JP5643542B2 - Thick steel plate with excellent fatigue characteristics - Google Patents

Thick steel plate with excellent fatigue characteristics Download PDF

Info

Publication number
JP5643542B2
JP5643542B2 JP2010115384A JP2010115384A JP5643542B2 JP 5643542 B2 JP5643542 B2 JP 5643542B2 JP 2010115384 A JP2010115384 A JP 2010115384A JP 2010115384 A JP2010115384 A JP 2010115384A JP 5643542 B2 JP5643542 B2 JP 5643542B2
Authority
JP
Japan
Prior art keywords
less
value
amount
haz
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115384A
Other languages
Japanese (ja)
Other versions
JP2011241454A (en
Inventor
宏行 高岡
宏行 高岡
田村 栄一
栄一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010115384A priority Critical patent/JP5643542B2/en
Priority to CN2011101346427A priority patent/CN102251171B/en
Priority to KR1020110046871A priority patent/KR101314004B1/en
Publication of JP2011241454A publication Critical patent/JP2011241454A/en
Application granted granted Critical
Publication of JP5643542B2 publication Critical patent/JP5643542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、主として船舶、建築物、橋梁などの構造用材料として用いられる厚鋼板に関するものであり、特に疲労特性に優れた厚鋼板に関するものである。   The present invention relates to a thick steel plate mainly used as a structural material for ships, buildings, bridges and the like, and particularly to a thick steel plate having excellent fatigue characteristics.

船舶、建築物、橋梁等は、通常、板厚6mm以上の厚鋼板を溶接により接合して組み立てられる。鋼板の溶接部では、応力集中が起こりやすいため疲労破壊が起こりやすい。   Ships, buildings, bridges and the like are usually assembled by welding thick steel plates having a thickness of 6 mm or more by welding. In a welded portion of a steel plate, stress concentration tends to occur, so fatigue failure is likely to occur.

疲労特性を改善する技術として、例えば特許文献1〜3が挙げられる。特許文献1は溶接熱影響部における硬度値が母材または溶接金属のいずれか硬度の低い方の硬度の80%以上として、溶接継手の応力集中を緩和している。特許文献2では、溶接金属と溶接熱影響部の硬さの差を少なくすることによって、溶接金属およびHAZの片側のみでのひずみ集中を抑制して疲労強度を向上させている。また、特許文献3は溶接熱影響部と母材の硬さの差を小さくすることによって応力・歪みの集中を緩和し、溶接部の疲労強度や耐応力腐食割れ性を向上させている。しかし、特許文献1〜3では、Si量が多かったり、Nb量、Mo量等が多かったりするため、疲労特性や靭性において不十分であった。   Examples of techniques for improving fatigue characteristics include Patent Documents 1 to 3. In Patent Document 1, the hardness value in the weld heat affected zone is 80% or more of the lower hardness of the base metal or the weld metal, and the stress concentration of the welded joint is relaxed. In Patent Document 2, by reducing the difference in hardness between the weld metal and the weld heat affected zone, the strain concentration on only one side of the weld metal and the HAZ is suppressed, and the fatigue strength is improved. Patent Document 3 relaxes the stress / strain concentration by reducing the difference in hardness between the weld heat affected zone and the base metal, and improves the fatigue strength and stress corrosion cracking resistance of the weld zone. However, in Patent Documents 1 to 3, since the Si amount is large, the Nb amount, the Mo amount, and the like are large, the fatigue characteristics and toughness are insufficient.

特開2006−169602号公報JP 2006-169602 A 特開平7−171679号公報JP-A-7-171679 特開2001−73071号公報JP 2001-73071 A

本発明は、疲労特性に優れた厚鋼板を提供することを目的とする。   An object of this invention is to provide the thick steel plate excellent in the fatigue characteristic.

上記課題を達成し得た本発明に係る厚鋼板は、C:0.02〜0.15%(質量%の意味。以下、同じ)、Si:0.30%以下(0%を含む)、Mn:1.0〜2.5%、
P:0.015%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.005〜0.06%、N:0.0038〜0.010%を夫々含有するとともに、残部は不可避的不純物であり、鋼組織中の転位密度が1×1010〜10×1010(/cm2)であり、前記転位密度と、下記式(1)および(2)で表されるDI値およびH値が
H値/DI値≦23 および
2.2≦(転位密度/1010)/DI値≦6.5
の関係を満たすことを特徴とするものであり、疲労特性に優れている。
I値=(C/10)0.5×(1.7−0.09×6)×(0.7×Si+1)×F1×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(200×F2+1) ・・・(1)
但し、上記式(1)において
F1は、
Mn<1.2の場合は、F1=3.33×Mn+1
Mn≧1.2の場合は、F1=5.1×(Mn−1.2)+5
F2は、
B−0.3×(N−Ti×14/48)×11/14<0の場合は、F2=0
B−0.3×(N−Ti×14/48)×11/14≧0の場合は、F2=B−0.3×(N−Ti×14/48)×11/14
H値=−153×C+112×Si−3×Mn−63×Cu+240×Al−15×Ni−305×Cr+1791×Mo−110×Nb−758×Ti−1929×B+1068×N+4 ・・・(2)
(上記式(1)、(2)中、元素名は各元素の含有量(質量%)を表し、含有していない元素がある場合、その含有量については0質量%として計算するものとする。)
Thick steel plates according to the present invention that can achieve the above-mentioned problems are: C: 0.02 to 0.15% (meaning mass%, hereinafter the same), Si: 0.30% or less (including 0%), Mn: 1.0 to 2.5%
P: 0.015% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.005 to 0.06%, N: 0.0038 to 0.010 %, The balance is inevitable impurities, the dislocation density in the steel structure is 1 × 10 10 to 10 × 10 10 (/ cm 2 ), the dislocation density, and the following formula (1) and The DI value and H value represented by (2) are H value / D I value ≦ 23 and 2.2 ≦ (dislocation density / 10 10 ) / D I value ≦ 6.5.
It is characterized by satisfying this relationship, and has excellent fatigue properties.
D I value = (C / 10) 0.5 × (1.7−0.09 × 6) × (0.7 × Si + 1) × F1 × (0.35 × Cu + 1) × (0.36 × Ni + 1) × ( 2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (200 × F2 + 1) (1)
However, in the above formula (1), F1 is
For Mn <1.2, F1 = 3.33 × Mn + 1
When Mn ≧ 1.2, F1 = 5.1 × (Mn−1.2) +5
F2 is
In the case of B-0.3 × (N-Ti × 14/48) × 11/14 <0, F2 = 0
When B-0.3 × (N-Ti × 14/48) × 11/14 ≧ 0, F2 = B−0.3 × (N-Ti × 14/48) × 11/14
H value = −153 × C + 112 × Si−3 × Mn−63 × Cu + 240 × Al-15 × Ni-305 × Cr + 1791 × Mo-110 × Nb-758 × Ti-1929 × B + 1068 × N + 4 (2)
(In the above formulas (1) and (2), the element name represents the content (mass%) of each element, and when there is an element not contained, the content is calculated as 0 mass%. .)

