JP5628620B2 - Power lead and power transmission system including the power lead - Google Patents

Power lead and power transmission system including the power lead Download PDF

Info

Publication number
JP5628620B2
JP5628620B2 JP2010225869A JP2010225869A JP5628620B2 JP 5628620 B2 JP5628620 B2 JP 5628620B2 JP 2010225869 A JP2010225869 A JP 2010225869A JP 2010225869 A JP2010225869 A JP 2010225869A JP 5628620 B2 JP5628620 B2 JP 5628620B2
Authority
JP
Japan
Prior art keywords
power lead
cryogen
conductor portion
conductor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010225869A
Other languages
Japanese (ja)
Other versions
JP2012076692A (en
Inventor
富田 優
優 富田
紀治 玉田
紀治 玉田
正 前川
正 前川
直子 仲村
直子 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mayekawa Manufacturing Co
Original Assignee
Railway Technical Research Institute
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mayekawa Manufacturing Co filed Critical Railway Technical Research Institute
Priority to JP2010225869A priority Critical patent/JP5628620B2/en
Publication of JP2012076692A publication Critical patent/JP2012076692A/en
Application granted granted Critical
Publication of JP5628620B2 publication Critical patent/JP5628620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E40/648

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、例えば、寒剤で冷却された超電導饋電線及び該超電導饋電線の給電先であるトロリー線(架線)間を電気的に接続するパワーリード、並びに該パワーリードを備えた送電システムの技術分野に関する。   The present invention is, for example, a superconducting feeder cable cooled with a cryogen, a power lead that electrically connects a trolley wire (overhead wire) to which the superconducting feeder is fed, and a technology of a power transmission system including the power lead. Related to the field.

電気車のように大容量電力を動力源として用いる移動体に電力を供給する送電システムとして、大容量電力が印加されている饋電線からトロリー線(架線)に電力を給電するものが知られている。このような送電システムでは、近年、送電効率を向上させるために、電気抵抗値が略ゼロである超電導体からなる超電導饋電線を採用する試みがなされている。超電導饋電線の材料としては例えば酸化物高温超電導線を用いることができ、液体窒素等の寒剤によって冷却することによって、電気抵抗値が略ゼロである超電導状態を実現し、高効率な送電が実現される。   As a power transmission system that supplies electric power to a moving body that uses large-capacity power as a power source such as an electric vehicle, it is known to supply electric power from a feeder to which a large-capacity power is applied to a trolley wire (overhead wire) Yes. In such a power transmission system, in recent years, in order to improve power transmission efficiency, attempts have been made to employ superconducting feeders made of a superconductor having an electric resistance value of substantially zero. For example, oxide high-temperature superconducting wire can be used as a material for superconducting feeders, and by cooling with a cryogen such as liquid nitrogen, a superconducting state in which the electrical resistance value is substantially zero is realized, and highly efficient power transmission is realized. Is done.

超電導饋電線からトロリー線(架線)への給電は、超電導饋電線及びトロリー線(架線)間を電気的に接続するパワーリードを介して行われる。パワーリードは、低温状態にある超電導饋電線と高温(典型的には常温)状態にあるトロリー線(架線)とを連結するため、トロリー線(架線)側からパワーリードを介して超電導饋電線に対して熱侵入が生じることが問題となる。また、パワーリードは主として電気抵抗値の低い金属(典型的には、高純度の銅)からなる導体部から形成されているが、導体部の有する有限の電気抵抗値によって、通電時に流れる電流値に応じてジュール熱が発生する。ここで、ジュール熱を軽減すべく導体部の断面積を増加させると、トロリー線(架線)側から超電導饋電線への熱侵入が増加してしまう。一方、熱侵入を軽減すべく導体部の断面積を減少させると、逆に通電時に生じるジュール熱が増加してしまう。このようにパワーリードの導体部は、超電導饋電線への熱侵入の抑制と、通電時に生じるジュール熱の抑制とを両立可能なように、バランスよく設計する必要がある。典型的には、導体部は次式

Figure 0005628620
を満足するように設計するとよいことが知られている。尚、(1)式において、κは導体部の熱伝導度、σは導体部の電気抵抗率、Iは導体部を流れる電流値、L及びAは導体部の長さ及び断面積、ΔTは導体部の両端における温度差である。 Power is supplied from the superconducting feeder cable to the trolley wire (overhead wire) through a power lead that electrically connects the superconducting feeder wire and the trolley wire (overhead wire). A power lead connects a superconducting feeder cable in a low temperature state to a trolley wire (overhead wire) in a high temperature (typically normal temperature) state. On the other hand, the problem is that heat intrusion occurs. The power lead is mainly composed of a conductor part made of a metal having a low electrical resistance value (typically, high-purity copper). The current value that flows during energization depends on the finite electrical resistance value of the conductor part. In response to this, Joule heat is generated. Here, if the cross-sectional area of the conductor is increased to reduce Joule heat, heat penetration from the trolley wire (overhead wire) side into the superconducting feeder cable will increase. On the other hand, if the cross-sectional area of the conductor portion is reduced to reduce heat intrusion, conversely, Joule heat generated during energization increases. As described above, the conductor portion of the power lead needs to be designed in a well-balanced manner so as to be able to achieve both suppression of heat penetration into the superconducting feeder cable and suppression of Joule heat generated during energization. Typically, the conductor is
Figure 0005628620
It is known that it should be designed to satisfy In Equation (1), κ is the thermal conductivity of the conductor portion, σ is the electrical resistivity of the conductor portion, I is a current value flowing through the conductor portion, L and A are the length and cross-sectional area of the conductor portion, and ΔT is It is a temperature difference at both ends of the conductor portion.

