JP5651911B2 - Method for producing resin-coated steel - Google Patents

Method for producing resin-coated steel Download PDF

Info

Publication number
JP5651911B2
JP5651911B2 JP2008051578A JP2008051578A JP5651911B2 JP 5651911 B2 JP5651911 B2 JP 5651911B2 JP 2008051578 A JP2008051578 A JP 2008051578A JP 2008051578 A JP2008051578 A JP 2008051578A JP 5651911 B2 JP5651911 B2 JP 5651911B2
Authority
JP
Japan
Prior art keywords
resin
layer
steel material
coated steel
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008051578A
Other languages
Japanese (ja)
Other versions
JP2009209392A (en
Inventor
釣 之郎
之郎 釣
一章 京野
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008051578A priority Critical patent/JP5651911B2/en
Publication of JP2009209392A publication Critical patent/JP2009209392A/en
Application granted granted Critical
Publication of JP5651911B2 publication Critical patent/JP5651911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、地中、河川中および海洋中あるいは海浜地域のような腐食環境の極めて厳しい条件下で用いられる重防食の樹脂被覆鋼材、特に、クロメート処理を行わなくても長期的な密着耐久性に優れる樹脂被覆鋼材の製造方法に関する。   The present invention is a heavy-duty resin-coated steel material used under extremely severe corrosive conditions such as in the ground, in the river, in the ocean, or in the beach area, particularly long-term adhesion durability without chromate treatment. The present invention relates to a method for producing a resin-coated steel material having excellent resistance.

従来より、地中、河川中および海洋中あるいは海浜地域のような腐食環境の極めて厳しい条件下で用いられる鋼管、鋼矢板、鋼管矢板などの鋼構造部材には、数十年以上の長期にわたる防食性を付与するために、ウレタンエラストマーやポリエチレン樹脂等からなる接着剤層と樹脂防食層を積層した重防食の樹脂被覆鋼材が用いられている。最上層にある樹脂防食層は外部からの腐食因子を遮断し、機械的衝撃を緩和する機能を担い、その下の接着剤層は鋼材との密着強度を確保する機能を担っている。また、通常は、腐食反応を抑制してこうした樹脂被覆層と鋼材との長期的な密着耐久性を確保するため、鋼材には樹脂被覆層の形成前にクロメート処理層のような化成処理層が形成される。特に、このクロメート処理層は、次のような電気防食が併用される場合に効果的である。すなわち、海洋環境において鋼管杭や鋼矢板を防食する際には、コスト削減の観点より、飛沫帯からさく望平均干潮面より海中部に1m入った領域のみを樹脂被覆で防食し、その他の海中部は電気防食を用いて防食するのが一般的である。このときクロメート処理層が形成されてないと、樹脂被覆層と鋼材の界面に到達した酸素が防食電流によって積極的に還元され、アルカリが発生するため樹脂被覆層が剥離しやすくなる、いわゆる陰極剥離現象が起こり、密着耐久性が大きく低下する。一方、クロメート処理層が形成されていれば、こうした陰極剥離は抑制され、樹脂被覆層と鋼材との長期的な密着耐久性が確保される。   Conventionally, steel structural members such as steel pipes, steel sheet piles, and steel pipe sheet piles that are used in extremely severe corrosive conditions such as underground, rivers, oceans, and beach areas have been subjected to corrosion protection over several decades. In order to impart the properties, a heavy anticorrosion resin-coated steel material in which an adhesive layer made of urethane elastomer or polyethylene resin and a resin anticorrosion layer are laminated is used. The resin anti-corrosion layer in the uppermost layer has a function of blocking external corrosion factors and mitigating mechanical shock, and the adhesive layer underneath has a function of ensuring adhesion strength with the steel material. Usually, in order to prevent corrosion reaction and secure long-term adhesion durability between the resin coating layer and the steel material, the steel material has a chemical conversion treatment layer such as a chromate treatment layer before the resin coating layer is formed. It is formed. In particular, this chromate treatment layer is effective when the following anticorrosion is used in combination. In other words, when steel pipe piles and steel sheet piles are protected against corrosion in the marine environment, only the area 1 meter deep into the sea from the desired average low tide surface from the splash zone is protected with resin coating from the viewpoint of cost reduction. The middle part is generally protected by using anticorrosion. If the chromate treatment layer is not formed at this time, oxygen that has reached the interface between the resin coating layer and the steel material is actively reduced by the anticorrosion current, and alkali is generated, so that the resin coating layer is easily peeled off, so-called cathode peeling. A phenomenon occurs, and adhesion durability is greatly reduced. On the other hand, when the chromate treatment layer is formed, such cathode peeling is suppressed, and long-term adhesion durability between the resin coating layer and the steel material is ensured.

