefore, since the standard range of the film thickness of the electrode is very narrow, it has been very difficult to control within these ranges (see paragraphs (0002) to (0005) of the same publication).

さらに、生産性を上げるために複数基板をバッチ処理する成膜が通常行われているが、リフトオフ蒸着を採用する商品では、現像工程後で基板内の電極の線幅を測定したところ、基板中心から離れるにしたがい電極の線幅が変化していることがわかった。   Furthermore, in order to increase productivity, film formation is usually performed by batch processing of multiple substrates. However, in products that use lift-off evaporation, the line width of the electrodes in the substrate is measured after the development process. It was found that the line width of the electrode changed with distance from.

そこで、本発明では、上記に示したように弾性表面波素子の周波数特性を安定して得る手段として、最も好適である枚葉処理する成膜工程を前提に、基板面内の膜厚を制御する方法を説明する。   Therefore, in the present invention, as described above, as a means for stably obtaining the frequency characteristics of the surface acoustic wave element, the film thickness in the substrate surface is controlled on the premise of the film forming process for the most suitable single wafer processing. How to do it.

本実施形態の成膜システムを用いた成膜方法は、以下の工程から構成されている。   A film forming method using the film forming system of the present embodiment includes the following steps.

図4に示すように、成膜システムを用いた成膜方法は、前工程200と、ローダ工程202と、測定工程204と、搬送工程206と、成膜工程208と、搬送工程210と、アンローダ工程212と、を有している。   As shown in FIG. 4, the film forming method using the film forming system includes a pre-process 200, a loader process 202, a measurement process 204, a transfer process 206, a film forming process 208, a transfer process 210, and an unloader. Step 212.

前工程200では、基板18にリフトオフ法によってパターニングされたレジスト19が形成される。次に、レジストの形成された基板18がローダから真空状態の前処理室108に取り込まれ、必要に応じて、基板18が加熱され、Arボンバードなどの前処理が真空状態において行われる。前処理の終了後、基板18がローダにより測定室102に搬送される。   In the pre-process 200, a resist 19 patterned by a lift-off method is formed on the substrate 18. Next, the substrate 18 on which the resist is formed is taken from the loader into the vacuum pretreatment chamber 108, and the substrate 18 is heated as necessary, and pretreatment such as Ar bombardment is performed in a vacuum state. After completion of the pretreatment, the substrate 18 is transferred to the measurement chamber 102 by the loader.

測定工程204では、測定室102において、基板18上に形成されたレジスト19のレジスト間距離Dが走査電子顕微鏡116によって真空状態において測定される。測定方法としては、レジスト19の画像データを取得し、市販の画像処理ボード(ソフトウエア)で画像処理を行い、レジスト19上部のエッジを検出してレジスト間距離Dを測定することができる。なお、上記ではレジスト間距離Dを直接測定する例を示したが、レジスト線幅Wを測定した後、計算によりレジスト間距離Dを算出してもよい。   In the measurement step 204, the distance D between resists of the resist 19 formed on the substrate 18 is measured in a vacuum state by the scanning electron microscope 116 in the measurement chamber 102. As a measuring method, image data of the resist 19 can be acquired, image processing can be performed with a commercially available image processing board (software), the edge on the top of the resist 19 can be detected, and the distance D between the resists can be measured. In addition, although the example which measured the distance D between resists directly was shown above, after measuring the resist line width W, you may calculate the distance D between resists by calculation.

好ましくは、測定工程204では、基板18上に形成された複数のレジスト19のうち、基板18の各素子のレジスト間距離Dが測定される。レジスト間距離Dは、1枚の基板18上において複数箇所測定される。複数箇所測定する理由は、レジスト19のコーティング方法やベーキング時の温度分布により、基板18内の領域においてもレジスト間距離Dに違いが生じるためである。この違いは、基板18の半径方向に沿って生じる傾向にある。そこで、測定工程204において基板18の中央と外側にある素子のレジスト間距離Dを測定し、その距離に応じて蒸着膜厚を変えることが実行される。   Preferably, in the measuring step 204, the inter-resist distance D of each element of the substrate 18 among the plurality of resists 19 formed on the substrate 18 is measured. The inter-resist distance D is measured at a plurality of locations on one substrate 18. The reason for measuring a plurality of locations is that the resist distance D varies even in the region within the substrate 18 due to the coating method of the resist 19 and the temperature distribution during baking. This difference tends to occur along the radial direction of the substrate 18. Therefore, in the measuring step 204, the distance D between the resists of the elements located at the center and outside of the substrate 18 is measured, and the deposition film thickness is changed according to the distance.

