JP5636221B2 - Resin composition for solar cell encapsulant - Google Patents

Resin composition for solar cell encapsulant Download PDF

Info

Publication number
JP5636221B2
JP5636221B2 JP2010168077A JP2010168077A JP5636221B2 JP 5636221 B2 JP5636221 B2 JP 5636221B2 JP 2010168077 A JP2010168077 A JP 2010168077A JP 2010168077 A JP2010168077 A JP 2010168077A JP 5636221 B2 JP5636221 B2 JP 5636221B2
Authority
JP
Japan
Prior art keywords
ethylene
component
copolymer
solar cell
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010168077A
Other languages
Japanese (ja)
Other versions
JP2011153286A (en
Inventor
雨宮 隆浩
隆浩 雨宮
珠美 尾中
珠美 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2010168077A priority Critical patent/JP5636221B2/en
Publication of JP2011153286A publication Critical patent/JP2011153286A/en
Application granted granted Critical
Publication of JP5636221B2 publication Critical patent/JP5636221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、太陽電池封止材用樹脂組成物に関し、より詳しくは、エチレン・α−オレフィン共重合体、エチレン−官能基含有モノマー共重合体及び有機過酸化物などを含有し、生産性が良く、透明性に優れ、しかも耐熱性、柔軟性、及びガラス基板への接着性にも優れる太陽電池封止材用樹脂組成物に関するものである。   The present invention relates to a resin composition for a solar cell encapsulant, and more specifically includes an ethylene / α-olefin copolymer, an ethylene-functional group-containing monomer copolymer, an organic peroxide, and the like, and has a high productivity. The present invention relates to a resin composition for a solar cell sealing material that is excellent in transparency, heat resistance, flexibility, and adhesion to a glass substrate.

二酸化炭素の増加など地球環境問題がクローズアップされる中で、水力、風力、地熱などの有効利用とともに太陽光発電が再び注目されるようになった。
太陽光発電は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレンなどの太陽電池素子を上部透明保護材と下部基板保護材とで保護し、太陽電池素子と保護材とを樹脂製の封止材で固定し、パッケージ化した太陽電池モジュールを用いるものであり、水力、風力などと比べて規模は小さいものの、電力が必要な場所に分散して配置できることから、発電効率等の性能向上と価格の低下を目指した研究開発が推進されている。また、国や自治体で住宅用太陽光発電システム導入促進事業として設置費用を補助する施策が採られることで、徐々にその普及が進みつつある。しかしながら、更なる普及には一層の低コスト化が必要であり、そのため従来型のシリコンやガリウム−砒素などに代わる新たな素材を用いた太陽電池素子の開発だけでなく、太陽電池モジュールの製造コストをより一層低減する努力も地道に続けられている。
As global environmental issues such as an increase in carbon dioxide are highlighted, solar power generation has come into focus again along with the effective use of hydropower, wind power, and geothermal heat.
Photovoltaic power generation generally protects solar cell elements such as silicon, gallium-arsenic, copper-indium-selenium with an upper transparent protective material and a lower substrate protective material, and the solar cell element and the protective material are sealed with resin. It uses solar cell modules that are fixed with materials and packaged, and although it is smaller in scale than hydropower and wind power, it can be distributed and placed in places where power is required. Research and development aimed at lowering the level is being promoted. In addition, the government and local governments are gradually promoting the spread of measures by substituting installation costs as a residential solar power generation system introduction promotion project. However, further cost reduction is necessary for further spread, so that not only the development of solar cell elements using new materials to replace conventional silicon and gallium arsenide, but also the manufacturing cost of solar cell modules Efforts to further reduce this are continuing.

太陽電池モジュールを構成する太陽電池封止材の条件としては、太陽電池の発電効率が低下しないように、太陽光の入射量を確保するため、透明性が良好なことが求められている。また、太陽電池モジュールは通常、屋外に設置されるから長期間太陽光に晒され温度上昇する。それにより樹脂製の封止材が流動し、モジュールが変形したりするトラブルを避けるために、耐熱性を有するものでなければならない。また年々、太陽電池素子の材料コストを削減するために薄肉化が進んでおり、一層柔軟性に優れた封止材も求められている。
また、太陽電池モジュールは、前記のとおり、長期間太陽光に晒されると温度が上昇し、それによりガラス基板と樹脂製封止材との接着力が低下して、ガラス基板から樹脂製封止材が分離し、その空間に空気や水分が入って、モジュールが変形したりするので、これを防止するため、接着性に優れた封止材が求められている。
As a condition of the solar cell encapsulant constituting the solar cell module, it is required to have good transparency in order to secure the incident amount of sunlight so that the power generation efficiency of the solar cell is not lowered. Moreover, since a solar cell module is usually installed outdoors, it is exposed to sunlight for a long period of time and the temperature rises. Therefore, in order to avoid troubles in which the resin sealing material flows and the module is deformed, it must have heat resistance. Moreover, in order to reduce the material cost of a solar cell element year by year, the thickness has been reduced, and a sealing material with further flexibility is also required.
In addition, as described above, when the solar cell module is exposed to sunlight for a long period of time, the temperature rises, thereby reducing the adhesive force between the glass substrate and the resin sealing material, and sealing the resin from the glass substrate. Since the material is separated and air or moisture enters the space and the module is deformed, a sealing material excellent in adhesiveness is required to prevent this.

現在、太陽電池モジュールにおける太陽電池素子の封止材では、一般にエチレン−酢酸ビニル共重合体が樹脂成分として採用されている。特許文献1のように、この樹脂成分には一般に有機過酸化物が配合されており、架橋することで太陽電池モジュールが製造されている。   Currently, an ethylene-vinyl acetate copolymer is generally employed as a resin component in a solar cell element sealing material in a solar cell module. As in Patent Document 1, an organic peroxide is generally blended with this resin component, and a solar cell module is manufactured by crosslinking.

最近では、太陽電池モジュールの製造コストを抑えるために、封止作業に要する時間のさらなる短縮が求められており、特許文献2では、封止材の樹脂成分であるエチレン−酢酸ビニル共重合体に代わり、結晶化度が40%以下の非晶性又は低結晶性のα−オレフィン系共重合体からなる太陽電池封止材が提案されている。この特許文献2には、非晶質又は低結晶性のエチレン・1−ブテン共重合体に、有機過酸化物を混合し、異型押出機を用いて加工温度100℃でシートを作製することが例示されているが、加工温度が低いため十分な生産性は得られない。   Recently, in order to reduce the manufacturing cost of the solar cell module, further reduction in the time required for the sealing work has been demanded. In Patent Document 2, an ethylene-vinyl acetate copolymer that is a resin component of the sealing material is required. Instead, a solar cell encapsulant made of an amorphous or low crystalline α-olefin copolymer having a crystallinity of 40% or less has been proposed. In Patent Document 2, an organic peroxide is mixed with an amorphous or low crystalline ethylene / 1-butene copolymer, and a sheet is produced at a processing temperature of 100 ° C. using a profile extruder. Although illustrated, since the processing temperature is low, sufficient productivity cannot be obtained.

一方、太陽電池封止材として、エチレン−酢酸ビニル共重合体を使用する場合、光や熱の影響による黄変が懸念されている。太陽電池封止材が黄変すると光透過性が低下して太陽電池セルの変換効率が低下する等の不具合が生じるためである。   On the other hand, when an ethylene-vinyl acetate copolymer is used as a solar cell encapsulant, yellowing due to the influence of light or heat is a concern. This is because when the solar cell encapsulating material turns yellow, the light transmittance is reduced and the conversion efficiency of the solar cells is reduced.

そのため、ポリオレフィン系共重合体と結晶性ポリオレフィンからなるポリマーブレンドまたはポリマーアロイを用いた太陽電池封止用組成物(特許文献3参照)が提案されている。
これにより、耐熱性、耐クリープ性、耐スクラッチ性が改善されるものの、前記結晶性ポリオレフィンの融点(DSC法)が、110℃以上170℃以下であって、低結晶性のポリオレフィン系共重合体とは結晶化度が異なるため、両者の境界で乱反射が起り、シートの透明性が低下してしまう。
Therefore, a solar cell sealing composition using a polymer blend or polymer alloy comprising a polyolefin copolymer and crystalline polyolefin has been proposed (see Patent Document 3).
Thereby, although heat resistance, creep resistance and scratch resistance are improved, the crystalline polyolefin has a melting point (DSC method) of 110 ° C. or higher and 170 ° C. or lower, and is a low crystalline polyolefin copolymer. Since the degree of crystallinity is different from that, irregular reflection occurs at the boundary between the two, and the transparency of the sheet is lowered.

また、シングルサイト触媒を用いて重合したエチレン・α−オレフィン共重合体、ポリビニルブチラール、エチレン−アクリル酸メチル共重合体、シリコーン樹脂のいずれか一種を主成分とし、更に架橋剤などを含有させた太陽電池用カバーフィルムとその製造方法が提案されている(特許文献4)。これにより樹脂性能及び生産性が向上し、且つ、省資源、コストを低減しうるものと期待される。しかしながら、実施例においては、上記の樹脂を単独で使用しており、生産性、耐熱性、透明性、柔軟性、耐久性及びガラス基板への接着性を同時に満足させるものではない。
このように従来の技術では、太陽電池モジュールの生産性が高められ、透明性に優れ、しかも耐熱性、柔軟性、耐久性及びガラス基板への接着性にも優れる太陽電池封止材用樹脂組成物は得られていなかった。
In addition, ethylene / α-olefin copolymer polymerized using a single site catalyst, polyvinyl butyral, ethylene-methyl acrylate copolymer, silicone resin as a main component, and further contains a crosslinking agent. A cover film for a solar cell and a manufacturing method thereof have been proposed (Patent Document 4). This is expected to improve resin performance and productivity, and save resources and cost. However, in the examples, the above-mentioned resin is used alone, and it does not satisfy the productivity, heat resistance, transparency, flexibility, durability and adhesion to the glass substrate at the same time.
As described above, in the conventional technology, the productivity of the solar cell module is increased, the resin composition for the solar cell encapsulant is excellent in transparency, and excellent in heat resistance, flexibility, durability and adhesion to the glass substrate. The thing was not obtained.

特開平9−116182号公報JP-A-9-116182 特開2006−210906号公報JP 2006-210906 A 特開2001−332750号公報JP 2001-332750 A 特開2000−91611号公報JP 2000-91611 A

本発明の目的は、上記従来技術の問題点に鑑み、生産性が良く、透明性に優れ、しかも耐熱性、柔軟性、及びガラス基板への接着性にも優れる太陽電池封止材用樹脂組成物を提供することにある。   The object of the present invention is to provide a resin composition for a solar cell encapsulant that has good productivity, excellent transparency, and excellent heat resistance, flexibility, and adhesion to a glass substrate in view of the above-mentioned problems of the prior art. To provide things.

本発明者らは、上記問題を解決すべく鋭意検討した結果、特定の性状を有するエチレン・α−オレフィン共重合体とエチレン−官能基含有モノマー共重合体を組み合わせて樹脂成分とし、有機過酸化物などの添加剤を配合することにより、透明性に優れ、耐熱性、柔軟性、耐久性及びガラス基板への接着性にも優れる太陽電池封止材用樹脂組成物が得られ、これを用いれば太陽電池モジュールの生産性が大幅に向上するとの知見を得て、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors combined an ethylene / α-olefin copolymer having a specific property and an ethylene-functional group-containing monomer copolymer as a resin component, and organic peroxidation. By adding an additive such as a product, a resin composition for a solar cell encapsulant that is excellent in transparency, heat resistance, flexibility, durability, and adhesion to a glass substrate can be obtained and used. In other words, the inventors have obtained knowledge that the productivity of solar cell modules is greatly improved, and have completed the present invention.