本発明における厚鋼板は、必要に応じて更に、(a)Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)、Cr:2%以下(0%を含まない)、およびMo:0.6%以下(0%を含まない)よりなる群から選択される少なくとも1種、(b)V:0.1%以下(0%を含まない)、Nb:0.060%以下(0%を含まない)、およびTi:0.1%以下(0%を含まない)よりなる群から選択される少なくとも1種、(c)B:0.005%以下(0%を含まない)、(d)Ca:0.010%以下(0%を含まない)、(e)Mg:0.005%以下(0%を含まない)、(f)Zr:0.1%以下(0%を含まない)および/またはHf:0.05%以下(0%を含まない)、(g)REM:0.02%以下(0%を含まない)を含有していてもよい。   The thick steel plate according to the present invention may further include (a) Cu: 2% or less (not including 0%), Ni: 2% or less (not including 0%), Cr: 2% or less (0%) as necessary. And at least one selected from the group consisting of Mo: 0.6% or less (not including 0%), (b) V: 0.1% or less (not including 0%), Nb : At least one selected from the group consisting of 0.060% or less (excluding 0%) and Ti: 0.1% or less (not including 0%), (c) B: 0.005% or less (Not including 0%), (d) Ca: 0.010% or less (not including 0%), (e) Mg: 0.005% or less (not including 0%), (f) Zr: 0 .1% or less (excluding 0%) and / or Hf: 0.05% or less (not including 0%), (g) REM: 0.02% or less ( % May contain included not) a.

本発明によれば、各種成分組成が適切に調整されているとともに、溶接熱影響部の均一伸びの指標となるH値と溶接熱影響部の強度の指標となるDI値との比(H値/DI値)、母材強度の指標となる転位密度、および母材強度の指標となる転位密度と溶接熱影響部の強度の比の指標となるDI値の比((転位密度)/DI値)がいずれも適切に制御されているため、疲労特性に優れた厚鋼板を実現することができる。 According to the present invention, together with various chemical composition is properly adjusted, the ratio of D I value indicative of the strength of the weld heat affected zone and the H value as an index of uniform elongation of the weld heat affected zone (H value / D I value), the ratio of D I values indicative of the intensity ratio of the dislocation density is indicative of the base material strength, and the weld heat affected zone dislocation density as an index of the base material strength ((dislocation density) / D I value) is appropriately controlled, so that it is possible to realize a thick steel plate having excellent fatigue characteristics.

図1は、疲労特性の測定に用いた試験片を示す概略図である。FIG. 1 is a schematic view showing a test piece used for measurement of fatigue characteristics.

厚鋼板の溶接部では、通常、溶接止端部に応力が集中するため、疲労破壊は溶接止端部から溶接熱影響部(以下、「HAZ」と呼ぶ。)に向かって発生する。本発明者らはこのHAZに発生および進展する疲労破壊について検討した結果、(i)応力集中がHAZと母材の境目付近で発生するようにするとともに、(ii)HAZの均一伸びを小さくすれば、HAZにおける疲労の発生を制御することができる結果、疲労特性を向上させることができることを見出し、本発明を完成した。   In a thick steel plate welded portion, stress is normally concentrated at the weld toe, so that fatigue failure occurs from the weld toe toward the weld heat affected zone (hereinafter referred to as “HAZ”). As a result of examining the fatigue fracture that occurs and propagates in the HAZ, the present inventors have (i) made stress concentration occur near the boundary between the HAZ and the base metal, and (ii) reduced the uniform elongation of the HAZ. As a result, it has been found that the fatigue characteristics can be improved as a result of controlling the occurrence of fatigue in the HAZ, and the present invention has been completed.

まず、HAZと母材の境目付近に応力集中させるためには、母材の強度を低く調整するとともに、母材の強度とHAZの強度のバランスを調整することが有効である。   First, in order to concentrate the stress near the boundary between the HAZ and the base material, it is effective to adjust the strength of the base material to be low and adjust the balance between the strength of the base material and the strength of the HAZ.

母材の強度は、母材中に存在する転位密度と相関関係があり、転位密度が多くなるほど母材の強度は上昇する。本発明においては、母材の強度を低く調整する必要があることから転位密度の上限を10×1010(/cm2)と定めた。一方、母材の強度が低くなりすぎると、即ち転位密度が小さすぎると、母材が疲労破壊してしまうこととなるため、転位密度の下限は1×1010(/cm2)と定めた。転位密度は、好ましくは2×1010〜9×1010(/cm2)であり、より好ましくは3×1010〜8×1010(/cm2)である。 The strength of the base material has a correlation with the dislocation density existing in the base material, and the strength of the base material increases as the dislocation density increases. In the present invention, the upper limit of the dislocation density is set to 10 × 10 10 (/ cm 2 ) because the strength of the base material needs to be adjusted low. On the other hand, if the strength of the base material becomes too low, that is, if the dislocation density is too small, the base material will be fatigued, so the lower limit of the dislocation density is set to 1 × 10 10 (/ cm 2 ). . The dislocation density is preferably 2 × 10 10 to 9 × 10 10 (/ cm 2 ), more preferably 3 × 10 10 to 8 × 10 10 (/ cm 2 ).

HAZの強度は、下記式(1)で算出されるDI値と相関関係がある。下記式(1)のDI値は、鋼の焼入れ性を表す指標として一般的な理想臨界直径を元に、本発明の化学成分組成における実験に基づいて修正を加えた式である。
I値=(C/10)0.5×(1.7−0.09×6)×(0.7×Si+1)×F1×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(200×F2+1) ・・・(1)
但し、上記式(1)において
F1は、
Mn<1.2の場合は、F1=3.33×Mn+1
Mn≧1.2の場合は、F1=5.1×(Mn−1.2)+5
F2は、
B−0.3×(N−Ti×14/48)×11/14<0の場合は、F2=0
B−0.3×(N−Ti×14/48)×11/14≧0の場合は、F2=B−0.3×(N−Ti×14/48)×11/14
本発明では、母材とHAZの境目付近に応力集中させるため、HAZと比べて母材の強度が十分に低くなるよう、母材強度の指標となる上記転位密度と、HAZの強度の指標となるDI値を(転位密度/1010)/DI値が6.5以下となるように制御する。(転位密度/1010)/DI値は好ましくは6.0以下であり、より好ましくは5.5以下である。一方、母材の強度が低下しすぎると、母材が疲労破壊してしまうこととなるため、(転位密度/1010)/DI値は2.2以上とする。(転位密度/1010)/DI値は好ましくは2.5以上であり、より好ましくは3.0以上である。
HAZ strength is correlated with D I value calculated by the following formula (1). D I value of the formula (1) is based on a common ideal critical diameter as an index of the hardenability of the steel is an equation with modifications based on experiments in the chemical composition of the present invention.
D I value = (C / 10) 0.5 × (1.7−0.09 × 6) × (0.7 × Si + 1) × F1 × (0.35 × Cu + 1) × (0.36 × Ni + 1) × ( 2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (200 × F2 + 1) (1)
However, in the above formula (1), F1 is
For Mn <1.2, F1 = 3.33 × Mn + 1
When Mn ≧ 1.2, F1 = 5.1 × (Mn−1.2) +5
F2 is
In the case of B-0.3 × (N-Ti × 14/48) × 11/14 <0, F2 = 0
When B-0.3 × (N-Ti × 14/48) × 11/14 ≧ 0, F2 = B−0.3 × (N-Ti × 14/48) × 11/14
In the present invention, since stress is concentrated near the boundary between the base material and the HAZ, the dislocation density, which is an index of the base material strength, and an index of the strength of the HAZ are set so that the strength of the base material is sufficiently lower than the HAZ. comprising D and I values (dislocation density / 10 10) / D I value is controlled to be 6.5 or less. The (dislocation density / 10 10 ) / D I value is preferably 6.0 or less, and more preferably 5.5 or less. On the other hand, when the strength of the base material is too low, since it becomes the base material resulting in fatigue failure, and (dislocation density / 10 10) / D I value 2.2 or higher. The (dislocation density / 10 10 ) / D I value is preferably 2.5 or more, more preferably 3.0 or more.