このように、基板18の1枚ごと、もしくは基板18の場所ごとにレジスト間距離Dが測定され、測定結果はマッピングデータとして制御部114に出力される。制御部114において基板18の1枚ごと、または基板18の場所ごとにねらい膜厚分布を決め、成膜工程208にて最適な電極膜厚を形成する。   As described above, the inter-resist distance D is measured for each substrate 18 or for each location of the substrate 18, and the measurement result is output to the control unit 114 as mapping data. In the control unit 114, a target film thickness distribution is determined for each substrate 18 or for each location of the substrate 18, and an optimum electrode film thickness is formed in the film forming step 208.

測定工程204と成膜工程208との間には、制御部114によって基板18の最適膜厚を算出する算出工程205が介在する。算出工程205では、測定工程204において測定されたレジスト間距離Dに基づいて基板18上に形成される電極21の線幅を推定する。推定した線幅によって、基板18から後工程で作製される電気素子の目標周波数に合わせるための電極21の最適膜厚が算出される。これにより、基板18の膜厚分布が決定される。   Between the measurement process 204 and the film formation process 208, a calculation process 205 for calculating the optimum film thickness of the substrate 18 by the control unit 114 is interposed. In the calculation step 205, the line width of the electrode 21 formed on the substrate 18 is estimated based on the inter-resist distance D measured in the measurement step 204. Based on the estimated line width, the optimum film thickness of the electrode 21 for adjusting to the target frequency of the electric element manufactured in the subsequent process from the substrate 18 is calculated. Thereby, the film thickness distribution of the substrate 18 is determined.

測定工程204が終了すると、搬送室110の基板搬送機構118により基板18が保持されて搬送室110から取り出され、反転されて枚葉式成膜室104に搬入される。   When the measurement process 204 is completed, the substrate 18 is held by the substrate transfer mechanism 118 in the transfer chamber 110 and is taken out of the transfer chamber 110, inverted, and transferred into the single wafer deposition chamber 104.

成膜工程208では、基板18の成膜処理が実行される。ここで、枚葉式成膜室104では、基板18が1枚ずつ成膜される。成膜工程208では、算出工程において算出された最適膜厚となるように、基板18の膜厚を膜厚検出部25からのデータ信号に基づいて調整しながら、基板18の成膜が実行される。さらに、成膜工程208では、基板18を自転させながら成膜することで同心円状の膜厚分布補正が可能になる。これにより、基板18から作製する電気素子に求められる目標周波数を得るために最適な電極膜厚を形成することができる。この結果、電気素子の周波数特性を向上することができる。   In the film forming step 208, a film forming process for the substrate 18 is performed. Here, in the single wafer deposition chamber 104, the substrates 18 are deposited one by one. In the film formation step 208, the film formation of the substrate 18 is executed while adjusting the film thickness of the substrate 18 based on the data signal from the film thickness detection unit 25 so that the optimum film thickness calculated in the calculation step is obtained. The Further, in the film forming step 208, the film thickness is corrected concentrically by forming the film while rotating the substrate 18. Thereby, an optimum electrode film thickness can be formed in order to obtain a target frequency required for an electric element manufactured from the substrate 18. As a result, the frequency characteristics of the electric element can be improved.

なお、成膜工程208の実行中は、次の基板18が測定室102に搬入されて測定工程204が開始される。測定工程204では、同様にして、レジスト間距離Dが測定され、この測定結果に基づいて、制御部114によって基板18の最適膜厚が算出される。このようにして、基板18は、連続的に成膜システム100に投入され、各工程にて真空状態を保ちながら搬送され、連続して実行されていく。   During execution of the film forming step 208, the next substrate 18 is carried into the measurement chamber 102 and the measurement step 204 is started. Similarly, in the measuring step 204, the inter-resist distance D is measured, and the optimal film thickness of the substrate 18 is calculated by the control unit 114 based on the measurement result. In this way, the substrate 18 is continuously put into the film forming system 100, and is transported and continuously executed while maintaining a vacuum state in each process.

成膜工程208が終了した基板18は、搬送室110の基板搬送機構118により保持されて枚葉式成膜室104から取り出され、アンローダ工程212に移行される。そして、次の基板18が次の基板18が枚葉式成膜室104に搬入されて成膜工程208が開始され、基板18が最適膜厚となるように成膜される。   The substrate 18 for which the film formation step 208 has been completed is held by the substrate transfer mechanism 118 in the transfer chamber 110 and is taken out from the single-wafer type film formation chamber 104, and is transferred to the unloader step 212. Then, the next substrate 18 is carried into the single-wafer film deposition chamber 104, and a film deposition process 208 is started, so that the substrate 18 is deposited to an optimum film thickness.