しかし、近年、6価クロムの環境に及ぼす影響が懸念されており、現行では上記のような鋼構造部材の分野において法的規制がないものの、近い将来、クロメート処理が事実上禁止されことが予想される。そこで、クロメート処理層を用いずに、樹脂被覆鋼材の陰極剥離を防止する技術が検討されている。例えば、特許文献1には、Al、Ga、In、Tlの水酸化物あるいはオキシ水酸化物からなる群から1つ以上選ばれた組成物を含み、その金属元素の付着量が0.01〜10g/m2である化成処理層を鋼材面に塗布した樹脂被覆鋼材が開示されている。また、特許文献2には、重リン酸マグネシウムに水分散シリカの微粒子を質量比で0.3〜4.0の割合で添加した水溶液を、重リン酸マグネシウムの付着量が0.5〜5g/m2となるように鋼材面に塗布した防食被覆鋼材が開示されている。
特開2006-283160号公報 特開2006-249459号公報
However, in recent years, there are concerns about the impact of hexavalent chromium on the environment, and at present there is no legal regulation in the field of steel structural members as described above, but it is expected that chromate treatment will be effectively prohibited in the near future. Is done. Therefore, a technique for preventing cathode peeling of the resin-coated steel material without using a chromate treatment layer has been studied. For example, Patent Document 1 includes one or more compositions selected from the group consisting of hydroxides or oxyhydroxides of Al, Ga, In, and Tl, and the adhesion amount of the metal element is 0.01 to 10 g / A resin-coated steel material in which a chemical conversion treatment layer of m 2 is applied to a steel material surface is disclosed. Patent Document 2 discloses an aqueous solution in which fine particles of water-dispersed silica are added to magnesium diphosphate at a mass ratio of 0.3 to 4.0 so that the adhesion amount of magnesium phosphate becomes 0.5 to 5 g / m 2. Discloses an anticorrosion-coated steel material applied to the steel surface.
JP 2006-283160 A JP 2006-249459

しかしながら、特許文献1に記載の樹脂被覆鋼材では、化成処理層がない場合に比べれば改善効果があるものの、その効果は従来のクロメート処理層には及ばず、長期的な密着耐久性は十分ではない。また、特許文献2に記載の防食被覆鋼材では、重リン酸マグネシウムは水に比較的容易に溶解するリン酸塩であり、その乾燥過程においてもクロメート処理の場合と違って高分子化が起こらないため、実使用条件のように電位が印加される場合には、陰極剥離の抑制効果はほとんど認められない。   However, the resin-coated steel material described in Patent Document 1 has an improvement effect as compared with the case where there is no chemical conversion treatment layer, but the effect does not reach the conventional chromate treatment layer, and the long-term adhesion durability is not sufficient. Absent. In addition, in the anticorrosion-coated steel material described in Patent Document 2, magnesium phosphate is a phosphate that dissolves relatively easily in water, and in the drying process, polymerization does not occur unlike in the case of chromate treatment. Therefore, when a potential is applied as in actual use conditions, the effect of suppressing cathode peeling is hardly observed.

本発明は、クロメート処理層のようなクロムを含む化成処理層を用いずに、樹脂被覆層の陰極剥離を防止でき、長期的な密着耐久性に優れる樹脂被覆鋼材の製造方法を提供することを目的とする。   The present invention provides a method for producing a resin-coated steel material that can prevent cathode peeling of a resin coating layer and is excellent in long-term adhesion durability without using a chemical conversion treatment layer containing chromium such as a chromate treatment layer. Objective.