即ち、本発明の第1の発明によれば、下記の成分(A)70〜99重量%、及び成分(B)30〜1重量%からなる樹脂成分100重量部に対して、成分(C)を0.2〜5重量部、成分(D)を0.01〜5重量部含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(A):下記(a1)及び(a5)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a5)ポリマー中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
成分(B):エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル多元共重合体、又はエチレン−(メタ)アクリル酸多元共重合体から選ばれる一種以上のエチレン−官能基含有モノマー共重合体
成分(C):有機過酸化物
成分(D):シランカップリング剤
That is, according to the first aspect of the present invention, the component (C) is based on 100 parts by weight of the resin component comprising 70 to 99% by weight of the following component (A) and 30 to 1% by weight of the component (B). Is contained in an amount of 0.2 to 5 parts by weight , and the component (D) is contained in an amount of 0.01 to 5 parts by weight .
Component (A): ethylene / α-olefin copolymer (a1) having the following characteristics (a1) and (a5 ): Density of 0.860 to 0.920 g / cm 3
(A5) The number of branches (N) due to the comonomer in the polymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(However, N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Component (B): ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester multi-component copolymer, or One or more ethylene-functional group-containing monomer copolymers selected from ethylene- (meth) acrylic acid multi- component copolymers Component (C): Organic peroxide
Component (D): Silane coupling agent

また、本発明の第2の発明によれば、第1の発明において、成分(A)が、さらに下記(a2)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする太陽電池封止材組成物が提供される。
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
また、本発明の第3の発明によれば、第1または2の発明において、成分(A)が、さらに下記(a3)〜(a4)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が9.0×10poise以下
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が1.8×10poise以下
According to a second aspect of the present invention, in the first aspect, the component (A) is an ethylene / α-olefin copolymer further having the following characteristic (a2): A battery encapsulant composition is provided.
(A2) The ratio (Mz / Mn) of the Z average molecular weight (Mz) and the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8.0 or less. In the third invention of the present invention According to the first or second invention, the component (A) is an ethylene / α-olefin copolymer having the following characteristics (a3) to (a4): A resin composition is provided.
(A3) The melt viscosity (η * 1 ) at a shear rate of 2.43 × 10 s −1 measured at 100 ° C. is 9.0 × 10 4 poise or less (a4) The shear rate measured at 100 ° C. is 2 The melt viscosity (η * 2 ) at .43 × 10 2 s −1 is 1.8 × 10 4 poise or less.

また、本発明の第4の発明によれば、第3の発明において、成分(A)は、溶融粘度(η )と溶融粘度(η )との比(η /η )が4.5以下であることを特徴とする太陽電池封止材用樹脂組成物が提供される。 According to the fourth aspect of the present invention, in the third aspect, the component (A) is a ratio (η * 1 / η * ) between the melt viscosity (η * 1 ) and the melt viscosity (η * 2 ) . 2 ) is 4.5 or less, a solar cell encapsulant resin composition is provided.

また、本発明の第の発明によれば、第1〜4のいずれかの発明において、成分(A)が、さらに下記(a6)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
(a6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
また、本発明の第の発明によれば、第1〜5のいずれかの発明において、成分(B)が、下記(b1)の特性を有するエチレン−酢酸ビニル共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
(b1)酢酸ビニル含有量が、20〜40重量%
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the component (A) is an ethylene / α-olefin copolymer further having the following property (a6): The resin composition for solar cell sealing materials characterized by these is provided.
(A6) Flow ratio (FR): ratio of I10, which is an MFR measurement value at 190 ° C. under a 10 kg load, to I 2.16 , which is an MFR measurement value at 190 ° C. under a 2.16 kg load (I 10 / I 2.16 ) is less than 7.0 In addition, according to the sixth invention of the present invention, in any one of the first to fifth inventions, the component (B) is ethylene- having the following characteristics (b1): A resin composition for a solar cell encapsulant, which is a vinyl acetate copolymer, is provided.
(B1) Vinyl acetate content is 20 to 40% by weight

さらに、本発明の第の発明によれば、第1〜のいずれかの発明において、成分(A)が、エチレン・1−ブテン共重合体又はエチレン・1−ヘキセン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。 Furthermore, according to the seventh invention of the present invention, in any one of the first to sixth inventions, the component (A) is an ethylene / 1-butene copolymer or an ethylene / 1-hexene copolymer. The resin composition for solar cell sealing materials characterized by these is provided.

本発明の太陽電池封止材用樹脂組成物は、特定の密度、分子量分布、溶融粘度特性を有するエチレン・α−オレフィン共重合体を主成分としているので、耐熱性、透明性、柔軟性、耐久性等に優れており、しかもエチレン−官能基含有モノマー共重合体を配合しているため、透明性及び接着性がより向上している。
また、有機過酸化物が配合されているので、この樹脂組成物をシート化する際には、樹脂成分が比較的短時間で架橋して十分な接着力を有し、太陽電池封止材としてモジュールの形成が容易であり生産性に優れ、製造コストを低減することができる。また、シランカップリング剤がさらに配合された太陽電池封止材用樹脂組成物を用いることで、得られた太陽電池モジュールは、透明性、柔軟性、耐候性、接着性等に一層優れるものとなり、長期間安定した変換効率を維持することが期待できる。
Since the resin composition for solar cell encapsulant of the present invention is mainly composed of an ethylene / α-olefin copolymer having a specific density, molecular weight distribution, and melt viscosity characteristics, heat resistance, transparency, flexibility, Since it is excellent in durability and the like, and contains an ethylene-functional group-containing monomer copolymer, transparency and adhesiveness are further improved.
In addition, since an organic peroxide is blended, when the resin composition is formed into a sheet, the resin component is crosslinked in a relatively short time and has sufficient adhesive strength. The module can be easily formed, the productivity is excellent, and the manufacturing cost can be reduced. Moreover, by using a resin composition for a solar cell encapsulant further blended with a silane coupling agent, the obtained solar cell module is further excellent in transparency, flexibility, weather resistance, adhesiveness, and the like. It can be expected to maintain a stable conversion efficiency for a long time.

1.太陽電池封止材用樹脂組成物
本発明の太陽電池封止材用樹脂組成物(以下、単に樹脂組成物ともいう)は、下記のエチレン・α−オレフィン共重合体成分(A)、エチレン−官能基含有モノマー共重合体(B)、シランカップリング剤(D)、及び有機過酸化物(C)を含有することを特徴とする。
1. Resin composition for solar cell encapsulant The resin composition for solar cell encapsulant of the present invention (hereinafter also simply referred to as a resin composition) comprises the following ethylene / α-olefin copolymer component (A), ethylene- It contains a functional group-containing monomer copolymer (B), a silane coupling agent (D), and an organic peroxide (C).

(1)成分(A):エチレン・α−オレフィン共重合体
本発明に用いる成分(A)は、下記(a1)、(a5)の特性を有したエチレン・α−オレフィン共重合体である。
(a1)密度が0.860〜0.920g/cm
(a5)ポリマー中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
(1) Component (A): Ethylene / α-olefin copolymer The component (A) used in the present invention is an ethylene / α-olefin copolymer having the following properties (a1) and (a5) .
(A1) Density is 0.860-0.920 g / cm 3
(A5) The number of branches (N) due to the comonomer in the polymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(However, N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )

本発明に用いる成分(A)は、下記(a2)の特性、さらには(a3)〜(a4)の特性を有するエチレン・α−オレフィン共重合体であることが好ましい。
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が9.0×10poise以下
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が1.8×10poise以下
The component (A) used in the present invention is preferably an ethylene / α-olefin copolymer having the following characteristics (a2) and further having the characteristics (a3) to (a4).
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) was 8.0 or less (a3) Shear measured at 100 ° C. rate melt viscosity at 2.43 × 10s -1 (η * 1 ) was measured at 9.0 × 10 4 poise or less (a4) 100 ℃, shear rate at 2.43 × 10 2 s -1 Melt viscosity (η * 2 ) is 1.8 × 10 4 poise or less

本発明に用いる成分(A)は、さらに下記(a6)の特性を有するエチレン・α−オレフィン共重合体であることが好ましい。
(a6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
The component (A) used in the present invention is preferably an ethylene / α-olefin copolymer having the following property (a6).
(A6) Flow ratio (FR): ratio of I10, which is an MFR measurement value at 190 ° C. under a 10 kg load, to I 2.16 , which is an MFR measurement value at 190 ° C. under a 2.16 kg load (I 10 / I 2.16 ) is less than 7.0

(i)成分(A)のモノマー構成
本発明に使用されるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
(I) Monomer structure of component (A) The ethylene / α-olefin copolymer used in the present invention is a random copolymer of ethylene and α-olefin, the main component of which is a structural unit derived from ethylene. .

コモノマーとして用いられるα−オレフィンは、好ましくは炭素数3〜12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げることができる。かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体等が挙げられる。なかでも、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体が好ましい。また、α−オレフィンは1種または2種以上の組み合わせでもよい。2種のα−オレフィンを組み合わせて三元共重合体とする場合は、エチレン・プロピレン・1−ヘキセン三元共重合体、エチレン・1−ブテン・1−ヘキセン三元共重合体、エチレン・プロピレン・1−オクテン三元共重合体、エチレン・1−ブテン・1−オクテン三元共重合体等が挙げられる。   The α-olefin used as a comonomer is preferably an α-olefin having 3 to 12 carbon atoms. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-pentene-1, 4-methyl-hexene-1, 4,4-dimethylpentene- 1 etc. can be mentioned. Specific examples of such ethylene / α-olefin copolymers include ethylene / propylene copolymers, ethylene / 1-butene copolymers, ethylene / 1-hexene copolymers, ethylene / 1-octene copolymers, ethylene -4-methyl-pentene-1 copolymer etc. are mentioned. Of these, ethylene / 1-butene copolymer and ethylene / 1-hexene copolymer are preferable. Moreover, 1 type, or 2 or more types of combination may be sufficient as an alpha olefin. When combining two kinds of α-olefins to form a terpolymer, ethylene / propylene / 1-hexene terpolymer, ethylene / 1-butene / 1-hexene terpolymer, ethylene / propylene -1-octene terpolymer, ethylene / 1-butene / 1-octene terpolymer, etc. are mentioned.

本発明で用いるエチレン・α−オレフィン共重合体は、そのα−オレフィンの含有量が5〜40重量%であり、好ましくは10〜35重量%、より好ましくは15〜30重量%である。この範囲であれば柔軟性と耐熱性が良好である。
ここでα−オレフィンの含有量は、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
The ethylene / α-olefin copolymer used in the present invention has an α-olefin content of 5 to 40% by weight, preferably 10 to 35% by weight, and more preferably 15 to 30% by weight. Within this range, flexibility and heat resistance are good.
Here, the content of α-olefin is a value measured by a 13C-NMR method under the following conditions.
Device: JEOL-GSX270 manufactured by JEOL
Concentration: 300 mg / 2 mL
Solvent: Orthodichlorobenzene

(ii)成分(A)の重合触媒及び重合法
本発明で用いるエチレン・α−オレフィン共重合体は、チーグラー触媒、バナジウム触媒又はメタロセン触媒等、好ましくはバナジウム触媒又はメタロセン触媒、より好ましくはメタロセン触媒を使用して製造することができる。製造法としては、高圧イオン重合法、気相法、溶液法、スラリー法等が挙げられる
(Ii) Polymerization catalyst and polymerization method of component (A) The ethylene / α-olefin copolymer used in the present invention is a Ziegler catalyst, vanadium catalyst or metallocene catalyst, preferably a vanadium catalyst or metallocene catalyst, more preferably a metallocene catalyst. Can be manufactured using. Examples of the production method include a high pressure ion polymerization method, a gas phase method, a solution method, and a slurry method.

メタロセン触媒としては、特に限定されるわけではないが、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物と助触媒とを触媒成分とする触媒が挙げられる。
エチレン・α−オレフィン共重合体の市販品としては、日本ポリエチレン社製のハーモレックス(登録商標)シリーズ、カーネル(登録商標)シリーズ、プライムポリマー社製のエボリュー(登録商標)シリーズ、住友化学社製のエクセレン(登録商標)GMHシリーズ、エクセレン(登録商標)FXシリーズが挙げられる。バナジウム触媒としては、可溶性バナジウム化合物と有機アルミニウムハライドとを触媒成分とする触媒が挙げられる。
Although it does not necessarily limit as a metallocene catalyst, The catalyst which uses a metallocene compound, such as a zirconium compound coordinated with the group which has a cyclopentadienyl skeleton, etc., and a promoter as a catalyst component is mentioned.
Commercially available ethylene / α-olefin copolymers include Harmolex (registered trademark) series, Kernel (registered trademark) series manufactured by Nippon Polyethylene, Evolue (registered trademark) series manufactured by Prime Polymer, Sumitomo Chemical Co., Ltd. Exelen (registered trademark) GMH series and Exelen (registered trademark) FX series. Examples of the vanadium catalyst include a catalyst having a soluble vanadium compound and an organic aluminum halide as catalyst components.

