JP5629503B2 - Manufacturing method of injection needle and injection needle - Google Patents

Manufacturing method of injection needle and injection needle Download PDF

Info

Publication number
JP5629503B2
JP5629503B2 JP2010142521A JP2010142521A JP5629503B2 JP 5629503 B2 JP5629503 B2 JP 5629503B2 JP 2010142521 A JP2010142521 A JP 2010142521A JP 2010142521 A JP2010142521 A JP 2010142521A JP 5629503 B2 JP5629503 B2 JP 5629503B2
Authority
JP
Japan
Prior art keywords
needle tube
needle
injection needle
nickel
titanium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142521A
Other languages
Japanese (ja)
Other versions
JP2012005576A (en
Inventor
見城 晃
晃 見城
Original Assignee
見城 晃
晃 見城
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 見城 晃, 晃 見城 filed Critical 見城 晃
Priority to JP2010142521A priority Critical patent/JP5629503B2/en
Publication of JP2012005576A publication Critical patent/JP2012005576A/en
Application granted granted Critical
Publication of JP5629503B2 publication Critical patent/JP5629503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

この発明は注射器の針に関し、より詳細には強度を保った上で外径を可及的に細くすることを可能とした注射針に関する。   The present invention relates to a needle of a syringe, and more particularly to an injection needle capable of reducing the outer diameter as much as possible while maintaining strength.

生体に穿刺することにより管状の針から生体内に薬液などを注出するための注射針が広く使用されている。注射針の製造方法としてはステンレス鋼からなる平板を丸める塑性加工により管状として、接合部を溶接して針管を得る方法が従来一般的であった(特許文献1)。   2. Description of the Related Art Injection needles are widely used for pouring a liquid medicine into a living body from a tubular needle by puncturing the living body. As a method for producing an injection needle, a method in which a needle tube is obtained by welding a joint portion into a tubular shape by plastic processing of rounding a flat plate made of stainless steel has been conventionally used (Patent Document 1).

ところで、穿刺時の患者の痛みを和らげるためには注射針の外径を可及的に細めることが有効である。そのため、引抜きダイスによる引抜き加工を繰り返すことにより管状体を徐々に細めて所望の外径の針管に成形することが行なわれている(特許文献2)。   By the way, it is effective to reduce the outer diameter of the injection needle as much as possible in order to relieve the pain of the patient at the time of puncture. For this reason, the tubular body is gradually narrowed and formed into a needle tube having a desired outer diameter by repeating drawing with a drawing die (Patent Document 2).

しかしながら、平板から針管を得る従来技術においては塑性加工時の手間やコストに加え、溶接時の手間やコストが嵩む問題があり、さらに接合部に段差や凹凸ができないように細心の配慮を払わなければならない問題があった。   However, in the prior art for obtaining a needle tube from a flat plate, in addition to the labor and cost of plastic processing, there is a problem that the labor and cost of welding are increased, and further care must be taken so that there are no steps or irregularities in the joint. There was a problem that had to be done.

また、所望の外径の針管に成形するためにダイスによる引抜き加工を繰り返す場合は管状体の内壁に収縮による皺ができる問題があり、それを除去するために内壁面を研磨加工しなければならず手間やコストが嵩む問題があった。この場合、この皺を防止するためには引抜き加工時に管状体内にその内径を規定するプラグを挿入することが有効であるが、そうすると成形できる針管の内径はプラグを挿入可能な大きさまでのものに規制されてしまい、注射針の細径化に限界を生じさせる問題があった。   Further, when drawing with a die is repeated in order to form a needle tube with a desired outer diameter, there is a problem that the inner wall of the tubular body is wrinkled due to shrinkage, and the inner wall surface must be polished to remove it. There was a problem that time and cost increased. In this case, in order to prevent this wrinkle, it is effective to insert a plug that defines the inner diameter of the tubular body during the drawing process. However, the inner diameter of the needle tube that can be molded is limited to a size that allows the plug to be inserted. There is a problem that the restriction is imposed, and the diameter of the injection needle is limited.

