JP5636215B2 - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP5636215B2
JP5636215B2 JP2010134100A JP2010134100A JP5636215B2 JP 5636215 B2 JP5636215 B2 JP 5636215B2 JP 2010134100 A JP2010134100 A JP 2010134100A JP 2010134100 A JP2010134100 A JP 2010134100A JP 5636215 B2 JP5636215 B2 JP 5636215B2
Authority
JP
Japan
Prior art keywords
heat exchange
tube
refrigerant
compartment
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010134100A
Other languages
Japanese (ja)
Other versions
JP2011257111A5 (en
JP2011257111A (en
Inventor
直久 東山
直久 東山
基之 ▲高▼木
基之 ▲高▼木
鴨志田 理
理 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2010134100A priority Critical patent/JP5636215B2/en
Priority to US13/067,399 priority patent/US10047984B2/en
Priority to CN2011201991978U priority patent/CN202188700U/en
Priority to CN201110158833.7A priority patent/CN102287970B/en
Publication of JP2011257111A publication Critical patent/JP2011257111A/en
Publication of JP2011257111A5 publication Critical patent/JP2011257111A5/ja
Application granted granted Critical
Publication of JP5636215B2 publication Critical patent/JP5636215B2/en
Priority to US15/963,998 priority patent/US10393416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、たとえば自動車に搭載される冷凍サイクルであるカーエアコンに好適に使用されるエバポレータに関する。   The present invention relates to an evaporator suitably used for a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.

この明細書および特許請求の範囲において、図2および図3の上下を上下というものとする。   In this specification and claims, the top and bottom of FIGS. 2 and 3 are referred to as top and bottom.

この種のエバポレータとして、上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、風下側チューブ列の一端側から他端側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、風上側チューブ列の上記他端側から上記一端側に向かって並んで設けられ、第1チューブ群が、冷媒が熱交換チューブ内を上から下に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を下から上に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を上から下に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を下から上に流れる第4パスとなっており、第4パスを構成する熱交換チューブの冷媒通路の総通路断面積が、第3パスを構成する熱交換チューブの冷媒通路の総通路断面積と等しく、第3パスを構成する風下側の第3チューブ群の熱交換チューブの冷媒通路の総通路断面積と、第3パスを構成する風上側の第4チューブ群の熱交換チューブの冷媒通路の総通路断面積とが等しくなっているとともに、第3および第4チューブ群の熱交換チューブの冷媒通路の総通路断面積が、それぞれ第2パスを構成する熱交換チューブの冷媒通路の総通路断面積と等しく、風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられており、風下側の上ヘッダ部に、第1チューブ群の熱交換チューブが通じる第1区画と、第2および第3チューブ群の熱交換チューブが通じる第2区画とが設けられ、風下側の下ヘッダ部に、第1および第2チューブ群の熱交換チューブが通じる第3区画と、第3チューブ群の熱交換チューブが通じる第4区画とが設けられ、風上側の上ヘッダ部に、第4チューブ群の熱交換チューブが通じる第5区画と、第5チューブ群の熱交換チューブが通じる第6区画とが設けられ、風上側の下ヘッダ部に、第4チューブ群の熱交換チューブが通じる第7区画と、第5チューブ群の熱交換チューブが通じる第8区画とが設けられ、第1区画に冷媒入口が設けられるとともに、第6区画に冷媒出口が設けられ、第2区画と第5区画、第4区画と第7区画、および第7区画と第8区画とがそれぞれ連通させられており、冷媒入口から第1区画内に流入した冷媒が、第2区画、第5区画、第7区画、および第8区画を経て第6区画に流入し、冷媒出口から流出するようになされているエバポレータが知られている(特許文献1参照)。   As this type of evaporator, two rows of tubes, each of which is composed of a plurality of heat exchange tubes arranged in the vertical direction and at intervals in a direction perpendicular to the ventilation direction, are provided side by side in the ventilation direction. The first to third tube groups composed of a plurality of heat exchange tubes are provided in the side tube row side by side from one end side to the other end side of the leeward tube row, and a plurality of heat is supplied to the windward tube row. A fourth and fifth tube group consisting of exchange tubes are provided side by side from the other end side of the windward tube row toward the one end side, and the first tube group is arranged so that the refrigerant passes through the heat exchange tube from above. The first pass flows down, the second tube group becomes the second pass through which the refrigerant flows from the bottom through the heat exchange tube, and the third and fourth tube groups pass through the heat exchange tube from the top to the bottom. The third path flows, the fifth tube group is a fourth path in which the refrigerant flows from the bottom to the top in the heat exchange tube, and the total passage cross-sectional area of the refrigerant path of the heat exchange tube constituting the fourth path is , The total passage cross-sectional area of the refrigerant passage of the heat exchange tube constituting the third path, the total passage cross-sectional area of the refrigerant passage of the heat exchange tube of the third tube group on the leeward side constituting the third path, and a third The total passage sectional area of the refrigerant passages of the heat exchange tubes of the third and fourth tube groups is equal to the total passage sectional area of the refrigerant passages of the heat exchange tubes of the fourth tube group on the windward side constituting the path. Are equal to the total passage cross-sectional area of the refrigerant passage of the heat exchange tube constituting the second path, and the upper and lower end portions of the heat exchange tubes of the leeward side and the windward side tube row are respectively the leeward side and the windward side upper and lower header portions. A first section through which the heat exchange tube of the first tube group communicates, and a second section through which the heat exchange tubes of the second and third tube groups communicate, are provided in the upper header part on the leeward side, The lower header section on the leeward side is provided with a third section through which the heat exchange tubes of the first and second tube groups communicate and a fourth section through which the heat exchange tube of the third tube group communicates, and the upper header section on the leeward side Are provided with a fifth section through which the heat exchange tube of the fourth tube group communicates and a sixth section through which the heat exchange tube of the fifth tube group communicates, and heat exchange of the fourth tube group at the lower header portion on the windward side A seventh compartment through which the tube communicates and an eighth compartment through which the heat exchange tube of the fifth tube group communicates are provided, a refrigerant inlet is provided in the first compartment, and a refrigerant outlet is provided in the sixth compartment. And 5th section, 4th section And the seventh compartment, and the seventh compartment and the eighth compartment are communicated with each other, and the refrigerant flowing into the first compartment from the refrigerant inlet is the second compartment, the fifth compartment, the seventh compartment, and the eighth compartment. An evaporator is known that flows into the sixth section through the section and flows out from the refrigerant outlet (see Patent Document 1).

特許文献1記載のエバポレータにおいては、スーパーヒート領域のある第4パスでの通路抵抗の増加を抑制することが可能になる。   In the evaporator described in Patent Document 1, it is possible to suppress an increase in passage resistance in the fourth pass having the superheat region.

しかしながら、特許文献1記載のエバポレータにおいては、第4パスの通路抵抗の増加を抑制することができるものの、第1パスおよび第2パスを構成する熱交換チューブの冷媒通路の総通路断面積が逆に小さくなるので、通路抵抗が増加し、相殺されるという問題がある。   However, in the evaporator described in Patent Document 1, although the increase in the passage resistance of the fourth pass can be suppressed, the total passage cross-sectional area of the refrigerant passage of the heat exchange tubes constituting the first pass and the second pass is reversed. Therefore, there is a problem that the passage resistance is increased and offset.

特開2009−156532号公報JP 2009-156532 A

この発明の目的は、上記問題を解決し、全体の通路抵抗の増加を抑制して性能を向上させ、温度分布を均一化しうるエバポレータを提供することにある。   An object of the present invention is to provide an evaporator capable of solving the above-described problems, improving the performance by suppressing an increase in the overall passage resistance, and making the temperature distribution uniform.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、熱交換チューブが複数の冷媒通路を有し、風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、風下側チューブ列の一端側から他端側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、風上側チューブ列の上記他端側から上記一端側に向かって並んで設けられ、第1チューブ群が、冷媒が熱交換チューブ内を上から下、または下から上に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっているエバポレータにおいて、
第1パスを構成する熱交換チューブの冷媒通路の総通路断面積をA、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積をB、第3パスを構成する熱交換チューブの冷媒通路の総通路断面積をC、第4パスを構成する熱交換チューブの冷媒通路の総通路断面積をDとした場合、A<B<C<Dとなっているエバポレータ。
1) tube row comprising a plurality of heat exchange tubes arranged at intervals in a direction forming a ventilating direction perpendicular with extending in the vertical direction is provided two rows side by side in the airflow direction, the heat exchange tubes are multiple The first to third tube groups including a plurality of heat exchange tubes are provided side by side from one end side to the other end side of the leeward tube row in the leeward tube row. In the upper tube row, a fourth and fifth tube group composed of a plurality of heat exchange tubes are provided side by side from the other end side to the one end side of the windward tube row, and the first tube group is a refrigerant. Is the first path that flows from the top to the bottom or the bottom to the top in the heat exchange tube, and the second tube group is the second path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the third And the fourth tube However, the refrigerant becomes a third path that flows in the same direction as the first path in the heat exchange tube, and the fifth tube group becomes a fourth path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube. In the evaporator
The total passage sectional area of the refrigerant passage of the heat exchange tube constituting the first path is A, the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the second path is B, and the heat exchange tube constituting the third path is An evaporator in which A <B <C <D, where C is the total passage sectional area of the refrigerant passage and D is the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth path .