次に、HAZの均一伸びについて説明する。本発明でHAZの均一伸びを小さくするのは、HAZの均一伸びを小さくして塑性変形を少なくすることによって、HAZにおける疲労亀裂の発生を抑制することができるためである。HAZの均一伸びは、下記式(2)で表されるH値と相関関係がある。
H値=−153×C+112×Si−3×Mn−63×Cu+240×Al−15×Ni−305×Cr+1791×Mo−110×Nb−758×Ti−1929×B+1068×N+4 ・・・(2)
H値は、HAZの伸びと合金元素との関係を実験的に求めたものである。一般的に、鋼材において引張強度が高くなるほど均一伸びは低くなるものであるが、本発明では、本発明のHAZの強度クラス(約500〜700MPa)においても低い均一伸びを達成している点で従来技術と異なっている。すなわち、本願発明ではHAZの均一伸びの指標となるH値と、HAZの強度の指標となるDI値をH値/DI値≦23の関係を満たすように制御している。H値/DI値は好ましくは20以下であり、より好ましくは15以下である。一方、H値/DI値の値が小さくなりすぎると母材強度が上がって靭性が下がることがある。そこでH値/DI値は、好ましくは3以上であり、より好ましくは5以上である。
Next, the uniform elongation of HAZ will be described. The reason why the uniform elongation of the HAZ is reduced in the present invention is that the generation of fatigue cracks in the HAZ can be suppressed by reducing the uniform elongation of the HAZ to reduce plastic deformation. The uniform elongation of HAZ has a correlation with the H value represented by the following formula (2).
H value = −153 × C + 112 × Si−3 × Mn−63 × Cu + 240 × Al-15 × Ni-305 × Cr + 1791 × Mo-110 × Nb-758 × Ti-1929 × B + 1068 × N + 4 (2)
The H value is obtained by experimentally determining the relationship between the HAZ elongation and the alloy element. In general, the higher the tensile strength of the steel material, the lower the uniform elongation, but the present invention achieves a low uniform elongation even in the HAZ strength class (about 500 to 700 MPa) of the present invention. It is different from the prior art. That is, in the present invention, the H value that is an index of uniform elongation of the HAZ and the D I value that is an index of the strength of the HAZ are controlled so as to satisfy the relationship of H value / D I value ≦ 23. The H value / D I value is preferably 20 or less, more preferably 15 or less. On the other hand, H value / D when the value of I value is too small base metal strength is sometimes toughness decreases up. Therefore H value / D I value is preferably 3 or more, more preferably 5 or more.

なお、上記式(1)、(2)中、元素名は各元素の含有量(質量%)を表し、含有していない元素がある場合、その含有量については0質量%として計算するものとする。   In addition, in said formula (1), (2), an element name represents content (mass%) of each element, and when there is an element which does not contain, it shall calculate as 0 mass% about the content. To do.

本発明に係る厚鋼板の化学成分について以下に説明する。   The chemical components of the thick steel plate according to the present invention will be described below.

C:0.02〜0.15%
Cは、鋼板の強度を確保するために必須の元素である。そこでC量を0.02%以上とする。C量は、好ましくは0.03%以上であり、より好ましくは0.04%以上である。一方、C量が過剰になると硬質な島状マルテンサイト(MA)が多く生成して母材の靭性劣化を招くこととなる。そこでC量は0.15%以下とする。C量は、好ましくは0.13%以下であり、より好ましくは0.11%以下である。
C: 0.02-0.15%
C is an essential element for securing the strength of the steel sheet. Therefore, the C amount is set to 0.02% or more. The amount of C is preferably 0.03% or more, and more preferably 0.04% or more. On the other hand, if the amount of C is excessive, a large amount of hard island martensite (MA) is generated, leading to toughness deterioration of the base material. Therefore, the C amount is 0.15% or less. The amount of C is preferably 0.13% or less, more preferably 0.11% or less.

Si:0.30%以下(0%を含む)
Siは、必須元素ではないが、固溶強化により強度を確保するのに有用な元素である。このような効果を発揮させるためには、0.05%以上含有させることが好ましく、より好ましくは0.10%以上である。一方、Si量が過剰になると硬質な島状マルテンサイト(MA)が多く生成して母材の靭性劣化を招くこととなる。従ってSi量の上限は0.30%以下とする。Si量は、好ましくは0.27%以下であり、より好ましくは0.23%以下である。
Si: 0.30% or less (including 0%)
Si is not an essential element, but is an element useful for securing strength by solid solution strengthening. In order to exhibit such an effect, it is preferable to make it contain 0.05% or more, More preferably, it is 0.10% or more. On the other hand, when the amount of Si is excessive, a large amount of hard island martensite (MA) is generated, leading to deterioration of the toughness of the base material. Therefore, the upper limit of Si content is 0.30% or less. The amount of Si is preferably 0.27% or less, and more preferably 0.23% or less.

Mn:1.0〜2.5%
Mnは、鋼板の強度を確保するのに有用な元素である。そこでMn量は1.0%以上とする。Mn量は、好ましくは1.20%以上であり、より好ましくは1.40%以上である。一方、Mn量が過剰になるとHAZの強度が上昇しすぎて靭性が劣化する。そこでMn量は2.5%以下とする。Mn量は、好ましくは2.3%以下であり、より好ましくは2.0%以下である。
Mn: 1.0 to 2.5%
Mn is an element useful for ensuring the strength of the steel sheet. Therefore, the Mn content is 1.0% or more. The amount of Mn is preferably 1.20% or more, more preferably 1.40% or more. On the other hand, when the amount of Mn becomes excessive, the strength of the HAZ increases too much and the toughness deteriorates. Therefore, the Mn content is 2.5% or less. The amount of Mn is preferably 2.3% or less, more preferably 2.0% or less.