上記目的は、鋼材の表面に、下記A群から選ばれた少なくとも1種のリン酸塩と下記B群から選ばれた少なくとも1種の化合物を含有する水溶液を塗布、乾燥させて化成処理層を形成後、接着剤層と樹脂防食層を順次積層することを特徴とする樹脂被覆鋼材の製造方法により達成される。
A群:Al系リン酸塩、Ca系リン酸塩、Mg系リン酸塩、Zn系リン酸塩
B群:V系化合物、Mo系化合物、W系化合物、Y系化合物、Zr系化合物、Bi系化合物
本発明の樹脂被覆鋼材の製造方法では、水溶液に、さらにシリカを0.1〜10質量%含有させることが好ましい。
The purpose is to apply a chemical conversion treatment layer on the surface of the steel material by applying and drying an aqueous solution containing at least one phosphate selected from the following group A and at least one compound selected from the following group B. After the formation, this is achieved by a method for producing a resin-coated steel material, in which an adhesive layer and a resin anticorrosive layer are sequentially laminated.
Group A: Al phosphate, Ca phosphate, Mg phosphate, Zn phosphate
Group B: V-based compound, Mo-based compound, W-based compound, Y-based compound, Zr-based compound, Bi-based compound In the method for producing a resin-coated steel material according to the present invention, the aqueous solution further contains 0.1 to 10% by mass of silica. It is preferable.

また、接着剤層を、層厚5〜100μmのウレタン系あるいはエポキシ系の樹脂層とし、樹脂防食層を、層厚1〜6mmのウレタンエラストマー層とすることが好ましい。   The adhesive layer is preferably a urethane or epoxy resin layer having a thickness of 5 to 100 μm, and the resin anticorrosion layer is preferably a urethane elastomer layer having a thickness of 1 to 6 mm.

本発明により、クロメート処理層のようなクロムを含む化成処理層を用いずに、樹脂被覆層の陰極剥離を防止でき、長期的な密着耐久性に優れる樹脂被覆鋼材を製造できるようになった。本発明の製造方法により製造された樹脂被覆鋼材は、環境にやさしく、地中、河川中および海洋中あるいは海浜地域のような腐食環境の極めて厳しい条件下で用いられる鋼構造部材に好適である。   According to the present invention, it is possible to produce a resin-coated steel material that can prevent cathode peeling of the resin coating layer and has excellent long-term adhesion durability without using a chemical conversion treatment layer containing chromium such as a chromate treatment layer. The resin-coated steel material produced by the production method of the present invention is environmentally friendly, and is suitable for steel structural members used under extremely severe corrosive conditions such as in the ground, in rivers, in the ocean, and in beach areas.

図1に、本発明の製造方法により製造された樹脂被覆鋼材の断面構造を模式的に示す。本発明の製造方法では、素地鋼材11の表面に、化成処理層12を形成後、その上に接着剤層13、樹脂防食層14を順次形成するが、化成処理層12を、クロムを含有しない本発明固有の組成の水溶液を塗布し、乾燥することにより形成させて、長期的な密着耐久性に優れる樹脂被覆鋼材10の製造を可能にしたことに特徴がある。以下に、その詳細を説明する。   FIG. 1 schematically shows a cross-sectional structure of a resin-coated steel material produced by the production method of the present invention. In the production method of the present invention, after forming the chemical conversion treatment layer 12 on the surface of the base steel material 11, the adhesive layer 13 and the resin anticorrosion layer 14 are sequentially formed thereon, but the chemical conversion treatment layer 12 does not contain chromium. It is characterized in that the resin-coated steel material 10 having excellent long-term adhesion durability can be produced by applying an aqueous solution having a composition unique to the present invention and drying it. The details will be described below.

1)化成処理層
クロムを含まず、樹脂被覆層の陰極剥離を防止できる化成処理層としては、下記A群から選ばれた少なくとも1種のリン酸塩と下記B群から選ばれた少なくとも1種の化合物を含有する水溶液を塗布、乾燥させて形成させた化成処理層とする必要がある。
A群:Al系リン酸塩、Ca系リン酸塩、Mg系リン酸塩、Zn系リン酸塩
B群:V系化合物、Mo系化合物、W系化合物、Y系化合物、Zr系化合物、Bi系化合物
このとき、リン酸塩としては、正塩の他にポリリン酸、縮合リン酸塩を用いることができる。また、V系、Mo系、W系、Y系、Zr系、Bi系化合物としては、酸化物、リン酸塩、硝酸塩、炭酸塩、硫酸塩などが好ましい。
1) Chemical conversion treatment layer As a chemical conversion treatment layer that does not contain chromium and can prevent cathode peeling of the resin coating layer, at least one phosphate selected from the following group A and at least one selected from the following group B It is necessary to make it the chemical conversion treatment layer formed by apply | coating and drying the aqueous solution containing these compounds.
Group A: Al phosphate, Ca phosphate, Mg phosphate, Zn phosphate
Group B: V-based compound, Mo-based compound, W-based compound, Y-based compound, Zr-based compound, Bi-based compound At this time, as phosphate, use polyphosphoric acid or condensed phosphate in addition to normal salt Can do. In addition, oxides, phosphates, nitrates, carbonates, sulfates, and the like are preferable as the V, Mo, W, Y, Zr, and Bi compounds.

また、この化成処理層の付着量としては、0.3〜10g/m2が好ましい。これは、0.3g/m2未満では、鋼材表面の酸素還元反応の抑制効果が低く、十分な密着耐久性が得られず、10g/m2を超えると、化成処理層内に脆弱層が形成され、樹脂被覆層の密着強度が低下する場合があるためである。 Moreover, as an adhesion amount of this chemical conversion treatment layer, 0.3-10 g / m < 2 > is preferable. This is because if less than 0.3 g / m 2 , the effect of suppressing the oxygen reduction reaction on the steel surface is low and sufficient adhesion durability cannot be obtained, and if it exceeds 10 g / m 2 , a fragile layer is formed in the chemical conversion treatment layer. This is because the adhesion strength of the resin coating layer may decrease.

上記水溶液塗布後の乾燥させる手段としては、例えば、熱風による加熱、バーナーによる加熱、インダクションヒーターによる加熱等が挙げられる。   Examples of the means for drying after applying the aqueous solution include heating with hot air, heating with a burner, heating with an induction heater, and the like.

さらなる密着耐久性の向上を目的として、上記化成処理の水溶液にシリカを0.1〜10質量%添加することが好ましい。その理由は、化成処理層に析出したシリカ表面のシラノール基と、プライマー中の水酸基との間に水素結合が生成するからである。シリカの添加量が0.1質量%未満だと、密着耐久性向上の効果が顕著ではなく、10質量%を超えると化成処理液がゲル化し、化成処理液として使用できなくなる。   For the purpose of further improving the adhesion durability, it is preferable to add 0.1 to 10% by mass of silica to the chemical conversion aqueous solution. The reason is that a hydrogen bond is generated between the silanol group on the silica surface deposited on the chemical conversion layer and the hydroxyl group in the primer. If the addition amount of silica is less than 0.1% by mass, the effect of improving the adhesion durability is not remarkable, and if it exceeds 10% by mass, the chemical conversion treatment solution gels and cannot be used as the chemical conversion treatment solution.

2)接着剤層
接着剤層には、ウレタン系やエポキシ系の樹脂を用いることが好ましい。ウレタン系の樹脂としては、分子量100〜800程度のポリエーテルポリオールと、ポリメチルポリフェニルポリイソシアネートとの反応物であることが好ましい。一方、エポキシ系の樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、あるいはこれらの混合物と脂肪族系ポリアミン、芳香族系ポリアミン、ジシアンジアミドあるいはイミダゾール系化合物との反応硬化物であることが好ましい。
2) Adhesive layer It is preferable to use urethane or epoxy resin for the adhesive layer. The urethane resin is preferably a reaction product of a polyether polyol having a molecular weight of about 100 to 800 and polymethylpolyphenyl polyisocyanate. On the other hand, as an epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, or a mixture thereof and an aliphatic polyamine, aromatic polyamine, dicyandiamide or imidazole compound is cured. It is preferable that it is a thing.

接着剤層の層厚は5〜100μmが好ましい。これは、5μm未満の場合には、鋼材面が十分に被覆されないため密着強度が低下し、100μmを超えた場合には、コスト増に見合う防食性の向上が得られないからである。   The layer thickness of the adhesive layer is preferably 5 to 100 μm. This is because when the thickness is less than 5 μm, the steel material surface is not sufficiently covered and the adhesion strength is lowered, and when it exceeds 100 μm, the corrosion resistance cannot be improved corresponding to the increase in cost.

接着剤層には、密着耐久性の向上を目的として、防錆顔料を添加することが好ましい。防錆顔料としては、リン酸亜鉛、トリポリリン酸2水素アルミニウム、カルシウムイオン交換シリカ等が好ましく、接着剤層を構成する樹脂に対して10〜100質量%添加するのが好ましい。これは、防錆顔料の添加量が10質量%未満の場合には、樹脂被覆鋼材の密着耐久性向上への寄与が少なく、100質量%を超える場合には、接着剤層がポーラスになり密着強度が低下する場合があるからである。   For the purpose of improving the adhesion durability, it is preferable to add a rust preventive pigment to the adhesive layer. As the anticorrosive pigment, zinc phosphate, aluminum dihydrogen tripolyphosphate, calcium ion exchange silica and the like are preferable, and it is preferable to add 10 to 100% by mass with respect to the resin constituting the adhesive layer. This is because when the amount of anticorrosive pigment added is less than 10% by mass, the contribution to the adhesion durability of the resin-coated steel material is small, and when it exceeds 100% by mass, the adhesive layer becomes porous and adheres closely. This is because the strength may decrease.

接着剤層の形成方法は、特に限定しないが、スプレー塗布が挙げられる。   Although the formation method of an adhesive bond layer is not specifically limited, Spray application is mentioned.

3)樹脂防食層
樹脂防食層には、ウレタンエラストマーを用いることが好ましい。ウレタンエラストマーは、特にその種類や樹脂骨格は限定しないが、例えば、ひまし油にアルキルジオール、アニリンエチレンオキサイド付加体、ビスフェノールAエチレンオキサイド付加体、あるいはビスフェノールFエチレンオキサイド付加体等を1種以上適当量混合したポリオールをポリフェニルポリメチルポリイソシアネートで硬化したものが挙げられる。
3) Resin corrosion protection layer It is preferable to use a urethane elastomer for the resin corrosion protection layer. The urethane elastomer is not particularly limited in its kind and resin skeleton, but for example, castor oil is alkyldiol, aniline - ethylene oxide adduct, bisphenol A - ethylene oxide adduct, or bisphenol F - ethylene oxide adduct. Examples include those obtained by curing an appropriate amount of mixed polyol with polyphenyl polymethyl polyisocyanate.

樹脂防食層の層厚は1〜6mmであることが好ましい。これは、1mm未満では、防食性が低下するだけでなく、樹脂防食層の耐衝撃性が低下する傾向があり、6mmを超えた場合には、コスト増に見合う防食性の向上が得られないからである。   The thickness of the resin anticorrosion layer is preferably 1 to 6 mm. This is because if it is less than 1 mm, not only does the corrosion resistance decrease, but the impact resistance of the resin anticorrosion layer tends to decrease. Because.

樹脂防食層の紫外線劣化を防止するため、紫外線吸収剤であるカーボンブラックやヒンダードアミン系光安定剤HALS(Hindered Amine Light Stabilizer)等を配合することが好ましい。   In order to prevent UV degradation of the resin anticorrosive layer, it is preferable to blend carbon black as a UV absorber, hindered amine light stabilizer HALS (Hindered Amine Light Stabilizer) and the like.

樹脂防食層の形成方法は、特に限定しないが、スプレー塗布が挙げられる。   The method for forming the resin anticorrosion layer is not particularly limited, and examples thereof include spray coating.

3W型鋼矢板の表面を、スチールブラスト処理によりスケールを除去するとともに、十点平均粗さRzで40〜60μmになるように仕上げた後、表1に示す化成処理水溶液を塗布し、2分間放置した後に、直ちにバーナーを用いて鋼材温度が80〜100℃なるようにして加熱して乾燥させ、付着量が1〜2.5g/m2の化成処理層を形成させた。その後、化成処理層上に、鋼材温度が60℃以下になった時点で、ウレタンプライマー[331プライマー、第一工業製薬(株)]を乾燥後の層厚が30〜50μmになるようスプレーで塗布し、室温で2時間乾燥させて接着剤層を形成させた。さらに、この接着剤層上に、ひまし油にアニリンエチレンオキサイド付加体を混合したポリオールをポリフェニルポリメチルポリイソシアネートで硬化したポリウレタン樹脂[パーマガード137、第一工業製薬(株)]を、先端衝突混合式のスプレーで層厚が3.0〜3.5mmになるよう塗布し、1週間ほど養生させてウレタンエラストマーからなる樹脂防錆層を形成し、樹脂被覆鋼材No.1〜23を作製した。 The surface of the 3W-type steel sheet pile was removed by steel blasting and finished to have a 10-point average roughness Rz of 40 to 60 μm. Then, the chemical conversion treatment aqueous solution shown in Table 1 was applied and left for 2 minutes. Thereafter, the steel material was immediately heated and dried using a burner so that the temperature of the steel material was 80 to 100 ° C., and a chemical conversion treatment layer having an adhesion amount of 1 to 2.5 g / m 2 was formed. After that, on the chemical conversion treatment layer, when the steel material temperature becomes 60 ° C. or less, the urethane primer [331 Primer, Daiichi Kogyo Seiyaku Co., Ltd.] is applied by spray so that the layer thickness after drying becomes 30 to 50 μm. And dried at room temperature for 2 hours to form an adhesive layer. Furthermore, on this adhesive layer, a polyurethane resin [Permgard 137, Daiichi Kogyo Seiyaku Co., Ltd.] obtained by curing a polyol in which castor oil is mixed with aniline - ethylene oxide adduct with polyphenylpolymethylpolyisocyanate, collides with the tip. It applied so that layer thickness might be set to 3.0-3.5mm with a mixing type spray, it was made to age for about one week, the resin rust prevention layer which consists of urethane elastomers was formed, and resin coating steel materials No. 1-23 were produced.

作製したそれぞれの樹脂被覆鋼材から100mm×100mmの7個の試験片を切り出し、そのうちの2個の試験片に対しては、断面積1cm2の円柱の鋼製引張り治具をエポキシ系接着剤で接着後、鋼製引張り治具の周囲にある試験片の樹脂被覆層に素地鋼材に達する切り込みをリューターで入れ、引張試験(引張速度:5mm/min)を行い、2個の試験片における樹脂被覆層の平均の初期密着強度(N/cm2)を測定した。 Cut out seven specimens of 100 mm × 100 mm from the respective resin-coated steel produced, for two specimens of which the steel tensile jigs cylindrical cross-sectional area 1 cm 2 with an epoxy adhesive After bonding, a notch that reaches the base steel material is put in the resin coating layer of the test piece around the steel tension jig with a router, and a tensile test (tensile speed: 5 mm / min) is performed. Resin coating on two test pieces The average initial adhesion strength (N / cm 2 ) of the layer was measured.

残りの5個の試験片に対しては、4端面を研磨した後、アルミリベットを用いて樹脂被覆されたリード線を1端面に取り付け、アルミリベット部をエポキシ系接着剤でシールした後、残りの3端面と裏面(樹脂被覆層がない素地鋼材面)とをシリコンシーラントでシールし、乾燥後、空気を吹き込んだ50℃の3質量%NaCl水溶液に180日間浸漬させた。このとき、リード線の他端をポテンシオスタットに接続し、白金電極を対極とし、1.0V vs SCEの電位になるように電圧を印加した。そして、180日浸漬後、試験片の素地鋼材が露出された端面から樹脂被覆層を強制的に剥離させ、剥離界面において素地鋼材面が露出した距離をノギスで測定し、5個の試験片における平均の陰極剥離距離を求め、耐陰極剥離性を評価した。なお、この剥離により素地鋼材面が露出した領域は、樹脂被覆層の密着性が失われているため、実質的な防食性を期待できない部位であるが、この陰極剥離距離が10mm以下であれば良好な耐陰極剥離性を有すると判定した。また、同時に、試験片中央部において、初期密着強度と同様な方法で180日浸漬後の密着強度を測定した。 For the remaining 5 test pieces, after polishing the 4 end faces, attach the lead wire coated with resin using aluminum rivets to one end face, seal the aluminum rivets with epoxy adhesive, and then leave the rest The three end surfaces and the back surface (surface steel material surface without a resin coating layer) were sealed with a silicon sealant, dried, and then immersed in a 3 mass% NaCl aqueous solution at 50 ° C. blown with air for 180 days. At this time, connect the other end of the lead wire to a potentiostat, a platinum electrode as the counter electrode, - a voltage was applied so that the potential of 1.0 V vs SCE. And after 180 days immersion, the resin coating layer was forcibly peeled from the end surface where the base steel material of the test piece was exposed, and the distance at which the base steel material surface was exposed at the peeling interface was measured with calipers. The average cathode peeling distance was determined and the cathode peeling resistance was evaluated. Note that the area where the base steel surface is exposed by this peeling is a part where the adhesion of the resin coating layer is lost, and thus it is not possible to expect substantial anticorrosion, but if this cathode peeling distance is 10 mm or less It was determined to have good cathode peel resistance. At the same time, the adhesion strength after 180 days immersion was measured in the center of the test piece by the same method as the initial adhesion strength.