2)第4パスを構成する熱交換チューブの冷媒通路の総通路断面積が、第3パスの一部を構成する第4チューブ群の熱交換チューブの冷媒通路の総通路断面積の60%以上である上記1)記載のエバポレータ。   2) The total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth path is 60% or more of the total passage sectional area of the refrigerant passage of the heat exchange tube of the fourth tube group constituting a part of the third path. The evaporator according to 1) above.

3)第3パスを構成する風下側の第3チューブ群の熱交換チューブの冷媒通路の総通路断面積と、第3パスを構成する風上側の第4チューブ群の熱交換チューブの冷媒通路の総通路断面積とが等しくなっており、第3および第4チューブ群の熱交換チューブの冷媒通路の総通路断面積が、それぞれ第2パスを構成する熱交換チューブの冷媒通路の総通路断面積よりも小さくなっている上記1)または2)記載のエバポレータ。   3) The total cross-sectional area of the refrigerant passage of the heat exchange tube of the third tube group on the leeward side constituting the third path and the refrigerant passage of the heat exchange tube of the fourth tube group on the windward side constituting the third path The total passage cross-sectional area is equal, and the total passage sectional area of the refrigerant passages of the heat exchange tubes of the third and fourth tube groups is the total passage sectional area of the refrigerant passages of the heat exchange tubes constituting the second path, respectively. The evaporator according to 1) or 2), which is smaller than the above.

4)全熱交換チューブが同一の構成であり、各熱交換チューブの冷媒通路の数、および各熱交換チューブの複数の冷媒通路の通路断面積の合計が同一になっており、各パスを構成する熱交換チューブの本数を調整することにより、第1〜第4パスを構成する全熱交換チューブの冷媒通路の総通路断面積が決められ、第3パスを構成する第3チューブ群および第4チューブ群の熱交換チューブの数が同数となっている上記1)〜3)のうちのいずれかに記載のエバポレータ。 4) The total heat exchange tubes have the same configuration, and the number of refrigerant passages in each heat exchange tube and the total of the cross-sectional areas of the plurality of refrigerant passages in each heat exchange tube are the same, constituting each path By adjusting the number of heat exchange tubes to be performed, the total passage sectional area of the refrigerant passages of the total heat exchange tubes constituting the first to fourth paths is determined, and the third tube group and the fourth group constituting the third path are determined. The evaporator according to any one of 1) to 3) , wherein the number of heat exchange tubes in the tube group is the same.

5)風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられており、
風下側上下両ヘッダ部のうち第1パスの冷媒の流れ方向上流側のヘッダ部に、第1チューブ群の熱交換チューブが通じる第1区画と、第2および第3チューブ群の熱交換チューブが通じる第2区画とが設けられ、
風下側上下両ヘッダ部のうち第1パスの冷媒の流れ方向下流側のヘッダ部に、第1および第2チューブ群の熱交換チューブが通じる第3区画と、第3チューブ群の熱交換チューブが通じる第4区画とが設けられ、
風上側上下両ヘッダ部のうち第3パスの冷媒の流れ方向上流側のヘッダ部に、第4チューブ群の熱交換チューブが通じる第5区画と、第5チューブ群の熱交換チューブが通じる第6区画とが設けられ、
風上側上下両ヘッダ部のうち第3パスの冷媒の流れ方向下流側のヘッダ部に、第4チューブ群の熱交換チューブが通じる第7区画と、第5チューブ群の熱交換チューブが通じる第8区画とが設けられ、
第1区画に冷媒入口が設けられるとともに、第6区画に冷媒出口が設けられ、第2区画と第5区画、第4区画と第7区画、および第7区画と第8区画とがそれぞれ連通させられており、
冷媒入口から第1区画内に流入した冷媒が、第3区画を経て第2区画に流入し、ついで第2区画から第4区画を経て第7区画に流入するとともに、第2区画から第5区画を経て第7区画に流入し、さらに第7区画から第8区画を経て第6区画に流入し、冷媒出口から流出するようになされている上記1)〜4)のうちのいずれかに記載のエバポレータ。
5) The upper and lower ends of the heat exchange tubes in the leeward and upper winder tube rows are respectively connected to the leeward and upper winder upper and lower header parts,
The first section where the heat exchange tube of the first tube group communicates with the header portion on the upstream side in the flow direction of the refrigerant of the first pass among the upper and lower header portions on the leeward side, and the heat exchange tubes of the second and third tube groups. A second compartment leading to it,
The third section where the heat exchange tubes of the first and second tube groups communicate with the header portion on the downstream side in the flow direction of the refrigerant in the first pass among the upper and lower header portions on the leeward side, and the heat exchange tubes of the third tube group. And a fourth section that leads to
The fifth section where the heat exchange tube of the fourth tube group communicates with the header part upstream of the flow direction of the refrigerant in the third pass among the upper and lower header sections on the windward side, and the sixth section where the heat exchange tube of the fifth tube group communicates Compartments,
The seventh section through which the heat exchange tube of the fourth tube group communicates with the header section on the downstream side in the flow direction of the refrigerant of the third pass among the upper and lower header sections, and the eighth section through which the heat exchange tube of the fifth tube group communicates. Compartments,
A refrigerant inlet is provided in the first compartment, a refrigerant outlet is provided in the sixth compartment, and the second compartment and the fifth compartment, the fourth compartment and the seventh compartment, and the seventh compartment and the eighth compartment are communicated with each other. And
The refrigerant that has flowed into the first compartment from the refrigerant inlet flows into the second compartment through the third compartment, and then flows into the seventh compartment from the second compartment through the fourth compartment, and from the second compartment to the fifth compartment. In any one of the above-mentioned 1) to 4) , which flows into the seventh section through the seventh section, flows into the sixth section from the seventh section through the eighth section, and flows out from the refrigerant outlet. Evaporator.

6)第8区画に、第8区画内を熱交換チューブ側の第1空間と、熱交換チューブとは反対側の第2空間とに分ける分流部材が設けられ、分流部材に冷媒通過穴が形成されている上記5)記載のエバポレータ。 6) A diversion member is provided in the 8th division to divide the inside of the 8th division into a first space on the heat exchange tube side and a second space on the opposite side of the heat exchange tube, and a refrigerant passage hole is formed in the diversion member. The evaporator according to 5) above.

7)第7区画および第8区画が設けられたヘッダ部に、第7区画から第8区画の第2空間への冷媒の流れを促進する流れ促進部材が設けられている上記6)記載のエバポレータ。 7) The evaporator according to 6) above, wherein a flow promoting member for promoting the flow of the refrigerant from the seventh compartment to the second space of the eighth compartment is provided in the header portion provided with the seventh compartment and the eighth compartment. .

8)第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が上方に位置するように設けられている上記1)〜7)のうちのいずれかに記載のエバポレータ。 8) The header portion on the upstream side in the flow direction of the first pass and the header portion on the downstream side in the flow direction are provided in any one of the above 1) to 7) so that the former is positioned above The evaporator.