P:0.015%以下(0%を含まない)
Pは、粒界破壊を起こしやすく靭性に悪影響を及ぼす不純物元素であるため、その含有量はできるだけ少ないことが好ましい。母材およびHAZ靭性を確保するためには、P量は0.015%以下とする。P量は、好ましくは0.013%以下であり、より好ましくは0.010%以下である。
P: 0.015% or less (excluding 0%)
Since P is an impurity element that easily causes grain boundary fracture and adversely affects toughness, its content is preferably as small as possible. In order to ensure the base material and the HAZ toughness, the P content is 0.015% or less. The amount of P is preferably 0.013% or less, and more preferably 0.010% or less.

S:0.01%以下(0%を含まない)
Sは、Mn硫化物を形成して母材靭性を劣化させる元素であるので、その含有量はできるだけ少ないことが好ましい。母材の靭性を確保するためには、S量は0.01%以下とする。S量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
S: 0.01% or less (excluding 0%)
Since S is an element that forms Mn sulfide and degrades the toughness of the base material, its content is preferably as small as possible. In order to ensure the toughness of the base material, the S content is 0.01% or less. The amount of S is preferably 0.008% or less, and more preferably 0.006% or less.

Al:0.005〜0.06%
Alは、脱酸剤として有用な元素であるとともに、鋼板のミクロ組織化による疲労強度向上効果も発揮する元素である。そこでAl量は0.005%以上とする。Al量は、好ましくは0.01%以上であり、より好ましくは0.02%以上である。一方、Al量が過剰になると島状マルテンサイト(MA)が多く生成して疲労特性に悪影響を与える。そこでAl量は0.06%以下とする。Al量は、好ましくは0.05%以下であり、より好ましくは0.045%以下である。
Al: 0.005-0.06%
Al is an element useful as a deoxidizing agent and also exhibits an effect of improving fatigue strength by microstructuring of a steel sheet. Therefore, the Al content is 0.005% or more. The amount of Al is preferably 0.01% or more, and more preferably 0.02% or more. On the other hand, when the amount of Al is excessive, a large amount of island martensite (MA) is generated, which adversely affects the fatigue characteristics. Therefore, the Al amount is set to 0.06% or less. The amount of Al is preferably 0.05% or less, more preferably 0.045% or less.

N:0.0038〜0.010%
Nは、Al等と結合して窒化物を形成することによって鋼板組織を微細化させ、母材およびHAZの靭性、疲労特性を確保する上で有用な元素である。そこでN量を0.0038%以上とする。N量は、好ましくは0.0040%以上であり、より好ましくは0.0045%以上、さらに好ましくは0.0050%以上である。一方、N量が過剰になると、固溶N量が増大して歪時効が起こることによって母材およびHAZの靭性が劣化する。そこでN量は0.010%以下とする。N量は、好ましくは0.009%以下であり、より好ましくは0.008%以下である。
N: 0.0038 to 0.010%
N is an element useful for refining the steel sheet structure by bonding with Al or the like to form nitrides and ensuring the toughness and fatigue characteristics of the base material and HAZ. Therefore, the N amount is set to 0.0038% or more. The N amount is preferably 0.0040% or more, more preferably 0.0045% or more, and further preferably 0.0050% or more. On the other hand, when the amount of N becomes excessive, the solid solution N amount increases and strain aging occurs, thereby deteriorating the toughness of the base material and the HAZ. Therefore, the N amount is 0.010% or less. The N amount is preferably 0.009% or less, and more preferably 0.008% or less.

本発明に係る厚鋼板の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が含まれることは当然に許容される。さらに本発明の厚鋼板は必要に応じて、以下の任意元素を含有していてもよい。   The basic components of the thick steel plate according to the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed to include inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing equipment, and the like. Furthermore, the thick steel plate of the present invention may contain the following optional elements as necessary.

Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)、Cr:2%以下(0%を含まない)、およびMo:0.6%以下(0%を含まない)よりなる群から選択される少なくとも1種
Cu、Ni、Cr、およびMoは、いずれも鋼板の高強度化に有効な元素であり、その効果はこれらの含有量が増加するにつれて増大する。このような観点から、Cu量、Ni量、Mo量はいずれも0.1%以上とすることが好ましく、より好ましくは0.2%以上である。Cr量は、0.2%以上とすることが好ましく、より好ましくは0.5%以上である。一方、これらの元素が過剰になると、強度の過大な上昇を招き、母材およびHAZ靭性を劣化させる。そこで、Cu、Ni、およびCrはいずれも2%以下とすることが好ましい。Mo量は0.6%以下とすることが好ましい。Cu量およびNi量はいずれも1.0%以下とすることがより好ましく、さらに好ましくは0.8%以下である。Cr量はより好ましくは1.5%以下であり、さらに好ましくは1.3%以下である。Mo量はより好ましくは0.5%以下であり、さらに好ましくは0.4%以下である。
Cu: 2% or less (not including 0%), Ni: 2% or less (not including 0%), Cr: 2% or less (not including 0%), and Mo: 0.6% or less (0% At least one selected from the group consisting of Cu, Ni, Cr, and Mo are effective elements for increasing the strength of the steel sheet, and the effect increases as the content thereof increases. To do. From such a viewpoint, it is preferable that the amount of Cu, the amount of Ni, and the amount of Mo are all 0.1% or more, and more preferably 0.2% or more. The Cr content is preferably 0.2% or more, and more preferably 0.5% or more. On the other hand, when these elements are excessive, the strength is excessively increased and the base material and the HAZ toughness are deteriorated. Therefore, it is preferable that Cu, Ni, and Cr are all 2% or less. The Mo amount is preferably 0.6% or less. The Cu content and the Ni content are both preferably 1.0% or less, and more preferably 0.8% or less. The amount of Cr is more preferably 1.5% or less, and still more preferably 1.3% or less. The amount of Mo is more preferably 0.5% or less, and still more preferably 0.4% or less.

V:0.1%以下(0%を含まない)、Nb:0.060%以下(0%を含まない)、およびTi:0.1%以下(0%を含まない)よりなる群から選択される少なくとも1種
V、Nb、およびTiはいずれも炭窒化物として析出し、γ粒の粗大化を抑制することによって母材靭性を良好にするのに有効な元素である。そこで、V量、Nb量はいずれも0.010%以上とすることが好ましく、より好ましくは0.020%以上である。Ti量は0.010%以上とすることが好ましく、より好ましくは0.012%以上である。一方、V量、Nb量、およびTi量が過剰になるとHAZ組織の粗大化を招き、HAZ靭性が劣化する。そこでV量およびTi量はいずれも0.1%以下とすることが好ましく、より好ましくは0.08%以下であり、さらに好ましくは0.06%以下である。Nb量は0.060%以下とすることが好ましく、より好ましくは0.050%以下であり、さらに好ましくは0.040%以下である。
V: selected from the group consisting of 0.1% or less (not including 0%), Nb: 0.060% or less (not including 0%), and Ti: 0.1% or less (not including 0%) At least one of V, Nb, and Ti is an element effective for improving the base material toughness by precipitating as carbonitride and suppressing the coarsening of γ grains. Therefore, both the V amount and the Nb amount are preferably 0.010% or more, and more preferably 0.020% or more. The Ti amount is preferably 0.010% or more, more preferably 0.012% or more. On the other hand, if the V amount, Nb amount, and Ti amount become excessive, the HAZ structure becomes coarse and the HAZ toughness deteriorates. Therefore, the V amount and the Ti amount are both preferably 0.1% or less, more preferably 0.08% or less, and further preferably 0.06% or less. The Nb content is preferably 0.060% or less, more preferably 0.050% or less, and still more preferably 0.040% or less.