(iii)成分(A)の特性
(a1)密度
本発明で用いるエチレン・α−オレフィン共重合体は、密度が0.860〜0.920g/cmでなければならない。好ましい密度は0.865〜0.915g/cm、さらに好ましくは0.870〜0.910g/cmであり、特に好ましいのは0.870〜0.900g/cmの超低密度エチレン・α−オレフィン共重合体である。密度がこの範囲であれば、加工後のシートが接着してしまわず、しかも加工後のシート剛性が高すぎないので、取り扱い性がよい。
(Iii) Characteristics of component (A) (a1) Density The ethylene / α-olefin copolymer used in the present invention must have a density of 0.860 to 0.920 g / cm 3 . A preferable density is 0.865 to 0.915 g / cm 3 , more preferably 0.870 to 0.910 g / cm 3 , and particularly preferable is an ultra low density ethylene · 0.870 to 0.900 g / cm 3. It is an α-olefin copolymer. If the density is within this range, the processed sheet will not adhere, and the processed sheet rigidity is not too high, so the handleability is good.

ポリマーの密度を調節するには、例えばα−オレフィン含有量、重合温度、触媒量などを適宜調節する方法がとられる。
なお、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して、23℃で測定する。
In order to adjust the density of the polymer, for example, a method of appropriately adjusting the α-olefin content, the polymerization temperature, the catalyst amount and the like is employed.
The density of the ethylene / α-olefin copolymer is measured at 23 ° C. according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene).

(a2)Z平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)
本発明で用いるエチレン・α−オレフィン共重合体は、ゲルパーミエーションクロマグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下であり、好ましくは5.0以下、より好ましくは4.0以下である。また、Mz/Mnは、2.0以上、好ましくは2.5以上、より好ましくは3.0以上である。ただし、Mz/Mnが8.0を超えると透明性が悪化する。Mz/Mnを所定の範囲に調整するには、適当な触媒系を選択する方法等によることができる。
(A2) Ratio of Z average molecular weight (Mz) to number average molecular weight (Mn) (Mz / Mn)
The ethylene / α-olefin copolymer used in the present invention has a ratio (Mz / Mn) of Z average molecular weight (Mz) to number average molecular weight (Mn) determined by gel permeation chromatography (GPC) of 8.0. Or less, preferably 5.0 or less, more preferably 4.0 or less. Moreover, Mz / Mn is 2.0 or more, preferably 2.5 or more, more preferably 3.0 or more. However, when Mz / Mn exceeds 8.0, transparency deteriorates. In order to adjust Mz / Mn to a predetermined range, a method of selecting an appropriate catalyst system can be used.

なお、(Mz/Mn)の測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行い、測定条件は次のとおりである。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は、東ソー製 単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
In addition, the measurement of (Mz / Mn) is performed by gel permeation chromatography (GPC), and the measurement conditions are as follows.
Apparatus: Waters GPC 150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength: 3.42 μm)
Column: Showa Denko 3 AD806M / S (column calibration is Tosoh monodisperse polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) The logarithmic value of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polyethylene using the viscosity equation of polystyrene and polyethylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = -3.967, polyethylene is α = 0.733, log K = -3.407.)
Measurement temperature: 140 ° C
Concentration: 20 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min

なお、Z平均分子量(Mz)は、高分子量成分の平均分子量への寄与が大きいので、Mz/Mnは、Mw/Mnに比べて高分子量成分の存在を確認しやすい。高分子量成分は、透明性に影響を与える要因であり、高分子量成分が多いと透明性は悪化する。また、架橋効率も悪化する傾向が見られる。よって、Mz/Mnは小さい方が好ましい。   Since the Z average molecular weight (Mz) greatly contributes to the average molecular weight of the high molecular weight component, Mz / Mn is easier to confirm the presence of the high molecular weight component than Mw / Mn. The high molecular weight component is a factor that affects the transparency, and when the high molecular weight component is large, the transparency is deteriorated. Moreover, the tendency for a crosslinking efficiency to deteriorate is seen. Therefore, a smaller Mz / Mn is preferable.

(a3)、(a4)溶融粘度
本発明で用いるエチレン・α−オレフィン共重合体は、100℃で測定した、せん断速度が特定の範囲でなければならない。100℃で測定した、せん断速度に着目するのは、当該温度での組成物を製品化する際の製品への影響を推定するためである。
すなわち、せん断速度2.43×10sec−1での溶融粘度(η )が9.0×10poise以下、好ましくは8.0×10poise以下、より好ましくは7.0×10poise以下、さらに好ましくは5.5×10poise以下、さらにまた好ましくは5.0×10poise以下、特に好ましくは3.0×10poise以下、最も好ましくは2.5×10poise以下である。溶融粘度(η )は、1.0×10poise以上、さらには1.5×10poise以上であることが好ましい。溶融粘度(η )がこの範囲にあれば低温で低速成形時の生産性がよく、製品への加工に問題が生じない。
溶融粘度(η )は、エチレン・α−オレフィン共重合体のメルトフローレート(MFR)や分子量分布などにより調整可能である。メルトフローレートの値を高めると溶融粘度(η )は小さくなる傾向がある。分子量分布など他の性状が異なれば、大小関係が逆転することもありうるが、たとえば、好ましくはMFR(JIS−K6922−2:1997附属書(190℃、21.18N荷重))が5〜50g/10分であり、より好ましくは10〜40g/10分、さらに好ましくは15〜35g/10分、最も好ましくは25〜35g/10分とすることで、溶融粘度(η )を所定の範囲に収めやすい。
(A3), (a4) Melt viscosity The ethylene / α-olefin copolymer used in the present invention must have a shear rate in a specific range measured at 100 ° C. The reason for paying attention to the shear rate measured at 100 ° C. is to estimate the influence on the product when the composition at that temperature is commercialized.
That is, the melt viscosity (η * 1 ) at a shear rate of 2.43 × 10 sec −1 is 9.0 × 10 4 poise or less, preferably 8.0 × 10 4 poise or less, more preferably 7.0 × 10 4. poise or less, more preferably 5.5 × 10 4 poise or less, still more preferably 5.0 × 10 4 poise or less, particularly preferably 3.0 × 10 4 poise or less, most preferably 2.5 × 10 4 poise or less. It is as follows. The melt viscosity (η * 1 ) is preferably 1.0 × 10 4 poise or more, more preferably 1.5 × 10 4 poise or more. If the melt viscosity (η * 1 ) is within this range, the productivity at low temperature and low speed molding is good, and there is no problem in processing into products.
The melt viscosity (η * 1 ) can be adjusted by the melt flow rate (MFR) or molecular weight distribution of the ethylene / α-olefin copolymer. When the value of the melt flow rate is increased, the melt viscosity (η * 1 ) tends to decrease. If other properties such as molecular weight distribution are different, the magnitude relationship may be reversed. For example, preferably MFR (JIS-K6922-2: 1997 annex (190 ° C., 21.18 N load)) is 5 to 50 g. / 10 minutes, more preferably 10 to 40 g / 10 minutes, still more preferably 15 to 35 g / 10 minutes, and most preferably 25 to 35 g / 10 minutes, so that the melt viscosity (η * 1 ) is a predetermined value. Easy to fit in range.

さらに、本発明で用いるエチレン・α−オレフィン共重合体は、100℃で測定した、せん断速度2.43×10sec−1での溶融粘度(η )が、1.8×10poise以下、好ましくは1.7×10poise以下、より好ましくは1.5×10poise以下、さらに好ましくは1.4×10poise以下、最も好ましくは1.3×10poise以下である。溶融粘度(η )は、5.0×10poise以上、さらには8.0×10poise以上であることが好ましい。溶融粘度(η )がこの範囲にあれば低温で高速成形時の生産性がよく、製品への加工に問題が生じない。
ここで、溶融粘度(η )、(η )は、径1.0mm、L/D=10のキャピラリーを有するキャピラリーレオメーターを用いて得られる測定値である。
2種類のせん断速度を設けるのは、低速成形時、高速成形時の製品の表面への影響が小さく、それぞれの成形速度領域で同様の製品が得られるようにするためである。
また、本発明で用いるエチレン・α−オレフィン共重合体は、η とη との比(η /η )が、好ましくは4.5以下、より好ましくは4.2以下、さらに好ましくは4.0以下、さらにまた好ましくは3.0以下である。η とη との比(η /η )は、1.1以上が好ましく、さらには1.5以上であることが好ましい。(η /η )が上記範囲であれば、低速成形時、高速成形時のシート表面への影響が少なく好ましい。
Furthermore, the ethylene / α-olefin copolymer used in the present invention has a melt viscosity (η * 2 ) of 1.8 × 10 4 measured at 100 ° C. at a shear rate of 2.43 × 10 2 sec −1. poise or less, preferably 1.7 × 10 4 poise or less, more preferably 1.5 × 10 4 poise or less, more preferably 1.4 × 10 4 poise or less, and most preferably 1.3 × 10 4 poise or less. is there. The melt viscosity (η * 2 ) is preferably 5.0 × 10 3 poise or more, more preferably 8.0 × 10 3 poise or more. If the melt viscosity (η * 2 ) is within this range, productivity at high speed molding at low temperatures is good, and there is no problem in processing into products.
Here, the melt viscosities (η * 1 ) and (η * 2 ) are measured values obtained using a capillary rheometer having a capillary with a diameter of 1.0 mm and L / D = 10.
The two kinds of shear rates are provided so that the influence on the surface of the product at the time of low speed molding and high speed molding is small, and the same product can be obtained in each molding speed region.
In the ethylene / α-olefin copolymer used in the present invention, the ratio of η * 1 to η * 2* 1 / η * 2 ) is preferably 4.5 or less, more preferably 4.2. Hereinafter, it is more preferably 4.0 or less, and still more preferably 3.0 or less. The ratio of η * 1 and η * 2* 1 / η * 2 ) is preferably 1.1 or more, and more preferably 1.5 or more. If (η * 1 / η * 2 ) is in the above range, the influence on the sheet surface during low speed molding and high speed molding is small, which is preferable.

(a5)ポリマー中のコモノマーによる分岐数(N)
本発明で用いるエチレン・α−オレフィン共重合体は、ポリマー中のコモノマーによる分岐数(N)と、引張弾性率(E)が下記式(a)を満たしていることが必要である
式(a): N ≧ −0.67×E+53
( ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
ここで、ポリマー中のコモノマーによる分岐数(N)は、例えばE. W. Hansen, R. Blom, and O. M. Bade, Polymer, 36巻 4295頁(1997年)を参考にC−NMRスペクトルから算出することができる。
(A5) Number of branches by comonomer in the polymer (N)
The ethylene / α-olefin copolymer used in the present invention needs to satisfy the following formula (a) in terms of the number of branches (N) by the comonomer in the polymer and the tensile modulus (E).
Formula (a): N ≧ −0.67 × E + 53
(Where N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Here, the number of branches (N) due to the comonomer in the polymer is, for example, E.I. W. Hansen, R.A. Blom, and O.M. M.M. It can be calculated from the C-NMR spectrum with reference to Bade, Polymer, 36, 4295 (1997).