上記1)〜8)のエバポレータによれば、第1パスを構成する熱交換チューブの冷媒通路の総通路断面積をA、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積をB、第3パスを構成する熱交換チューブの冷媒通路の総通路断面積をC、第4パスを構成する熱交換チューブの冷媒通路の総通路断面積をDとした場合、A<B<C<Dとなっているので、エバポレータに流入した気液混相冷媒が第1〜第4パスを順次流れて冷媒の液相成分の蒸発が進み、比体積が大きくなったとしても第2〜第4パスでの通路抵抗の上昇を抑制することができる。しかも、エバポレータに流入した気液混相冷媒が第1〜第4パスを順次流れる際に、スーパーヒート領域があって多くの気相冷媒が流れる第4パスの通路抵抗の増加を抑制することができ、エバポレータの性能を向上させることができる。 According to the evaporators 1) to 8) , the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the first path is A, and the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the second path is B, where C is the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the third path, and D is the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth path, A <B <C Since <D, the gas-liquid mixed phase refrigerant that has flowed into the evaporator sequentially flows through the first to fourth paths, and the liquid phase component of the refrigerant evaporates. An increase in passage resistance in the path can be suppressed. In addition, when the gas-liquid mixed phase refrigerant that has flowed into the evaporator sequentially flows through the first to fourth paths, an increase in the passage resistance of the fourth path in which there is a superheat region and a large amount of gas-phase refrigerant flows can be suppressed. The performance of the evaporator can be improved.

上記3)のエバポレータによれば、第3パスを構成する風下側の第3チューブ群の熱交換チューブの冷媒通路の総通路断面積と、第3パスを構成する風上側の第4チューブ群の熱交換チューブの冷媒通路の総通路断面積とが等しくなっており、第3および第4チューブ群の熱交換チューブの冷媒通路の総通路断面積が、それぞれ第2パスを構成する熱交換チューブの冷媒通路の総通路断面積よりも小さくなっているので、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積を確保した上で、3パスの熱交換チューブへの分流の均一化を図ることができるAccording to the evaporator of the above 3), the total cross-sectional area of the refrigerant passage of the heat exchange tube of the third tube group on the leeward side constituting the third path, and the fourth tube group on the windward side constituting the third path The total passage cross-sectional area of the refrigerant passage of the heat exchange tube is equal, and the total passage cross-sectional area of the refrigerant passage of the heat exchange tube of the third and fourth tube groups is the heat exchange tube of the second path, respectively. Since the total passage cross-sectional area of the refrigerant passage is smaller than the total passage cross-sectional area of the refrigerant passage of the heat exchange tube constituting the second pass, the flow distribution to the three-pass heat exchange tube is made uniform Can be achieved.

上記4)のエバポレータによれば、第1パスを構成する熱交換チューブの冷媒通路の総通路断面積をA、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積をB、第3パスを構成する熱交換チューブの冷媒通路の総通路断面積をC、第4パスを構成する熱交換チューブの冷媒通路の総通路断面積をDとした場合、比較的簡単に、A<B<C<Dとすることができる。また、比較的簡単に、第4パス全体を構成する第5チューブ群の熱交換チューブの冷媒通路の総通路断面積を、第3パスの一部を構成する第4チューブ群の熱交換チューブの冷媒通路の総通路断面積の60%以上にすることができる。しかも、部品の種類を少なくすることができる。 According to the evaporator of 4) , the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the first path is A, the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the second path is B, When the total passage cross-sectional area of the refrigerant passage of the heat exchange tube constituting the three passes is C and the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth pass is D, it is relatively easy to satisfy A <B <C <D . Moreover, the total passage cross-sectional area of the refrigerant passage of the heat exchange tube of the fifth tube group that constitutes the entire fourth path is relatively easily calculated from the heat exchange tube of the fourth tube group that constitutes a part of the third path. It can be 60% or more of the total passage sectional area of the refrigerant passage. In addition, the types of parts can be reduced.

上記6)のエバポレータによれば、第4パス全体を構成する第5チューブ群の熱交換チューブの冷媒通路への冷媒の分流を均一化することができる。 According to the evaporator of 6) , it is possible to make uniform the flow of the refrigerant to the refrigerant passage of the heat exchange tube of the fifth tube group constituting the entire fourth path.

上記7)のエバポレータによれば、流れ促進部材によって、第7区画から第8区画の第2空間への冷媒の流れが促進されるので、第2空間内に入った冷媒が、分流部材の冷媒通過穴を通って第1空間に入り、その後熱交換チューブ内に流入することになる。したがって、第4パス全体を構成する第5チューブ群の熱交換チューブの冷媒通路への冷媒の分流均一化を一層効果的に行うことができる。 According to the evaporator of 7) above, since the flow of the refrigerant from the seventh section to the second space of the eighth section is promoted by the flow promoting member, the refrigerant that has entered the second space is the refrigerant of the flow dividing member. It will enter the first space through the passage hole and then flow into the heat exchange tube. Therefore, the uniform distribution of the refrigerant to the refrigerant passage of the heat exchange tube of the fifth tube group constituting the entire fourth path can be more effectively performed.

この発明によるエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to the present invention. 一部を省略した図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 1 which abbreviate | omitted one part. 一部を省略した図1のB−B線断面図である。It is the BB sectional drawing of FIG. 1 which abbreviate | omitted one part. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図2のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG.

以下、この発明の実施形態を、図面を参照して説明する。以下に述べる実施形態は、この発明によるエバポレータを、フロン系冷媒を使用するカーエアコンに適用したものである。   Embodiments of the present invention will be described below with reference to the drawings. In the embodiment described below, the evaporator according to the present invention is applied to a car air conditioner using a chlorofluorocarbon refrigerant.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、以下の説明において、隣接する熱交換チューブどうしの間の通風間隙を流れる空気の下流側(図1、図4および図5に矢印Xで示す方向)を前、これと反対側を後というものとし、図2〜図5の左右を左右というものとする。   In the following description, the downstream side of the air flowing in the ventilation gap between adjacent heat exchange tubes (the direction indicated by the arrow X in FIGS. 1, 4 and 5) is referred to as the front, and the opposite side is referred to as the rear. Assume that the left and right sides of FIGS.

この実施形態は図1〜図6に示すものである。図1はエバポレータの全体構成を示し、図2〜図5はその要部の構成を示す。また、図6は図1のエバポレータにおける冷媒の流れを示す。   This embodiment is shown in FIGS. FIG. 1 shows the overall configuration of the evaporator, and FIGS. 2 to 5 show the configuration of the main part thereof. FIG. 6 shows the flow of refrigerant in the evaporator of FIG.

図1において、エバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)の間に設けられた熱交換コア部(4)とを備えている。   In FIG. 1, the evaporator (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) which are spaced apart in the vertical direction, and both header tanks (2) (3). And a heat exchange core part (4) provided between the two.

第1ヘッダタンク(2)は、風下側(前側)に位置する風下側ヘッダ部(5)と、風上側(後側)に位置しかつ風下側ヘッダ部(5)に一体化された風上側ヘッダ部(6)とを備えている。第2ヘッダタンク(3)は、風下側(前側)に位置する風下側ヘッダ部(7)と、風上側(後側)に位置しかつ風下側ヘッダ部(7)に一体化された風上側ヘッダ部(8)とを備えている。   The first header tank (2) has a leeward header part (5) located on the leeward side (front side) and an upwind side located on the leeward side (rear side) and integrated with the leeward header part (5). And a header section (6). The second header tank (3) has a leeward header part (7) located on the leeward side (front side) and an upwind side located on the leeward side (rear side) and integrated with the leeward header part (7). And a header portion (8).

熱交換コア部(4)は、幅方向を通風方向に向けるとともに左右方向に間隔をおいて配置され、かつ上下方向にのびる複数のアルミニウム製扁平状熱交換チューブ(9)からなるチューブ列(11)(12)が、前後方向に並んで2列設けられ、各チューブ列(11)(12)の隣接する熱交換チューブ(9)どうしの間の通風間隙および左右両端の熱交換チューブ(9)の外側に、それぞれ前後両チューブ列(11)(12)の熱交換チューブ(9)に跨るようにアルミニウム製コルゲートフィン(13)が配置されて熱交換チューブ(9)にろう付され、左右両端のコルゲートフィン(13)の外側にそれぞれアルミニウム製サイドプレート(14)が配置されてコルゲートフィン(13)にろう付されることにより構成されている。熱交換チューブ(9)はアルミニウム押出形材製であって、幅方向に並んだ複数の冷媒通路を有している。風下側チューブ列(11)の上下両端部は、第1および第2ヘッダタンク(2)(3)の風下側ヘッダ部(5)(7)に連通状に接続され、風上側チューブ列(12)の上下両端部は、第1および第2ヘッダタンク(2)(3)の風上側ヘッダ部(6)(8)に連通状に接続されている。   The heat exchange core section (4) is a tube row (11) composed of a plurality of aluminum flat heat exchange tubes (9) that are oriented in the width direction in the ventilation direction and spaced in the left-right direction and extend in the up-down direction. ) (12) is provided in two rows in the front-rear direction, and the ventilation gap between adjacent heat exchange tubes (9) in each tube row (11) (12) and the heat exchange tubes (9) on both left and right ends Aluminum corrugated fins (13) are placed outside the front and rear tube rows (11) and (12) across the heat exchange tubes (9) and brazed to the heat exchange tubes (9). An aluminum side plate (14) is disposed on the outside of each corrugated fin (13) and brazed to the corrugated fin (13). The heat exchange tube (9) is made of an aluminum extruded profile and has a plurality of refrigerant passages arranged in the width direction. The upper and lower ends of the leeward side tube row (11) are connected in communication with the leeward side header portions (5) and (7) of the first and second header tanks (2) and (3). ) Are connected to the windward header sections (6) and (8) of the first and second header tanks (2) and (3) in a continuous manner.