B:0.005%以下(0%を含まない)
Bは、母材およびHAZの靭性を向上させるのに有効な元素である。そこで、B量は0.0005%以上含有させるのが好ましく、より好ましくは0.0008%以上である。一方、B量が過剰になるとオーステナイト粒界でのBN偏析を招き、母材およびHAZの靭性を劣化させる。そこでB量は、0.005%以下とすることが好ましく、より好ましくは0.0045%以下であり、さらに好ましくは0.0040%以下であり、一層好ましくは0.0020%以下である。
B: 0.005% or less (excluding 0%)
B is an element effective for improving the toughness of the base material and the HAZ. Therefore, the B content is preferably 0.0005% or more, more preferably 0.0008% or more. On the other hand, when the amount of B is excessive, BN segregation occurs at the austenite grain boundary, and the toughness of the base material and the HAZ is deteriorated. Therefore, the B content is preferably 0.005% or less, more preferably 0.0045% or less, still more preferably 0.0040% or less, and still more preferably 0.0020% or less.

Ca:0.010%以下(0%を含まない)
Caは、硫化物の形態を制御してHAZの靭性向上に寄与する元素である。そこで、Ca量は0.0005%以上とすることが好ましく、より好ましくは0.0010%以上である。しかしながら、その含有量が過剰であると粗大介在物が生成して母材およびHAZの靭性が劣化する。そこでCa量は、0.010%以下とすることが好ましく、より好ましくは0.0080%以下であり、さらに好ましくは0.0050%以下である。
Ca: 0.010% or less (excluding 0%)
Ca is an element that contributes to improving the toughness of HAZ by controlling the form of sulfide. Therefore, the Ca content is preferably 0.0005% or more, and more preferably 0.0010% or more. However, if the content is excessive, coarse inclusions are generated and the toughness of the base material and the HAZ deteriorates. Therefore, the Ca content is preferably 0.010% or less, more preferably 0.0080% or less, and still more preferably 0.0050% or less.

Mg:0.005%以下(0%を含まない)
Mgは、酸化物および窒化物を形成し、オーステナイト粒の粗大化を抑制することによってHAZ特性(靭性)を向上させる。そこでMg量は、0.0005%以上とすることが好ましく、より好ましくは0.0010%以上である。一方、Mg量が過剰になると介在物が粗大化して靭性が劣化する。そこで、Mg量は0.005%以下とすることが好ましく、より好ましくは0.0040%以下であり、さらに好ましくは0.0030%以下である。
Mg: 0.005% or less (excluding 0%)
Mg forms oxides and nitrides and improves HAZ characteristics (toughness) by suppressing the coarsening of austenite grains. Therefore, the Mg content is preferably 0.0005% or more, and more preferably 0.0010% or more. On the other hand, when the amount of Mg becomes excessive, inclusions become coarse and toughness deteriorates. Therefore, the Mg content is preferably 0.005% or less, more preferably 0.0040% or less, and still more preferably 0.0030% or less.

Zr:0.1%以下(0%を含まない)および/またはHf:0.05%以下(0%を含まない)
ZrおよびHfはいずれも、窒化物を形成してオーステナイト粒を微細化し、HAZ特性改善に有効な元素である。そこでZr量は0.001%以上とすることが好ましく、より好ましくは0.002%以上である。Hf量は0.0010%以上とすることが好ましく、より好ましくは0.0015%以上である。一方、Zr量およびHf量が過剰になると却ってHAZ特性を劣化させるようになるので、Zr量は0.1%以下とすることが好ましく、Hf量は0.05%以下とすることが好ましい。Zr量はより好ましくは0.05%以下であり、さらに好ましくは0.02%以下である。Hf量はより好ましくは0.03%以下であり、さらに好ましくは0.02%以下である。
Zr: 0.1% or less (not including 0%) and / or Hf: 0.05% or less (not including 0%)
Both Zr and Hf are effective elements for improving HAZ characteristics by forming nitrides to refine austenite grains. Therefore, the Zr content is preferably 0.001% or more, and more preferably 0.002% or more. The Hf content is preferably 0.0010% or more, more preferably 0.0015% or more. On the other hand, if the amount of Zr and the amount of Hf are excessive, the HAZ characteristics are deteriorated. Therefore, the amount of Zr is preferably 0.1% or less, and the amount of Hf is preferably 0.05% or less. The amount of Zr is more preferably 0.05% or less, and still more preferably 0.02% or less. The amount of Hf is more preferably 0.03% or less, and still more preferably 0.02% or less.

REM:0.02%以下(0%を含まない)
REM(希土類元素)は、介在物の形態を制御して、母材およびHAZの靭性向上に寄与する元素である。そこで、REM量は0.005%以上とすることが好ましく、より好ましくは0.010%以上である。一方、REM量が過剰になると、酸化物が粗大になることによって母材およびHAZの靭性を劣化させる。そこで、REM量は0.02%以下とすることが好ましく、より好ましくは0.018%以下である。なお、本発明においてREMは、周期律表3族に属するスカンジウム(Sc)、イットリウム(Y)およびランタノイド系列希土類元素(原子番号57〜71)の元素のいずれをも用いることができる。
REM: 0.02% or less (excluding 0%)
REM (rare earth element) is an element that contributes to improving the toughness of the base material and the HAZ by controlling the form of inclusions. Therefore, the REM content is preferably 0.005% or more, and more preferably 0.010% or more. On the other hand, when the amount of REM becomes excessive, the toughness of the base material and the HAZ deteriorates due to the coarse oxide. Therefore, the REM content is preferably 0.02% or less, more preferably 0.018% or less. In the present invention, REM can use any of scandium (Sc), yttrium (Y), and lanthanoid series rare earth elements (atomic numbers 57 to 71) belonging to Group 3 of the periodic table.

本発明に係る厚鋼板の板厚は特に限定されないが、好ましくは6mm以上であり、より好ましくは10mm以上(特に15mm以上)である。   The plate thickness of the thick steel plate according to the present invention is not particularly limited, but is preferably 6 mm or more, more preferably 10 mm or more (particularly 15 mm or more).

本発明の厚鋼板を製造する方法は特に限定されないが、鋼を溶製して鋳造した後、熱間圧延を施すという厚鋼板の一連の製造工程において、上記した転位密度を確保する上では特に熱間圧延の累積圧下率、および熱間圧延後の冷却速度を適切に制御することが好ましい。   The method for producing the thick steel plate of the present invention is not particularly limited, but in order to ensure the above-mentioned dislocation density in a series of production steps of the thick steel plate in which the steel is melted and cast and then hot rolled. It is preferable to appropriately control the cumulative rolling reduction of hot rolling and the cooling rate after hot rolling.