太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。薄膜化した太陽電池封止材では、上部または下部保護材側から衝撃が加わると、配線が断線しやすいため、封止材の剛性を高くすることが求められる。剛性を高くすると、架橋効率が悪くなるので、高分子鎖の分岐度がある程度高い共重合体を用いて、架橋前の共重合体の流動性を向上させ、成形性に優れた材料として使用する必要がある。本発明では、エチレン・α−オレフィン共重合体のコモノマーによる分岐数(N)が式(a)を満たすポリマー構造となっているので、剛性と架橋効率のバランスが良好である。
本発明に係るエチレン・α−オレフィン共重合体は、上述した様に、触媒を用いた共重合反応により製造できるが、共重合させる原料単量体の組成比や使用する触媒の種類を選択することにより、その高分子鎖中の分岐度を容易に調整することが可能である。本発明で用いるエチレン・α−オレフィン共重合体が式(a)を満たすためには、エチレン・α−オレフィン共重合体中のコモノマーは、プロピレン、1−ブテン、又は1−ヘキセンから選択するのが好ましい。また、気相法、高圧法を用いて製造するのが好ましく、特に、高圧法を選択するのがより好ましい。
より具体的にはEを固定してNを増減させるためには、主にエチレンと共重合させるコモノマーの炭素数を変更する方法によることができる。エチレンに対して1−ブテン又は1−ヘキセンの量が60〜80wt%となるように混合し、メタロセン触媒を使用して、重合温度130〜200℃で反応させエチレン・α−オレフィン共重合体を製造することが好ましい。これにより、エチレン・α−オレフィン共重合体の分岐数Nが適度に調整でき、得られるシートの引張弾性率Eが、40MPa以下となって、式(a)が示す範囲のエチレン・α−オレフィン共重合体を得ることができる。
In the solar cell module, the solar cell encapsulant tends to become thinner as the solar cell element becomes thinner. In the solar cell encapsulating material having a reduced thickness, when an impact is applied from the upper or lower protective material side, the wiring is easily disconnected, so that the rigidity of the encapsulating material is required to be increased. When the rigidity is increased, the crosslinking efficiency is deteriorated. Therefore, a copolymer having a high degree of branching of the polymer chain is used to improve the fluidity of the copolymer before crosslinking and to be used as a material having excellent moldability. There is a need. In the present invention, since the number of branches (N) by the comonomer of the ethylene / α-olefin copolymer has a polymer structure satisfying the formula (a), the balance between rigidity and crosslinking efficiency is good.
The ethylene / α-olefin copolymer according to the present invention can be produced by a copolymerization reaction using a catalyst as described above, but the composition ratio of raw material monomers to be copolymerized and the type of catalyst to be used are selected. Thus, the degree of branching in the polymer chain can be easily adjusted. In order for the ethylene / α-olefin copolymer used in the present invention to satisfy the formula (a), the comonomer in the ethylene / α-olefin copolymer is selected from propylene, 1-butene, or 1-hexene. Is preferred. Moreover, it is preferable to produce using a vapor phase method or a high pressure method, and it is more preferable to select a high pressure method.
More specifically, in order to fix E and increase / decrease N, it is possible to mainly use a method of changing the carbon number of the comonomer copolymerized with ethylene. The ethylene / α-olefin copolymer is mixed by mixing so that the amount of 1-butene or 1-hexene is 60 to 80 wt% with respect to ethylene and using a metallocene catalyst to react at a polymerization temperature of 130 to 200 ° C. It is preferable to manufacture. Thereby, the number of branches N of the ethylene / α-olefin copolymer can be adjusted appropriately, and the resulting sheet has a tensile elastic modulus E of 40 MPa or less, and the ethylene / α-olefin within the range represented by the formula (a). A copolymer can be obtained.

本発明では、特性(a5)の関係式が、下記式(a’)で示されることが好ましい。また、特性(a5)の関係式は、下記式(a’’)であることがより好ましい。
式(a’): −0.67×E+80 ≧ N ≧ −0.67×E+53
式(a’’): −0.67×E+75 ≧ N ≧ −0.67×E+54
In the present invention, the relational expression of the characteristic (a5) is preferably represented by the following expression (a ′). The relational expression of the characteristic (a5) is more preferably the following expression (a ″).
Formula (a ′): −0.67 × E + 80 ≧ N ≧ −0.67 × E + 53
Formula (a ″): −0.67 × E + 75 ≧ N ≧ −0.67 × E + 54

(a6)フローレシオ(FR)
本発明で用いるエチレン・α−オレフィン共重合体は、フローレシオ(FR)、すなわち190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満であることが好ましい。なお、メルトフローレート(MFR)は、JIS−K7210−1999に準拠して測定した値である。
(A6) Flow ratio (FR)
Ethylene · alpha-olefin copolymer used in the present invention, the I 10 a MFR value measured at 10kg load in the flow ratio (FR), i.e. 190 ° C., in MFR measured at 2.16kg load at 190 ° C. it is preferable ratio between certain I 2.16 (I 10 / I 2.16 ) is less than 7.0. The melt flow rate (MFR) is a value measured according to JIS-K7210-1999.

FRは、エチレン・α−オレフィン共重合体の分子量分布、長鎖分岐の量と相関が深いことが知られている。本発明では、上記(a1)〜(a4)の条件を満たすポリマーの中でも、190℃における10kg荷重でのMFR測定値(I10)と、190℃における2.16kg荷重でのMFR測定値(I2.16)との比(I10/I2.16)が7.0未満であるものを使用することが好ましい。このような長鎖分岐に特徴があるポリマー構造となっている共重合体を用いることで、剛性と架橋効率のバランスが良好なものとなる。これに対して、FRが7.0以上であると、太陽電池封止材として架橋する際の架橋効率が悪くなる傾向にある。
本発明で用いるエチレン・α−オレフィン共重合体のFRは、7.0未満であり、好ましくは、6.5未満、より好ましくは、6.3未満である。ただし、FRが5.0未満であると、太陽電池封止材として十分な剛性が得られにくくなることがある。特性(a6)のフローレシオ(FR)は、5.0〜6.2であることが最も好ましい。
It is known that FR has a strong correlation with the molecular weight distribution of ethylene / α-olefin copolymer and the amount of long chain branching. In the present invention, among polymers satisfying the above conditions (a1) to (a4), the MFR measurement value (I 10 ) at 190 ° C. under a 10 kg load and the MFR measurement value (I 10 ) at 190 ° C. under a 2.16 kg load (I 2.16 ) and a ratio (I 10 / I 2.16 ) of less than 7.0 are preferably used. By using a copolymer having a polymer structure characterized by such long-chain branching, the balance between rigidity and crosslinking efficiency is good. On the other hand, when FR is 7.0 or more, the crosslinking efficiency at the time of crosslinking as a solar cell sealing material tends to deteriorate.
The FR of the ethylene / α-olefin copolymer used in the present invention is less than 7.0, preferably less than 6.5, and more preferably less than 6.3. However, if the FR is less than 5.0, it may be difficult to obtain sufficient rigidity as a solar cell encapsulant. The flow ratio (FR) of the characteristic (a6) is most preferably 5.0 to 6.2.

(2)成分(B):エチレン−官能基含有モノマー共重合体
本発明に用いる成分(B)は、以下に詳述するエチレン−官能基含有モノマー共重合体である。
(2) Component (B): Ethylene-functional group-containing monomer copolymer Component (B) used in the present invention is an ethylene-functional group-containing monomer copolymer described in detail below.

本発明に使用されるエチレン−官能基含有モノマー共重合体は、エチレンから誘導される構成単位を主成分としたエチレンと官能基含有モノマーとのランダム共重合体である。
かかるエチレン−官能基含有モノマー共重合体の具体例としては、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル多元共重合体、又はエチレン−(メタ)アクリル酸多元共重合体等が挙げられ、一種又は2種以上を混合して用いることができる。
The ethylene-functional group-containing monomer copolymer used in the present invention is a random copolymer of ethylene and a functional group-containing monomer whose main component is a structural unit derived from ethylene.
Specific examples of such an ethylene-functional group-containing monomer copolymer include an ethylene-vinyl acetate copolymer, an ethylene- (meth) acrylic acid ester copolymer, an ethylene- (meth) acrylic acid copolymer, an ethylene- ( A meth) acrylic acid ester multi-component copolymer, an ethylene- (meth) acrylic acid multi-component copolymer, and the like can be mentioned, and one or a mixture of two or more can be used.

成分(B)としては、エチレン−酢酸ビニル共重合体が好ましい。エチレン−酢酸ビニル共重合体の酢酸ビニル含有量は、20〜40重量%、特に25〜35重量%が好ましい。酢酸ビニル含有量がこの範囲であれば、HAZE値を向上する効果がある。また、メルトフローレート(MFR)は、JIS−K6922−2:1997附属書(190℃、21.18N荷重)により測定され、5〜50g/10分が好ましく、10〜40g/10分がより好ましく、15〜30g/10分とすることが特に好ましい。成分(B)がこの範囲のメルトフローレート(MFR)であれば、成分(A)とよく混合するので、上記効果を一層高めることができる。
エチレン−酢酸ビニル共重合体の市販品としては、日本ポリエチレン(株)製の商品名:LV670,LV780が挙げられる。
As the component (B), an ethylene-vinyl acetate copolymer is preferable. The vinyl acetate content of the ethylene-vinyl acetate copolymer is preferably 20 to 40% by weight, particularly preferably 25 to 35% by weight. If the vinyl acetate content is within this range, there is an effect of improving the HAZE value. The melt flow rate (MFR) is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load), preferably 5 to 50 g / 10 minutes, more preferably 10 to 40 g / 10 minutes. It is especially preferable to set it as 15-30 g / 10min. If the component (B) is a melt flow rate (MFR) within this range, it is well mixed with the component (A), so that the above effect can be further enhanced.
Commercially available products of ethylene-vinyl acetate copolymer include trade names: LV670 and LV780 manufactured by Nippon Polyethylene Co., Ltd.

(3)成分(A)と成分(B)の配合割合
本発明において、成分(A)と成分(B)の配合割合は、成分(A)70〜99重量%に対して、成分(B)が30〜1重量%とする。好ましい配合割合は、成分(A)80〜99重量%に対して、成分(B)が20〜1重量%であり、より好ましくは、成分(A)90〜99重量%に対し、成分(B)が10〜1重量%、さらに好ましくは、成分(A)92〜99重量%に対し、成分(B)が8〜1重量%である。
成分(B)の割合がこの範囲にあれば、HAZE値が悪化することがない。
(3) Compounding ratio of component (A) and component (B) In the present invention, the compounding ratio of component (A) and component (B) is 70% to 99% by weight of component (A). 30 to 1% by weight. A preferable blending ratio is 20 to 1% by weight of component (B) with respect to 80 to 99% by weight of component (A), and more preferably 90% to 99% by weight of component (A) (B ) Is 10 to 1% by weight, more preferably, component (B) is 8 to 1% by weight relative to component (A) 92 to 99% by weight.
If the ratio of a component (B) exists in this range, a HAZE value will not deteriorate.

(4)成分(C):有機過酸化物
本発明の樹脂組成物に用いる有機過酸化物は、主に成分(A)及び成分(B)からなる樹脂成分を架橋するために用いられる。
(4) Component (C): Organic peroxide The organic peroxide used in the resin composition of the present invention is mainly used for crosslinking the resin component composed of the component (A) and the component (B).

有機過酸化物としては、分解温度(半減期が1時間である温度)が70〜180℃、特に90〜160℃の有機過酸化物を用いることができる。このような有機過酸化物として、例えば、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。   As the organic peroxide, an organic peroxide having a decomposition temperature (temperature at which the half-life is 1 hour) is 70 to 180 ° C., particularly 90 to 160 ° C. can be used. Examples of such organic peroxides include t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2 , 5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1 , 1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5- Diperoxybenzoate, t-butyl hydroperoxide, p-menthane hydroperoxy Id, benzoyl peroxide, p- chlorobenzoyl peroxide, t- butyl peroxy isobutyrate, hydroxyheptyl peroxide, and di cyclohexanone peroxide.

(5)成分(C)の配合割合
本発明において、成分(C)の配合割合は、成分(A)と成分(B)の樹脂成分合計量を100重量部としたときに、好ましくは0.2〜5重量部とする。より好ましい配合割合は、0.5〜3重量部であり、さらに好ましくは、1〜2重量部である。成分(C)の配合割合が上記範囲であれば、耐熱性がよく、しかも架橋が均一となりシート中に気泡がほとんど発生しない。
(5) Blending ratio of component (C) In the present invention, the blending ratio of component (C) is preferably 0.1 when the total amount of the resin components of component (A) and component (B) is 100 parts by weight. 2 to 5 parts by weight. A more preferable blending ratio is 0.5 to 3 parts by weight, and further preferably 1 to 2 parts by weight. When the blending ratio of component (C) is in the above range, the heat resistance is good, the cross-linking is uniform, and almost no bubbles are generated in the sheet.