図2〜図5に示すように、風下側チューブ列(11)には、複数の熱交換チューブ(9)からなる第1〜第3のチューブ群(11A)(11B)(11C)が、右端から左端に向かって(風下側チューブ列(11)の一端側から他端側に向かって)並んで設けられ、風上側チューブ列(12)には、複数の熱交換チューブからなる第4および第5のチューブ群(12A)(12B)が、左端から右端に向かって(風上側チューブ列(12)の上記他端側から上記一端側に向かって)並んで設けられている。第1チューブ群(11A)が、冷媒が熱交換チューブ(9)内を上から下に流れる第1パス(15)となり、第2チューブ群(11B)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(15)とは逆方向)に流れる第2パス(16)となり、第3および第4チューブ群(11C)(12A)が、冷媒が熱交換チューブ(9)内を上から下(第1パス(15)と同方向)に流れる第3パス(17)となり、第5チューブ群(12B)が、冷媒が熱交換チューブ(9)内を下から上(第1パス(15)とは逆方向)に流れる第4パス(18)となっている。   As shown in FIGS. 2 to 5, the leeward side tube row (11) has first to third tube groups (11 </ b> A), (11 </ b> A), (11 </ b> C) composed of a plurality of heat exchange tubes (9) at the right end. Toward the left end (from one end side to the other end side of the leeward side tube row (11)), and the windward side tube row (12) includes fourth and fourth heat exchange tubes. Five tube groups (12A) and (12B) are provided side by side from the left end toward the right end (from the other end side of the windward tube row (12) toward the one end side). The first tube group (11A) serves as a first path (15) in which the refrigerant flows through the heat exchange tube (9) from top to bottom, and the second tube group (11B) serves as a refrigerant in the heat exchange tube (9). Becomes the second path (16) that flows from the bottom to the top (in the opposite direction to the first path (15)), and the third and fourth tube groups (11C) and (12A) are connected to the heat exchange tube (9). From the top to the bottom (same direction as the first path (15)) is the third path (17), and the fifth tube group (12B) moves the refrigerant through the heat exchange tube (9) from the bottom (first The fourth path (18) flows in the direction opposite to the path (15).

第4パス(18)全体を構成する第5チューブ群(12B)の熱交換チューブ(9)の冷媒通路の総通路断面積は、第3パス(17)の風上側部分(一部)を構成する第4チューブ群(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積の60%以上である。また、第2および第3パス(16)(17)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積が、それぞれ1つ前のパス(15)(16)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積以上となるとともに、第4パス(18)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積が、第3パス(17)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積よりも大きくなっている。なお、第2および第3パス(16)(17)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積が、それぞれ1つ前のパス(15)(16)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積よりも大きくなっていることが好ましい。   The total passage cross-sectional area of the refrigerant passage of the heat exchange tube (9) of the fifth tube group (12B) constituting the entire fourth path (18) constitutes the upwind portion (part) of the third path (17). It is 60% or more of the total passage sectional area of the refrigerant passage of the heat exchange tube (9) of the fourth tube group (12A). Further, the total passage cross-sectional area of the refrigerant passage of the heat exchange tube (9) constituting the second and third passes (16), (17) is the heat exchange constituting the previous pass (15), (16), respectively. The total passage cross-sectional area of the refrigerant passage of the tube (9) is equal to or greater than that, and the total passage cross-sectional area of the refrigerant passage of the heat exchange tube (9) constituting the fourth path (18) constitutes the third path (17). The total cross-sectional area of the refrigerant passage of the heat exchange tube (9) is larger. The total passage cross-sectional area of the refrigerant passages of the heat exchange tubes (9) constituting the second and third passes (16), (17) is the heat exchange constituting the previous passes (15), (16), respectively. The total passage cross-sectional area of the refrigerant passage of the tube (9) is preferably larger.

また、第3パス(17)を構成する風下側の第3チューブ群(11C)の熱交換チューブ(9)の冷媒通路の総通路断面積と、第3パス(17)を構成する風上側の第4チューブ群(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積とが等しくなっており、第3および第4チューブ群(11C)(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積は、それぞれ第2パス(16)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積よりも小さくなっている。   Further, the total cross-sectional area of the refrigerant passage of the heat exchange tube (9) of the third tube group (11C) on the leeward side constituting the third path (17) and the upwind side constituting the third path (17) The total passage sectional area of the refrigerant passage of the heat exchange tube (9) of the fourth tube group (12A) is equal, and the heat exchange tube (9) of the third and fourth tube groups (11C) (12A) The total passage sectional area of the refrigerant passage is smaller than the total passage sectional area of the refrigerant passage of the heat exchange tube (9) that constitutes the second path (16).

ここで、すべての熱交換チューブ(9)は同一の構成であり、各熱交換チューブ(9)の冷媒通路の数、および各熱交換チューブ(9)の複数の冷媒通路の通路断面積の合計が同一になっている。そして、第1〜第4パス(15)(16)(17)(18)を構成する熱交換チューブ(9)の本数を調整することにより、第1〜第4パス(15)(16)(17)(18)を構成する全熱交換チューブ(9)の冷媒通路の総通路断面積が決められている。すなわち、第4パス(18)を構成する熱交換チューブ(9)の数は、第3パス(17)の風上側部分を構成する第4チューブ群(12A)の熱交換チューブ(9)の数の60%以上であり、第2および第3パス(16)(17)を構成する熱交換チューブ(9)の数が、それぞれ1つ前のパス(15)(16)を構成する熱交換チューブ(9)の数以上となるとともに、第4パス(18)を構成する熱交換チューブ(9)の数が、第3パス(17)を構成する熱交換チューブ(9)の数よりも多くなっている。また、第3パス(17)を構成する第3チューブ群(11C)および第4チューブ群(12A)の熱交換チューブ(9)の数は同数となっているとともに、第3および第4チューブ群(11C)(12A)の熱交換チューブ(9)の数は、それぞれ第2パス(16)を構成する熱交換チューブ(9)の数よりも少なくなっている。   Here, all the heat exchange tubes (9) have the same configuration, and the total number of refrigerant passages of each heat exchange tube (9) and the passage cross-sectional areas of the plurality of refrigerant passages of each heat exchange tube (9) Are the same. And by adjusting the number of the heat exchange tubes (9) constituting the first to fourth paths (15), (16), (17), (18), the first to fourth paths (15), (16) ( 17) The total passage sectional area of the refrigerant passage of the total heat exchange tube (9) constituting (18) is determined. That is, the number of heat exchange tubes (9) constituting the fourth path (18) is the number of heat exchange tubes (9) of the fourth tube group (12A) constituting the windward portion of the third path (17). And the number of heat exchange tubes (9) constituting the second and third passes (16) (17) is respectively the heat exchange tube constituting the previous pass (15) (16). The number of heat exchange tubes (9) constituting the fourth path (18) is greater than the number of heat exchange tubes (9) constituting the third path (17). ing. Further, the third tube group (11C) and the fourth tube group (12A) constituting the third path (17) have the same number of heat exchange tubes (9), and the third and fourth tube groups. The number of heat exchange tubes (9) in (11C) and (12A) is smaller than the number of heat exchange tubes (9) constituting the second path (16).