また、引き抜き加工には潤滑のために鉱油を基油とする引き抜き加工油が不可欠となるが、生体に使用する注射針の場合は加工後に内外の表面に付着した加工油を除去する工程が不可欠となり、手間やコストが嵩む問題もあった。   In addition, for drawing processing, drawing oil based on mineral oil is indispensable for lubrication, but in the case of injection needles used for living bodies, a process to remove the processing oil adhering to the inner and outer surfaces after processing is indispensable. Therefore, there is a problem that labor and cost increase.

一方、塑性加工によらず、電鋳加工により注射針を製造する発明が提案されている(特許文献3、4)。前記発明は電鋳加工により線状の母型の周囲にニッケルの電鋳体を形成した後、この電鋳体を引き抜くことによりニッケル製の針管を取得するものであり、本願発明はこの発明を直接的な先行技術とするものである。   On the other hand, inventions have been proposed in which injection needles are manufactured by electroforming, regardless of plastic processing (Patent Documents 3 and 4). In the above invention, after forming a nickel electroformed body around a linear matrix by electroforming, a nickel needle tube is obtained by pulling out the electroformed body. It is a direct prior art.

特開2002−291884号公報JP 2002-291844 A 特開2007−38021号公報JP 2007-38021 A 特開2005−611号公報JP-A-2005-611 特開2007−289664号公報JP 2007-289664 A

前記の電鋳加工によりニッケル製の注射針を製造する方法においては、塑性加工や溶接が不要なので複雑な手間を要せず可及的に細径化した注射針を得ることが可能となる。また、塑性加工による場合のように、予定外の不規則な物理的な変形が生じることがないので寸法精度が高く、かつ内外の表面が平滑な針管を得ることができる。さらに、引き抜き加工油を使わないので、その除去工程も不要となる。   In the method of manufacturing a nickel injection needle by the electroforming described above, plastic processing and welding are not required, so that it is possible to obtain an injection needle with a diameter as small as possible without requiring complicated labor. Further, unlike the case of plastic working, unplanned irregular physical deformation does not occur, so that a needle tube with high dimensional accuracy and smooth inner and outer surfaces can be obtained. Further, since no drawing oil is used, the removal process is not necessary.

ところで、ニッケルの場合、人間が出す汗の中の塩素イオンによりニッケルが溶け出され、汗によって溶け出されたニッケルイオンが人間に皮膚炎を起こしたり、ニッケルが接触している部分だけでなく、血液に運ばれて汗の多い場所に湿疹を引き起こすアレルギーの可能性が指摘されている。そこで、電鋳加工により得られる注射針はニッケル製であることより、従来のステンレス製の注射針と比べた場合、前記の問題が浮上し、これが医療現場での実用化のネックとなっていた。この場合、針管に金メッキを施すという方策も想定できるがコストを要するという問題があった。   By the way, in the case of nickel, nickel is melted by chlorine ions in the sweat that humans produce, and the nickel ions that are melted by sweat cause dermatitis to humans, not only the part where nickel is in contact, There is a possibility of allergies that are carried by blood and cause eczema in sweaty places. Therefore, since the injection needle obtained by electroforming is made of nickel, the above problem emerged when compared with a conventional stainless steel injection needle, which became a bottleneck for practical use in the medical field. . In this case, it is possible to envisage a method in which the needle tube is plated with gold, but there is a problem that costs are required.

また、ステレンスに比べて純ニッケルは硬度が低いので、これを注射針に用いた場合の強度に関し不安があり、これは前記の金メッキをもってしても解消できない。   In addition, since pure nickel has a lower hardness than stainless steel, there is anxiety regarding the strength when it is used as an injection needle, and this cannot be resolved even with the above-described gold plating.