パワーリードの導体部に印加される電流値が比較的小さい場合、導体部を上記(1)式に従って設計することによって、超電導饋電線への熱侵入の抑制と通電時に発生するジュール熱の抑制とをある程度両立できる可能性はある。しかしながら、電気車の送電システムなどの大容量な送電システムにおいては、大電流を印加できるように導体部の断面積を大きく設定することが前提となるため、このような場合にも熱侵入を効果的に抑制できるよう、更なる改善が要請されているのが現状である。このような要請に対し、例えば非特許文献1では、パワーリードにおける熱侵入経路である導体部に熱電素子の一種であるペルチェ素子を組み込むことによって、通電時に熱電素子の両端に温度差を発生させ、熱侵入を軽減する技術が開示されている。また非特許文献2には、導体部の内部に空洞を設け、当該空洞に寒剤を導入することにより、導体部を内側から冷却することによって、超電導饋電線への熱侵入及び通電時に発生するジュール熱を抑制する技術が開示されている。   When the current value applied to the conductor part of the power lead is relatively small, the conductor part is designed according to the above equation (1), thereby suppressing the heat intrusion into the superconducting feeder cable and the Joule heat generated during energization. There is a possibility that both can be achieved to some extent. However, in a large-capacity power transmission system such as an electric vehicle power transmission system, it is assumed that the cross-sectional area of the conductor is set large so that a large current can be applied. It is the present situation that further improvement is requested so that it can be suppressed. In response to such a request, for example, in Non-Patent Document 1, by incorporating a Peltier element, which is a kind of thermoelectric element, into a conductor portion that is a heat penetration path in a power lead, a temperature difference is generated at both ends of the thermoelectric element during energization. A technique for reducing heat intrusion is disclosed. In Non-Patent Document 2, a cavity is formed inside a conductor portion, a cryogen is introduced into the cavity, and the conductor portion is cooled from the inside, so that heat generated in the superconducting feeders and energized during energization can be generated. A technique for suppressing heat is disclosed.

第79回 2008年度秋季低温工学・超電導学会 予稿98頁「直流超伝導送電ケーブル試験装置におけるペルチェ電流リードの特性と動作試験」藤井友宏等The 79th Autumn 2008 Society of Low Temperature Engineering and Superconductivity Preliminary Page 98, "Characteristics and Operation Test of Peltier Current Leads in DC Superconducting Transmission Cable Test Equipment" Tomohiro Fujii et al 低温工学 Vol.8 No.2(1973)「極低温装置の電流リード(パワーリード)」尾形久直Cryogenic engineering Vol. 8 No. 2 (1973) "Cryogenic current lead (power lead)" Hisao Nagata

しかしながら、非特許文献1に係るパワーリードでは、熱電素子の両端に十分な温度差を生じさせるために、ペルチェ素子内の電圧降下を補償するために電源電圧を上昇するか、もしくは別途電源系を設けて熱電素子に電圧を供給する必要があるので、当該によって消費される電力量を鑑みると、送電システムの全体的な送電効率が低下してしまうという技術的問題点がある。   However, in the power lead according to Non-Patent Document 1, in order to generate a sufficient temperature difference between both ends of the thermoelectric element, the power supply voltage is increased to compensate for the voltage drop in the Peltier element, or a separate power supply system is used. Since it is necessary to provide and supply a voltage to the thermoelectric element, there is a technical problem that the overall power transmission efficiency of the power transmission system is reduced in view of the amount of power consumed by the thermoelectric element.

また、非特許文献2に係る技術では、導体部の内部に恒常的に寒剤を導入する必要があるため、寒剤が大量に消費され、運用コストが増大しまうという技術的問題点がある。特に、上述の超電導饋電線からトロリー線(架線)に電力を給電する送電システムの例では、給電先の電気車が時々刻々と移動するため、超電導饋電線とトロリー線(架線)との間には一定間隔毎にパワーリードを設ける必要がある(即ち、送電システム全体で見ると多数のパワーリードが配置されている)が、個々のパワーリードに着目すると、近傍を電気車が通過するタイミングに間欠的に電流が流れるにすぎないため、このようにパワーリードに対して恒常的に寒剤を導入することは大変不効率である。   Further, in the technology according to Non-Patent Document 2, since it is necessary to constantly introduce the cryogen into the conductor portion, there is a technical problem that the cryogen is consumed in a large amount and the operation cost increases. In particular, in the example of the power transmission system that feeds power from the superconducting feeder cable to the trolley wire (overhead wire), the electric vehicle to which the power is supplied moves from moment to moment, so the superconducting feeder wire and the trolley wire (overhead wire) However, it is necessary to provide power leads at regular intervals (ie, a large number of power leads are arranged in the power transmission system as a whole). Since only current flows intermittently, it is very inefficient to constantly introduce a cryogen into the power lead in this way.

本発明は、例えば上述した問題点に鑑みなされたものであり、寒剤で冷却された超電導饋電線及び該超電導饋電線の給電先であるトロリー線(架線)間を電気的に接続するパワーリードにおいて、トロリー線(架線)側からの超電導饋電線への熱侵入を軽減すると共に、大容量の電流が間欠的に印加された際に発生するジュール熱を効果的に抑制することが可能なパワーリード、及び該パワーリードを備えた送電システムを提供することを目的とする。   The present invention has been made in view of the above-described problems, for example, in a power lead electrically connecting a superconducting feeder cable cooled with a cryogen and a trolley wire (overhead wire) to which the superconducting feeder is fed. , A power lead that reduces heat intrusion into the superconducting feeder from the trolley wire (overhead wire) side and effectively suppresses Joule heat generated when a large current is intermittently applied And a power transmission system including the power lead.

本発明のパワーリードは上記課題を解決するために、延在方向に沿って寒剤が流れる流路を内部に有する超電導饋電線の側面を該超電導饋電線の給電先であるトロリー線電気的に接続するパワーリードにおいて、内部に長さ方向に沿って延在する内空部が形成された円筒形状を有し、一端が前記超電導饋電線の側面に設けられた開口部を囲むように接続され、且つ、他端が前記トロリー線に電気的に接続された導体部と、前記内空部の内部に配置され、前記導体部の長さ方向に沿って前記開口部を貫通して前記寒剤に至るまで延在する棒状部材と、前記開口部及び前記棒状部材間に形成された隙間を、前記棒状部材が前記導体部に対して相対的に移動可能にシールするシール部材とを備え、前記棒状部材は、前記導体部に比べて線熱膨張率が小さい材料から形成され、前記棒状部材の前記一端には、前記導体部の非発熱時に前記内空部が前記寒剤から隔離され、且つ、前記導体部の発熱時に前記内空部が前記寒剤の流路に連通するように、前記他端側に向かって凹状に形成されたスリット部が設けられていることを特徴とする。 For power lead of the present invention is to solve the above problems, the side surfaces of the superconducting feeder cable having a flow path through which cryogen along the extending direction internally electrically trolley line is a power supply destination of the superconducting feeder lines The power lead to be connected has a cylindrical shape in which an inner space extending along the length direction is formed inside, and one end is connected so as to surround an opening provided on a side surface of the superconducting feeder cable. And a conductor part electrically connected to the trolley wire at the other end and disposed inside the inner space part, penetrating the opening part along the length direction of the conductor part to the cryogen. a rod-like member that Mashimasu rolled up, a gap formed between the opening and the rod-shaped member, and a sealing member to which the rod-shaped member is sealed movable relative to the conductor part, The rod-like member has a linear thermal expansion coefficient compared to the conductor portion. Formed from a material having a low, wherein the one end of the rod-like member, the inner hollow portion at the time of non-heating of the conductor portion is isolated from said cryogen, and said inside air portion flow of said cryogen during heating of the conductor part A slit portion formed in a concave shape toward the other end side is provided so as to communicate with the road.