(6)成分(D):シランカップリング剤
本発明の樹脂組成物に用いるシランカップリング剤は、樹脂組成物とガラス基板との接着性を改善するために用いられる。
シランカップリング剤としては、ビニルトリメトキシラン、ビニルトリエトキシシラン、ビニルトリアセチルシラン、ビニルトリクロロシラン、ビニルトリイソプロポキシシラン、ビニルトリスメチルエチルケトオキシムシラン、ビニルトリイソプロペノキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン等のビニルシラン類、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン、アクリロキシメチルメチルジメトキシシラン、アクリロキシメチルジメチルメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−アクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルジメチルメトキシシラン等のアクリルシラン類、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルメチルジメトキシシラン、メタクリロキシメチルジメチルメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルジメチルメトキシシラン等のメタクリルシラン類、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルメチルジメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルメチルジメトキシシラン等のスチリルシラン類等の不飽和シラン化合物が挙げられる。なお、これらの不飽和シラン化合物は、単独で、又は2種類以上を混合して使用することができる。
本発明において、シランカップリング剤の含有量は、成分(A)と成分(B)の合計量を100重量部としたときに、5重量部以下である。好ましくは、0.01〜5重量部、より好ましくは0.01〜2重量部、さらに好ましくは0.05〜1重量部である。この範囲の含有量であると、ガラス等の保護材との十分な接着が得られ、また、体積固有抵抗値の低下を抑えることができる。
(6) Component (D): Silane Coupling Agent The silane coupling agent used in the resin composition of the present invention is used to improve the adhesion between the resin composition and the glass substrate.
As silane coupling agents, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetylsilane, vinyltrichlorosilane, vinyltriisopropoxysilane, vinyltrismethylethylketoximesilane, vinyltriisopropenoxysilane, vinylmethyldimethoxysilane, Vinylsilanes such as vinyldimethylmethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane, acryloxymethylmethyldimethoxysilane, acryloxymethyldimethylmethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxy Propyltriethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-acryloxypropylmethyldiethoxysilane, γ-actyl Acrylic silanes such as liloxypropyldimethylmethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethylmethyldimethoxysilane, methacryloxymethyldimethylmethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ -Methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyldimethylmethoxysilane and other methacrylic silanes, styryltrimethoxysilane, styryltriethoxysilane , Styrylmethyldimethoxysilane, N-vinylbenzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminop Suchirirushiran unsaturated silane compounds such such as pills methyl dimethoxy silane. In addition, these unsaturated silane compounds can be used individually or in mixture of 2 or more types.
In the present invention, the content of the silane coupling agent is 5 parts by weight or less when the total amount of the components (A) and (B) is 100 parts by weight. Preferably, it is 0.01-5 weight part, More preferably, it is 0.01-2 weight part, More preferably, it is 0.05-1 weight part. When the content is in this range, sufficient adhesion with a protective material such as glass can be obtained, and a decrease in the volume resistivity can be suppressed.

(7)ヒンダードアミン系光安定化剤
本発明において、成分(E)として、樹脂組成物にはヒンダードアミン系光安定化剤を配合することが好ましい。ヒンダードアミン系光安定化剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。ヒンダードアミン系光安定化剤には、低分子量のものから高分子量のものまで多くの種類の化合物があるが、従来公知のものを特に制限されずに用いることができる。
(7) Hindered amine light stabilizer In this invention, it is preferable to mix | blend a hindered amine light stabilizer with a resin composition as a component (E). The hindered amine light stabilizer captures radical species harmful to the polymer and prevents generation of new radicals. There are many types of hindered amine light stabilizers ranging from low molecular weight compounds to high molecular weight compounds, and conventionally known compounds can be used without particular limitation.

低分子量のヒンダードアミン系光安定化剤としては、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロパーオキサイド及びオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル−1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量847);2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900)などが挙げられる。   Low molecular weight hindered amine light stabilizers include decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and Consists of 70% by weight of a reaction product of octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6 6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate ( 481); tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 791); tetrakis (1,2,2,6, 6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 847); 2,2,6,6-tetramethyl-4-piperidyl-1,2,3,4-butane Mixture of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight 900); 1,2,2,6,6-pentamethyl-4-piperidyl-1,2,3,4-butane Examples thereof include a mixture (molecular weight 900) of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate.

高分子量のヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)などが挙げられる。
上述したヒンダードアミン系光安定化剤は、一種単独で用いてもよく、二種以上を混合して用いてもよい。
As the high molecular weight hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); succinic acid Polymer of dimethyl and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- ( 4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10- Diamine (molecular weight 2,286) and above Mixture of polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2,2 , 6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600-3) , 400).
The above-mentioned hindered amine light stabilizers may be used alone or in a combination of two or more.

これらの中でも、ヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)が好ましい。   Among these, as the hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2 , 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); Polymer of dimethyl acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- (4,6-Bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10 -Diamine (molecular weight 2,286) A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2 , 2,6,6-Tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600) ~ 3,400) is preferred.

これらを用いれば、製品使用時に経時でのヒンダードアミン系光安定剤のブリードアウトを妨げることができる。また、ヒンダードアミン系光安定化剤は、融点が60℃以上であるものを用いるのが、組成物の作製しやすさの観点から好ましい。
本発明において、ヒンダードアミン系光安定化剤の含有量は、前記エチレン・α−オレフィン共重合体100重量部に対して、0〜1.0重量部とし、好ましくは0.01〜0.5重量部、より好ましくは0.01〜0.2重量部、特に好ましくは0.03〜0.1重量部とするのがよい。前記含有量を0.01重量部以上とすることにより安定化への効果が十分に得られ、1.0重量部以下とすることによりヒンダードアミン系光安定化剤の過剰な添加による樹脂の変色を抑えることができる
If these are used, the bleed-out of the hindered amine light stabilizer over time can be prevented when the product is used. In addition, it is preferable to use a hindered amine light stabilizer having a melting point of 60 ° C. or more from the viewpoint of easy preparation of the composition.
In the present invention, the content of the hindered amine light stabilizer is 0 to 1.0 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the ethylene / α-olefin copolymer. Parts, more preferably 0.01 to 0.2 parts by weight, particularly preferably 0.03 to 0.1 parts by weight. By making the content 0.01 parts by weight or more, a sufficient effect for stabilization can be obtained, and by making the content 1.0 parts by weight or less, the resin can be discolored due to excessive addition of a hindered amine light stabilizer. Can be suppressed

また、本発明において、前記有機過酸化物(C)と前記ヒンダードアミン系光安定化剤(E)との重量比(C:E)は、1:0.01〜1:10とするのが好ましく、より好ましくは1:0.02〜1:6.5とする。これにより、樹脂の黄変を顕著に抑制することが可能となる。   In the present invention, the weight ratio (C: E) of the organic peroxide (C) to the hindered amine light stabilizer (E) is preferably 1: 0.01 to 1:10. More preferably, it is set to 1: 0.02 to 1: 6.5. Thereby, it becomes possible to remarkably suppress yellowing of the resin.

(8)架橋助剤
また、本発明の樹脂組成物には架橋助剤を配合することができる。架橋助剤は、架橋反応を促進させ、エチレン・α−オレフィン共重合体、または官能基を含有するポリオレフィンの架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。
(8) Crosslinking aid Further, a crosslinking aid can be blended in the resin composition of the present invention. The crosslinking aid is effective for accelerating the crosslinking reaction and increasing the crosslinking degree of the ethylene / α-olefin copolymer or the polyolefin containing the functional group. Specific examples thereof include polyallyl compounds and poly (meta ) Polyunsaturated compounds such as acryloxy compounds can be exemplified.

より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は、樹脂成分100重量部に対し、0〜5重量部程度の割合で配合することができる。   More specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. Examples include poly (meth) acryloxy compounds and divinylbenzene. The crosslinking aid can be blended at a ratio of about 0 to 5 parts by weight with respect to 100 parts by weight of the resin component.

(9)紫外線吸収剤
本発明の樹脂組成物には紫外線吸収剤を配合することができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。
(9) Ultraviolet absorber An ultraviolet absorber can be mix | blended with the resin composition of this invention. Examples of the ultraviolet absorber include various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester.
Examples of benzophenone-based ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2-hydroxy-4. -N-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone 2,2-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. To mention Can.

ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、などを挙げることができる。
またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。
これら紫外線吸収剤は、樹脂成分100重量部に対し、0〜2.0重量部、好ましくは0.05〜2.0重量部、より好ましくは0.1〜1.0重量部、さらに好ましくは0.1〜0.5重量部、最も好ましくは0.2〜0.4重量部配合する。
The benzotriazole ultraviolet absorber is a hydroxyphenyl-substituted benzotriazole compound, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-butylphenyl) Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like. Can be mentioned.
Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( And 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
These ultraviolet absorbers are 0 to 2.0 parts by weight, preferably 0.05 to 2.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, more preferably 100 parts by weight of the resin component. 0.1 to 0.5 part by weight, most preferably 0.2 to 0.4 part by weight is blended.

(10)他の添加成分
本発明の樹脂組成物には、本発明の効果を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、充填剤、蛍光増白剤、紫外線吸収剤、光安定剤等を挙げることができる。
(10) Other additive components The resin composition of the present invention may contain other additional optional components as long as the effects of the present invention are not significantly impaired. As such optional components, antioxidants, crystal nucleating agents, clearing agents, lubricants, colorants, dispersants, fillers, fluorescent whitening agents, UV absorbers used in ordinary polyolefin resin materials, A light stabilizer etc. can be mentioned.

また、本発明の効果を損なわない範囲で、柔軟性等を付与するため、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・α−オレフィンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物、ポリビニルブチラールなどを配合することもできる。さらに、溶融張力等を付与するため、高圧法低密度ポリエチレンを配合することもできる。これらゴム系化合物や高圧法低密度ポリエチレンの配合量は、成分(A)と成分(B)の合計量を100重量部としたときに、0〜75重量部とすることが好ましい。   Further, in order to impart flexibility and the like within a range not impairing the effects of the present invention, a crystalline ethylene / α-olefin copolymer polymerized by a Ziegler-based or metallocene-based catalyst and / or ethylene such as EBR, EPR, etc. -Rubber compounds, such as alpha-olefin elastomer or SEBS, styrene elastomers, such as a hydrogenated styrene block copolymer, polyvinyl butyral, etc. can also be mix | blended. Furthermore, in order to provide melt tension or the like, high-pressure low-density polyethylene can be blended. The blending amount of these rubber compounds and high-pressure process low-density polyethylene is preferably 0 to 75 parts by weight when the total amount of component (A) and component (B) is 100 parts by weight.

本発明の樹脂組成物を用いてシートを製造すると、シートのHAZE、耐熱性、ガラスとの接着性がいずれも良好なものとなる。特に、HAZEは、JIS−K7136−2000に準拠して150℃で30分架橋した0.7mmのプレスシートの場合、3.3以下、という透明性に優れたものとなる。HAZEは、3.0以下であることが好ましい。   When a sheet is produced using the resin composition of the present invention, the sheet has good HAZE, heat resistance, and adhesion to glass. In particular, HAZE has excellent transparency of 3.3 or less in the case of a 0.7 mm press sheet crosslinked at 150 ° C. for 30 minutes in accordance with JIS-K7136-2000. HAZE is preferably 3.0 or less.

2.太陽電池封止材
本発明の樹脂組成物をシート化して、太陽電池封止材(以下、封止材ともいう)として用い、太陽電池素子を上下の保護材で固定することにより太陽電池モジュールを製作することができる。
このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子(例えば、フッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作成したもの)の下に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。
2. Solar cell encapsulant The resin composition of the present invention is formed into a sheet, used as a solar cell encapsulant (hereinafter also referred to as encapsulant), and the solar cell module is fixed by upper and lower protective materials. Can be produced.
Examples of such solar cell modules include various types. For example, the upper transparent protective material / encapsulant / solar cell element / encapsulant / lower protective material sandwiched between the solar cell elements from both sides, formed on the inner peripheral surface of the lower substrate protective material A solar cell element formed on the inner peripheral surface of the upper transparent protective material (for example, on a fluororesin-based transparent protective material) In addition, an amorphous solar cell element is formed by sputtering or the like), and a sealing material and a lower protective material are formed below.

太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム−砒素、銅−インジウム−セレン、カドミウム−テルルなどのIII−V族やII−VI族化合物半導体系等の各種太陽電池素子を用いることができる。   Examples of solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V group compounds such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium, and II-VI group compound semiconductor systems. Various solar cell elements can be used.