第1ヘッダタンク(2)の風下側ヘッダ部(5)(風下側上下両ヘッダ部のうち第1パス(15)の冷媒の流れ方向上流側のヘッダ部)に、風下側ヘッダ部(5)内を仕切壁(19)により分割することによって、第1チューブ群(11A)の熱交換チューブ(9)が通じる第1区画(21)と、第2および第3チューブ群(11B)(11C)の熱交換チューブ(9)が通じる第2区画(22)とが設けられている。第2ヘッダタンク(3)の風下側ヘッダ部(7)(風下側上下両ヘッダ部のうち第1パス(15)の冷媒の流れ方向下流側のヘッダ部)に、風下側ヘッダ部(7)内を仕切壁(23)により分割することによって、第1および第2チューブ群(11A)(11B)の熱交換チューブ(9)が通じる第3区画(24)と、第3チューブ群(11C)の熱交換チューブ(9)が通じる第4区画(25)とが設けられている。   The leeward header portion (5) of the leeward header portion (5) of the first header tank (2) (the header portion of the leeward upper and lower header portions on the upstream side in the refrigerant flow direction of the first path (15)) By dividing the interior by a partition wall (19), the first section (21) through which the heat exchange tube (9) of the first tube group (11A) communicates, and the second and third tube groups (11B) (11C) And a second section (22) through which the heat exchange tube (9) communicates. The leeward header section (7) of the leeward header section (7) of the second header tank (3) (the header section of the leeward upper and lower header sections on the downstream side in the refrigerant flow direction of the first path (15)) By dividing the interior by a partition wall (23), a third section (24) through which the heat exchange tubes (9) of the first and second tube groups (11A) and (11B) communicate, and a third tube group (11C) And a fourth compartment (25) through which the heat exchange tube (9) communicates.

第1ヘッダタンク(2)の風上側ヘッダ部(6)(風上側上下両ヘッダ部のうち第1パス(15)の冷媒の流れ方向上流側のヘッダ部)に、風上側ヘッダ部(6)内を仕切壁(26)により分割することによって、第4チューブ群(12A)の熱交換チューブ(9)が通じる第5区画(27)と、第5チューブ群(12B)の熱交換チューブ(9)が通じる第6区画(28)とが設けられている。第2ヘッダタンク(3)の風上側ヘッダ部(8)(風上側上下両ヘッダ部のうち第1パス(15)の冷媒の流れ方向下流側のヘッダ部)に、風上側ヘッダ部(8)内を仕切壁(29)により分割することによって、第4チューブ群(12A)の熱交換チューブ(9)が通じる第7区画(31)と、第5チューブ群(12B)の熱交換チューブ(9)が通じる第8区画(32)とが設けられている。   The windward header portion (6) of the windward header portion (6) of the first header tank (2) (the upstream portion of the windward upper and lower header portions on the upstream side in the refrigerant flow direction of the first path (15)) By dividing the interior by the partition wall (26), the fifth compartment (27) through which the heat exchange tube (9) of the fourth tube group (12A) communicates and the heat exchange tube (9 of the fifth tube group (12B)) ) To the sixth section (28). The windward header portion (8) of the second header tank (3) is connected to the windward header portion (8) (the header portion on the downstream side in the refrigerant flow direction of the first path (15) of the upper and lower header portions). By dividing the interior by a partition wall (29), the seventh section (31) through which the heat exchange tube (9) of the fourth tube group (12A) communicates and the heat exchange tube (9 of the fifth tube group (12B)) ) To the eighth section (32).

第1ヘッダタンク(2)の第1区画(21)の右端部に冷媒入口(33)が設けられるとともに、第6区画(28)の右端部(冷媒入口(33)と同一端部)に冷媒出口(30)が設けられている。また、第1ヘッダタンク(2)の第2区画(22)と第5区画(27)とが、第1ヘッダタンク(2)に設けられた連通部(34)を介して連通させられ、第2ヘッダタンク(3)の第4区画(25)と第7区画(31)、および第7区画(31)と第8区画(32)とがそれぞれ第2ヘッダタンク(3)に設けられた連通部(35)(36)を介して連通させられている。そして、冷媒入口(33)から第1区画(21)内に流入した冷媒が、第3区画(24)、第2区画(22)、第5区画(27)、第7区画(31)および第8区画(32)を経て第6区画(28)に流入し、冷媒出口(30)から流出するようになされている。   A refrigerant inlet (33) is provided at the right end of the first compartment (21) of the first header tank (2), and a refrigerant is provided at the right end of the sixth compartment (28) (the same end as the refrigerant inlet (33)). An outlet (30) is provided. Further, the second section (22) and the fifth section (27) of the first header tank (2) are communicated with each other via a communication portion (34) provided in the first header tank (2), The communication in which the fourth section (25) and the seventh section (31) of the two header tanks (3) and the seventh section (31) and the eighth section (32) are provided in the second header tank (3), respectively. It is connected via the parts (35) and (36). Then, the refrigerant flowing into the first compartment (21) from the refrigerant inlet (33) becomes the third compartment (24), the second compartment (22), the fifth compartment (27), the seventh compartment (31), and the first compartment. The refrigerant flows into the sixth section (28) through the eight sections (32) and flows out from the refrigerant outlet (30).

第2ヘッダタンク(3)の風上側ヘッダ部(8)の第8区画(32)に、第8区画(32)内を上側(熱交換チューブ(9)側)の第1空間(32A)と、下側(熱交換チューブ(9)とは反対側)の第2空間(32B)とに分ける板状の分流部材(37)が設けられており、分流部材(37)に、左右方向に間隔をおいて複数の冷媒通過穴(38)が形成されている。また、第2ヘッダタンク(3)の第7区画(31)および第8区画(32)が設けられた風上側ヘッダ部(8)に、第1空間(32A)の左端開口を閉鎖し、かつ第7区画(31)から第8区画(32)の第2空間(32B)への冷媒の流れを促進する板状の流れ促進部材(39)が設けられている。なお、第7区画(31)から第8区画(32)の第2空間(32B)への冷媒の流れの促進を妨げないのであれば、流れ促進部材(39)には冷媒通過穴が形成されていてもよい。流れ促進部材(39)は、風上側ヘッダ部(8)内を分割して第7区画(31)および第8区画(32)を設ける仕切壁(29)の上側部分からなる。また、第7区画(31)と第8区画(32)とを通じさせる連通部(36)は仕切壁(29)の下側部分に形成されており、第7区画(31)と第8区画(32)の第2空間(32B)とが連通部(36)を介して通じさせられている。   In the 8th section (32) of the windward header section (8) of the second header tank (3), the inside of the 8th section (32) is the first space (32A) on the upper side (heat exchange tube (9) side). A plate-shaped flow dividing member (37) is provided to divide into the second space (32B) on the lower side (opposite to the heat exchange tube (9)), and the flow dividing member (37) is spaced horizontally. A plurality of refrigerant passage holes (38) are formed. Further, the windward header section (8) provided with the seventh section (31) and the eighth section (32) of the second header tank (3) is closed with the left end opening of the first space (32A), and A plate-like flow promoting member (39) for promoting the flow of the refrigerant from the seventh section (31) to the second space (32B) of the eighth section (32) is provided. If the flow of the refrigerant from the seventh section (31) to the second space (32B) of the eighth section (32) is not hindered, a refrigerant passage hole is formed in the flow promotion member (39). It may be. The flow promoting member (39) is composed of an upper portion of a partition wall (29) that divides the inside of the windward header section (8) to provide a seventh section (31) and an eighth section (32). In addition, the communication part (36) that allows the seventh section (31) and the eighth section (32) to pass through is formed in the lower part of the partition wall (29), and the seventh section (31) and the eighth section ( 32) is communicated with the second space (32B) through the communication part (36).