結果を表1に示す。   The results are shown in Table 1.

本発明の方法で作製された樹脂被覆鋼材No.1〜21では、50℃の3質量%NaCl水溶液に180日間浸漬後の陰極剥離距離は10mm以下と小さく、また、密着強度も7〜8N/cm2で初期密着強度10N/cm2からの低下が少なく、長期的な密着耐久性に優れていることがわかる。 In the resin-coated steel materials No. 1 to 21 produced by the method of the present invention, the cathode peeling distance after 180 days immersion in a 3 mass% NaCl aqueous solution at 50 ° C. is as small as 10 mm or less, and the adhesion strength is also 7 to 8 N / reduction from the initial adhesive strength 10 N / cm 2 is less in cm 2, it is found to have excellent long-term adhesion durability.

本発明の製造方法により製造された樹脂被覆鋼材の断面被覆構造を模式的に示す図である。It is a figure which shows typically the cross-section covering structure of the resin-coated steel material manufactured by the manufacturing method of this invention.

符号の説明Explanation of symbols

10 樹脂被覆鋼材
11 素地鋼材
12 化成処理層
13 接着剤層
14 樹脂防食層
10 Resin coated steel
11 Base steel
12 Chemical conversion layer
13 Adhesive layer
14 Resin corrosion protection layer

Claims (2)

めっきを施していない鋼材の表面に、下記A群から選ばれた少なくとも1種のリン酸塩と下記B群から選ばれた少なくとも1種の化合物を含有する水溶液を塗布、乾燥させて、前記A群及びB群から選ばれた化合物に由来する物質が有機樹脂に分散していない化成処理層を形成後、接着剤層と樹脂防食層を順次積層し、
前記接着剤層を、層厚5〜100μmのウレタン系あるいはエポキシ系の樹脂層とし、前記樹脂防食層を、層厚1〜6mmのウレタンエラストマー層とすることを特徴とする樹脂被覆鋼材の製造方法;
A群:Al系リン酸塩、Ca系リン酸塩、Mg系リン酸塩、Zn系リン酸塩
B群:V系化合物、W系化合物、Y系化合物、Bi系化合物。
An aqueous solution containing at least one phosphate selected from the following group A and at least one compound selected from the following group B is applied to the surface of the steel material that has not been plated and dried, and the A After forming the chemical conversion treatment layer in which the substance derived from the compound selected from the group and group B is not dispersed in the organic resin, the adhesive layer and the resin anticorrosion layer are sequentially laminated,
The method for producing a resin-coated steel material, characterized in that the adhesive layer is a urethane or epoxy resin layer having a thickness of 5 to 100 μm, and the resin anticorrosive layer is a urethane elastomer layer having a thickness of 1 to 6 mm. ;
Group A: Al-based phosphate, Ca-based phosphate, Mg-based phosphate, Zn-based phosphate group B: V compound, W compound, Y compound, B i compounds.
水溶液に、さらにシリカを0.1〜10質量%含有させることを特徴とする請求項1に記載の樹脂被覆鋼材の製造方法。   2. The method for producing a resin-coated steel material according to claim 1, wherein the aqueous solution further contains 0.1 to 10% by mass of silica.
JP2008051578A 2008-03-03 2008-03-03 Method for producing resin-coated steel Active JP5651911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051578A JP5651911B2 (en) 2008-03-03 2008-03-03 Method for producing resin-coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051578A JP5651911B2 (en) 2008-03-03 2008-03-03 Method for producing resin-coated steel