太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。このような上部及び/又は下部の保護材には、封止材との接着性を高めるためにプライマー処理を施すことができる。
本発明における樹脂組成物は、柔軟性があるのでフレキシブルな保護材に適用できるが、シランカップリング剤を含む場合は、上部保護材として、ガラスを用いることが好ましい。
Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin. The lower protective material is a single or multilayer sheet such as metal or various thermoplastic resin films, for example, metals such as tin, aluminum, and stainless steel, inorganic materials such as glass, polyester, inorganic vapor deposition polyester, fluorine-containing resin And a single-layer or multilayer protective material such as polyolefin. Such an upper and / or lower protective material can be subjected to a primer treatment in order to enhance the adhesion to the sealing material.
Since the resin composition in the present invention has flexibility, it can be applied to a flexible protective material. However, when a silane coupling agent is included, it is preferable to use glass as the upper protective material.

本発明に係る太陽電池封止材は、通常、0.1〜1mm程度の厚みのシート状で使用される。シート状太陽電池封止材は、T−ダイ押出機、カレンダー成形機などを使用する公知のシート成形法によって製造することができる。例えばエチレン・α−オレフィン共重合体およびエチレン−官能基含有モノマー共重合体からなる樹脂成分に、有機過酸化物(架橋剤)と、必要に応じて、シランカップリング剤、ヒンダードアミン系光安定化剤、紫外線吸収剤、架橋助剤、酸化防止剤等の添加剤を予めドライブレンドしてT−ダイ押出機のホッパーから供給し、シート状に押出成形することによって得ることができる。勿論、これらドライブレンドに際して、一部又は全部の添加剤は、マスターバッチの形で使用することができる。また、T−ダイ押出やカレンダー成形において、予めエチレン・α−オレフィン系共重合体およびエチレン−官能基含有モノマー共重合体からなる樹脂成分に、有機過酸化物(架橋剤)など一部又は全部の添加剤を配合し、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することもできる。   The solar cell sealing material according to the present invention is usually used in the form of a sheet having a thickness of about 0.1 to 1 mm. The sheet-like solar cell encapsulant can be produced by a known sheet molding method using a T-die extruder, a calendar molding machine, or the like. For example, a resin component consisting of an ethylene / α-olefin copolymer and an ethylene-functional group-containing monomer copolymer, an organic peroxide (crosslinking agent), and if necessary, a silane coupling agent, a hindered amine-based light stabilization Additives such as an agent, an ultraviolet absorber, a crosslinking aid, and an antioxidant can be obtained by dry blending in advance, supplying from a hopper of a T-die extruder, and extruding into a sheet. Of course, in these dry blends, some or all of the additives can be used in the form of a masterbatch. In addition, in T-die extrusion and calendar molding, a resin component consisting of an ethylene / α-olefin copolymer and an ethylene-functional group-containing monomer copolymer in advance or in part or all of an organic peroxide (crosslinking agent) It is also possible to use a resin composition obtained by blending these additives and melt-mixing them using a single screw extruder, twin screw extruder, Banbury mixer, kneader or the like.

太陽電池モジュールの製造に当たっては、本発明に係る封止材のシートを予め作っておき、封止材が溶融する温度で圧着するという方法によって、すでに述べたような構成のモジュールを形成することができる。また、本発明に係る封止材を押出コーティングすることによって、太陽電池素子や上部保護材あるいは下部保護材と積層する方法を採用すれば、わざわざシート成形することなく一段階で太陽電池モジュールを製造することが可能である。したがって、本発明に係る封止材を使用すれば、モジュールの生産性を格段に改良することができる。   In manufacturing a solar cell module, a sheet having a configuration as described above can be formed by a method in which a sheet of a sealing material according to the present invention is prepared in advance and pressure-bonded at a temperature at which the sealing material melts. it can. In addition, if a method of laminating with the solar cell element, the upper protective material or the lower protective material is adopted by extrusion coating the sealing material according to the present invention, a solar cell module is manufactured in one step without bothering to form a sheet. Is possible. Therefore, if the sealing material according to the present invention is used, the productivity of the module can be remarkably improved.

本発明では、封止材に有機過酸化物(架橋剤)を配合しているので、まず有機過酸化物が実質的に分解せず、かつ本発明の封止材が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着とエチレン・α−オレフィン共重合体およびエチレン−官能基含有モノマー共重合体の架橋を行えばよい。   In the present invention, since the organic peroxide (crosslinking agent) is blended in the sealing material, first, the organic peroxide is not substantially decomposed and at a temperature at which the sealing material of the present invention melts. Then, the sealing material may be temporarily bonded to the solar cell element or the protective material, and then the temperature is raised to sufficiently bond and crosslink the ethylene / α-olefin copolymer and the ethylene-functional group-containing monomer copolymer. .

なお、前記特許文献2では、非晶質又は低結晶性エチレン・ブテン共重合体100重量部に、有機過酸化物として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンを1.5重量部、および架橋助剤としてトリアリルイソシアヌレートを2重量部混合した混合物を、異型押出機を用いて加工温度100℃で厚み0.5mmのシートを作製している(実施例3)。しかしながら、このような組成物の選択では、加工温度が低いため十分な生産性が得られず、エチレン−官能基含有モノマー共重合体が含まれていないので透明性や接着性を改善することもできない。   In Patent Document 2, 100 parts by weight of an amorphous or low crystalline ethylene / butene copolymer is added to 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as an organic peroxide. A sheet having a processing temperature of 100 ° C. and a thickness of 0.5 mm is prepared from a mixture obtained by mixing 1.5 parts by weight of the mixture and 2 parts by weight of triallyl isocyanurate as a crosslinking aid (Example) 3). However, in selecting such a composition, sufficient productivity cannot be obtained because the processing temperature is low, and the transparency and adhesion can be improved because the ethylene-functional group-containing monomer copolymer is not included. Can not.

以下、本発明を実施例によって、具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The evaluation methods and resins used in the examples and comparative examples are as follows.

1.樹脂物性の評価方法
(1)メルトフローレート(MFR):エチレン・α−オレフィン共重合体およびエチレン−官能基含有モノマー共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)密度:前述の通り、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(23℃、低密度ポリエチレンの場合)に準拠して測定した。
(3)Mz/Mn:前述の通り、GPCにより測定した。
(4)溶融粘度:JIS−K−7199−1999に準拠して、東洋精機製作所製キャピログラフ1−Bを用い、設定温度:100℃、D=1mm、L/D=10のキャピラリーを用いて、せん断速度2.43×10s−1での溶融粘度(η )、せん断速度2.43×10−1での溶融粘度(η )を測定した。
(5)分岐数:ポリマー中の分岐数(N)は、NMRにより次の条件で測定し、コモノマー量は、主鎖及び側鎖の合計1000個の炭素あたりの個数で求めた。
装置 : ブルカー・バイオスピン(株) AVANCE III cryo−400MHz
溶媒 : o−ジクロロベンゼン/重化ブロモベンゼン = 8/2混合溶液
<試料量>
460mg/2.3ml
<C−NMR>
・Hデカップル、NOEあり
・積算回数:256scan
・フリップ角:90°
・パルス間隔20秒
・AQ(取り込み時間)=5.45s D1(待ち時間)=14.55s
(6)FR:JIS−K7210−1999に準拠し、190℃、10kg荷重の条件下で測定したMFR(I10)と、190℃、2.16kg荷重の条件下で測定したMFR(I2.16)との比(I10/I2.16)を計算し、FRとした。
1. Evaluation method of resin physical properties (1) Melt flow rate (MFR): MFR of ethylene / α-olefin copolymer and ethylene-functional group-containing monomer copolymer is JIS-K6922-2: 1997 appendix (190 ° C., 21.18N load).
(2) Density: As described above, the density of the ethylene / α-olefin copolymer was measured according to JIS-K6922-2: 1997 appendix (23 ° C., in the case of low density polyethylene).
(3) Mz / Mn: Measured by GPC as described above.
(4) Melt viscosity: In accordance with JIS-K-7199-1999, using Capillograph 1-B manufactured by Toyo Seiki Seisakusho, using a capillary with set temperature: 100 ° C., D = 1 mm, L / D = 10, melt viscosity at a shear rate of 2.43 × 10s -1 (η * 1 ), the melt viscosity was measured at a shear rate of 2.43 × 10 2 s -1 (η * 2).
(5) Number of branches: The number of branches (N) in the polymer was measured by NMR under the following conditions, and the amount of comonomer was determined by the number of main chains and side chains per 1000 carbons in total.
Equipment: Bruker BioSpin Corporation AVANCE III cryo-400MHz
Solvent: o-dichlorobenzene / deuterated bromobenzene = 8/2 mixed solution <sample amount>
460mg / 2.3ml
<C-NMR>
・ With H decouple and NOE ・ Accumulation count: 256scan
・ Flip angle: 90 °
・ Pulse interval 20 seconds ・ AQ (acquisition time) = 5.45 s D1 (waiting time) = 14.55 s
(6) FR: Based on JIS-K7210-1999, MFR (I 10 ) measured under conditions of 190 ° C. and 10 kg load, and MFR (I 2.) measured under conditions of 190 ° C. and 2.16 kg load . 16 ) and the ratio (I 10 / I 2.16 ) was calculated as FR.

2.シートの評価方法
(1)HAZE
厚み0.7mmのプレスシートを用いて、JIS−K7136−2000に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、150℃の条件で熱プレス機に30分間保管し、架橋させ準備した。HAZE値は、小さいほど良い。
(2)耐熱性
160℃で30分架橋したシート及び150℃で30分架橋したシートのゲル分率で評価した。ゲル分率が高いほど架橋が進行しており、耐熱性が高いと評価できる。ゲル分率が70wt%以上のものを、耐熱性評価「○」とした。尚、ゲル分率は、当該シートを、約1gを切り取り精秤して、キシレン100ccに浸漬し110℃で24時間処理し、ろ過後残渣を乾燥し精秤して、処理前の重量で割りゲル分率を算出する。
(3)ガラスとの接着性
縦7.6cm×横2.6cm×厚み1mmのスライドガラスを用いた。樹脂組成物とスライドガラスを接触させ、150℃で30分の条件でプレス機を用いて加熱を行い、スライドガラス上に厚み1mmのシートを形成させた。23℃雰囲気下に、24時間放置後、ガラスから樹脂を手で剥がせる場合を「×」、剥がせない場合を「○」として評価を行った。
2. Sheet evaluation method (1) HAZE
It measured based on JIS-K7136-2000 using the press sheet of thickness 0.7mm. The press sheet piece was set in a glass cell containing special liquid paraffin made by Kanto Chemical Co., Ltd. and measured. The press sheet was stored in a hot press machine at 150 ° C. for 30 minutes, and prepared by crosslinking. The smaller the HAZE value, the better.
(2) Heat resistance It evaluated by the gel fraction of the sheet | seat bridge | crosslinked for 30 minutes at 160 degreeC and the sheet | seat bridge | crosslinked for 30 minutes at 150 degreeC. It can be evaluated that the higher the gel fraction, the more the crosslinking proceeds and the higher the heat resistance. A gel fraction having a gel fraction of 70 wt% or more was designated as a heat resistance evaluation “◯”. As for the gel fraction, about 1 g of the sheet is cut out and weighed accurately, immersed in 100 cc of xylene, treated at 110 ° C. for 24 hours, the residue after filtration is dried and weighed, and divided by the weight before treatment. Calculate the gel fraction.
(3) Adhesiveness with glass A slide glass having a length of 7.6 cm, a width of 2.6 cm and a thickness of 1 mm was used. The resin composition was brought into contact with the slide glass and heated at 150 ° C. for 30 minutes using a press to form a 1 mm thick sheet on the slide glass. The evaluation was made with “x” when the resin could be peeled off from the glass by hand in a 23 ° C. atmosphere for 24 hours, and “◯” when it could not be peeled off.