上述したエバポレータ(1)は、圧縮機、冷媒冷却器としてのコンデンサおよび減圧器としての膨張弁とともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。そして、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口(33)を通って第1ヘッダタンク(2)の風下側ヘッダ部(5)の第1区画(21)内に入る。第1区画(21)内に入った冷媒は、分流して風下側チューブ列(11)における第1パス(15)を構成する第1チューブ群(11A)の熱交換チューブ(9)内に流入し、熱交換チューブ(9)内を下方に流れて第2ヘッダタンク(3)の風下側ヘッダ部(7)の第3区画(24)内に入る。第3区画(24)内に入った冷媒は左方に流れるとともに分流し、風下側チューブ列(11)における第2パス(16)を構成する第2チューブ群(11B)の熱交換チューブ(9)内に流入する。熱交換チューブ(9)内に流入した冷媒は、熱交換チューブ(9)内を上方に流れて第1ヘッダタンク(2)の風下側ヘッダ部(5)の第2区画(22)に入る。   The evaporator (1) described above constitutes a refrigeration cycle that uses a chlorofluorocarbon refrigerant together with a compressor, a condenser as a refrigerant cooler, and an expansion valve as a decompressor, and is mounted on a vehicle, for example, an automobile, as a car air conditioner. The gas-liquid mixed-phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes through the refrigerant inlet (33), and the first section (21) of the leeward header section (5) of the first header tank (2). ) The refrigerant that has entered the first section (21) is divided and flows into the heat exchange tube (9) of the first tube group (11A) constituting the first path (15) in the leeward tube row (11). Then, it flows downward in the heat exchange tube (9) and enters the third section (24) of the leeward header portion (7) of the second header tank (3). The refrigerant that has entered the third section (24) flows to the left and is divided, and the heat exchange tubes (9B) of the second tube group (11B) constituting the second path (16) in the leeward tube row (11) (9). ) Flows in. The refrigerant flowing into the heat exchange tube (9) flows upward in the heat exchange tube (9) and enters the second section (22) of the leeward header portion (5) of the first header tank (2).

第2区画(22)内に入った冷媒は、左方に流れるとともに分流して風下側チューブ列(11)における第3パス(17)を構成する第3チューブ群(11C)の熱交換チューブ(9)内に流入する。これと同時に、第2区画(22)内に入って左方に流れた冷媒は、連通部(34)を通って後方に流れて第1ヘッダタンク(2)の風上側ヘッダ部(6)の第5区画(27)内に入り、分流して風上側チューブ列(12)における第3パス(17)を構成する第4チューブ群(12A)の熱交換チューブ(9)内に流入する。第3パス(17)を構成する第3チューブ群(11C)の熱交換チューブ(9)内に流入した冷媒は、熱交換チューブ(9)内を下方に流れて第2ヘッダタンク(3)の風下側ヘッダ部(5)の第4区画(25)内に入り、後方に流れて連通部(35)を通って第2ヘッダタンク(3)の風上側ヘッダ部(8)の第7区画(31)に入る。これと同時に、第3パス(17)を構成する第4チューブ群(12A)の熱交換チューブ(9)内に流入した冷媒は、熱交換チューブ(9)内を下方に流れて第2ヘッダタンク(3)の風上側ヘッダ部(8)の第7区画(31)内に入る。   The refrigerant that has entered the second section (22) flows to the left and is divided into heat exchange tubes (11C) of the third tube group (11C) constituting the third path (17) in the leeward tube row (11). 9) Inflow into. At the same time, the refrigerant flowing into the second section (22) and flowing to the left flows backward through the communication section (34) to the windward header section (6) of the first header tank (2). It enters into the fifth section (27), and flows into the heat exchange tube (9) of the fourth tube group (12A) constituting the third path (17) in the windward tube row (12). The refrigerant flowing into the heat exchange tube (9) of the third tube group (11C) constituting the third path (17) flows downward in the heat exchange tube (9) and flows into the second header tank (3). The seventh section (8) of the windward header section (8) of the second header tank (3) enters the fourth section (25) of the leeward header section (5), flows backward, passes through the communication section (35). Enter 31). At the same time, the refrigerant flowing into the heat exchange tube (9) of the fourth tube group (12A) constituting the third path (17) flows downward in the heat exchange tube (9) to the second header tank. Enter the seventh section (31) of the windward header section (8) of (3).

第7区画(31)内に入った冷媒は、連通部(36)を通って第8区画(32)の第2空間(32B)内に入る。第2空間(32B)内に入った冷媒は、分流部材(37)の冷媒通過穴(38)を通って第1空間(32A)内に入り、風上側チューブ列(12)における第4パス(18)を構成する第5チューブ群(12B)の熱交換チューブ(9)内に流入する。第5チューブ群(12B)の熱交換チューブ(9)内に流入した冷媒は、熱交換チューブ(9)内を上方に流れて第1ヘッダタンク(2)の風上側ヘッダ部(6)の第6区画(28)内に入り、第6区画(28)内を右方に流れて冷媒出口(30)を通って流出する。   The refrigerant that has entered the seventh section (31) enters the second space (32B) of the eighth section (32) through the communication portion (36). The refrigerant that has entered the second space (32B) enters the first space (32A) through the refrigerant passage hole (38) of the flow dividing member (37), and passes through the fourth path (12) in the windward tube row (12). It flows into the heat exchange tube (9) of the fifth tube group (12B) constituting 18). The refrigerant that has flowed into the heat exchange tube (9) of the fifth tube group (12B) flows upward in the heat exchange tube (9) and reaches the first side of the upwind header section (6) of the first header tank (2). The air enters the sixth section (28), flows rightward in the sixth section (28), and flows out through the refrigerant outlet (30).

そして、冷媒が風下側チューブ列(11)の熱交換チューブ(9)内、および風上側チューブ列(12)の熱交換チューブ(9)内を流れる間に、熱交換コア部(4)の通風間隙を通過する空気(図1矢印X参照)と熱交換をし、空気は冷却され、冷媒は気相となって流出する。   While the refrigerant flows in the heat exchange tube (9) of the leeward tube row (11) and in the heat exchange tube (9) of the windward tube row (12), the ventilation of the heat exchange core section (4) Heat exchange is performed with air passing through the gap (see arrow X in FIG. 1), the air is cooled, and the refrigerant flows out as a gas phase.

ここで、第4パス(18)全体を構成する第5チューブ群(12B)の熱交換チューブ(9)の冷媒通路の総通路断面積が、第3パス(17)の一部を構成する第4チューブ群(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積の60%以上であるので、エバポレータ(1)に流入した気液混相冷媒が第1〜第4パス(15)(16)(17)(18)を順次流れる際に、スーパーヒート領域があって多くの気相冷媒が流れる第4パス(18)の通路抵抗の増加を抑制することができ、エバポレータ(1)の性能を向上させることができる。   Here, the total passage sectional area of the refrigerant passage of the heat exchange tube (9) of the fifth tube group (12B) constituting the entire fourth path (18) constitutes a part of the third path (17). Since the total cross-sectional area of the refrigerant passage of the heat exchange tube (9) of the four-tube group (12A) is 60% or more, the gas-liquid mixed phase refrigerant flowing into the evaporator (1) is passed through the first to fourth passes (15). (16) (17) (18), when flowing sequentially, it is possible to suppress the increase in passage resistance of the fourth path (18) where there is a superheat region and a large amount of gas-phase refrigerant flows. Performance can be improved.

また、第2および第3パス(16)(17)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積が、それぞれ1つ前のパス(15)(16)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積以上となるとともに、第4パス(18)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積が、第3パス(17)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積よりも大きくなっているので、エバポレータ(1)に流入した気液混相冷媒が第1〜第4パス(18)を順次流れて冷媒の液相成分の蒸発が進み、比体積が大きくなったとしても第2〜第4パス(16)(17)(18)での通路抵抗の上昇を抑制することができる。   Further, the total passage cross-sectional area of the refrigerant passage of the heat exchange tube (9) constituting the second and third passes (16), (17) is the heat exchange constituting the previous pass (15), (16), respectively. The total passage cross-sectional area of the refrigerant passage of the tube (9) is equal to or greater than that, and the total passage cross-sectional area of the refrigerant passage of the heat exchange tube (9) constituting the fourth path (18) constitutes the third path (17). Since the total cross-sectional area of the refrigerant passage of the heat exchange tube (9) is larger, the gas-liquid mixed phase refrigerant that has flowed into the evaporator (1) sequentially flows through the first to fourth paths (18). Even if the evaporation of the liquid phase component progresses and the specific volume increases, an increase in passage resistance in the second to fourth passes (16), (17) and (18) can be suppressed.

さらに、第3パス(17)を構成する風下側の第3チューブ群(11C)の熱交換チューブ(9)の冷媒通路の総通路断面積と、第3パス(17)を構成する風上側の第4チューブ群(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積とが等しくなっており、第3および第4チューブ群(11C)(12A)の熱交換チューブ(9)の冷媒通路の総通路断面積は、それぞれ第2パス(16)を構成する熱交換チューブ(9)の冷媒通路の総通路断面積よりも小さくなっているので、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積を確保した上で、3パスの熱交換チューブへの分流の均一化を図ることができる。   Further, the total cross-sectional area of the refrigerant passage of the heat exchange tube (9) of the third tube group (11C) on the leeward side constituting the third path (17) and the upwind side constituting the third path (17) The total passage sectional area of the refrigerant passage of the heat exchange tube (9) of the fourth tube group (12A) is equal, and the heat exchange tube (9) of the third and fourth tube groups (11C) (12A) Since the total passage sectional area of the refrigerant passage is smaller than the total passage sectional area of the refrigerant passage of the heat exchange tube (9) constituting the second path (16), the heat exchange tube constituting the second path. It is possible to achieve a uniform flow distribution to the three-pass heat exchange tube while ensuring the total passage cross-sectional area of the refrigerant passage.