以上の各工程が基板18の数だけ繰り返される。   The above steps are repeated for the number of substrates 18.

本実施形態によれば、基板毎に成膜の目標膜厚を設定でき、ひいては電極線幅に対応した膜厚となるような成膜を実行することができる。これにより、基板18の周波数特性を高めることができる。   According to the present embodiment, the target film thickness for film formation can be set for each substrate, and as a result, film formation can be performed so as to have a film thickness corresponding to the electrode line width. Thereby, the frequency characteristic of the board | substrate 18 can be improved.

また、レジスト間距離Dまたはレジスト線幅Wを最適膜厚にフィードフォワードするため、エッチングなどによる幅ばらつき補正のための工程を追加する必要がない。   Further, since the resist distance D or the resist line width W is fed forward to the optimum film thickness, it is not necessary to add a process for correcting the width variation by etching or the like.

エッチングによるレジスト間距離Dまたはレジスト線幅Wの補正が不要であるため、エッチングによる基板18へのダメージがない。   Since it is not necessary to correct the resist distance D or the resist line width W by etching, the substrate 18 is not damaged by etching.

枚葉式成膜方法であるため、基板18ごとに最適膜厚で成膜することができる。また、同心円状の基板面内のレジスト間距離Dまたはレジスト線幅Wのばらつきによって生じる周波数ばらつきも低減することができる。   Since this is a single wafer deposition method, deposition can be performed with an optimum film thickness for each substrate 18. Further, frequency variations caused by variations in the distance D between resists or the resist line width W in the concentric substrate surface can be reduced.

また、成膜システム100を測定室102と枚葉式成膜室104とを一体にした構成にすることで、レジスト19のレジスト間距離Dまたはレジスト線幅Wの測定データの取り扱いが容易になる。   Further, when the film forming system 100 is configured such that the measurement chamber 102 and the single-wafer type film forming chamber 104 are integrated, the measurement data of the resist distance D or the resist line width W of the resist 19 can be easily handled.

10 枚葉式成膜装置(成膜手段)
12 射出源
14 シャッタ部材
16 基板保持部材(基板回転手段)
18 ウエハ(基板)
19 レジスト
20 膜厚補正部材(膜厚補正手段)
20A 開口部
20B 遮蔽部
21 電極
25 膜厚検出部
100 成膜システム
102 測定室
104 枚葉式成膜室
114 制御部(制御手段)
116 走査電子顕微鏡(測定手段)
G 成膜物質
10 single wafer deposition system (film deposition means)
12 Injection source
14 Shutter member 16 Substrate holding member (substrate rotating means)
18 Wafer (substrate)
19 resist 20 film thickness correcting member (film thickness correcting means)
20A Opening 20B Shielding unit 21 Electrode 25 Film thickness detection unit 100 Film formation system 102 Measurement chamber 104 Single wafer type film formation chamber 114 Control unit (control means)
116 Scanning electron microscope (measuring means)
G Deposition material

Claims (6)