本発明に係るパワーリードによれば、棒状部材は、導体部に比べて線熱膨張率が小さい材料から形成されているので、温度変化に従って導体部に対する棒状部材の位置が相対的に変化することによって、内空部にスリット部を介して寒剤を導入し、導体部を内側から冷却することができる。   According to the power lead of the present invention, the rod-shaped member is formed of a material having a smaller linear thermal expansion coefficient than the conductor portion, so that the position of the rod-shaped member relative to the conductor portion changes relative to the temperature change. Thus, the cryogen can be introduced into the inner space portion through the slit portion, and the conductor portion can be cooled from the inside.

このような寒剤の導入は、上述した熱電素子を組み込む場合のように熱電素子による電圧降下を補償するために電源電圧を上昇させる、あるいは別途外部電源等を設けることなく、専ら導体部及び棒状部材の熱変形によって自動的に行われるため、当該動作に余分なエネルギーを消費せずに済む。また、導体部に間欠的に流れる電流による発熱に基づいて寒剤が内空部に導入されるため、常に寒剤を導入する場合に比べて、寒剤の消費量を効果的に抑制することができる。   The introduction of such a cryogen is not limited to increasing the power supply voltage in order to compensate for the voltage drop due to the thermoelectric element as in the case of incorporating the thermoelectric element described above, or without providing an external power source or the like. Since this is automatically performed by thermal deformation, it is not necessary to consume extra energy for the operation. In addition, since the cryogen is introduced into the inner space based on the heat generated by the current that flows intermittently through the conductor portion, the consumption of the cryogen can be effectively suppressed as compared with the case where the cryogen is always introduced.

本発明のパワーリードの一の態様では、前記導体部の温度が所定の閾値以下である場合に、前記内空部は前記シール部によって前記寒剤の流路から隔離され、前記導体部の温度が前記所定の閾値より大きい場合に、前記導体部及び前記棒状部材が熱変形することによって、前記内空部に前記スリット部の少なくとも一部が露出し、該露出したスリット部を介して前記内空部に前記寒剤導入されることを特徴とする。 In one embodiment of the power lead of the present invention, when the temperature of the front Symbol conductor portion is below a predetermined threshold, the inside hollow portion is isolated from the flow path of the cryogen by the seal portion, the temperature of the conductor part Is larger than the predetermined threshold value, the conductor part and the rod-shaped member are thermally deformed, so that at least a part of the slit part is exposed to the inner space part, and the inner part is exposed through the exposed slit part. The cryogen is introduced into the empty part.

この態様によれば、導体部の温度が所定の閾値以下である場合、導体部の内側に形成された内空部は寒剤から隔離されている。一方、導体部の温度が所定の閾値より大きくなると、棒状部材はスリット部がシール部材より内空部側に露出するように熱変形することにより、露出したスリット部を介して、内空部に寒剤が導入される。   According to this aspect, when the temperature of the conductor portion is equal to or lower than the predetermined threshold, the inner space formed inside the conductor portion is isolated from the cryogen. On the other hand, when the temperature of the conductor portion becomes larger than a predetermined threshold, the rod-shaped member is thermally deformed so that the slit portion is exposed to the inner space portion side than the seal member, so that the inner space portion passes through the exposed slit portion. A cryogen is introduced.

この場合、前記導体部には、前記導入された寒剤の気化ガスを排出するための排出口が設けられているとよい。このように排出口を設けることにより、内空部に導入された寒剤が蒸発することによって発生した気化ガスを外部に排出することができる。その結果、スリット部から導入された寒剤を気化させることによって導体部を内側から冷却し、冷却に使用された気化ガスを内空部に滞留させることなく外部に排出するという一連の冷却プロセスを構築することができる。   In this case, the conductor part may be provided with a discharge port for discharging the vaporized gas of the introduced cryogen. By providing the discharge port in this manner, the vaporized gas generated by the evaporation of the cryogen introduced into the inner space can be discharged to the outside. As a result, a series of cooling processes are built in which the conductor is cooled from the inside by vaporizing the cryogen introduced from the slit, and the vaporized gas used for cooling is discharged outside without staying in the inner space. can do.

本発明のパワーリードの他の態様では、前記導体部及び前記棒状部材の端部を前記トロリー線(架線)に電気的に接続する固定部材を更に備えることを特徴とする。この場合、前記固定部材は前記導体部の熱変形に伴う機械的歪みを吸収可能な弾性材料からなるとよい。 In another aspect of the power lead of the present invention, the power lead is further provided with a fixing member that electrically connects the end portions of the conductor portion and the rod-shaped member to the trolley wire (overhead wire). In this case, the fixing member may be made of an elastic material capable of absorbing mechanical strain accompanying thermal deformation of the conductor portion.

パワーリードの導体部は典型的にはソリッドな導電性材料から形成されるが、当該導体部は温度変化に伴って熱変形するため、当該導体部と連結された周囲の部材との間で大きな機械的歪みが生じる場合がある。特に、超電導饋電線は低温状態を保持するために周囲に真空層が形成されている場合が多く、このような場合に真空層を形成する部材との間に大きな機械的歪みが加えられると、真空層の真空度が低下し、超電導饋電線の冷却に悪影響を与えるなど重大な不具合につながるおそれがある。この態様では、導体部及び棒状部材が固定される固定部材を弾性的に形成することによって、熱変形の際に生じる機械的歪みを吸収軽減することができ、このようなおそれを効果的に排除することができる。   The conductor part of the power lead is typically formed of a solid conductive material. However, since the conductor part is thermally deformed as the temperature changes, the conductor part is large between the conductor part and the surrounding members. Mechanical distortion may occur. In particular, superconducting feeders often have a vacuum layer formed around them in order to maintain a low temperature state, and in such a case, when a large mechanical strain is applied between the members forming the vacuum layer, The vacuum level of the vacuum layer is reduced, which may lead to serious problems such as adversely affecting the cooling of superconducting feeders. In this aspect, by forming the fixing member to which the conductor portion and the rod-like member are fixed elastically, it is possible to absorb and reduce the mechanical strain that occurs during thermal deformation, and to effectively eliminate such a fear. can do.