3.使用原料
(1) エチレン・α−オレフィン共重合体
下記の<製造例1>で重合したエチレンと1−ヘキセンの共重合体(PE−1)、<製造例2>で重合したエチレンと1−ブテンの共重合体(PE−2)、及び市販のエチレン・α−オレフィン共重合体(PE−3)を用いた。物性を表1に示す。
(2)成分(B): エチレン−酢酸ビニル共重合体
高圧ラジカル重合法によるエチレン−酢酸ビニル共重合体(EVA−1、EVA−2)である。物性を表1に示す。
(3)有機過酸化物
アルケマ吉富社製、ルペロックス(登録商標)TBEC(t−ブチルパーオキシ−2−エチルヘキシルカーボネート)
(4)シランカップリング剤
信越化学工業社製、KBM503(γ−メタクリロキシプロピルトリメトキシシラン)
3. Raw Material Used (1) Ethylene / α-Olefin Copolymer Ethylene and 1-hexene copolymer (PE-1) polymerized in <Production Example 1> below, ethylene polymerized in <Production Example 2> and 1- A butene copolymer (PE-2) and a commercially available ethylene / α-olefin copolymer (PE-3) were used. The physical properties are shown in Table 1.
(2) Component (B): Ethylene-vinyl acetate copolymer Ethylene-vinyl acetate copolymer (EVA-1, EVA-2) obtained by a high pressure radical polymerization method. The physical properties are shown in Table 1.
(3) Organic peroxide, Arkema Yoshitomi, Luperox (registered trademark) TBEC (t-butylperoxy-2-ethylhexyl carbonate)
(4) Silane coupling agent, Shin-Etsu Chemical Co., Ltd. KBM503 (γ-methacryloxypropyltrimethoxysilane)

<製造例1>
(i)触媒の調製
触媒は、特表平7−508545号公報に記載された方法で調製した。即ち、2.0mモルの錯体ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ハフニウムジメチルに対して、トリペンタフルオロフェニルホウ素を等モル加え、トルエンで10リットルに希釈して触媒溶液を調製した。
<Production Example 1>
(I) Preparation of catalyst The catalyst was prepared by the method described in JP-T-7-508545. That is, 2.0 mol of the complex dimethylsilylene bis (4,5,6,7-tetrahydroindenyl) hafnium dimethyl was added with an equimolar amount of tripentafluorophenyl boron and diluted to 10 liters with toluene to obtain a catalyst solution. Was prepared.

(ii)重合
内容積1.5リットルの撹拌式オートクレーブ型連続反応器を用い、反応器内の圧力を130MPaに保ち、エチレンと1−ヘキセンとの混合物を1−ヘキセンの組成が75重量%となるように40kg/時の割合で原料ガスを連続的に供給した。また、上記触媒溶液を連続的に供給し、重合温度が150℃を維持するように、その供給量を調整した。1時間あたりのポリマー生産量は約4.3kgであった。反応終了後、1−ヘキセン含有量=24重量%、MFR=35g/10分、密度=0.880g/cm、Mz/Mn=3.7であるエチレン・1−ヘキセン共重合体(PE−1)を得た。このエチレン・1−ヘキセン共重合体(PE−1)の特性を表1に示す。
(Ii) Polymerization Using a stirred autoclave type continuous reactor having an internal volume of 1.5 liters, maintaining the pressure in the reactor at 130 MPa, a mixture of ethylene and 1-hexene has a composition of 1-hexene of 75% by weight. The raw material gas was continuously supplied at a rate of 40 kg / hour. The catalyst solution was continuously supplied, and the supply amount was adjusted so that the polymerization temperature was maintained at 150 ° C. The polymer production per hour was about 4.3 kg. After completion of the reaction, an ethylene / 1-hexene copolymer (PE-) having 1-hexene content = 24% by weight, MFR = 35 g / 10 minutes, density = 0.880 g / cm 3 , and Mz / Mn = 3.7 1) was obtained. The characteristics of this ethylene / 1-hexene copolymer (PE-1) are shown in Table 1.

<製造例2>
表1に示す組成、密度、および溶融粘度となるように、製造例1における重合時のモノマー組成、重合温度を変更して重合を行った。反応終了後、1−ブテン含有量=35重量%、MFR=33g/10分、密度=0.870g/cm、Mz/Mn=3.5であるエチレン・1−ブテン共重合体(PE−2)を得た。このエチレン・1−ブテン共重合体(PE−2)の特性を表1に示す。
<Production Example 2>
Polymerization was carried out by changing the monomer composition and polymerization temperature during polymerization in Production Example 1 so that the composition, density, and melt viscosity shown in Table 1 were obtained. After completion of the reaction, an ethylene / 1-butene copolymer (PE-) having 1-butene content = 35 wt%, MFR = 33 g / 10 min, density = 0.870 g / cm 3 , and Mz / Mn = 3.5. 2) was obtained. The characteristics of this ethylene / 1-butene copolymer (PE-2) are shown in Table 1.

Figure 0005636221
Figure 0005636221

(実施例1)
エチレンと1−ヘキセンの共重合体(PE−1)99重量%、エチレン−酢酸ビニル共重合体(EVA−1)1重量%の合計量100重量部に対して、有機過酸化物として、t−ブチルパーオキシ−2−エチルヘキシルカーボネート(アルケマ吉富社製、ルペロックス(登録商標)TBEC)を1.5重量部と、シランカップリング剤として、γ−メタクリロキシプロピルトリメトキシシランを0.1重量部配合した。これを十分に混合し、40mmφ単軸押出機を用いて設定温度100℃、押出量(17kg/時)の条件でペレット化した。
得られたペレットを、150℃−0kg/cmの条件で、3分予熱した後、150℃−100kg/cmの条件で27分加圧(150℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを作製した。シートのHAZE、耐熱性、接着性(ガラス)を測定、評価した。
さらに、別に耐熱性評価用に、160℃−0kg/cmの条件で、3分予熱した後、160℃−100kg/cmの条件で27分加圧(160℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを準備した。
評価結果を表2に示す。
Example 1
As an organic peroxide, 100 wt parts of a total amount of 99 wt% of ethylene and 1-hexene copolymer (PE-1) and 1 wt% of ethylene-vinyl acetate copolymer (EVA-1), t -1.5 parts by weight of butyl peroxy-2-ethylhexyl carbonate (manufactured by Arkema Yoshitomi, Luperox (registered trademark) TBEC) and 0.1 parts by weight of γ-methacryloxypropyltrimethoxysilane as a silane coupling agent Blended. This was sufficiently mixed and pelletized using a 40 mmφ single screw extruder under the conditions of a set temperature of 100 ° C. and an extrusion rate (17 kg / hour).
The resulting pellet, in the conditions of 150 ℃ -0kg / cm 2, after 3 minutes preheat, 150 ℃ -100kg / cm (30 minutes press molding at 0.99 ° C.) 27 minutes pressurization at 2 conditions, and then, A sheet having a thickness of 0.7 mm was produced by cooling for 10 minutes in a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 . The sheet HAZE, heat resistance, and adhesion (glass) were measured and evaluated.
Further, separately for evaluation of heat resistance, under the condition of 160 ℃ -0kg / cm 2, after 3 minutes preheat, 160 ℃ -100kg / cm (30 minutes press molding at 160 ° C.) in 27 min pressurized second condition and Then, a sheet having a thickness of 0.7 mm was prepared by cooling for 10 minutes on a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 .
The evaluation results are shown in Table 2.

(実施例2)
実施例1において、エチレンと1−ヘキセンの共重合体(PE−1)に替えてエチレンと1−ブテンの共重合体(PE−2)を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、耐熱性、接着性(対ガラス)を測定、評価を行った。評価結果を表2に示す。
(Example 2)
In Example 1, a sheet was prepared in the same manner as in Example 1 except that a copolymer of ethylene and 1-butene (PE-2) was used instead of the copolymer of ethylene and 1-hexene (PE-1). Produced. The sheet was evaluated for HAZE, heat resistance, and adhesion (to glass). The evaluation results are shown in Table 2.

(実施例3)
実施例2において、エチレンと1−ヘキセンの共重合体(PE−2)の量を95重量%とし、エチレン酢酸ビニル共重合体(EVA−1)の量を5重量%とした以外は、同様にしてシートを作製した。シートのHAZE、耐熱性、接着性(対ガラス)を測定、評価を行った。評価結果を表2に示す。
Example 3
In Example 2, the same except that the amount of the copolymer of ethylene and 1-hexene (PE-2) was 95% by weight and the amount of the ethylene vinyl acetate copolymer (EVA-1) was 5% by weight. Thus, a sheet was produced. The sheet was evaluated for HAZE, heat resistance, and adhesion (to glass). The evaluation results are shown in Table 2.

(実施例4)
実施例2において、エチレン酢酸ビニル共重合体(EVA−1)をエチレン酢酸ビニル共重合体(PE−2)に替えた以外は、同様にしてシートを作製した。シートのHAZE、耐熱性、接着性(対ガラス)を測定、評価を行った。評価結果を表2に示す。
Example 4
A sheet was produced in the same manner as in Example 2, except that the ethylene vinyl acetate copolymer (EVA-1) was changed to the ethylene vinyl acetate copolymer (PE-2). The sheet was evaluated for HAZE, heat resistance, and adhesion (to glass). The evaluation results are shown in Table 2.

(実施例5)
実施例4において、エチレンと1−ブテンの共重合体(PE−2)の量を95重量%とし、エチレン−酢酸ビニル共重合体(EVA−2)の量を5重量%とした以外は、同様にしてシートを作製した。シートのHAZE、耐熱性、接着性(対ガラス)を測定、評価を行った。評価結果を表2に示す。
(Example 5)
In Example 4, except that the amount of the copolymer of ethylene and 1-butene (PE-2) was 95% by weight and the amount of the ethylene-vinyl acetate copolymer (EVA-2) was 5% by weight, A sheet was produced in the same manner. The sheet was evaluated for HAZE, heat resistance, and adhesion (to glass). The evaluation results are shown in Table 2.

(実施例6)
実施例1において、エチレンと1−ヘキセンの共重合体(PE−1)に替えて、エチレンと1−オクテンの共重合体(PE−3)を用いた以外は、同様にしてシートを作製した。シートのHAZE、耐熱性、接着性(対ガラス)を測定、評価を行った。
評価結果を表2に示す。但し、この実施例6は参考例である。
(Example 6)
In Example 1, a sheet was produced in the same manner except that a copolymer of ethylene and 1-octene (PE-3) was used instead of the copolymer of ethylene and 1-hexene (PE-1). . The sheet was evaluated for HAZE, heat resistance, and adhesion (to glass).
The evaluation results are shown in Table 2. However, Example 6 is a reference example.

(比較例1)
実施例1において、エチレンと1−ヘキセンの共重合体(PE−1)の量を65重量%に変更し、エチレン−酢酸ビニル共重合体(EVA−1)の量を35重量%に変更したこと以外は、実施例1と同様にシートを作製した。シートのHAZE、耐熱性、接着性を測定、評価を行った。評価結果を表2に示す。透明性が悪い結果となった。
(Comparative Example 1)
In Example 1, the amount of the copolymer of ethylene and 1-hexene (PE-1) was changed to 65% by weight, and the amount of the ethylene-vinyl acetate copolymer (EVA-1) was changed to 35% by weight. A sheet was produced in the same manner as in Example 1 except that. The sheet was evaluated for HAZE, heat resistance, and adhesiveness. The evaluation results are shown in Table 2. The result was poor transparency.

(比較例2)
実施例4において、エチレンと1−ブテンの共重合体(PE−2)の量を65重量%に変更し、エチレン−酢酸ビニル共重合体(EVA−2)を35重量%に変更したこと以外は、実施例1と同様にシートを作製した。シートのHAZE、耐熱性、接着性を測定、評価を行った。評価結果を表2に示す。透明性が悪い結果となった。
(Comparative Example 2)
In Example 4, the amount of the copolymer of ethylene and 1-butene (PE-2) was changed to 65% by weight, and the ethylene-vinyl acetate copolymer (EVA-2) was changed to 35% by weight. Produced a sheet in the same manner as in Example 1. The sheet was evaluated for HAZE, heat resistance, and adhesiveness. The evaluation results are shown in Table 2. The result was poor transparency.

(比較例3)
樹脂成分として、エチレンと1−ヘキセンの共重合体(PE−1)のみを用い、エチレン−酢酸ビニル共重合体(EVA−1)を用いずに、実施例1と同様にシートを作製した。シートのHAZE、耐熱性、接着性を測定、評価を行った。評価結果を表2に示す。透明性が悪い結果となった。
(Comparative Example 3)
As the resin component, only a copolymer of ethylene and 1-hexene (PE-1) was used, and a sheet was prepared in the same manner as in Example 1 without using the ethylene-vinyl acetate copolymer (EVA-1). The sheet was evaluated for HAZE, heat resistance, and adhesiveness. The evaluation results are shown in Table 2. The result was poor transparency.