基板上に形成された複数箇所のレジストを測定する測定室と、前記基板を1枚ずつ成膜して前記基板上に電極を形成する枚葉式成膜室と、を有する成膜システムであって、
前記基板上にて隣接する前記レジストのレジスト間距離またはレジスト線幅を測定する測定手段を前記測定室に有し、
前記測定手段によって測定した前記レジスト間距離または前記レジスト線幅に基づいて、前記基板から作製される電気素子が所定の周波数を得るための最適な電極膜厚を算出する制御手段を有し、
前記枚葉式成膜室は、前記基板の電極膜厚が前記制御手段で算出された最適な電極膜厚となるように、前記基板に電極を形成する成膜手段を有することを特徴とする成膜システム。
A film forming system having a measurement chamber for measuring a plurality of resists formed on a substrate, and a single-wafer type film forming chamber for forming electrodes on the substrate by forming the substrates one by one,
The measurement chamber has a measurement means for measuring a distance between resists or a resist line width of the resists adjacent on the substrate,
Based on the distance between the resists or the resist line width measured by the measuring means, the electrical element manufactured from the substrate has a control means for calculating an optimum electrode film thickness for obtaining a predetermined frequency,
The single wafer type film forming chamber has a film forming means for forming an electrode on the substrate so that the electrode film thickness of the substrate becomes an optimum electrode film thickness calculated by the control means. system.
前記測定室では、真空環境において前記基板上の前記レジスト間距離または前記レジスト線幅の測定が行われ、
前記枚葉式成膜室では、真空環境において前記基板への成膜が行われ、
前記測定室から前記枚葉式成膜室への基板の搬送が、真空環境を保ちながら搬送されることを特徴とする請求項1に記載の成膜システム。
In the measurement chamber, the distance between the resists on the substrate or the resist line width is measured in a vacuum environment,
In the single-wafer type film formation chamber, film formation is performed on the substrate in a vacuum environment,
The film forming system according to claim 1, wherein the substrate is transported from the measurement chamber to the single wafer deposition chamber while maintaining a vacuum environment.
前記成膜手段は、成膜物質を収容した射出源と、前記射出源の上方に前記基板を水平に保持しながら自転させる基板回転手段を有し、
さらに、前記射出源と前記基板との間に、膜厚補正部材を挿入し成膜を部分的に遮蔽することにより、前記基板の電極膜厚を補正する膜厚補正手段を有し、
前記膜厚補正部材は、成膜物質が通過する開口部と、前記成膜物質の通過を阻止する遮蔽部と、を有し、前記膜厚補正部材の座標中心が、前記射出源の中心と前記基板の中心とを結んだ軸線上に一致するように出没可能に設けられ、前記座標中心からの半径距離に応じて、前記開口部の開口率が変化しているものであることを特徴とする請求項1又は2に記載の成膜システム。
The film forming means has an injection source containing a film forming material, and a substrate rotating means for rotating the substrate while holding the substrate horizontally above the injection source,
Furthermore, it has film thickness correction means for correcting the electrode film thickness of the substrate by inserting a film thickness correction member between the emission source and the substrate to partially shield the film formation,
The film thickness correcting member has an opening through which the film forming substance passes and a shielding part that prevents the film forming substance from passing through, and the coordinate center of the film thickness correcting member is the center of the emission source. It is provided so that it can be projected and retracted so as to coincide with an axis connecting the center of the substrate, and the aperture ratio of the opening changes according to the radial distance from the coordinate center. The film forming system according to claim 1 or 2.
測定室において、基板上に隣接するレジストのレジスト間距離またはレジスト線幅を測定する測定工程と、
前記測定工程において測定された前記レジスト間距離または前記レジスト線幅に基づいて、前記基板から作製される電気素子が所定の周波数を得るための最適な電極膜厚を算出する算出工程と、
枚葉式成膜室において、前記基板の電極膜厚が前記算出工程で算出された最適膜厚となるように、前記基板に電極が成膜される成膜工程と、
を有することを特徴とする成膜方法。
In the measurement chamber, a measurement process for measuring the distance between resists or the resist line width of adjacent resists on the substrate;
Based on the distance between the resists or the resist line width measured in the measurement step, a calculation step for calculating an optimum electrode film thickness for obtaining a predetermined frequency for an electrical element manufactured from the substrate;
In the single-wafer type film formation chamber, a film forming step in which the electrode is formed on the substrate so that the electrode film thickness of the substrate becomes the optimum film thickness calculated in the calculation step;
A film forming method comprising:
前記測定工程では、真空環境において前記基板上の前記レジスト間距離または前記レジスト線幅の測定が行われ、
前記成膜工程では、前記枚葉式成膜室の真空環境において前記基板への成膜が行われ、
前記測定室から前記枚葉式成膜室への基板の搬送が、真空環境を保ちながら搬送されることを特徴とする請求項4に記載の成膜方法。
In the measurement step, the distance between the resists on the substrate or the resist line width is measured in a vacuum environment,
In the film formation step, film formation on the substrate is performed in a vacuum environment of the single wafer type film formation chamber,
The film forming method according to claim 4, wherein the substrate is transported from the measurement chamber to the single wafer deposition chamber while maintaining a vacuum environment.
前記成膜工程では、前記枚葉式成膜室に、成膜物質を収容した射出源と、前記射出源の上方に前記基板を水平に保持しながら自転させる基板回転手段を有し、
前記射出源と前記基板との間に、膜厚補正部材を挿入し成膜を部分的に遮蔽することにより、前記基板の電極膜厚を補正する膜厚補正工程が行われ、
前記膜厚補正部材は、成膜物質が通過する開口部と、前記成膜物質の通過を阻止する遮蔽部と、を有し、前記膜厚補正部材の座標中心が、前記射出源の中心と前記基板の中心とを結んだ軸線上に一致するように出没可能に設けられ、前記座標中心からの半径距離に応じて、前記開口部の開口率が変化しているものであることを特徴とする請求項4又は5に記載の成膜方法。
In the film forming step, the single wafer type film forming chamber has an injection source containing a film forming substance, and a substrate rotating means for rotating the substrate while holding the substrate horizontally above the injection source,
A film thickness correction step is performed to correct the electrode film thickness of the substrate by inserting a film thickness correction member between the emission source and the substrate to partially shield the film formation,
The film thickness correcting member has an opening through which the film forming substance passes and a shielding part that prevents the film forming substance from passing through, and the coordinate center of the film thickness correcting member is the center of the emission source. It is provided so that it can be projected and retracted so as to coincide with an axis connecting the center of the substrate, and the aperture ratio of the opening changes according to the radial distance from the coordinate center. The film forming method according to claim 4 or 5.
JP2011024459A 2011-02-07 2011-02-07 Film forming system and film forming method Active JP5652654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024459A JP5652654B2 (en) 2011-02-07 2011-02-07 Film forming system and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024459A JP5652654B2 (en) 2011-02-07 2011-02-07 Film forming system and film forming method