熱間圧延の累積圧下率は70%以上とすることが好ましく、より好ましくは75%以上である。また熱間圧延後の冷却速度は1〜12℃/秒とすることが好ましく、より好ましくは3〜10℃/秒である。成分組成を上記範囲に適切に調整するとともに、前記累積圧下率および前記冷却速度を調整することによって、転位密度を、1×1010〜10×1010(/cm2)、より好ましくは3×1010〜8×1010(/cm2)とすると共に、(転位密度/1010)/DI値を2.2〜6.5とすることができる。 The cumulative rolling reduction in hot rolling is preferably 70% or more, and more preferably 75% or more. The cooling rate after hot rolling is preferably 1 to 12 ° C./second, more preferably 3 to 10 ° C./second. The dislocation density is adjusted to 1 × 10 10 to 10 × 10 10 (/ cm 2 ), more preferably 3 × by appropriately adjusting the component composition within the above range and adjusting the cumulative rolling reduction and the cooling rate. 10 10 to 8 × 10 10 (/ cm 2 ) and (dislocation density / 10 10 ) / D I value can be set to 2.2 to 6.5.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1、2に示す化学成分組成を有する鋼を、通常の溶製法に従って溶製し、鋳造(240mm厚)した後、表3、4に示す条件で熱間圧延して鋼板(40mm厚)を得た(熱間圧延の累積圧下率:約83%)。   Steel having the chemical composition shown in Tables 1 and 2 was melted and cast (240 mm thickness) in accordance with a normal melting method, and then hot-rolled under the conditions shown in Tables 3 and 4 to obtain a steel plate (40 mm thickness). Obtained (cumulative rolling reduction of hot rolling: about 83%).

Figure 0005643542
Figure 0005643542

Figure 0005643542
Figure 0005643542

各鋼板について、以下の要領に従って母材の転位密度、HAZ強度(TS)およびHAZの均一伸び(UE)、HAZ靭性および疲労特性(疲労寿命)を測定した。   For each steel plate, the dislocation density, HAZ strength (TS) and uniform elongation (UE) of HAZ, HAZ toughness and fatigue properties (fatigue life) were measured according to the following procedures.

(1)転位密度の測定
各鋼板のt/4位置(t:板厚)付近から25mm×25mm×10mmのサイズの試験片を採取し、圧延面に平行な面を電解研磨して測定面とし、X線回折法を用いて転位密度を測定した。より具体的にはCAMP−ISIJ vol.17(2004)p.396−399に記載される方法に従って、(200)面の半価幅から転位密度を測定した。
(1) Measurement of dislocation density A test piece having a size of 25 mm × 25 mm × 10 mm was taken from the vicinity of t / 4 position (t: plate thickness) of each steel plate, and a surface parallel to the rolling surface was electropolished to obtain a measurement surface. The dislocation density was measured using an X-ray diffraction method. More specifically, CAMP-ISIJ vol. 17 (2004) p. According to the method described in 396-399, the dislocation density was measured from the half width of the (200) plane.

(2)HAZ強度、HAZ靭性およびHAZの均一伸びの測定
得られた各鋼板のt/4位置(t:板厚)付近からJIS 14A号試験片を採取し、最高加熱温度:1200℃、800℃〜500℃の冷却時間Tc:100秒の条件の熱サイクルを与えた後、JIS Z2241に従って、引張試験を行い、HAZの引張強度(TS)および均一伸び(UE)を測定した。試験装置は、島津製作所製AG−IS 250kN オートグラフ引張試験機を用い、試験温度は室温とした。
(2) Measurement of HAZ strength, HAZ toughness and uniform elongation of HAZ A JIS No. 14A test piece was sampled from the vicinity of t / 4 position (t: plate thickness) of each steel plate, and the maximum heating temperature: 1200 ° C., 800 C. to 500.degree. C. Cooling time Tc: After a thermal cycle of 100 seconds, a tensile test was performed according to JIS Z2241, and the tensile strength (TS) and uniform elongation (UE) of HAZ were measured. The test apparatus was an AG-IS 250 kN autograph tensile tester manufactured by Shimadzu Corporation, and the test temperature was room temperature.

HAZ靭性については、JIS Z3111に規定される4号Vノッチ試験片を各鋼板のt/4位置(t:板厚)から採取し、その後、上記引張試験片と同様の熱履歴を与えた後、JIS Z2242に従って−15℃での吸収エネルギー(vE-15)を求めた。HAZ靭性は、vE-15が47J以上を合格、47J未満を不合格と評価した。 Regarding HAZ toughness, No. 4 V-notch test piece defined in JIS Z3111 was sampled from the t / 4 position (t: thickness) of each steel sheet, and then given the same thermal history as the tensile test piece. The absorption energy (vE -15 ) at -15 ° C was determined according to JIS Z2242. As for HAZ toughness, vE- 15 evaluated 47J or more as pass and less than 47J as failure.

(3)疲労特性の測定
各鋼板のt/4位置(t:板厚)から図1に示す形状の試験片を採取し、切欠き周辺部のみ上記(2)とほぼ同様の熱履歴となるように部分加熱を行い、島津製作所製±50kN電気油圧サーボ式疲労試験機を用いて、以下の条件で疲労試験を行った。疲労特性はHAZ強度の影響を受けるものであり、その影響を除くため試験応力/HAZ強度が0.5の時の亀裂発生サイクル数によって疲労特性を評価した。
試験環境:室温、大気中
制御方法:荷重制御
制御波形:正弦波
応力比:R=0.1
試験速度:10Hz
結果を、母材の引張強度(TS)と(転位密度/1010)/DIの値とともに、表3、4に示す。
(3) Measurement of fatigue characteristics A test piece having the shape shown in FIG. 1 is taken from the t / 4 position (t: plate thickness) of each steel plate, and the thermal history is substantially the same as in (2) only at the periphery of the notch. Partial heating was performed as described above, and a fatigue test was performed under the following conditions using a ± 50 kN electrohydraulic servo type fatigue tester manufactured by Shimadzu Corporation. The fatigue characteristics are affected by the HAZ strength. In order to eliminate the influence, the fatigue characteristics were evaluated based on the number of crack initiation cycles when the test stress / HAZ strength was 0.5.
Test environment: Room temperature, in air Control method: Load control Control waveform: Sine wave Stress ratio: R = 0.1
Test speed: 10Hz
The result, tensile strength of the base material and (TS) with the value of (a dislocation density / 10 10) / D I, shown in Tables 3 and 4.

Figure 0005643542
Figure 0005643542

Figure 0005643542
Figure 0005643542

No.1〜8、12、13、18〜21は、成分組成および製造条件が適切に調整されているため、優れた疲労特性を実現することができた。   No. 1-8, 12, 13, 18-21 were able to realize excellent fatigue properties because the component composition and production conditions were appropriately adjusted.