この発明の注射針の製造方法は以上の問題点に鑑みて創作されたものであり、電鋳加工により線状の母型の周囲にニッケルの電鋳体を形成した後、この電鋳体を引き抜くことによりニッケル製の針管を取得するとともに、その先端を研削して穿刺用刃面を形成し、その後、この針管を水酸化チタンの微粒子を溶液中に分散させた光触媒処理溶液中に浸漬し、乾燥させることによりバインダーを使わずに針管の内外の表面に水酸化チタンの微粒子からなる光触媒コーティングを施すことを特徴とする。   The manufacturing method of the injection needle of the present invention was created in view of the above problems. After forming a nickel electroformed body around a linear matrix by electroforming, the electroformed body is A nickel needle tube is obtained by pulling out, and the tip is ground to form a puncture blade surface, and then this needle tube is immersed in a photocatalyst treatment solution in which fine particles of titanium hydroxide are dispersed in the solution. The photocatalyst coating made of fine particles of titanium hydroxide is applied to the inner and outer surfaces of the needle tube without using a binder by drying.

また、請求項2に記載の注射針の製造方法は、前記の注射針の製造方法において、光触媒処理溶液は水酸化チタンをアルコール水溶液中に分散させた液体であって、水酸化チタンのアモルファス型とアナターゼ型の粒子が混合されたものであってバインダーを含まないものであることを特徴とする。   The method for manufacturing an injection needle according to claim 2, wherein the photocatalyst treatment solution is a liquid in which titanium hydroxide is dispersed in an alcohol aqueous solution, and the amorphous type of titanium hydroxide is used. And anatase-type particles are mixed and do not contain a binder.

また、請求項3に記載の注射針の製造方法は、前記の注射針の製造方法において、針管の光触媒処理溶液中への浸漬は針管を針基に固着した後に、針基ごと行われることを特徴とする。   Further, in the method for manufacturing an injection needle according to claim 3, the immersion of the needle tube in the photocatalyst treatment solution is performed together with the needle base after the needle tube is fixed to the needle base. Features.

また、請求項4に記載の注射針は、先端を研削して穿刺用刃面を形成したニッケル製の針管の内外の表面にバインダー層を介さずに水酸化チタンの微粒子からなる光触媒コーティング層を施したことを特徴とする。   The injection needle according to claim 4 has a photocatalyst coating layer made of fine particles of titanium hydroxide on the inner and outer surfaces of a nickel needle tube whose tip is ground to form a puncture blade surface without a binder layer. It is characterized by that.

よって、この発明によれば、塑性加工や溶接が不要なので複雑な手間を要せず可及的に細径化した注射針を得ることが可能となる。また、塑性加工による場合のように、予定外の不規則な物理的な変形が生じることがないので寸法精度が高く、かつ内外の表面が平滑な針管を得ることができる。さらに、引き抜き加工油を使わないので、その除去工程も不要となる効果を得られる。   Therefore, according to the present invention, it is possible to obtain an injection needle that is as thin as possible without requiring complicated work because plastic processing and welding are not required. Further, unlike the case of plastic working, unplanned irregular physical deformation does not occur, so that a needle tube with high dimensional accuracy and smooth inner and outer surfaces can be obtained. Furthermore, since no drawing oil is used, an effect of eliminating the removal process can be obtained.

一方、ニッケル製の針管は光触媒により内側、外側の表面がコーティングされ、ニッケルが表面に露出することがないので、衛生面、健康面においてニッケルが直に人体に触れることがないので、人体にアレルギーなどを引き起こす問題がない。   On the other hand, the needle tube made of nickel is coated on the inner and outer surfaces with a photocatalyst, and nickel is not exposed to the surface, so nickel does not directly touch the human body in terms of hygiene and health. There is no problem that causes.

ところで、一般的には物体に光触媒をコーティングする技術的な意義は次の2つに求められる。
(1) 酸化チタンに、紫外線をあてることにより、金属をイオン化させ、これが、水や酸素などと反応し、活性酸素や水酸ラジカルを生成する。この活性酸素や水酸ラジカルは非常に酸化性が高いので有害物質などを分解する酸化分解作用を生じる。
(2) 酸化チタンに光があたると、空気中の水素を引きつけ、表面に着いたほこりや油などの下に水分を入り込ませこれらの汚れを落ちやすくする親水作用を生じる。
By the way, generally, the following two technical significances are required for coating an object with a photocatalyst.
(1) By applying ultraviolet light to titanium oxide, the metal is ionized, and this reacts with water, oxygen, etc. to generate active oxygen and hydroxyl radicals. These active oxygen and hydroxyl radicals are highly oxidizable, and therefore cause an oxidative decomposition action that decomposes harmful substances.
(2) When the titanium oxide is exposed to light, it attracts hydrogen in the air and enters the surface under dust or oil, causing a hydrophilic effect that makes it easier to remove these stains.

この発明の注射針においても、もちろん前記の効果を奏し、一度光触媒処理処理された注射針は、包装、梱包した数日、数ヵ月、数年後に開封しても、前記の光触媒作用は持続する。   Of course, the injection needle of the present invention also exhibits the above-mentioned effect, and the photocatalytic action is maintained even if the injection needle once treated with photocatalyst is opened several days, months, or years after packaging and packing. .

一方、この発明の注射針は前記の光触媒作用からは想定し得ない作用も利用している。その一つは前記した光触媒により内外の表面をコーティングし、ニッケルの表面への露出を阻止することによるアレルギーの防止である。   On the other hand, the injection needle of the present invention also utilizes an action that cannot be assumed from the photocatalytic action. One of them is prevention of allergy by coating the inner and outer surfaces with the above-mentioned photocatalyst and preventing the exposure of nickel to the surface.

そして、もう一つは光触媒処理溶液中の水酸化チタンの微粒子が針管の内外の表面に付着してそれを覆うことによる、注射針の強度の向上作用である。すなわち、この発明の注射針はニッケル製の針管の内外の表面を水酸化チタンの微粒子で覆うことにより二重層構造となる。この場合、ニッケル製の針管自体の硬度はHv250〜300前後であるのに対し、それを覆う水酸化チタンの微粒子層の硬度はHv900〜1000前後となる。その結果、ニッケル製の針管は柔らかく、しなやかで、表面の水酸化チタンの微粒子層は固いので、折り曲げ強度が強靱で、衝撃に強い注射針を得ることが可能となった。   The other is the action of improving the strength of the injection needle by the fine particles of titanium hydroxide in the photocatalyst treatment solution adhering to and covering the inner and outer surfaces of the needle tube. That is, the injection needle of the present invention has a double layer structure by covering the inner and outer surfaces of a nickel needle tube with fine particles of titanium hydroxide. In this case, the hardness of the nickel needle tube itself is around Hv 250 to 300, whereas the hardness of the fine particle layer of titanium hydroxide covering it is around Hv 900 to 1000. As a result, the needle tube made of nickel was soft and supple, and the fine particle layer of titanium hydroxide on the surface was hard, so that it became possible to obtain an injection needle with strong bending strength and strong impact.

ところで、前記の場合、この発明においてはバインダーを使わずに針管の内外の表面に水酸化チタンの微粒子からなる光触媒コーティングを施しているので、仮にバインダーを用いた場合は折り曲げ時に針管と水酸化チタンの微粒子層との間のコーティング層がひび割れ・破損し注射針としての使用できなくなるのに対し、折り曲げても針管表面の水酸化チタンの微粒子が移動するだけでひび割れ・破損したりすることがない効果を得られる。   By the way, in the above case, in the present invention, the photocatalyst coating made of fine particles of titanium hydroxide is applied to the inner and outer surfaces of the needle tube without using a binder. Therefore, if a binder is used, the needle tube and titanium hydroxide are bent at the time of bending. The coating layer between the fine particle layer is cracked and damaged and cannot be used as an injection needle. On the other hand, even when folded, the titanium hydroxide fine particles on the surface of the needle tube only move and are not cracked or damaged. The effect can be obtained.