本発明のパワーリードの他の態様では、前記導体部は銅からなり、前記棒状部材はステンレス、タンタル、鉄或いは炭素等からなる前記導体部に比べて線熱膨張率の小さい棒材であることを特徴とする。特に以下の実施例で詳述するように、導体部の材料として例えば、純度が99.999%以上で熱膨張係数が16.8×10−6/℃の銅を選択し、棒状部材の材料として例えば、SUS410、タンタル、鉄或いは炭素などを選択するとよい。尚、SUS410を選択した場合、熱膨張係数は10.4×10−6/℃である。 In another aspect of the power lead of the present invention, the conductor portion is made of copper, and the rod-shaped member is a rod material having a smaller coefficient of linear thermal expansion than the conductor portion made of stainless steel, tantalum, iron, carbon, or the like. It is characterized by. In particular, as will be described in detail in the following examples, for example, copper having a purity of 99.999% or more and a thermal expansion coefficient of 16.8 × 10 −6 / ° C. is selected as the material of the conductor portion, For example, SUS410, tantalum, iron, or carbon may be selected. When SUS410 is selected, the thermal expansion coefficient is 10.4 × 10 −6 / ° C.

本発明の送電システムは上記課題を解決するために、前記超電導饋電線から前記トロリー線(架線)に電力を供給するための送電システムであって、前記超電導饋電線及び前記トロリー線(架線)間は、上述のパワーリード(各態様を含む)を介して電気的に接続されていることを特徴とする。これにより、トロリー線(架線)側からの超電導饋電線への熱侵入を軽減すると共に、大容量の電流が断続的に印加された際に発生するジュール熱を効果的に抑制可能な送電システムを実現することができる。   In order to solve the above problems, the power transmission system of the present invention is a power transmission system for supplying power from the superconducting feeder cable to the trolley wire (overhead wire), between the superconducting feeder wire and the trolley wire (overhead wire). Is electrically connected through the above-described power lead (including each aspect). This reduces the heat intrusion into the superconducting feeder from the trolley wire (overhead wire) side, and can effectively suppress the Joule heat that is generated when a large current is intermittently applied. Can be realized.

本発明に係るパワーリードによれば、棒状部材は、導体部に比べて線熱膨張率が小さい材料から形成されているので、パワーリードが発熱した際に導体部に対する棒状部材の位置が相対的に変化することによって、内空部にスリット部を介して寒剤を導入し、導体部を内側から冷却することができる。このような寒剤の導入は、熱電素子を組み込む場合のように外部電源等を設けることなく、専ら導体部及び棒状部材の熱変形によって自動的に行われるため、当該動作に余分なエネルギーを消費せずに済む。また、導体部に間欠的に流れる電流による発熱に基づいて寒剤が内空部に導入されるため、常に寒剤を導入する場合に比べて、寒剤の消費量を効果的に抑制することができる。   According to the power lead of the present invention, since the rod-shaped member is formed of a material having a smaller linear thermal expansion coefficient than the conductor portion, the position of the rod-shaped member relative to the conductor portion is relatively when the power lead generates heat. By changing to, the cryogen can be introduced into the inner space through the slit portion, and the conductor portion can be cooled from the inside. Since the introduction of such a cryogen is automatically performed by thermal deformation of the conductor part and the rod-like member without providing an external power source as in the case of incorporating a thermoelectric element, extra energy is consumed for the operation. You do n’t have to. In addition, since the cryogen is introduced into the inner space based on the heat generated by the current that flows intermittently through the conductor portion, the consumption of the cryogen can be effectively suppressed as compared with the case where the cryogen is always introduced.

本実施例に係る送電システムの全体構成を模式的に示す模式図である。It is a schematic diagram which shows typically the whole structure of the power transmission system which concerns on a present Example. 本実施例に係る送電システムに用いられているパワーリードの断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the power lead used for the power transmission system which concerns on a present Example. 本実施例に係る送電システムに用いられるパワーリードの断面構造の他の例を示す拡大断面図である。It is an expanded sectional view which shows the other example of the cross-section of the power lead used for the power transmission system which concerns on a present Example. 本実施例に係るパワーリードの非発熱時におけるスリット部付近の構造を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the slit part vicinity at the time of the non-heat_generation | fever of the power lead which concerns on a present Example. 本実施例に係るパワーリードの発熱時におけるスリット部付近の構造を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the slit part vicinity at the time of heat_generation | fever of the power lead which concerns on a present Example. 比較例に係るパワーリードの断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the power lead which concerns on a comparative example. 比較例に係るパワーリードにおいて、非通電時における超電導饋電線への熱侵入量の導線の半径依存性を示すグラフ図である。In the power lead which concerns on a comparative example, it is a graph which shows the radius dependence of the conducting wire of the heat penetration amount to the superconducting feeder cable at the time of non-energization. 比較例に係るパワーリードにI=2500(A)の電流を600秒間通電した場合の、超電導饋電線への熱侵入量の導線の半径依存性を示すグラフ図である。It is a graph which shows the radius dependence of the conducting wire of the heat penetration | invasion amount to a superconducting feeder cable when the electric current of I = 2500 (A) is supplied to the power lead which concerns on a comparative example for 600 second. 比較例に係るパワーリードにI=2500(A)の電流を600秒間通電した場合の、導線における長さ方向の温度分布を示すグラフ図である。It is a graph which shows the temperature distribution of the length direction in a conducting wire at the time of supplying the electric current of I = 2500 (A) to the power lead which concerns on a comparative example for 600 second. 本実施例に係るパワーリードにおいて、I=2500(A)の電流を600秒間通電した場合の導体部の長さ方向の温度分布を示すグラフ図である。In the power lead which concerns on a present Example, it is a graph which shows the temperature distribution of the length direction of a conductor part at the time of supplying the electric current of I = 2500 (A) for 600 second. 本実施例に係るパワーリードにおいて、一時的に通電を行った場合の導体への熱侵入量及び内空部への寒剤導入量の経時変化を示すグラフ図である。In the power lead which concerns on a present Example, it is a graph which shows the time change of the heat penetration | invasion amount to a conductor at the time of energizing temporarily, and the cryogen introduction | transduction amount to an inner space part.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本実施例に係る送電システム1の全体構成を模式的に示す模式図である。送電システム1は、寒剤で冷却された超電導饋電線50、該超電導饋電線50の給電先であるトロリー線(架線)80、並びに超電導饋電線50及びトロリー線(架線)80間を電気的に接続するパワーリード20を備えてなる。パワーリード20は、一定間隔毎に超電導饋電線50とトロリー線(架線)80との間を電気的に接続するように設けられており、超電導饋電線50からパワーリード20を介してトロリー線(架線)80に給電された電力は、電気車10上部に設置されたパンダグラフ11を介して電気車10に供給される。   Drawing 1 is a mimetic diagram showing typically the whole power transmission system 1 composition concerning this example. The power transmission system 1 electrically connects a superconducting feeder 50 cooled with a cryogen, a trolley wire (overhead wire) 80 to which the superconducting feeder 50 is fed, and the superconducting feeder 50 and the trolley wire (overhead wire) 80. The power lead 20 is provided. The power lead 20 is provided so as to electrically connect the superconducting feeder cable 50 and the trolley wire (overhead wire) 80 at regular intervals, and the trolley wire (from the superconducting feeder cable 50 through the power lead 20 ( The electric power fed to the overhead line 80 is supplied to the electric vehicle 10 via the panda graph 11 installed on the upper portion of the electric vehicle 10.

超電導饋電線50は、例えば超電導体の一種である酸化物高温超電導線からなり、寒剤である液体窒素(典型的には77〜65K)に浸されることにより冷却され、超電導状態が維持されている。超電導饋電線50にはDC1500Aの電流が印加されており、大容量電力を送電している。   The superconducting feeder 50 is made of, for example, an oxide high-temperature superconducting wire that is a kind of superconductor, and is cooled by being immersed in liquid nitrogen (typically 77 to 65K) that is a cryogen, so that the superconducting state is maintained. Yes. A current of DC 1500A is applied to the superconducting feeder 50, and a large amount of power is transmitted.

トロリー線(架線)80は、パワーリード20を介して超電導饋電線50に電気的に接続されている。トロリー線(架線)80には、走行中の電気車10上部に取り付けられたパンダグラフ11が接触している。トロリー線(架線)80のうちパンダグラフ11が接触する箇所は、電気車10の走行位置に応じて時々刻々と変化し、当該接触する箇所の近傍に位置するパワーリード20を介して、超電導饋電線50からトロリー線(架線)80そして電気車10のルートで電力が供給される。電気車10が特定の位置にある場合、複数存在するパワーリード20のうち、電気車10上部に取り付けられたパンダグラフ11が接触する箇所の近傍に位置する特定のパワーリード20についてのみ大容量の電流が流れ、当該近傍に位置するパワーリード20以外のパワーリード20には電流はトロリー線(架線)の電気抵抗のため殆ど流れない。つまり、個々のパワーリード20に着目すると、それぞれ近傍を電気車10が通過するタイミングで間欠的に電流が流れる。   The trolley wire (overhead wire) 80 is electrically connected to the superconducting feeder 50 via the power lead 20. A panda graph 11 attached to the upper part of the traveling electric vehicle 10 is in contact with the trolley line (overhead line) 80. The portion of the trolley wire (overhead wire) 80 that contacts the panda graph 11 changes from moment to moment according to the traveling position of the electric vehicle 10, and the superconducting conductor via the power lead 20 located in the vicinity of the portion of contact. Electric power is supplied from the electric wire 50 through the route of the trolley line (overhead line) 80 and the electric vehicle 10. When the electric vehicle 10 is at a specific position, only the specific power lead 20 located near the portion where the panda graph 11 attached to the upper portion of the electric vehicle 10 contacts among the plurality of power leads 20 has a large capacity. A current flows, and the current hardly flows in the power leads 20 other than the power lead 20 located in the vicinity due to the electric resistance of the trolley wire (overhead wire). That is, when attention is paid to the individual power leads 20, current flows intermittently at the timing when the electric vehicle 10 passes in the vicinity thereof.

次に図2を参照して、本実施例に係る送電システム1に用いられているパワーリード20の内部構造について詳細に説明する。図2は、本実施例に係る送電システム1に用いられているパワーリード20の断面構造を示す断面図である。   Next, the internal structure of the power lead 20 used in the power transmission system 1 according to the present embodiment will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view showing a cross-sectional structure of the power lead 20 used in the power transmission system 1 according to the present embodiment.

パワーリード20は、内部に長さ方向に沿って延在する内空部21が形成された円筒形状を有し、一端が超電導饋電線50に電気的に接続され、且つ、他端がトロリー線(架線)80に電気的に接続された導体部22と、内空部21に長さ方向に沿って延在するように棒状に形成され、超電導饋電線50側の先端にスリット部が設けられた棒状部材23と、内空部21を超電導饋電線50側から塞ぎ、且つ、棒状部材23を長さ方向に沿って移動可能に周囲から保持するシール部材24とを備える。   The power lead 20 has a cylindrical shape in which an inner space 21 extending along the length direction is formed. One end of the power lead 20 is electrically connected to the superconducting feeder 50 and the other end is a trolley wire. (Overhead wire) The conductor portion 22 electrically connected to the 80 and the inner space portion 21 are formed in a rod shape so as to extend along the length direction, and a slit portion is provided at the tip of the superconducting feeder 50 side. And a seal member 24 that closes the inner space 21 from the superconducting feeder 50 side and holds the rod member 23 from the periphery so as to be movable along the length direction.

導体部22が連結されている外装壁40の内側空間41は、図不示の真空ポンプによって減圧されることによって真空状態になっており、外装壁40の内側に配置された超電導饋電線50への外部からの熱侵入を断熱により抑制している。また、超電導饋電線50の内側もまた空洞状になっており(即ち、超電導饋電線50は内部に空洞を有するように円筒形状を有しており)、当該空洞に圧入された寒剤26によって、超電導饋電線50が冷却されている。超電導饋電線50は、このような冷却断熱構造によって低温状態に置かれることで超電導状態が維持されている。   The inner space 41 of the exterior wall 40 to which the conductor portion 22 is connected is in a vacuum state by being depressurized by a vacuum pump (not shown), and to the superconducting feeder 50 disposed inside the exterior wall 40. The heat intrusion from the outside is suppressed by heat insulation. In addition, the inside of the superconducting feeder cable 50 is also hollow (that is, the superconducting feeder cable 50 has a cylindrical shape so as to have a cavity inside), and the cryogen 26 press-fitted into the cavity The superconducting feeder 50 is cooled. The superconducting feeder 50 is maintained in a superconducting state by being placed in a low temperature state by such a cooling and heat insulating structure.

導体部22は、超電導饋電線50からトロリー線(架線)80に給電される際に電流が流れる部分であり、純度が99.999%、熱膨張係数が16.8×10−6/℃であるOFCu(Oxygen Free Copper)から形成されている。棒状部材23は、導体部22に比べて線熱膨張率の小さい材料である、SUS410、タンタル、鉄或いは炭素などから形成されている。尚、SUS410から形成した場合、熱膨張係数は10.4×10−6/℃である。シール部材24は、安定性、耐熱性及び耐薬品性に優れたフッ素樹脂(商品名:テフロン(登録商標))から形成されている。 The conductor portion 22 is a portion through which a current flows when power is supplied from the superconducting feeder cable 50 to the trolley wire (overhead wire) 80. The purity is 99.999% and the thermal expansion coefficient is 16.8 × 10 −6 / ° C. It is formed from a certain OFCu (Oxygen Free Copper). The rod-shaped member 23 is made of SUS410, tantalum, iron, carbon, or the like, which is a material having a smaller linear thermal expansion coefficient than the conductor portion 22. When formed from SUS410, the thermal expansion coefficient is 10.4 × 10 −6 / ° C. The seal member 24 is formed of a fluororesin (trade name: Teflon (registered trademark)) excellent in stability, heat resistance, and chemical resistance.

導体部22及び棒状部材23のトロリー線(架線)80側の端部は、固定部材27に固定されている。固定部材27は導電性材料から形成されており、超電導饋電線50から導体部22を介して供給される電力をトロリー線(架線)80側に伝達する。本実施例では特に、固定部材27は通電時に生じる発熱による導体部22の熱変形に起因する機械的歪みを吸収可能な弾性材料からなる。導体部22はソリッドな導電性材料から形成されているため、温度変化に伴い導体部22全体が熱変形により周囲の連結された部材(例えば外装壁40)との間で大きな機械的歪みが生じる。外装壁40は、上述したように超電導饋電線50の低温状態を保持するための真空層(即ち内部空間41)を形成しているので、導体部22と外装壁40との間に大きな機械的歪みが加えられると、内部空間41の真空度が低下し、超電導饋電線50の冷却状態が悪化してしまうおそれがある。そこで、本実施例では、固定部材27を弾性を有する高純度の銅からなるより線で形成することによって、熱変形の際に生じる機械的歪みを吸収軽減している。尚、固定部材27は導電部材28に連結されており、導電部材28は図2において不示のトロリー線(架線)に電気的に連結されている。   End portions of the conductor portion 22 and the rod-shaped member 23 on the trolley wire (overhead wire) 80 side are fixed to a fixing member 27. The fixing member 27 is made of a conductive material, and transmits electric power supplied from the superconducting feeder cable 50 through the conductor portion 22 to the trolley wire (overhead wire) 80 side. In particular, in this embodiment, the fixing member 27 is made of an elastic material that can absorb mechanical strain caused by thermal deformation of the conductor portion 22 due to heat generated during energization. Since the conductor portion 22 is formed of a solid conductive material, a large mechanical distortion occurs between the entire conductor portion 22 and a connected member (for example, the exterior wall 40) due to thermal deformation due to a temperature change. . Since the exterior wall 40 forms a vacuum layer (that is, the internal space 41) for maintaining the low temperature state of the superconducting feeder cable 50 as described above, a large mechanical space is provided between the conductor portion 22 and the exterior wall 40. When distortion is applied, the degree of vacuum in the internal space 41 is lowered, and the cooling state of the superconducting feeder 50 may be deteriorated. Therefore, in this embodiment, the fixing member 27 is formed of a stranded wire made of high-purity copper having elasticity, thereby absorbing and reducing mechanical strain generated during thermal deformation. The fixing member 27 is connected to a conductive member 28, and the conductive member 28 is electrically connected to a trolley wire (overhead wire) not shown in FIG.

尚、導体部22及び棒状部材23等が熱変形した際に生じる歪みを軽減する他の構成例として、図3に示すように、導体部22及び棒状部材23のトロリー線(架線)80側の端部を導電部材28に直接連結し、その周囲にベローズ状の外壁29を設けてもよい。この場合、導体部22及び棒状部材23等が熱変形した際に生じる歪みは、ベローズ状の外壁29が有する弾性によって吸収される。尚、図3に示す例では、図2に示す例と共通する箇所には、同一の符号を付すこととし、詳細な説明は省略するものとする。   As another configuration example for reducing distortion that occurs when the conductor portion 22 and the rod-like member 23 are thermally deformed, as shown in FIG. 3, the conductor portion 22 and the rod-like member 23 on the trolley wire (overhead wire) 80 side are provided. The end may be directly connected to the conductive member 28, and a bellows-like outer wall 29 may be provided around the end. In this case, the distortion generated when the conductor portion 22 and the rod-shaped member 23 are thermally deformed is absorbed by the elasticity of the bellows-shaped outer wall 29. In the example shown in FIG. 3, the same reference numerals are given to portions common to the example shown in FIG. 2, and detailed description thereof is omitted.

次に、図4及び図5を参照して、非発熱時及び発熱時におけるパワーリードの構造の変化について説明する。図4及び図5は、それぞれ非発熱時及び発熱時におけるスリット部25付近の構造を拡大して示す断面図である。   Next, changes in the structure of the power lead during non-heat generation and during heat generation will be described with reference to FIGS. 4 and 5 are enlarged cross-sectional views showing the structure in the vicinity of the slit portion 25 during non-heat generation and heat generation, respectively.

棒状部材23の先端には、スリット部25が設けられており、図4に示す非発熱時(即ち、導体部22の温度が所定の閾値以下である場合)には、スリット部25は寒剤26に浸されている。このとき、スリット部25は、シール部材24から内空部21側に露出しておらず、シール材24は内空部21を寒剤26から隔離しており、内空部21に寒剤26は導入されない。   A slit portion 25 is provided at the tip of the rod-like member 23. When no heat is generated as shown in FIG. 4 (that is, when the temperature of the conductor portion 22 is equal to or lower than a predetermined threshold value), the slit portion 25 has a cryogen 26. Soaked in At this time, the slit portion 25 is not exposed to the inner space portion 21 side from the seal member 24, the sealing material 24 isolates the inner space portion 21 from the cryogen 26, and the cryogen 26 is introduced into the inner space portion 21. Not.