一方、No.9〜11、14〜17、22〜40は、成分組成および製造条件のうち少なくともいずれかが不適切であったため、疲労特性が低下した。   On the other hand, no. As for 9-11, 14-17, and 22-40, since at least any one of a component composition and manufacturing conditions was inadequate, the fatigue characteristic fell.

No.9〜11はいずれもSi量が多く、H値/DI値の値が大きかったため、疲労特性が低下した。No.14〜16はいずれもSi量が多く、No.17はH値/DI値の値が大きかったため、疲労特性が低下した。 No. 9-11 Both Si amount is large, the value of H value / D I value is large, the fatigue characteristics deteriorated. No. Nos. 14 to 16 have a large amount of Si. 17 because the value of the H values / D I value is large, the fatigue characteristics deteriorated.

No.22〜24は、(転位密度/1010)/DI値の値が高かったため、疲労特性が低下した。 No. 22-24, since the value of (a dislocation density / 10 10) / D I value is high, the fatigue characteristics deteriorated.

No.25はC量が少なく、H値/DI値および(転位密度/1010)/DI値の値が高かったため、No.26はC量が多くHAZ靭性が低下したため、疲労特性が低下した。 No. No. 25 had a small amount of C and a high value of H value / D I value and (dislocation density / 10 10 ) / D I value. Since No. 26 had a large amount of C and HAZ toughness was lowered, fatigue characteristics were lowered.

No.27はMn量が少なく、H値/DI値および(転位密度/1010)/DI値の値が高かったため、疲労特性が低下した。No.28はMn量が多く、(転位密度/1010)/DIの値が高かったため、疲労特性が低下した。 No. In No. 27, the amount of Mn was small, and the H value / D I value and the (dislocation density / 10 10 ) / D I value were high. No. 28 are often amount Mn, since higher value of (a dislocation density / 10 10) / D I, the fatigue characteristics deteriorated.

No.29、30はそれぞれP量、S量が多くHAZ靭性が低下したため、疲労特性が低下した。No.31はAl量が少なかったため、No.32はAl量が多くHAZ靭性が低下し、いずれも疲労特性が低下した。   No. Nos. 29 and 30 had large amounts of P and S, respectively, and the HAZ toughness was lowered, so that the fatigue characteristics were lowered. No. No. 31 had a small amount of Al. No. 32 had a large amount of Al and had reduced HAZ toughness, both of which had reduced fatigue properties.

No.33はN量が少なくHAZ靭性が低下し、No.34はN量が多くHAZ靭性が低下し、いずれも疲労特性が低下した。   No. No. 33 has a small amount of N and has reduced HAZ toughness. No. 34 had a large amount of N and HAZ toughness was lowered, and fatigue characteristics were all lowered.

No.35は熱間圧延後の冷却速度が遅く(転位密度/1010)/DI値の値が低くなったため、疲労特性が低下した。No.36は熱間圧延後の冷却速度が速く、(転位密度/1010)/DI値の値が高かったため疲労特性が低下した。 No. In No. 35, the cooling rate after hot rolling was slow (dislocation density / 10 10 ) / D I value was low, so the fatigue characteristics were lowered. No. 36 has a high cooling rate after hot rolling, the fatigue characteristics because the value was high of (a dislocation density / 10 10) / D I value is lowered.

No.37はNb量が多いとともに(転位密度/1010)/DI値の値が大きく、No.38はMo量が多いとともにH値/DI値の値が大きく、No.39はTi量が多く、No.40はV量が多かったために、HAZ靭性が低下し、いずれも疲労特性が低下した。 No. No. 37 has a large amount of Nb and a large value of (dislocation density / 10 10 ) / D I value. 38 is larger value of the H values / D I value with the amount of Mo is large, No. No. 39 has a large amount of Ti. Since No. 40 had a large amount of V, the HAZ toughness was lowered, and the fatigue characteristics were all lowered.

Claims (7)

C :0.02〜0.15%(質量%の意味。以下、同じ)、
Si:0.30%以下(0%を含む)、
Mn:1.0〜2.5%、
P :0.015%以下(0%を含まない)、
S :0.01%以下(0%を含まない)、
Al:0.005〜0.06%、
N :0.0038〜0.010%
を夫々含有するとともに、残部は鉄及び不可避的不純物であり、
鋼組織中の転位密度が1×1010〜10×1010(/cm2)であり、
前記転位密度と、下記式(1)および(2)で表されるDI値およびH値が
H値/DI値≦23 および
2.2≦(転位密度/1010)/DI値≦6.5
の関係を満たすことを特徴とする疲労特性に優れた厚鋼板。
I値=(C/10)0.5×(1.7−0.09×6)×(0.7×Si+1)×F1×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(200×F2+1) ・・・(1)
但し、上記式(1)において
F1は、
Mn<1.2の場合は、F1=3.33×Mn+1
Mn≧1.2の場合は、F1=5.1×(Mn−1.2)+5
F2は、
B−0.3×(N−Ti×14/48)×11/14<0の場合は、F2=0
B−0.3×(N−Ti×14/48)×11/14≧0の場合は、F2=B−0.3×(N−Ti×14/48)×11/14
H値=−153×C+112×Si−3×Mn−63×Cu+240×Al−15×Ni−305×Cr+1791×Mo−110×Nb−758×Ti−1929×B+1068×N+4 ・・・(2)
(上記式(1)、(2)中、元素名は各元素の含有量(質量%)を表し、含有していない元素がある場合、その含有量については0質量%として計算するものとする。)
C: 0.02 to 0.15% (meaning mass%, hereinafter the same),
Si: 0.30% or less (including 0%),
Mn: 1.0 to 2.5%
P: 0.015% or less (excluding 0%),
S: 0.01% or less (excluding 0%),
Al: 0.005 to 0.06%,
N: 0.0038 to 0.010%
And the balance is iron and inevitable impurities,
The dislocation density in the steel structure is 1 × 10 10 to 10 × 10 10 (/ cm 2 ),
The dislocation density and the D I value and H value represented by the following formulas (1) and (2) are H value / D I value ≦ 23 and 2.2 ≦ (dislocation density / 10 10 ) / D I value ≦ 6.5
A thick steel plate with excellent fatigue characteristics characterized by satisfying the above relationship.
D I value = (C / 10) 0.5 × (1.7−0.09 × 6) × (0.7 × Si + 1) × F1 × (0.35 × Cu + 1) × (0.36 × Ni + 1) × ( 2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (200 × F2 + 1) (1)
However, in the above formula (1), F1 is
For Mn <1.2, F1 = 3.33 × Mn + 1
When Mn ≧ 1.2, F1 = 5.1 × (Mn−1.2) +5
F2 is
In the case of B-0.3 × (N-Ti × 14/48) × 11/14 <0, F2 = 0
When B-0.3 × (N-Ti × 14/48) × 11/14 ≧ 0, F2 = B−0.3 × (N-Ti × 14/48) × 11/14
H value = −153 × C + 112 × Si−3 × Mn−63 × Cu + 240 × Al-15 × Ni-305 × Cr + 1791 × Mo-110 × Nb-758 × Ti-1929 × B + 1068 × N + 4 (2)
(In the above formulas (1) and (2), the element name represents the content (mass%) of each element, and when there is an element not contained, the content is calculated as 0 mass%. .)
更に、Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)、Cr:2%以下(0%を含まない)、およびMo:0.6%以下(0%を含まない)よりなる
群から選択される少なくとも1種を含有する請求項1に記載の厚鋼板。
Furthermore, Cu: 2% or less (not including 0%), Ni: 2% or less (not including 0%), Cr: 2% or less (not including 0%), and Mo: 0.6% or less ( The thick steel plate according to claim 1, comprising at least one selected from the group consisting of: (not including 0%).
更に、V:0.1%以下(0%を含まない)、Nb:0.060%以下(0%を含まない)、およびTi:0.1%以下(0%を含まない)よりなる群から選択される少なくと
も1種を含有する請求項1または2に記載の厚鋼板。
Further, V: 0.1% or less (excluding 0%), Nb: 0.060% or less (not including 0%), and Ti: 0.1% or less (not including 0%) The thick steel plate according to claim 1 or 2, comprising at least one selected from the group consisting of:
更に、B:0.005%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の厚鋼板。   Furthermore, B: The thick steel plate in any one of Claims 1-3 containing 0.005% or less (0% is not included). 更に、Mg:0.005%以下(0%を含まない)を含有する請求項1〜のいずれかに記載の厚鋼板。 Furthermore, the thick steel plate in any one of Claims 1-4 containing Mg: 0.005% or less (0% is not included). 更に、Zr:0.1%以下(0%を含まない)および/またはHf:0.05%以下(0%を含まない)を含有する請求項1〜のいずれかに記載の厚鋼板。 Furthermore, Zr: 0.1% or less (0% is not included) and / or Hf: 0.05% or less (0% is not included) The thick steel plate in any one of Claims 1-5 . 更に、REM:0.02%以下(0%を含まない)を含有する請求項1〜のいずれかに記載の厚鋼板。 Furthermore, the thick steel plate in any one of Claims 1-6 containing 0.02% or less (excluding 0%) of REM.
JP2010115384A 2010-05-19 2010-05-19 Thick steel plate with excellent fatigue characteristics Expired - Fee Related JP5643542B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010115384A JP5643542B2 (en) 2010-05-19 2010-05-19 Thick steel plate with excellent fatigue characteristics
CN2011101346427A CN102251171B (en) 2010-05-19 2011-05-16 Thick steel plate with excellent fatigue characteristics
KR1020110046871A KR101314004B1 (en) 2010-05-19 2011-05-18 Thick steel plate with excellent fatigue property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115384A JP5643542B2 (en) 2010-05-19 2010-05-19 Thick steel plate with excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2011241454A JP2011241454A (en) 2011-12-01
JP5643542B2 true JP5643542B2 (en) 2014-12-17