次にこの発明によれば、前記したように電鋳加工の特性より複雑な手間を要せず可及的に細径化した針管を得ることができるが、それに加えて表面の光触媒コーティング層も間に介在するバインダーを使用していなで施しているので可及的に薄くすることができ、最小肉厚(t0. 02前後)、微細径(外径φ0. 06〜0. 20mm/内径φ0. 01〜0. 18mm)の注射針の成形が可能になる。また、この場合、バインダーを使用しないことよりその厚みのばらつきに左右される外径寸法のコントロールの不確実さがなく、寸法精度に優れた注射針の成形が可能になる。   Next, according to the present invention, as described above, it is possible to obtain a needle tube having a diameter as small as possible without requiring more complicated work than the characteristics of electroforming. In addition to this, a photocatalytic coating layer on the surface is also provided. Since it is applied without using an intervening binder, it can be made as thin as possible, with a minimum wall thickness (around 0.02) and a fine diameter (outer diameter φ 0.06 to 0.20 mm / inner diameter φ 0). 01 to 0.18 mm) can be formed. Further, in this case, since no binder is used, there is no uncertainty in the control of the outer diameter depending on the variation in thickness, and an injection needle having excellent dimensional accuracy can be formed.

また、この発明によれば前記したように電鋳加工自体が塑性加工や溶接が不要なので複雑な手間を要せず低コストで針管を取得できることに加え、光触媒コーティングも比較的安価な光触媒処理溶液中に多数の針管を浸漬することにより一括処理できるので、低コストで注射針を生産することが可能となる。   Further, according to the present invention, as described above, the electroforming process itself does not require plastic working or welding, so that it is possible to obtain a needle tube at a low cost without requiring complicated labor, and in addition, a photocatalyst coating solution is also relatively inexpensive. Since it is possible to perform batch processing by immersing a large number of needle tubes therein, it is possible to produce injection needles at low cost.

この発明の注射針の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the injection needle of this invention. この発明の注射針の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the injection needle of this invention. この発明の注射針の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the injection needle of this invention. この発明の注射針の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the injection needle of this invention. この発明の注射針の製造工程を示す要部の模式図。The schematic diagram of the principal part which shows the manufacturing process of the injection needle of this invention. この発明の注射針の針管の一例を示す要部の側面図。The side view of the principal part which shows an example of the needle tube of the injection needle of this invention. この発明の注射針の針管の一例を示す要部の側面図。The side view of the principal part which shows an example of the needle tube of the injection needle of this invention. この発明の注射針の異なる実施例の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the Example from which the injection needle of this invention differs.

以下、この発明の注射針の製造方法の実施例を説明する。この発明においては先ず電鋳加工により注射針の基体となるニッケル製の針管を取得する。電鋳加工は公知の方法により行なわれるものであり、所望の注射針の内周形状に沿った電鋳母型Mを図示しない電鋳槽内の電解液中に浸漬し、電鋳金属であるニッケル板を陽極とし電鋳母型Mを陰極として通電する電鋳加工を行って、所定の厚さの電鋳体1を電鋳母型Mの周囲に形成する(図1参照)。そして、上記電鋳母型Mから電鋳体1を引き抜くことによりニッケル製の針管2を取得し(図2参照)、さらにその先端を研削して穿刺用刃面Nを形成する(図3参照)。   Examples of the manufacturing method of the injection needle of the present invention will be described below. In the present invention, first, a nickel needle tube serving as a base of an injection needle is obtained by electroforming. The electroforming is performed by a known method, and an electroforming metal is formed by immersing an electroforming mother die M along an inner peripheral shape of a desired injection needle in an electrolyte solution in an electroforming tank (not shown). An electroforming process is performed in which a nickel plate is used as an anode and an electroformed mother die M is used as a cathode to form an electroformed body 1 having a predetermined thickness around the electroformed mother die M (see FIG. 1). Then, by pulling out the electroformed body 1 from the electroforming mother die M, a nickel needle tube 2 is obtained (see FIG. 2), and the tip is ground to form a puncture blade surface N (see FIG. 3). ).