上述のように、導体部22は電気抵抗値の小さいOFCuから形成されているが、有限の電気抵抗値を有するため、導体部22に電流が流れるとジュール熱が発生し、発熱が起こる。棒状部材23は、導体部22に比べて線熱膨張率が小さい材料から形成されているため、発熱時には図5に示すように、棒状部材23は導体部22に対して相対的に押し下げられるように熱変形する。そして、パワーリード20の温度が所定の閾値より大きくなるタイミングで、棒状部材23の超電導饋電線50側の先端に設けられたスリット部25がシール部材24から内空部21側に露出する。   As described above, the conductor portion 22 is formed of OFCu having a small electric resistance value. However, since the conductor portion 22 has a finite electric resistance value, when current flows through the conductor portion 22, Joule heat is generated and heat is generated. Since the rod-like member 23 is formed of a material having a smaller linear thermal expansion coefficient than the conductor portion 22, the rod-like member 23 is pushed down relative to the conductor portion 22 as shown in FIG. Deforms to heat. And the slit part 25 provided in the front-end | tip at the side of the superconducting feeder 50 of the rod-shaped member 23 is exposed to the inner space part 21 side from the timing at which the temperature of the power lead 20 becomes larger than a predetermined threshold value.

上述したように、超電導饋電線50の内側にある寒剤26は圧入されているため、スリット部25が内空部21側に露出すると、寒剤26と内空部21との間の差圧に基づいて、寒剤26が内空部21内に導入される。その結果、寒剤が内空部21に導入され、内空部21に面した部材(例えば、導体部22の内壁)が寒剤によって冷却される。尚、図5では、内空部21に導入された寒剤を符号26´で示してある。   As described above, since the cryogen 26 inside the superconducting feeder 50 is press-fitted, when the slit portion 25 is exposed to the inner space 21 side, it is based on the differential pressure between the cryogen 26 and the inner space 21. Thus, the cryogen 26 is introduced into the inner space 21. As a result, the cryogen is introduced into the inner space 21, and the member facing the inner space 21 (for example, the inner wall of the conductor 22) is cooled by the cryogen. In FIG. 5, the cryogen introduced into the inner space 21 is indicated by reference numeral 26 ′.

尚、図2に示すように、導体部22には排出口45が設けられており、内空部21に導入された寒剤26が気化して発生したガス(以下、適宜「気化ガス」と称する)は、当該排出口45から外部に排出されるように構成されている。本実施例では特に、排出口45には、気化ガスを排出するためのバルブ46を設けている。   As shown in FIG. 2, the conductor portion 22 is provided with a discharge port 45, and gas generated by vaporization of the cryogen 26 introduced into the inner space portion 21 (hereinafter referred to as “vaporized gas” as appropriate). ) Is configured to be discharged from the discharge port 45 to the outside. In the present embodiment, in particular, the exhaust port 45 is provided with a valve 46 for exhausting the vaporized gas.

このように寒剤26が内空部21に導入されると、やがて導体部22の温度は低下に転じる。すると、棒状部材23は導体部22に対して相対的に押し上げられるように変形する。その結果、内空部21に露出していたスリット部25は無くなり、内空部21への寒剤26の導入もまた停止する。   As described above, when the cryogen 26 is introduced into the inner space portion 21, the temperature of the conductor portion 22 is gradually lowered. Then, the rod-shaped member 23 is deformed so as to be pushed up relative to the conductor portion 22. As a result, the slit portion 25 exposed to the inner space portion 21 disappears, and the introduction of the cryogen 26 into the inner space portion 21 is also stopped.

このように、温度変化に伴い、導体部22に対する棒状部材21の位置が相対的に変化することによって、寒剤26の内空部21への導入が制御される。このような寒剤26の導入は、別途電源や制御装置等を設けることなく、専ら導体部22の温度変化に伴う熱変形によって自動的に行われるため、当該動作に余分なエネルギーを消費せずに済む。また、このような寒剤26の導入は導体部22の温度変化に応じて間欠的に行われるため、無駄に寒剤26を消費することがなく、寒剤26の消費量を効果的に抑制することができる。   Thus, the introduction of the cryogen 26 into the inner space 21 is controlled by the relative change of the position of the rod-shaped member 21 with respect to the conductor portion 22 as the temperature changes. The introduction of such a cryogen 26 is automatically performed by thermal deformation accompanying the temperature change of the conductor portion 22 without providing a separate power source or control device, so that no extra energy is consumed for the operation. That's it. In addition, since the introduction of the cryogen 26 is intermittently performed according to the temperature change of the conductor portion 22, the cryogen 26 is not consumed unnecessarily, and the consumption of the cryogen 26 can be effectively suppressed. it can.

尚、導体部22及び棒状部材23の長さは、上述のような寒剤26の内空部21への導入動作が実現可能なように、例えば、導体部22の温度が所定の閾値より大きくなるタイミングで、スリット部25がシール部材24から内空部21側に露出するように設定するとよい。本実施例では特に、導体部22の長さをL=200(cm)に設定し、発熱によって導体部22の温度が100(℃)に達した場合に、棒状部材23が導体部22に対して相対的に1.28(mm)だけ移動するように構成している。   In addition, the length of the conductor part 22 and the rod-shaped member 23 is, for example, the temperature of the conductor part 22 becomes larger than a predetermined threshold so that the operation of introducing the cryogen 26 into the inner space part 21 can be realized. It is good to set so that the slit part 25 may be exposed to the inner space part 21 side from the sealing member 24 at timing. Particularly in the present embodiment, when the length of the conductor portion 22 is set to L = 200 (cm), and the temperature of the conductor portion 22 reaches 100 (° C.) due to heat generation, the rod-like member 23 is in contact with the conductor portion 22. The relative movement is 1.28 (mm).

続いて上述したパワーリード20の特性について、比較例と比較しつつ説明する。ここで、比較例として導体部22の代わりに、所定の半径を有する導線22´(即ち、導体部22の内部に設けられた内空部21を有さない単純な導線)を有するパワーリード20´を想定することとする。尚、比較例の詳細な構造は図6に示すこととし、本実施例に係るパワーリード20と共通する部分については同一の符号を付すことにより、詳細な説明は省略することとする。尚、比較例に係るパワーリード20´の導線22´の長さは、本実施例に係るパワーリード20の導体部22と同様に200(cm)である。   Next, the characteristics of the power lead 20 described above will be described in comparison with a comparative example. Here, as a comparative example, a power lead 20 having a conductor 22 ′ having a predetermined radius (that is, a simple conductor having no inner space 21 provided inside the conductor 22) instead of the conductor 22. Let's assume ´. The detailed structure of the comparative example is shown in FIG. 6, and the same reference numerals are given to the parts common to the power lead 20 according to the present embodiment, and the detailed description is omitted. Note that the length of the conductor 22 ′ of the power lead 20 ′ according to the comparative example is 200 (cm) similarly to the conductor portion 22 of the power lead 20 according to the present embodiment.