Publications (2)

Publication Number Publication Date
JP2012165214A JP2012165214A (en) 2012-08-30
JP5652654B2 true JP5652654B2 (en) 2015-01-14

Family

ID=46844174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024459A Active JP5652654B2 (en) 2011-02-07 2011-02-07 Film forming system and film forming method

Country Status (1)

Country Link
JP (1) JP5652654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966316B2 (en) 2016-05-25 2018-05-08 Toshiba Memory Corporation Deposition supporting system, depositing apparatus and manufacturing method of a semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2090893T3 (en) * 1993-01-28 1996-10-16 Applied Materials Inc VACUUM TREATMENT APPARATUS THAT HAS AN IMPROVED PRODUCTION CAPACITY.
US6245581B1 (en) * 2000-04-19 2001-06-12 Advanced Micro Devices, Inc. Method and apparatus for control of critical dimension using feedback etch control
US6625497B2 (en) * 2000-11-20 2003-09-23 Applied Materials Inc. Semiconductor processing module with integrated feedback/feed forward metrology
US7265382B2 (en) * 2002-11-12 2007-09-04 Applied Materials, Inc. Method and apparatus employing integrated metrology for improved dielectric etch efficiency
JP4936333B2 (en) * 2007-09-27 2012-05-23 株式会社昭和真空 Vacuum deposition equipment

Also Published As

Publication number Publication date
JP2012165214A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5636486B2 (en) Multi-layer / multi-input / multi-output (MLMIMO) model and method of using the model
TW201714145A (en) Vision-based wafer notch position measurement
TWI797207B (en) Auto-calibration to a station of a process module that spins a wafer
JP2014513415A (en) Compatibility recipe selection
US10896821B2 (en) Asymmetric wafer bow compensation by physical vapor deposition
TWI772206B (en) Selective etch rate monitor
TW202030470A (en) Optical stack deposition and on-board metrology
KR20170015209A (en) Vision-based wafer notch position measurement
US11688616B2 (en) Integrated substrate measurement system to improve manufacturing process performance
US20240051144A1 (en) Centerfinding for a process kit or process kit carrier at a manufacturing system
US20220028716A1 (en) Substrate measurement subsystem
KR20230021129A (en) Thin-film, in-situ measurements through transparent crystals and transparent substrates within processing chamber walls
JP5652654B2 (en) Film forming system and film forming method
JP5242906B2 (en) Substrate processing apparatus control device, control method, and storage medium storing control program
US11359732B1 (en) Method and mechanism for symmetrically controlling pressure in process chamber
JP5279627B2 (en) Substrate processing method and storage medium
JP2012046803A (en) Sheet-type film deposition apparatus and sheet-type film deposition method
WO2013190812A1 (en) Method for production of semiconductor device, semiconductor device, and production system for semiconductor device
JP5839868B2 (en) Film thickness measuring method and film thickness measuring system
US20240038601A1 (en) Methods and mechanisms for adjusting chucking voltage during substrate manufacturing
TWI838131B (en) Auto-calibration to a station of a process module that spins a wafer
US20240128100A1 (en) Methods and systems for a spectral library at a manufacturing system
JP2024075581A (en) Optical stack deposition and in-machine metrology
JP2024007277A (en) Film deposition position misalignment correction method and film deposition system
JP2022162596A (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5652654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150