前記ニッケル製の針管2は針管の内側、外側の表面に水酸化チタンからなる光触媒コーティング層3を施し注射針Tとする(図4参照)。この場合、この発明においては、針管に光触媒コーティング層を施すに際し、バインダーを用いないことが要件となる。そのために、粉末状の光触媒をバインダーを用いて接着するのではなく、針管を水酸化チタンの微粒子を溶液中に分散させた光触媒処理溶液中に浸漬し、乾燥させることによりバインダーを使わずに針管の内外の表面に水酸化チタンの微粒子からなる光触媒コーティングを施している(図5参照)。   The nickel needle tube 2 is provided with a photocatalyst coating layer 3 made of titanium hydroxide on the inner and outer surfaces of the needle tube to form an injection needle T (see FIG. 4). In this case, in this invention, it is a requirement not to use a binder when the photocatalyst coating layer is applied to the needle tube. Therefore, instead of adhering a powdery photocatalyst using a binder, the needle tube is immersed in a photocatalyst treatment solution in which fine particles of titanium hydroxide are dispersed in a solution and dried to use the needle tube without using a binder. A photocatalytic coating made of fine particles of titanium hydroxide is applied to the inner and outer surfaces (see FIG. 5).

前記の光触媒処理溶液として、この実施例では水酸化チタンをアルコール水溶液中に分散させた液体であって、水酸化チタンのアモルファス型とアナターゼ型の粒子が混合されたものであってバインダーを含まないものを使用しており、具体的には長宗産業株式会社製ハンノウコートCR50(科学名:2一プロパノール+アパタイト被覆二酸化チタン+二酸化ケイ素水溶液(エチルシリケート))を採用している。上記ハンノウコートの場合、水酸化チタンの1次粒子の理論値は1.27nmに近く、光触媒コーティング層の厚さも10nm〜20nmに押さえることができるので、電鋳加工の特性により可及的に細く成形した針管の外径をコーティング層により増大させることを可及的に防ぐことが可能となる。   In this embodiment, the photocatalyst treatment solution is a liquid in which titanium hydroxide is dispersed in an alcohol aqueous solution, and is a mixture of amorphous and anatase particles of titanium hydroxide and does not contain a binder. Specifically, Hanno Coat CR50 (scientific name: 21 propanol + apatite-coated titanium dioxide + silicon dioxide aqueous solution (ethyl silicate)) manufactured by Chosang Sangyo Co., Ltd. is employed. In the case of the Hanno coat, the theoretical value of the primary particles of titanium hydroxide is close to 1.27 nm, and the thickness of the photocatalyst coating layer can be suppressed to 10 nm to 20 nm. It is possible to prevent as much as possible the increase in the outer diameter of the needle tube by the coating layer.

なお、光触媒コーティングを施す段階は、図8に示すように針管2を針基Bに固着した後に、針基ごと光触媒処理溶液中に浸漬してもよい。   In the step of applying the photocatalyst coating, the needle tube 2 may be fixed to the needle base B as shown in FIG.

また、針管は図6に示すテーパー針でなく、図7に示すストレート針であってもよいことは勿論である。   Needless to say, the needle tube may be the straight needle shown in FIG. 7 instead of the tapered needle shown in FIG.

M 電鋳母型
1 電鋳体
2 針管
3 光触媒コーティング層
M Electroforming mold 1 Electroformed body 2 Needle tube 3 Photocatalyst coating layer

Claims (1)

電鋳加工により線状の母型の周囲にニッケルの電鋳体を形成した後、この電鋳体を引き抜くことによりニッケル製の針管を取得するとともに、その先端を研削して穿刺用刃面を形成し、その後、この針管を水酸化チタンをアルコール水溶液中に分散させた液体であって、水酸化チタンのアモルファス型とアナターゼ型の粒子が混合されたものであってバインダーを含まない光触媒処理溶液中に浸漬し、乾燥させることによりバインダーを使わずに針管の内外の表面に水酸化チタンの微粒子からなる光触媒コーティングを施すことによりニッケルの針管の表面への露出を阻止するとともに針管の強度の向上を実現したことを特徴とする注射針の製造方法。 After forming a nickel electroformed body around the linear matrix by electroforming, a nickel needle tube is obtained by pulling out the electroformed body, and the tip is ground to form a puncture blade surface. After that, this needle tube is a liquid in which titanium hydroxide is dispersed in an alcohol aqueous solution, which is a mixture of amorphous and anatase particles of titanium hydroxide and does not contain a binder. By dipping in and drying, the photocatalyst coating consisting of fine particles of titanium hydroxide is applied to the inner and outer surfaces of the needle tube without using a binder, thereby preventing nickel from being exposed to the surface of the needle tube and improving the strength of the needle tube The manufacturing method of the injection needle characterized by having implement | achieved .
JP2010142521A 2010-06-23 2010-06-23 Manufacturing method of injection needle and injection needle Active JP5629503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142521A JP5629503B2 (en) 2010-06-23 2010-06-23 Manufacturing method of injection needle and injection needle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142521A JP5629503B2 (en) 2010-06-23 2010-06-23 Manufacturing method of injection needle and injection needle