上記実施形態においては、第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が上方に位置するように設けられているが、これに限定されるものではなく、これとは逆に、第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が下方に位置するように設けられていてもよい。すなわち、上記実施形態とは上下逆向きに設けられていてもよい。   In the above-described embodiment, the header portion on the upstream side in the flow direction of the first path and the header portion on the downstream side in the flow direction are provided so that the former is positioned above, but the present invention is not limited to this. On the contrary, the header portion on the upstream side in the flow direction of the first path and the downstream header portion on the downstream side in the flow direction may be provided so that the former is positioned below. That is, it may be provided upside down from the above embodiment.

なお、この発明によるエバポレータは、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の扁平中空体が並列状に配置されてなり、各扁平中空体に通風方向に並んだ上下方向にのびる2つの熱交換チューブ、および両熱交換チューブの上下両端に通じるヘッダ形成部が設けられるとともに、すべての扁平中空体の上下の2つのヘッダ形成部どうしがそれぞれ通じるように扁平中空体どうしがろう付されることによって、上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられるとともに、すべての扁平中空体のヘッダ形成部により、風下側および風上側のチューブ列の上下両端が通じる風下側および風上側上下両ヘッダ部が設けられた形式の所謂積層型エバポレータにも適用可能である。   In the evaporator according to the present invention, a plurality of flat hollow bodies obtained by brazing the peripheral portions with a pair of plate-shaped plates facing each other are arranged in parallel, and are lined up in the ventilation direction in each flat hollow body. Two heat exchange tubes that extend in the vertical direction, and header forming parts that lead to the upper and lower ends of both heat exchange tubes are provided, and flat hollow so that the two upper and lower header forming parts of all flat hollow bodies can communicate with each other When the bodies are brazed to each other, two rows of tube rows each including a plurality of heat exchange tubes extending in the vertical direction and spaced apart in a direction perpendicular to the ventilation direction are provided side by side in the ventilation direction. In addition, both the leeward and leeward upper and lower headers where the upper and lower ends of the leeward and upper winder tube rows communicate with each other by the flat hollow body header forming portion. Is also applicable to form a so-called laminated evaporator provided.

この発明によるエバポレータは、カーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator according to the present invention is suitably used for a refrigeration cycle constituting a car air conditioner.

(1):エバポレータ
(5):第1ヘッダタンクの風下側ヘッダ部(風下側上ヘッダ部)
(6):第1ヘッダタンクの風上側ヘッダ部(風上側上ヘッダ部)
(7):第2ヘッダタンクの風下側ヘッダ部(風下側下ヘッダ部)
(8):第2ヘッダタンクの風上側ヘッダ部(風上側下ヘッダ部)
(9):熱交換チューブ
(11):風下側チューブ列
(11A)(11B)(11C):第1〜第3チューブ群
(12):風上側チューブ列
(12A)(12B):第4および第5チューブ群
(15):第1パス
(16):第2パス
(17):第3パス
(18):第4パス
(21):第1区画
(22):第2区画
(24):第3区画
(25):第4区画
(27):第5区画
(28):第6区画
(30):冷媒出口
(31):第7区画
(32):第8区画
(33):冷媒入口
(37):分流部材
(38):冷媒通過穴
(39):流れ促進部材
(1): Evaporator
(5): First header tank leeward header (leeward upper header)
(6): Windward header section of the first header tank (windward upper header section)
(7): The leeward header of the second header tank (leeward lower header)
(8): Windward header part of the second header tank (windward lower header part)
(9): Heat exchange tube
(11): Downward tube row
(11A) (11B) (11C): First to third tube groups
(12): Windward tube row
(12A) (12B): Fourth and fifth tube groups
(15): First pass
(16): Second pass
(17): Third pass
(18): Fourth pass
(21): Section 1
(22): Second section
(24): Third section
(25): Section 4
(27): Fifth section
(28): Section 6
(30): Refrigerant outlet
(31): Section 7
(32): Section 8
(33): Refrigerant inlet
(37): Shunt member
(38): Refrigerant passage hole
(39): Flow promoting member

Claims (8)