Figure 0005636221
Figure 0005636221

「評価」
この結果、表2から明らかなように、実施例1〜6(但し、実施例6は参考例)では、本発明のエチレン・α−オレフィン共重合体(A)、エチレン−官能基含有モノマー共重合体(B)、有機過酸化物(C)及びシランカップリング剤を含んだ樹脂組成物を用いているために、これを押出成形して得られたシートは、HAZEが小さく透明性に優れ、耐熱性、柔軟性、ガラスに対する接着性、耐候性も優れており、生産性も向上している。
実施例6(参考例)では、エチレン・α−オレフィン共重合体(A)が式(a)を充足しないために、150℃で30分架橋したシートの耐熱性が劣る結果となっているが、透明性、柔軟性、ガラスに対する接着性、耐候性も優れており、生産性も向上している。
これに対して、本発明とは異なり、比較例1、2では、実施例1において、エチレンと1−ヘキセンの共重合体の量を減らして65重量%とし、エチレン−酢酸ビニル共重合体の量を増やして35重量%にしたので、透明性が悪い結果となった。
比較例3では、樹脂成分としてエチレンと1−ヘキセンの共重合体(PE−1)のみを用いたので、透明性が悪い結果となった。
"Evaluation"
As a result, as is clear from Table 2, in Examples 1 to 6 (Example 6 is a reference example) , the ethylene / α-olefin copolymer (A) of the present invention, the ethylene-functional group-containing monomer copolymer Since the resin composition containing the polymer (B), the organic peroxide (C), and the silane coupling agent is used, the sheet obtained by extrusion molding has small HAZE and excellent transparency. Also, heat resistance, flexibility, adhesion to glass, weather resistance are excellent, and productivity is improved.
In Example 6 (Reference Example) , since the ethylene / α-olefin copolymer (A) does not satisfy the formula (a), the heat resistance of the sheet crosslinked at 150 ° C. for 30 minutes is inferior. In addition, transparency, flexibility, adhesion to glass, weather resistance are excellent, and productivity is improved.
On the other hand, unlike the present invention, in Comparative Examples 1 and 2, the amount of the copolymer of ethylene and 1-hexene was reduced to 65% by weight in Example 1 to obtain an ethylene-vinyl acetate copolymer. Since the amount was increased to 35% by weight, the transparency was poor.
In Comparative Example 3, since only the copolymer of ethylene and 1-hexene (PE-1) was used as a resin component, the result was poor in transparency.

本発明の太陽電池封止材用樹脂組成物は、透明性に優れており、柔軟性、耐熱性、耐候性、接着性等が要求される太陽電池の封止材として利用される。柔軟性が高いことから、基板としてフレキシブルなフィルムを用いた太陽電池の封止材として有用である。またガラスとの接着性が高いことから、基板としてガラス板を用いた太陽電池の封止材としても有用である。   The resin composition for a solar cell encapsulant of the present invention is excellent in transparency and is used as a encapsulant for a solar cell that requires flexibility, heat resistance, weather resistance, adhesion, and the like. Because of its high flexibility, it is useful as a sealing material for solar cells using a flexible film as a substrate. Moreover, since the adhesiveness with glass is high, it is also useful as a sealing material for solar cells using a glass plate as a substrate.

Claims (7)

下記の成分(A)70〜99重量%、及び成分(B)30〜1重量%からなる樹脂成分100重量部に対して、成分(C)を0.2〜5重量部、成分(D)を0.01〜5重量部含有することを特徴とする太陽電池封止材用樹脂組成物。
成分(A):下記(a1)及び(a5)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a5)ポリマー中のコモノマーによる分岐数(N)が下記式(a)を満たす。
式(a): N ≧ −0.67×E+53
(ただし、Nは、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの分岐数であり、Eは、ISO1184−1983に準拠して測定した、シートの引張弾性率である。)
成分(B):エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル多元共重合体、又はエチレン−(メタ)アクリル酸多元共重合体から選ばれる一種以上のエチレン−官能基含有モノマー共重合体
成分(C):有機過酸化物
成分(D):シランカップリング剤
0.2-5 parts by weight of component (C) and component (D) with respect to 100 parts by weight of resin component consisting of 70-99% by weight of the following component (A) and 30-1% by weight of component (B ) 0.01 to 5 parts by weight of a resin composition for a solar cell encapsulant.
Component (A): ethylene / α-olefin copolymer (a1) having the following characteristics (a1) and (a5 ): Density of 0.860 to 0.920 g / cm 3
(A5) The number of branches (N) due to the comonomer in the polymer satisfies the following formula (a).
Formula (a): N ≧ −0.67 × E + 53
(However, N is the number of branches per 1000 carbon atoms in total of the main chain and side chain measured by NMR, and E is the tensile modulus of the sheet measured in accordance with ISO 1184-1983.) )
Component (B): ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester multi-component copolymer, or One or more ethylene-functional group-containing monomer copolymers selected from ethylene- (meth) acrylic acid multi- component copolymers Component (C): Organic peroxide
Component (D): Silane coupling agent
成分(A)が、さらに下記(a2)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物。
(a2)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
The resin composition for a solar cell encapsulant according to claim 1, wherein the component (A) is an ethylene / α-olefin copolymer further having the following property (a2).
(A2) The ratio (Mz / Mn) of Z average molecular weight (Mz) and number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8.0 or less.
成分(A)が、さらに下記(a3)〜(a4)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする請求項1または2に記載の太陽電池封止材用樹脂組成物。
(a3)100℃で測定した、せん断速度が2.43×10s−1での溶融粘度(η )が9.0×10poise以下
(a4)100℃で測定した、せん断速度が2.43×10−1での溶融粘度(η )が1.8×10poise以下
The component (A) is an ethylene / α-olefin copolymer further having the following properties (a3) to (a4): The resin composition for a solar cell encapsulant according to claim 1 or 2 object.
(A3) The melt viscosity (η * 1 ) at a shear rate of 2.43 × 10 s −1 measured at 100 ° C. is 9.0 × 10 4 poise or less (a4) The shear rate measured at 100 ° C. is 2 The melt viscosity (η * 2 ) at .43 × 10 2 s −1 is 1.8 × 10 4 poise or less.
成分(A)は、溶融粘度(η )と溶融粘度(η )との比、(η /η )が4.5以下であることを特徴とする請求項3に記載の太陽電池封止材用樹脂組成物。 The component (A) has a ratio of melt viscosity (η * 1 ) to melt viscosity (η * 2 ), and (η * 1 / η * 2 ) is 4.5 or less. The resin composition for solar cell sealing materials of description. 成分(A)が、さらに下記(a6)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする請求項1〜のいずれかに記載の太陽電池封止材用樹脂組成物。
(6)フローレシオ(FR):190℃における10kg荷重でのMFR測定値であるI10と、190℃における2.16kg荷重でのMFR測定値であるI2.16との比(I10/I2.16)が7.0未満
The resin composition for a solar cell encapsulant according to any one of claims 1 to 4 , wherein the component (A) is an ethylene / α-olefin copolymer further having the following property (a6): .
(6) Flow ratio (FR): Ratio of I10, which is an MFR measurement value at 190 ° C. under a 10 kg load, to I 2.16 , which is an MFR measurement value at 190 ° C. under a 2.16 kg load (I 10 / I 2.16 ) is less than 7.0
成分(B)が、下記(b1)の特性を有するエチレン−酢酸ビニル共重合体であることを特徴とする請求項1〜5のいずれかに記載の太陽電池封止材用樹脂組成物。
(b1)酢酸ビニル含有量が、20〜40重量%
The component (B) is an ethylene-vinyl acetate copolymer having the following properties (b1): The resin composition for a solar cell encapsulant according to any one of claims 1 to 5 .
(B1) Vinyl acetate content is 20 to 40% by weight
成分(A)は、エチレン・1−ブテン共重合体又はエチレン・1−ヘキセン共重合体であることを特徴とする請求項1〜のいずれかに記載の太陽電池封止材用樹脂組成物。 The component (A) is an ethylene / 1-butene copolymer or an ethylene / 1-hexene copolymer, and the resin composition for a solar cell encapsulant according to any one of claims 1 to 6 . .
JP2010168077A 2009-12-28 2010-07-27 Resin composition for solar cell encapsulant Active JP5636221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168077A JP5636221B2 (en) 2009-12-28 2010-07-27 Resin composition for solar cell encapsulant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009297500 2009-12-28
JP2009297500 2009-12-28
JP2010168077A JP5636221B2 (en) 2009-12-28 2010-07-27 Resin composition for solar cell encapsulant

Publications (2)

Publication Number Publication Date
JP2011153286A JP2011153286A (en) 2011-08-11
JP5636221B2 true JP5636221B2 (en) 2014-12-03

Family

ID=44539473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168077A Active JP5636221B2 (en) 2009-12-28 2010-07-27 Resin composition for solar cell encapsulant

Country Status (1)

Country Link
JP (1) JP5636221B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555554B2 (en) * 2009-12-28 2014-07-23 日本ポリエチレン株式会社 Resin composition for solar cell encapsulant
KR101349450B1 (en) 2011-11-28 2014-01-10 롯데케미칼 주식회사 Resin compositions for encapsulating material of photovoltaic cell
US9193854B2 (en) 2012-01-05 2015-11-24 Mitsui Chemicals Tohcello, Inc. Encapsulating material for solar cell and solar cell module
CN104081540B (en) * 2012-01-27 2016-11-23 株式会社普利司通 Sealing films for solar cell and the solaode using it
ES2620903T3 (en) * 2012-01-27 2017-06-30 Bridgestone Corporation Sealant film for solar cells and solar cell that uses it
SG11201405269UA (en) 2012-02-29 2014-11-27 Mitsui Chemicals Tohcello Inc Sheet set for encapsulating solar battery
JP5798640B2 (en) * 2012-10-19 2015-10-21 ダイセルポリマー株式会社 Cellulose ester composition
JP6117582B2 (en) * 2013-03-25 2017-04-19 三井・デュポンポリケミカル株式会社 Solar cell encapsulant sheet and solar cell module
JP2016072561A (en) * 2014-10-01 2016-05-09 凸版印刷株式会社 Sealant for solar battery and solar battery module
CN115368831B (en) * 2021-05-18 2024-02-20 杭州福斯特应用材料股份有限公司 Packaging adhesive film and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581094B2 (en) * 2006-09-20 2013-11-12 Dow Global Technologies, Llc Electronic device module comprising polyolefin copolymer
JP5119142B2 (en) * 2008-12-26 2013-01-16 日本ポリエチレン株式会社 Solar cell encapsulant
JP5542503B2 (en) * 2009-03-31 2014-07-09 日本ポリエチレン株式会社 Resin composition for solar cell encapsulant

Also Published As

Publication number Publication date
JP2011153286A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5688441B2 (en) Resin composition for solar cell encapsulant
JP5636221B2 (en) Resin composition for solar cell encapsulant
JP5539063B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
WO2010114028A1 (en) Resin composition for solar cell sealing material, solar cell sealing material, and solar cell module using the material
JP6428199B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
WO2011162324A1 (en) Resin composition for solar cell sealing material, and solar cell sealing material and solar cell module using same
JP5800053B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5417534B2 (en) Solar cell encapsulant and solar cell module using the same
JP6269329B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5519409B2 (en) Resin sheet for solar cell encapsulant
JP5555554B2 (en) Resin composition for solar cell encapsulant
JP2013139558A (en) Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same
JP5821341B2 (en) Resin composition for solar cell encapsulant and solar cell encapsulant using the same
JP5542503B2 (en) Resin composition for solar cell encapsulant
JP5560099B2 (en) Resin composition for solar cell encapsulant
JP2017110221A (en) Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
JP5539064B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5861508B2 (en) Olefin resin pellet body, sheet or film, solar cell sealing material using the same, and solar cell module
JP5862084B2 (en) Resin composition for solar cell encapsulant, solar cell encapsulant, and solar cell module using the same
JP5530828B2 (en) Method for producing resin composition for solar cell encapsulant
JP5824902B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP5519428B2 (en) Resin composition for solar cell encapsulant
JP5542566B2 (en) Resin composition for solar cell encapsulant
JP5800054B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP2013008980A (en) Solar cell sealing material and solar cell module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250