Publications (2)

Publication Number Publication Date
JP2009209392A JP2009209392A (en) 2009-09-17
JP5651911B2 true JP5651911B2 (en) 2015-01-14

Family

ID=41182832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051578A Active JP5651911B2 (en) 2008-03-03 2008-03-03 Method for producing resin-coated steel

Country Status (1)

Country Link
JP (1) JP5651911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201388A1 (en) * 2013-01-29 2014-07-31 Evonik Industries Ag Process for producing a metal-plastic hybrid component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364739A (en) * 1986-09-05 1988-03-23 川崎製鉄株式会社 Colored polyurethane elastomer coated heavy-duty corrosion-resistant steel material
JPH09268374A (en) * 1996-04-02 1997-10-14 Nippon Steel Corp Production of coated steel tube
JP3546271B2 (en) * 2000-08-17 2004-07-21 Jfeスチール株式会社 Manufacturing method of anticorrosion coated steel
JP3305703B2 (en) * 2000-12-21 2002-07-24 日新製鋼株式会社 Chemical treated steel sheet with excellent corrosion resistance
JP4617575B2 (en) * 2001-01-22 2011-01-26 Jfeスチール株式会社 Method for producing anti-corrosion coated steel
JP3873680B2 (en) * 2001-07-26 2007-01-24 Jfeスチール株式会社 Method for producing anti-corrosion coated steel
JP2003253457A (en) * 2002-03-06 2003-09-10 Jfe Steel Kk Surface treated galvanized steel sheet
JP2004149889A (en) * 2002-10-31 2004-05-27 Jfe Steel Kk Surface treated metallic sheet having excellent press formability and corrosion resistance
JP4416167B2 (en) * 2005-03-08 2010-02-17 新日本製鐵株式会社 Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
JP2006336106A (en) * 2005-05-04 2006-12-14 Furakuto:Kk Chromium-free surface treatment agent for metal, and surface-treated metallic material
JP4710821B2 (en) * 2005-12-27 2011-06-29 Jfeスチール株式会社 Resin coated heavy duty steel

Also Published As

Publication number Publication date
JP2009209392A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4416167B2 (en) Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
JP6180956B2 (en) Painted steel with excellent corrosion resistance
JP5217508B2 (en) Method for producing resin-coated steel
JP2016199777A (en) Steel material for coating with excellent anticorrosion
JP5217507B2 (en) Method for producing resin-coated steel
JP2007313885A (en) Organic resin coated steel material
JP5651912B2 (en) Method for producing resin-coated steel
JP4438334B2 (en) Resin coated heavy duty steel
JP5651911B2 (en) Method for producing resin-coated steel
JP2006283045A (en) Surface-treated steel
JP4595483B2 (en) Resin coated heavy duty steel
JP6085932B2 (en) Polyethylene-coated steel material and epoxy resin primer layer forming material
US20070122645A1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
JP4534689B2 (en) Polyolefin coated heavy duty steel
JP4595494B2 (en) Resin coated heavy duty steel
JP2013103196A (en) Method of manufacturing heavy duty coated steel material
JP2005324543A (en) Surface treated steel
JP4710821B2 (en) Resin coated heavy duty steel
JP4882217B2 (en) Resin coated heavy duty steel
JP2016198934A (en) Polyolefin coated steel material subjected to base chemical conversion treatment
JP2005344147A (en) Steel material coated with organic resin, and manufacturing method therefor
CN103952070B (en) Solvent-free polymeric type anticorrosive paint and preparation method thereof
JP2008229998A (en) Heavy corrosion-proof coated steel material
JP4600000B2 (en) Resin coated heavy duty steel
JP6233339B2 (en) Organic coated heavy duty steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5651911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250