Family

ID=44978733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115384A Expired - Fee Related JP5643542B2 (en) 2010-05-19 2010-05-19 Thick steel plate with excellent fatigue characteristics

Country Status (3)

Country Link
JP (1) JP5643542B2 (en)
KR (1) KR101314004B1 (en)
CN (1) CN102251171B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228491B2 (en) * 2013-08-26 2017-11-08 株式会社神戸製鋼所 Thick steel plate with excellent fatigue characteristics and method for producing the same
JP6500568B2 (en) * 2015-04-08 2019-04-17 日本製鉄株式会社 A thick steel plate with excellent fatigue properties and toughness in HAZ
CN106991280B (en) * 2017-03-30 2020-08-14 江阴兴澄特种钢铁有限公司 Method for calculating ideal critical diameter of boron-containing steel
WO2021054344A1 (en) * 2019-09-20 2021-03-25 Jfeスチール株式会社 Thick steel sheet, and method for producing thick steel sheet
CN110835711B (en) * 2019-10-22 2021-08-24 河钢股份有限公司 Steel plate for high heat input welding and preparation method thereof
CN111020397A (en) * 2020-01-16 2020-04-17 五矿营口中板有限责任公司 High-strength high-toughness normalizing Q370 bridge steel plate with good welding performance and production method thereof
CN114622137A (en) * 2022-03-03 2022-06-14 万向钱潮股份有限公司 Advanced high-strength steel with better fatigue performance and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112843A (en) * 1991-08-28 1993-05-07 Kobe Steel Ltd High tensile strength steel sheet with low yield ratio of >=780n/mm2 class excellent in toughness
US5609818A (en) * 1992-12-11 1997-03-11 Nippon Steel Corporation Steel excellent in corrosion resistance and processability
JP3390584B2 (en) * 1995-08-31 2003-03-24 川崎製鉄株式会社 Hot rolled steel sheet and method for producing the same
JP4207334B2 (en) * 1999-10-20 2009-01-14 住友金属工業株式会社 High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP4363321B2 (en) * 2004-12-17 2009-11-11 住友金属工業株式会社 Welded joint with excellent fatigue characteristics
JP5110989B2 (en) * 2007-07-12 2012-12-26 株式会社神戸製鋼所 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP5305709B2 (en) * 2008-03-28 2013-10-02 株式会社神戸製鋼所 High-strength steel plate with excellent stress-relieving annealing characteristics and low-temperature joint toughness
JP5297692B2 (en) * 2008-05-20 2013-09-25 株式会社神戸製鋼所 High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JP5162382B2 (en) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 Low yield ratio high toughness steel plate

Also Published As

Publication number Publication date
KR101314004B1 (en) 2013-10-02
CN102251171B (en) 2013-01-23
KR20110127613A (en) 2011-11-25
CN102251171A (en) 2011-11-23
JP2011241454A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5643542B2 (en) Thick steel plate with excellent fatigue characteristics
JP5418662B2 (en) Base material of high toughness clad steel plate excellent in weld zone toughness and method for producing the clad steel plate
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP6079165B2 (en) High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP6024643B2 (en) Manufacturing method of Ni alloy clad steel sheet excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP2007039795A (en) Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
JP6079611B2 (en) Ni alloy clad steel plate excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material, and method for producing the same
JP5605304B2 (en) Steel materials excellent in fatigue crack growth resistance and low temperature toughness of weld heat affected zone, and manufacturing method thereof
JP5937538B2 (en) High strength steel plate excellent in low temperature toughness, elongation and weldability, and method for producing the same
JP4778779B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP2007063608A (en) High tensile strength steel for structure having reduced strain embrittlement
KR101594913B1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP5157657B2 (en) High-strength steel plate with excellent toughness in heat-affected zone of large heat input welding
JP5056634B2 (en) Welded joint with excellent fatigue characteristics
KR20130125822A (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
JP5509946B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2010077531A (en) Clad steel sheet excellent in characteristic of stopping initiation of fatigue crack and characteristic of stopping propagation thereof and method for producing the same
JP5365146B2 (en) Steel plate with excellent toughness of heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees