JP5635870B2 - Position detection device using a reflective photosensor - Google Patents

Position detection device using a reflective photosensor Download PDF

Info

Publication number
JP5635870B2
JP5635870B2 JP2010237482A JP2010237482A JP5635870B2 JP 5635870 B2 JP5635870 B2 JP 5635870B2 JP 2010237482 A JP2010237482 A JP 2010237482A JP 2010237482 A JP2010237482 A JP 2010237482A JP 5635870 B2 JP5635870 B2 JP 5635870B2
Authority
JP
Japan
Prior art keywords
output
photosensors
position detection
detection device
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010237482A
Other languages
Japanese (ja)
Other versions
JP2012088277A (en
Inventor
文昭 大野
文昭 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2010237482A priority Critical patent/JP5635870B2/en
Priority to TW100133732A priority patent/TWI461649B/en
Priority to KR1020110104500A priority patent/KR20120042657A/en
Priority to US13/277,528 priority patent/US8907263B2/en
Priority to CN201110320340.9A priority patent/CN102564305B/en
Publication of JP2012088277A publication Critical patent/JP2012088277A/en
Application granted granted Critical
Publication of JP5635870B2 publication Critical patent/JP5635870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は反射型フォトセンサを用いた位置検出装置、特にカメラ等の装置内の可動体(移動物)の位置検出を行うための装置に関する。   The present invention relates to a position detection apparatus using a reflective photosensor, and more particularly to an apparatus for detecting the position of a movable body (moving object) in an apparatus such as a camera.

従来から、例えば各種のカメラ、ズーム機能カメラ付き携帯電話等では、ピエゾモータや、マグネット及びコイルを組み合わせたもの等のアクチュエータを使用してレンズを駆動しており、この可動レンズ等の位置を把握するために位置検出装置(センサ)が用いられる。   Conventionally, for example, in various cameras, mobile phones with zoom function cameras, etc., the lens is driven using an actuator such as a piezo motor or a combination of a magnet and a coil, and the position of this movable lens is grasped. For this purpose, a position detection device (sensor) is used.

上記アクチュエータを使用した5mm以上の位置検出装置には、例えば下記特許文献1,2のように、MR素子(磁気抵抗効果素子)やホール素子等の複数の磁気センサ上に、これらの素子を覆う大きさのマグネットを配置するような構成が主流であり、装置自体が大型化していた。また、このような位置検出装置が搭載されるアプリケーション内に他の磁気を使用するような場合には、磁気かぶり等の影響を受け誤動作する可能性があった。   For a position detection apparatus of 5 mm or more using the actuator, for example, as described in Patent Documents 1 and 2 below, these elements are covered on a plurality of magnetic sensors such as MR elements (magnetoresistance effect elements) and Hall elements. A configuration in which a magnet having a size is arranged is the mainstream, and the apparatus itself has been enlarged. Further, when other magnetism is used in an application in which such a position detection device is mounted, there is a possibility of malfunction due to the influence of magnetic fogging.

このようなことから、従来から位置検出装置に反射型フォトセンサを用いて構成する要求があり、従来の反射型フォトセンサを用いた位置検出装置としては、1mm以下の位置検出を目的として、携帯電話用オートフォーカスレンズ検出用のアクチュエータ等に使用されている。一方、1mm以上の位置検出を行う場合には、装置が大型化するため実現が困難であった。   For this reason, there has been a demand to construct a position detection device using a reflective photosensor, and a position detection device using a conventional reflection photosensor is portable for the purpose of position detection of 1 mm or less. Used in actuators for detecting autofocus lenses for telephones. On the other hand, when position detection of 1 mm or more is performed, it is difficult to realize the apparatus because the apparatus is enlarged.

特願平10−225083号公報Japanese Patent Application No. 10-225083 特願平11−289743号公報Japanese Patent Application No. 11-289743

上述のように、ピエゾモータ等のアクチュエータを使用して移動させる物の5mm以上の位置センシングを行う検出装置は、磁気センサ(MR素子又はホール素子)と大型マグネットの構成となるため、装置の小型化には難があった。しかも、磁気センサの場合、各センサの出力を、オペアンプを介して又は集積回路内蔵型センサ出力としてADC(アナログデジタルコンバータ)に入力しなければならず、システムを構成するための部品コストが高価になるという問題があった。   As described above, the detection device that performs position sensing of an object to be moved by using an actuator such as a piezo motor has a configuration of a magnetic sensor (MR element or Hall element) and a large magnet. There were difficulties. In addition, in the case of a magnetic sensor, the output of each sensor must be input to an ADC (analog / digital converter) via an operational amplifier or as an integrated circuit built-in sensor output, which increases the cost of components for configuring the system. There was a problem of becoming.

また、1mm以上の位置センシングを反射型フォトセンサ1つで実現しようとする場合、例えばこのフォトセンサの発光素子と受光素子とを結ぶ線方向へ可動体を移動させる構成となり、上記受光素子の検出距離方向(可動体の移動方向)のサイズが検出距離以上に必要となることから、必然的にフォトセンサの外形サイズが大きくなるという問題があった。   In addition, when it is intended to realize position sensing of 1 mm or more with one reflective photosensor, for example, the movable body is moved in a line direction connecting the light emitting element and the light receiving element of the photosensor, and the detection of the light receiving element is performed. Since the size in the distance direction (moving direction of the movable body) is required to be larger than the detection distance, there is a problem that the outer size of the photosensor is necessarily increased.

更に、反射型フォトセンサを用いて位置検出をするとき、その検出出力が温度の変化に応じて変動するという温度特性があり、この温度特性の影響をなくす必要があり、このために、従来では、例えば装置内温度をサーミスタでモニタし、その温度変化分を解消するフィードバック制御回路や反射型フォトセンサの温度特性をキャンセルするための回路を設ける必要があった。   Furthermore, when position detection is performed using a reflection type photosensor, there is a temperature characteristic that the detection output fluctuates according to a change in temperature, and it is necessary to eliminate the influence of this temperature characteristic. For example, it is necessary to provide a feedback control circuit for monitoring the temperature in the apparatus with a thermistor and canceling the temperature change, and a circuit for canceling the temperature characteristics of the reflective photosensor.

本発明は上記問題点に鑑みてなされたものであり、その目的は、磁気センサや大型マグネットを用いることなく、簡単かつ小型な構成で、1mm以上の位置センシングが良好にでき、反射型フォトセンサの温度特性をキャンセルすることが可能となる反射型フォトセンサを用いた位置検出装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to satisfactorily sense a position of 1 mm or more with a simple and small configuration without using a magnetic sensor or a large magnet, and a reflective photosensor. It is an object of the present invention to provide a position detection device using a reflection type photosensor that can cancel the temperature characteristic.

上記目的を達成するために、請求項1の発明に係る反射型フォトセンサを用いた位置検出装置は、対向配置された1対の反射型フォトセンサと、この1対のフォトセンサ間に、可動体と一体に移動するように配置された両面反射板と、を設け、上記1対のフォトセンサから対称的な電圧特性の出力を取得し、この出力に基づき上記反射板の移動距離に応じてリニアな値が得られる演算を行うことにより、該フォトセンサ間の上記両面反射板の移動位置を検出することを特徴とする。
請求項2の発明は、上記両面反射板の移動位置は、上記1対のフォトセンサの一方の出力をVo1、他方の出力をVo2とすると、(Vo1−Vo2)/(Vo1+Vo2)又は(Vo1+Vo2)/(Vo1−Vo2)の演算で求めることを特徴とする
In order to achieve the above object, a position detecting device using a reflective photosensor according to the invention of claim 1 is movable between a pair of opposed reflective photosensors and the pair of photosensors. A double-sided reflector arranged so as to move integrally with the body, and obtain a symmetrical voltage characteristic output from the pair of photosensors , and based on the output, according to the moving distance of the reflector The movement position of the double-sided reflection plate between the photosensors is detected by performing a calculation to obtain a linear value .
According to a second aspect of the present invention, the moving position of the double-sided reflecting plate is (Vo1-Vo2) / (Vo1 + Vo2) or (Vo1 + Vo2) where Vo1 is one output of the pair of photosensors and Vo2 is the other output. / (Vo1-Vo2) .

上記の構成によれば、例えばカメラの可動レンズに両面反射板を取り付け、この反射板の移動位置を検出することで、可動レンズ等の位置を特定することができる。この反射板の位置検出には、反射板の移動距離に応じてリニアな値が得られ、かつ温度変化による出力の変動をキャンセルする演算式が用いられ、この演算式としては、例えば1対の反射型フォトセンサの一方の出力をVo1、他方の出力をVo2とすると、(Vo1−Vo2)/(Vo1+Vo2)の演算式又は(Vo1+Vo2)/(Vo1−Vo2)の演算式を用いることができる。 According to the above configuration, for example, the position of the movable lens or the like can be specified by attaching the double-sided reflection plate to the movable lens of the camera and detecting the movement position of the reflection plate. For detecting the position of the reflector, a linear value is obtained according to the moving distance of the reflector, and an arithmetic expression that cancels fluctuations in output due to a temperature change is used. As the arithmetic expression, for example, a pair of When one output of the reflection type photosensor is Vo1 and the other output is Vo2, an arithmetic expression of ( Vo1-Vo2) / (Vo1 + Vo2) or an arithmetic expression of (Vo1 + Vo2) / (Vo1-Vo2) can be used.

本発明の反射型フォトセンサを用いた位置検出装置によれば、対向配置した1対の反射型フォトセンサ間の出力電圧(又は電流)を用い、リニアな距離特性となる演算式を利用することにより、磁気センサや大型マグネットを用いることなく、小型かつ安価で高精度な位置検出が可能となる。そして、デジタルスチールカメラ、ズーム機能カメラ付き携帯電話、一眼レフカメラ、カムコーダー等ズーム機能が必要なカメラモジュールのレンズ位置検出等、1mm〜10mm程度の長距離の位置検出が必要なレンズ駆動用アクチュエータ等に使用できる利点がある。   According to the position detection device using the reflective photosensor of the present invention, the output voltage (or current) between a pair of reflective photosensors arranged opposite to each other is used, and an arithmetic expression having a linear distance characteristic is used. Thus, it is possible to detect the position with a small size, low cost and high accuracy without using a magnetic sensor or a large magnet. And, for example, digital still cameras, mobile phones with zoom functions, single-lens reflex cameras, and camcorders, such as lens position detection for camera modules that require zoom functions, etc. Has advantages that can be used.

また、2つの反射型フォトセンサの出力を利用した演算式を用いることで、反射型フォトセンサの温度特性をキャンセルすることが可能となり、従来の例えばサーミスタでモニタした温度変化分を解消するフィードバック制御回路や反射型フォトセンサの温度特性をキャンセルするための回路等を設ける必要がないという効果がある。   Also, by using an arithmetic expression that uses the outputs of two reflective photosensors, it becomes possible to cancel the temperature characteristics of the reflective photosensor, and feedback control that eliminates the temperature change monitored by a conventional thermistor, for example. There is an effect that it is not necessary to provide a circuit or a circuit for canceling the temperature characteristic of the reflection type photosensor.

本発明の実施例に係る位置検出装置のセンサ部の構成を示す図である。It is a figure which shows the structure of the sensor part of the position detection apparatus which concerns on the Example of this invention. 実施例に係る位置検出装置のセンサ部の回路構成を示す図である。It is a figure which shows the circuit structure of the sensor part of the position detection apparatus which concerns on an Example. 実施例に係る反射型フォトセンサの距離特性を示す特性グラフ図である。It is a characteristic graph figure which shows the distance characteristic of the reflection type photosensor which concerns on an Example. 実施例の演算式を説明するための反射板−反射型フォトセンサ間距離対演算値を示すグラフ図である。It is a graph which shows the calculation value of the distance between reflector-reflective photosensors for demonstrating the computing equation of an Example. 実施例の演算式による反射板−反射型フォトセンサ間距離対演算値を示すグラフ図である。It is a graph which shows the distance between reflector-reflective photosensors versus the operation value by the arithmetic expression of an Example. 実施例に係る位置検出装置のセンサ部及び演算部の回路構成を示す図である。It is a figure which shows the circuit structure of the sensor part of the position detection apparatus which concerns on an Example, and a calculating part.

図1には、本発明の実施例に係る反射型フォトセンサを用いた位置検出装置のセンサ部の構成が示されており、実施例では、1対(2つ)の反射型フォトセンサPRl、PR2が対向配置され、この反射型フォトセンサPRl、PR2のそれぞれは、発光素子3と受光素子4を有してなる。また、この反射型フォトセンサPRl、PR2の間に、反射板(例えば、厚さt=0.5mm)5が配置されており、この両面反射板5は、表裏両面が同一の反射率を有する両面反射板であり、その面積は反射型フォトセンサPR1,PR2の対向面の面積よりも大きく形成される。そして、この反射板5は、レンズ等の可動体に接続され、可動体と一体となってフォトセンサ間を移動するように構成される。   FIG. 1 shows a configuration of a sensor unit of a position detecting device using a reflective photosensor according to an embodiment of the present invention. In the embodiment, a pair (two) of reflective photosensors PRl, PR2 is disposed opposite to each other, and each of the reflection type photosensors PRl and PR2 includes a light emitting element 3 and a light receiving element 4. A reflective plate (for example, thickness t = 0.5 mm) 5 is disposed between the reflective photosensors PRl and PR2, and the double-sided reflective plate 5 has the same reflectance on both the front and back sides. It is a double-sided reflector, and its area is formed larger than the area of the opposing surface of the reflective photosensors PR1, PR2. The reflector 5 is connected to a movable body such as a lens, and is configured to move between the photosensors together with the movable body.

図2には、センサ部の回路構成が示されており、図示されるように、反射型フォトセンサPR1は、抵抗R、発光素子(フォトダイオード)3、受光素子(フォトトランジスタ)4、抵抗Rを有してなり、電圧Vo1(電流でもよい)を出力する。また、反射型フォトセンサPR2も、同様に抵抗R、発光素子3、受光素子4、抵抗Rを有してなり、電圧Vo2を出力するように構成される。 FIG. 2 shows a circuit configuration of the sensor unit. As shown, the reflective photosensor PR1 includes a resistor R 1 , a light emitting element (photodiode) 3, a light receiving element (phototransistor) 4, and a resistor. It becomes a R 2, and outputs a voltage Vo1 (or a current). The reflection-type photosensor PR2 likewise resistor R 3, the light-emitting element 3, the light receiving element 4, it has a resistance R 4, configured to output a voltage Vo2.

図3には、図1及び図2に示される反射型フォトセンサPR1とPR2の間の両面反射板5を0mm〜8mmまで移動させたときの反射型フォトセンサPR1とPR2の出力電圧Vo1,Vo2が示されており、PR1からの距離dにおいて、このPR1の出力電圧Vo1は、高い電圧から急激に降下する電圧となり、他方のPR2の出力電圧Vo2は、低い電圧から急激に上昇する電圧となり、それぞれの電圧特性は対称的なものとなる。   FIG. 3 shows output voltages Vo1 and Vo2 of the reflection type photosensors PR1 and PR2 when the double-sided reflection plate 5 between the reflection type photosensors PR1 and PR2 shown in FIGS. 1 and 2 is moved from 0 mm to 8 mm. In the distance d from PR1, the output voltage Vo1 of PR1 becomes a voltage that suddenly drops from a high voltage, and the output voltage Vo2 of the other PR2 becomes a voltage that suddenly rises from a low voltage, Each voltage characteristic is symmetrical.

図4は、図3で説明した反射型フォトセンサPR1の出力電圧とPR2の出力電圧の加算(Vo1+Vo2)及び減算(Vo1−Vo2)の処理を行った結果である。   FIG. 4 shows a result of performing the addition (Vo1 + Vo2) and subtraction (Vo1-Vo2) processing of the output voltage of the reflective photosensor PR1 and the output voltage of PR2 described in FIG.

図5には、更に、(Vo1−Vo2)/(Vo1+Vo2)[演算式A]の演算処理を行った結果が示されており、図示のように、この演算式Aによれば、点線で示す理想直線に近似する直線性が高いリニアな特性が得られることが理解される。また、検出のための演算式としては、(Vo1+Vo2)/(Vo1−Vo2)[演算式B]を用いてもよく、この演算式Bの特性線は、図5の傾きとは逆に右肩上がりとなるが、この場合も、上記と同様に反射板の移動距離dに応じて理想直線に近似する高いリニア特性が得られる。更に、上記の演算式A,Bは、後述するが、反射型フォトセンサPR1,PR2の温度特性により出力値が変動した場合でも、その変動分をキャンセルできるものである。   FIG. 5 further shows the result of the calculation processing of (Vo1−Vo2) / (Vo1 + Vo2) [Calculation Formula A]. As shown in FIG. 5, this calculation formula A is indicated by a dotted line. It is understood that a linear characteristic with high linearity approximating an ideal straight line can be obtained. Further, as an arithmetic expression for detection, (Vo1 + Vo2) / (Vo1−Vo2) [calculation expression B] may be used, and the characteristic line of the arithmetic expression B is on the right side of the slope of FIG. In this case as well, a high linear characteristic that approximates an ideal straight line is obtained in accordance with the moving distance d of the reflecting plate as described above. Furthermore, although the arithmetic expressions A and B will be described later, even if the output value fluctuates due to the temperature characteristics of the reflective photosensors PR1 and PR2, the fluctuation can be canceled.

図6には、演算部を含めた位置検出装置の構成が示されており、この演算部7は、検出部からの出力電圧Vo1,Vo2を入力するADC(アナログデジタルコンバータ)8a,8b、Vo1+Vo2を演算する加算器9、Vo1−Vo2を演算する減算器10、(Vo1−Vo2)/(Vo1+Vo2)又は(Vo1+Vo2)/(Vo1−Vo2)を演算する割算器11からなる。   FIG. 6 shows a configuration of a position detection device including a calculation unit, and this calculation unit 7 includes ADCs (analog / digital converters) 8a and 8b for inputting output voltages Vo1 and Vo2 from the detection unit, Vo1 + Vo2. The subtractor 10 calculates Vo1-Vo2, and the divider 11 calculates (Vo1-Vo2) / (Vo1 + Vo2) or (Vo1 + Vo2) / (Vo1-Vo2).

このような構成によれば、図1の移動する反射板5に対し、1対の反射型フォトセンサPR1,PR2のそれぞれの発光素子3から検出光が出力されると、反射板5から反射される光がそれぞれの受光素子4で受光され、フォトセンサPR1から電圧Vo1、フォトセンサPR2から電圧Vo2が出力される。そして、これらアナログ電圧値は、ADC8a,8bでデジタル値に変換され、これらのデジタル値を入力する加算器9、減算器10及び割算器11によって、例えば(Vo1−Vo2)/(Vo1+Vo2)[演算式A]が演算される。そして、この演算値によって、図5に示される特性に基づいて、反射板5の位置(距離d)、即ち可動体の位置が良好に検出されることになる。   According to such a configuration, when detection light is output from each light emitting element 3 of the pair of reflective photosensors PR1 and PR2 to the moving reflecting plate 5 in FIG. Are received by the respective light receiving elements 4, and the voltage Vo1 is output from the photosensor PR1, and the voltage Vo2 is output from the photosensor PR2. These analog voltage values are converted into digital values by the ADCs 8a and 8b, and, for example, (Vo1−Vo2) / (Vo1 + Vo2) [ The arithmetic expression A] is calculated. Then, based on the calculated value, the position (distance d) of the reflecting plate 5, that is, the position of the movable body is detected satisfactorily based on the characteristics shown in FIG.

上記実施例は、ピエゾモータを組み込んだ位置検出装置等として、例えばデジタルスチールカメラ、ズーム機能カメラ付き携帯電話、一眼レフ、カムコーダー等ズーム機能か必要なカメラモジュールのレンズ位置検出装置等に使用することができ、これらの1mm以上の位置センシング等において、小型化ができ、かつ安価なシステム構成が実現できるという利点がある。   The above embodiment can be used as a position detecting device incorporating a piezo motor, for example, a digital still camera, a mobile phone with a zoom function camera, a single lens reflex camera, a camcorder, etc. In these position sensing of 1 mm or more, etc., there is an advantage that a downsizing and an inexpensive system configuration can be realized.

また、反射型フォトセンサPR1,PR2の温度特性に基づき、出力電圧が温度により変化したとき、2つのフォトセンサ出力に基づいた上記の加減算及び割算の処理によれば、その変動分が完全にキャンセルされる。例えば、温度の影響がなく、Vo1=0.4(V)、Vo2=0.1(V)であるとき、上記演算式Aによる値は0.6となるが、これに対し、温度の影響により1割の変動があったとすると、Vo1=0.44、Vo2=0.11となるが、この場合も、演算値は0.6となり、変動分がキャンセルされている。従って、装置内温度をサーミスタでモニタしフィードバックをかける回路や、反射型フォトセンサの温度特性をキャンセルするための回路等を設ける必要がない。   Also, when the output voltage changes with temperature based on the temperature characteristics of the reflective photosensors PR1 and PR2, the above addition / subtraction and division processing based on the two photosensor outputs completely eliminates the fluctuation. Canceled. For example, when there is no influence of temperature and Vo1 = 0.4 (V) and Vo2 = 0.1 (V), the value according to the arithmetic expression A is 0.6. Therefore, Vo1 = 0.44 and Vo2 = 0.11. In this case, the calculated value is 0.6, and the fluctuation is cancelled. Therefore, there is no need to provide a circuit for monitoring the temperature in the apparatus with a thermistor for feedback and a circuit for canceling the temperature characteristics of the reflective photosensor.

PR1,PR2…反射型フォトセンサ、
3…発光素子、 4…受光素子、
5…反射板、 7…演算部、
8a,8b…ADC。
PR1, PR2 ... reflective photosensors,
3 ... light emitting element, 4 ... light receiving element,
5 ... reflector, 7 ... arithmetic unit,
8a, 8b ... ADC.

Claims (2)

対向配置された1対の反射型フォトセンサと、
この1対のフォトセンサ間に、可動体と一体に移動するように配置された両面反射板と、を設け、
上記1対のフォトセンサから対称的な電圧特性の出力を取得し、この出力に基づき上記反射板の移動距離に応じてリニアな値が得られる演算を行うことにより、該フォトセンサ間の上記両面反射板の移動位置を検出することを特徴とする反射型フォトセンサを用いた位置検出装置。
A pair of reflective photosensors arranged opposite to each other;
A double-sided reflector disposed between the pair of photosensors so as to move integrally with the movable body ,
An output having a symmetrical voltage characteristic is obtained from the pair of photosensors , and a calculation is performed on the basis of the output to obtain a linear value in accordance with the moving distance of the reflecting plate. A position detection device using a reflection type photosensor, wherein the movement position of a reflection plate is detected.
上記両面反射板の移動位置は、上記1対のフォトセンサの一方の出力をVo1、他方の出力をVo2とすると、(Vo1−Vo2)/(Vo1+Vo2)又は(Vo1+Vo2)/(Vo1−Vo2)の演算で求めることを特徴とする請求項1記載の反射型フォトセンサを用いた位置検出装置。 The moving position of the double-sided reflector is (Vo1-Vo2) / (Vo1 + Vo2) or (Vo1 + Vo2) / (Vo1-Vo2), where Vo1 is one output of the pair of photosensors and Vo2 is the other output. 2. The position detection device using a reflection type photosensor according to claim 1, wherein the position detection device is obtained by calculation.
JP2010237482A 2010-10-22 2010-10-22 Position detection device using a reflective photosensor Active JP5635870B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010237482A JP5635870B2 (en) 2010-10-22 2010-10-22 Position detection device using a reflective photosensor
TW100133732A TWI461649B (en) 2010-10-22 2011-09-20 Position detecting device using reflection type photosensors
KR1020110104500A KR20120042657A (en) 2010-10-22 2011-10-13 Position detecting device using reflection type photosensors
US13/277,528 US8907263B2 (en) 2010-10-22 2011-10-20 Position detecting device using reflection type photosensors
CN201110320340.9A CN102564305B (en) 2010-10-22 2011-10-20 Position detecting device using reflection type photosensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237482A JP5635870B2 (en) 2010-10-22 2010-10-22 Position detection device using a reflective photosensor

Publications (2)

Publication Number Publication Date
JP2012088277A JP2012088277A (en) 2012-05-10
JP5635870B2 true JP5635870B2 (en) 2014-12-03

Family

ID=45972166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237482A Active JP5635870B2 (en) 2010-10-22 2010-10-22 Position detection device using a reflective photosensor

Country Status (5)

Country Link
US (1) US8907263B2 (en)
JP (1) JP5635870B2 (en)
KR (1) KR20120042657A (en)
CN (1) CN102564305B (en)
TW (1) TWI461649B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125048A (en) * 2011-12-13 2013-06-24 Semiconductor Components Industries Llc Lens position detection circuit
US9307125B2 (en) * 2012-10-11 2016-04-05 Sony Corporation Position detection device, lens barrel, and imaging apparatus
US9562922B2 (en) 2013-01-25 2017-02-07 Sharp Kabushiki Kaisha Light sensor and electronic device
TWI495894B (en) * 2013-08-07 2015-08-11 Wistron Corp Test device for testing whether a workpiece is positioned correctly and method thereof
US10054763B2 (en) * 2015-08-17 2018-08-21 Apple Inc. Optical position sensing with temperature calibration
TWI751144B (en) * 2016-03-24 2022-01-01 美商陶氏全球科技責任有限公司 Optoelectronic device and methods of use
US11359481B2 (en) 2019-11-05 2022-06-14 Halliburton Energy Services, Inc. Indicating position of a moving mechanism of well site tools
CN113370663B (en) * 2021-06-11 2023-02-03 上海商米科技集团股份有限公司 Label detection method and device based on double sensors and handheld thermal printing head

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648191B2 (en) * 1986-10-27 1994-06-22 松下電工株式会社 Optical displacement measuring device
JPH02173505A (en) * 1988-12-26 1990-07-05 Brother Ind Ltd Light wave interference type minute surface shape measuring instrument
JPH0810139B2 (en) * 1989-09-29 1996-01-31 アンリツ株式会社 Thickness measuring device
JPH07324910A (en) * 1994-05-31 1995-12-12 Bridgestone Corp Method and device for detecting position of moving body
EP0814317A4 (en) * 1995-03-10 1998-12-02 Seft Dev Lab Co Ltd Position measuring instrument
JP3750251B2 (en) 1997-02-10 2006-03-01 松下電器産業株式会社 Linear actuator and optical equipment using it
GB2323716B (en) 1997-02-10 2001-02-07 Matsushita Electric Ind Co Ltd Linear actuator and optical equipment using the same
JPH11289743A (en) 1998-04-01 1999-10-19 Matsushita Electric Ind Co Ltd Linear actuator and lens driving device and lens barrel using the same
DE19847992A1 (en) * 1998-10-17 2000-04-20 Zeiss Carl Jena Gmbh Position detector for microscope has light barriers associated with reflector and absorber wedge panels on moving body
JP2000234912A (en) * 1999-02-15 2000-08-29 Hitachi Electronics Eng Co Ltd Wafer thickness measuring equipment
JP2001264023A (en) * 2000-03-15 2001-09-26 Ngk Insulators Ltd Non contact continuous measurement method of film thickness for strip sheet material, and optical axis aligning method for reflection-type laser measuring means
JP3809803B2 (en) * 2002-02-15 2006-08-16 オムロン株式会社 Displacement sensor
JP3977303B2 (en) * 2003-08-21 2007-09-19 シャープ株式会社 Position detection system, transmitter and receiver in position detection system
US7667186B2 (en) * 2004-05-28 2010-02-23 Nokia Corporation Optoelectronic position determination system
JP2007003204A (en) * 2005-06-21 2007-01-11 Mitsutoyo Corp Thickness measurement machine
US7573021B2 (en) * 2006-10-24 2009-08-11 Micron Optics, Inc. Method and apparatus for multiple scan rate swept wavelength laser-based optical sensor interrogation system with optical path length measurement capability
US7837907B2 (en) * 2007-07-20 2010-11-23 Molecular Imprints, Inc. Alignment system and method for a substrate in a nano-imprint process
JP2010145340A (en) * 2008-12-22 2010-07-01 Ntn Corp Device and method for measuring size of large component

Also Published As

Publication number Publication date
KR20120042657A (en) 2012-05-03
US20120097837A1 (en) 2012-04-26
JP2012088277A (en) 2012-05-10
US8907263B2 (en) 2014-12-09
CN102564305B (en) 2014-10-15
TW201226842A (en) 2012-07-01
CN102564305A (en) 2012-07-11
TWI461649B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
JP5635870B2 (en) Position detection device using a reflective photosensor
US7818138B2 (en) Position detecting device and position detecting method
US9759928B2 (en) Optical image stabilizer detecting X direction displacement and Y direction displacement of lens group
JP5089999B2 (en) Position detection circuit and its application device
KR101910672B1 (en) Photosensor for position detecting device, position detection device using same and position detecting method
US20060170418A1 (en) Drive unit provided with position detecting device
JP6106011B2 (en) Pressure detection device
KR102642904B1 (en) Actuator of camera module
WO2014057726A1 (en) Position detection device, lens barrel, and image pickup device
CN106949822B (en) Real-time displacement feedback system and feedback method of micro device
JP2013250468A (en) Lens drive device
JP2014174096A (en) Position detector including reflection photosensor
KR20170126043A (en) Sensorless controller of linear actuator
US8773122B2 (en) Hall element control circuit
JP5466127B2 (en) Origin position detection circuit
JP2013125048A (en) Lens position detection circuit
US11428581B2 (en) Methods and apparatus for predictive modeling in an imaging system
JP2006227274A (en) Imaging apparatus
JP2013125760A (en) Photodetector control circuit
US20210223063A1 (en) Position detecting device of aperture module
JP2011066486A (en) Position detection circuit and blur correction device
JP2012093302A (en) Position detecting device using reflection type photosensor
JP4391783B2 (en) Optical equipment
JP6130628B2 (en) Camera lens position detection device using a reflective photosensor
JP2006243668A (en) Zoom lens device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5635870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250