上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、熱交換チューブが複数の冷媒通路を有し、風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、風下側チューブ列の一端側から他端側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、風上側チューブ列の上記他端側から上記一端側に向かって並んで設けられ、第1チューブ群が、冷媒が熱交換チューブ内を上から下、または下から上に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっているエバポレータにおいて、
第1パスを構成する熱交換チューブの冷媒通路の総通路断面積をA、第2パスを構成する熱交換チューブの冷媒通路の総通路断面積をB、第3パスを構成する熱交換チューブの冷媒通路の総通路断面積をC、第4パスを構成する熱交換チューブの冷媒通路の総通路断面積をDとした場合、A<B<C<Dとなっているエバポレータ。
Two rows of tubes, each of which is formed of a plurality of heat exchange tubes arranged in the vertical direction and at intervals in a direction perpendicular to the ventilation direction, are provided side by side in the ventilation direction, and the heat exchange tubes include a plurality of refrigerants. A leeward side tube row is provided with first to third tube groups including a plurality of heat exchange tubes arranged side by side from one end side to the other end side of the leeward side tube row. A fourth and fifth tube group consisting of a plurality of heat exchange tubes are arranged in a row from the other end side to the one end side of the windward tube row, and the first tube group is heated by the refrigerant. The first tube flows from the top to the bottom or from the bottom to the top in the exchange tube, and the second tube group forms the second pass through which the refrigerant flows in the direction opposite to the first pass in the heat exchange tube. 4 tube group The refrigerant is a third path in which the refrigerant flows in the same direction as the first path, and the fifth tube group is a fourth path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube. In the evaporator
The total passage sectional area of the refrigerant passage of the heat exchange tube constituting the first path is A, the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the second path is B, and the heat exchange tube constituting the third path is An evaporator in which A <B <C <D, where C is the total passage sectional area of the refrigerant passage and D is the total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth path .
第4パスを構成する熱交換チューブの冷媒通路の総通路断面積が、第3パスの一部を構成する第4チューブ群の熱交換チューブの冷媒通路の総通路断面積の60%以上である請求項1記載のエバポレータ。 The total passage sectional area of the refrigerant passage of the heat exchange tube constituting the fourth path is 60% or more of the total passage sectional area of the refrigerant passage of the heat exchange tube of the fourth tube group constituting a part of the third path. The evaporator according to claim 1. 第3パスを構成する風下側の第3チューブ群の熱交換チューブの冷媒通路の総通路断面積と、第3パスを構成する風上側の第4チューブ群の熱交換チューブの冷媒通路の総通路断面積とが等しくなっており、第3および第4チューブ群の熱交換チューブの冷媒通路の総通路断面積が、それぞれ第2パスを構成する熱交換チューブの冷媒通路の総通路断面積よりも小さくなっている請求項1または2記載のエバポレータ。 The total passage cross-sectional area of the refrigerant passage of the heat exchange tube of the third tube group on the leeward side constituting the third path, and the total passage of the refrigerant passage of the heat exchange tube of the fourth tube group on the windward side constituting the third path The total cross-sectional area of the refrigerant passages of the heat exchange tubes of the third and fourth tube groups is equal to the cross-sectional area of the refrigerant passages of the heat exchange tubes constituting the second path, respectively. The evaporator according to claim 1 or 2, wherein the evaporator is small. 全熱交換チューブが同一の構成であり、各熱交換チューブの冷媒通路の数、および各熱交換チューブの複数の冷媒通路の通路断面積の合計が同一になっており、各パスを構成する熱交換チューブの本数を調整することにより、第1〜第4パスを構成する全熱交換チューブの冷媒通路の総通路断面積が決められ、第3パスを構成する第3チューブ群および第4チューブ群の熱交換チューブの数が同数となっている請求項1〜3のうちのいずれかに記載のエバポレータ。 The total heat exchange tubes have the same configuration, the number of refrigerant passages of each heat exchange tube, and the total of the cross-sectional areas of the plurality of refrigerant passages of each heat exchange tube are the same, and the heat constituting each path By adjusting the number of the exchange tubes, the total passage sectional area of the refrigerant passages of the total heat exchange tubes constituting the first to fourth paths is determined, and the third tube group and the fourth tube group constituting the third path. The evaporator according to any one of claims 1 to 3, wherein the number of heat exchange tubes is the same . 風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられており、
風下側上下両ヘッダ部のうち第1パスの冷媒の流れ方向上流側のヘッダ部に、第1チューブ群の熱交換チューブが通じる第1区画と、第2および第3チューブ群の熱交換チューブが通じる第2区画とが設けられ、
風下側上下両ヘッダ部のうち第1パスの冷媒の流れ方向下流側のヘッダ部に、第1および第2チューブ群の熱交換チューブが通じる第3区画と、第3チューブ群の熱交換チューブが通じる第4区画とが設けられ、
風上側上下両ヘッダ部のうち第3パスの冷媒の流れ方向上流側のヘッダ部に、第4チューブ群の熱交換チューブが通じる第5区画と、第5チューブ群の熱交換チューブが通じる第6区画とが設けられ、
風上側上下両ヘッダ部のうち第3パスの冷媒の流れ方向下流側のヘッダ部に、第4チューブ群の熱交換チューブが通じる第7区画と、第5チューブ群の熱交換チューブが通じる第8区画とが設けられ、
第1区画に冷媒入口が設けられるとともに、第6区画に冷媒出口が設けられ、第2区画と第5区画、第4区画と第7区画、および第7区画と第8区画とがそれぞれ連通させられており、
冷媒入口から第1区画内に流入した冷媒が、第3区画を経て第2区画に流入し、ついで第2区画から第4区画を経て第7区画に流入するとともに、第2区画から第5区画を経て第7区画に流入し、さらに第7区画から第8区画を経て第6区画に流入し、冷媒出口から流出するようになされている請求項1〜4のうちのいずれかに記載のエバポレータ。
The upper and lower end portions of the heat exchange tubes of the leeward side and the windward side tube row are respectively connected to the leeward side and the windward upper and lower header portions,
The first section where the heat exchange tube of the first tube group communicates with the header portion on the upstream side in the flow direction of the refrigerant of the first pass among the upper and lower header portions on the leeward side, and the heat exchange tubes of the second and third tube groups. A second compartment leading to it,
The third section where the heat exchange tubes of the first and second tube groups communicate with the header portion on the downstream side in the flow direction of the refrigerant in the first pass among the upper and lower header portions on the leeward side, and the heat exchange tubes of the third tube group. And a fourth section that leads to
The fifth section where the heat exchange tube of the fourth tube group communicates with the header part upstream of the flow direction of the refrigerant in the third pass among the upper and lower header sections on the windward side, and the sixth section where the heat exchange tube of the fifth tube group communicates Compartments,
The seventh section through which the heat exchange tube of the fourth tube group communicates with the header section on the downstream side in the flow direction of the refrigerant of the third pass among the upper and lower header sections, and the eighth section through which the heat exchange tube of the fifth tube group communicates. Compartments,
A refrigerant inlet is provided in the first compartment, a refrigerant outlet is provided in the sixth compartment, and the second compartment and the fifth compartment, the fourth compartment and the seventh compartment, and the seventh compartment and the eighth compartment are communicated with each other. And
The refrigerant that has flowed into the first compartment from the refrigerant inlet flows into the second compartment through the third compartment, and then flows into the seventh compartment from the second compartment through the fourth compartment, and from the second compartment to the fifth compartment. The evaporator according to any one of claims 1 to 4, wherein the evaporator flows through the seventh section, flows from the seventh section to the sixth section through the eighth section, and flows out from the refrigerant outlet. .
第8区画に、第8区画内を熱交換チューブ側の第1空間と、熱交換チューブとは反対側の第2空間とに分ける分流部材が設けられ、分流部材に冷媒通過穴が形成されている請求項5記載のエバポレータ。 In the eighth section, a flow dividing member is provided to divide the inside of the eighth section into a first space on the heat exchange tube side and a second space on the opposite side of the heat exchange tube, and a refrigerant passage hole is formed in the flow dividing member. The evaporator according to claim 5 . 第7区画および第8区画が設けられたヘッダ部に、第7区画から第8区画の第2空間への冷媒の流れを促進する流れ促進部材が設けられている請求項6記載のエバポレータ。 The evaporator according to claim 6, wherein a flow promoting member that promotes the flow of the refrigerant from the seventh compartment to the second space of the eighth compartment is provided in the header portion provided with the seventh compartment and the eighth compartment . 第1パスの流れ方向上流側のヘッダ部と、同流れ方向下流側ヘッダ部とが、前者が上方に位置するように設けられている請求項1〜7のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 7, wherein a header portion on the upstream side in the flow direction of the first path and a header portion on the downstream side in the flow direction are provided such that the former is positioned above .
JP2010134100A 2010-06-11 2010-06-11 Evaporator Active JP5636215B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010134100A JP5636215B2 (en) 2010-06-11 2010-06-11 Evaporator
US13/067,399 US10047984B2 (en) 2010-06-11 2011-05-31 Evaporator
CN2011201991978U CN202188700U (en) 2010-06-11 2011-06-13 Evaporator
CN201110158833.7A CN102287970B (en) 2010-06-11 2011-06-13 Evaporimeter
US15/963,998 US10393416B2 (en) 2010-06-11 2018-04-26 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134100A JP5636215B2 (en) 2010-06-11 2010-06-11 Evaporator

Publications (3)

Publication Number Publication Date
JP2011257111A JP2011257111A (en) 2011-12-22
JP2011257111A5 JP2011257111A5 (en) 2013-07-25
JP5636215B2 true JP5636215B2 (en) 2014-12-03

Family

ID=45473466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134100A Active JP5636215B2 (en) 2010-06-11 2010-06-11 Evaporator

Country Status (1)

Country Link
JP (1) JP5636215B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075956B2 (en) * 2012-01-31 2017-02-08 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP2015157507A (en) * 2014-02-21 2015-09-03 株式会社ケーヒン・サーマル・テクノロジー Air conditioner for vehicle
WO2015140886A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
KR101837046B1 (en) * 2015-07-31 2018-04-19 엘지전자 주식회사 Heat exchanger
KR20170029317A (en) 2015-09-07 2017-03-15 엘지전자 주식회사 Heat exchanger
CN109357441B (en) * 2018-12-14 2024-05-03 珠海格力电器股份有限公司 Falling film evaporator and air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391339B2 (en) * 1999-07-02 2003-03-31 株式会社デンソー Refrigerant evaporator
JP3637314B2 (en) * 2002-01-10 2005-04-13 三菱重工業株式会社 Stacked evaporator
JP2008267686A (en) * 2007-04-19 2008-11-06 Denso Corp Refrigerant evaporator
JP4890337B2 (en) * 2007-04-25 2012-03-07 カルソニックカンセイ株式会社 Evaporator
JP5136050B2 (en) * 2007-12-27 2013-02-06 株式会社デンソー Heat exchanger
JP5486782B2 (en) * 2008-08-05 2014-05-07 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Also Published As

Publication number Publication date
JP2011257111A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5486782B2 (en) Evaporator
US10047984B2 (en) Evaporator
JP5740134B2 (en) Evaporator
JP5693346B2 (en) Evaporator
JP2006183994A (en) Heat exchanger
JP2006132920A (en) Heat exchanger
JP2006170598A (en) Heat exchanger
JP5636215B2 (en) Evaporator
US10408510B2 (en) Evaporator
JP2011257111A5 (en)
JP2015034670A (en) Evaporator
JP2005195316A (en) Heat exchanger
JP2013024517A (en) Laminated heat exchanger
JP6486223B2 (en) Evaporator
US10393445B2 (en) Evaporator
JP5194279B2 (en) Evaporator
JP6617003B2 (en) Heat exchanger
JP4617148B2 (en) Heat exchanger
JP5674376B2 (en) Evaporator
JP2018087646A5 (en)
JP5238408B2 (en) Heat exchanger
JP2010038448A (en) Heat exchanger
JP5238421B2 (en) Heat exchanger
JP6486212B2 (en) Evaporator and vehicle air conditioner using the same
JP2018119747A (en) Evaporator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250