Publications (2)

Publication Number Publication Date
JP2012005576A JP2012005576A (en) 2012-01-12
JP5629503B2 true JP5629503B2 (en) 2014-11-19

Family

ID=45536843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142521A Active JP5629503B2 (en) 2010-06-23 2010-06-23 Manufacturing method of injection needle and injection needle

Country Status (1)

Country Link
JP (1) JP5629503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063910A1 (en) * 2013-10-31 2015-05-07 株式会社Efr Needle and method for manufacturing same
CN105682704B (en) * 2013-10-31 2019-09-17 株式会社Efr The manufacturing method of needle
US20180085533A1 (en) 2015-04-01 2018-03-29 Novo Nordisk A/S Electroformed Needle Cannula

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2344398A1 (en) * 1998-09-18 2000-03-30 The University Of Utah Surface micromachined microneedles
JP4469950B2 (en) * 2004-02-24 2010-06-02 独立行政法人産業技術総合研究所 Puncture needle
JP2007289664A (en) * 2006-03-31 2007-11-08 Nf Techno Summit Corp Injection needle manufacturing method and injection needle
JP5004087B2 (en) * 2007-10-31 2012-08-22 長宗産業株式会社 Metal compound-containing gel, metal compound-containing liquid, metal compound, and method for producing metal compound film

Also Published As

Publication number Publication date
JP2012005576A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
KR101724039B1 (en) Implant having a surface nano-patterned groove and a method of manufacturing the same
Patil et al. Fast fabrication of superhydrophobic titanium alloy as antibacterial surface using nanosecond laser texturing
CN102758202B (en) Method for preparing biomedical titanium and titanium alloy surface antibacterial coatings
JP5629503B2 (en) Manufacturing method of injection needle and injection needle
KR20170115429A (en) Micro needle Using the Bioabsorbable Metal
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
JP2018134462A (en) Porous acupuncture needle and method of manufacturing the same
Peng et al. Surface properties and bioactivity of TiO2 nanotube array prepared by two-step anodic oxidation for biomedical applications
CN106148856B (en) Medical needle with metallic glass film
Xu et al. Rapid fabrication of TiO2 coatings with nanoporous composite structure and evaluation of application in artificial implants
US20140329052A1 (en) Surface modification of implant devices
Longhitano et al. Corrosion resistance improvement of additive manufactured scaffolds by anodizing
Basset et al. Effect of texturing environment on wetting of biomimetic superhydrophobic surfaces designed by femtosecond laser texturing
Kido et al. Influence of Surface Contaminants and Hydrocarbon Pellicle on the Results of Wettability Measurements of Titanium
Pelegrine et al. Development of a novel nanotextured titanium implant. An experimental study in rats
EP3294354B1 (en) Metal object with roughened surface and method of production
AU2014314261A1 (en) Method for improving the biocompatibility of a surface
JP2010105939A (en) Antibacterial product and method for producing the same
Martínez et al. Enhancing the corrosion behavior of Ti–6Al–4V and Nitinol alloys by simple chemical oxidation in H2O2
Capellato et al. Optimization of anodization parameters in Ti-30Ta alloy
Nazarov et al. Surface modification of additively manufactured nitinol by wet chemical etching
KR101892448B1 (en) A membrane and a manufacturing method for the implant
Yuan et al. The effect of pore characteristics on Ni suppression of porous NiTi shape memory alloys modified by surface treatment
Łosiewicz et al. EIS and LEIS Study on In Vitro Corrosion Resistance of Anodic Oxide Nanotubes on Ti–13Zr–13Nb Alloy in Saline Solution
Mohammed et al. Study the formation of porous surface layer for a new biomedical titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250