図7は比較例に係るパワーリード20´において、非通電時(即ち、非発熱時)における超電導饋電線50への熱侵入量Qinの導線22´の半径R依存性を示すグラフ図である。横軸は導線22´の半径R(cm)であり、縦軸は熱侵入量Qin(W)である。図7に示すように、非通電時における熱侵入量Qinは導線22´の半径Rに比例して増加する。例えば、導線22´の半径がR=1.0(cm)の場合は熱侵入量がQin=42(W)であり、導線22´の半径がR=1.3(cm)の場合は熱侵入量がQin=73(W)である。   FIG. 7 is a graph showing the dependence of the amount of heat penetration Qin on the superconducting feeder cable 50 in the radius R of the conducting wire 22 ′ when no power is applied (ie, when no heat is generated) in the power lead 20 ′ according to the comparative example. The horizontal axis is the radius R (cm) of the conducting wire 22 ', and the vertical axis is the heat penetration amount Qin (W). As shown in FIG. 7, the heat penetration amount Qin when not energized increases in proportion to the radius R of the conductor 22 ′. For example, when the radius of the conducting wire 22 ′ is R = 1.0 (cm), the amount of heat penetration is Qin = 42 (W), and when the radius of the conducting wire 22 ′ is R = 1.3 (cm), heat is applied. The intrusion amount is Qin = 73 (W).

次に図8は比較例に係るパワーリード20´にI=2500(A)の電流を600秒間通電した場合の、超電導饋電線50への熱侵入量Qinの導線22´の半径R依存性を示すグラフ図である。横軸は導線22´の半径R(cm)であり、縦軸は熱侵入量Qin(W)である。この結果によると、導線22´の半径をR=1.0(cm)とした場合、熱侵入量はQin=約1100(W)と非常に大きな値になることが示されている。   Next, FIG. 8 shows the radius R dependence of the conducting wire 22 ′ of the heat penetration amount Qin into the superconducting feeder cable 50 when a current of I = 2500 (A) is passed through the power lead 20 ′ according to the comparative example for 600 seconds. FIG. The horizontal axis is the radius R (cm) of the conducting wire 22 ', and the vertical axis is the heat penetration amount Qin (W). According to this result, it is shown that when the radius of the conducting wire 22 ′ is R = 1.0 (cm), the heat penetration amount is a very large value of Qin = about 1100 (W).

続いて図9は、比較例に係るパワーリード20´にI=2500(A)の電流を600秒間通電した場合の、導線22´における長さ方向の温度分布を示すグラフ図である。横軸は導導線22´の超電導饋電線50との連結部を基準とするパワーリード20´の長さz(cm)であり、縦軸は横軸に対応する長さzにおける導線22´の温度(K)である。図9によれば、導線22´の半径Rが小さくなると、例えば半径R=1.0(cm)の導線22´を採用したパワーリード20´では、最高温度が1700(K)以上に達することが示されている。ここで導線22´の材料である銅の融点が1358(K)であることを考慮すると、比較例に係るパワーリード20´では実用化は困難である。   Next, FIG. 9 is a graph showing the temperature distribution in the length direction of the conducting wire 22 ′ when a current of I = 2500 (A) is passed through the power lead 20 ′ according to the comparative example for 600 seconds. The horizontal axis is the length z (cm) of the power lead 20 ′ with reference to the connecting portion of the conducting wire 22 ′ with the superconducting feeder 50, and the vertical axis is the length of the conducting wire 22 ′ at the length z corresponding to the horizontal axis. Temperature (K). According to FIG. 9, when the radius R of the conducting wire 22 ′ becomes small, for example, in the power lead 20 ′ employing the conducting wire 22 ′ having a radius R = 1.0 (cm), the maximum temperature reaches 1700 (K) or more. It is shown. Considering that the melting point of copper, which is the material of the conductive wire 22 ′, is 1358 (K), it is difficult to put the practical use in the power lead 20 ′ according to the comparative example.

上述の結果によれば、仮に、比較例に係るパワーリード20´において定格電流をI=2500(A)に設定するためには、導体部22の半径をR=1.30(cm)に大きく設定し、導線22´の最高温度が550(K)以下になるように冷却する必要がある。   According to the above result, in order to set the rated current to I = 2500 (A) in the power lead 20 ′ according to the comparative example, the radius of the conductor portion 22 is increased to R = 1.30 (cm). It is necessary to set and cool the conductor 22 'so that the maximum temperature of the conductor 22' is 550 (K) or less.

ここで、導線22´の半径をR=1.30(cm)にした場合の非通電時の熱侵入量Qinは図7より73(W)であり、I=2500Aの電流の通電時の熱侵入量Qinは図8よりQin=350(W)であることがわかる。比較例に係るパワーリード20´を、本実施例のように超電導饋電線50とトロリー線(架線)80間の電気的接続に用いる場合、仮に超電導饋電線50の長さが10kmであり、200m毎にパワーリード20´を設置すると仮定すると、パワーリード20´は計50本必要になる。このように超電導饋電線50及びパワーリード20´が設置されている区間を、5つの列車が走行すると想定すると、超電導饋電線50への熱侵入量Qinは次式
45本(非通電状態にあるパワーリード)×73(W)+5本(通電状態にあるパワーリード)×350(W)≒5.0(kW) ・・・(2)
により、算出される。この仮定では、(2)に示すように、熱侵入量Qinが5.0(kW)もの値に達するため、比較例に係るパワーリード20´では冷却を十分することができず実用化することは困難である。
Here, the heat penetration amount Qin at the time of non-energization when the radius of the conducting wire 22 ′ is R = 1.30 (cm) is 73 (W) from FIG. 7, and the heat at the time of energization of the current of I = 2500A. It can be seen from FIG. 8 that the intrusion amount Qin is Qin = 350 (W). When the power lead 20 ′ according to the comparative example is used for electrical connection between the superconducting feeder cable 50 and the trolley wire (overhead wire) 80 as in this embodiment, the length of the superconducting feeder cable 50 is 10 km, and 200 m Assuming that the power leads 20 'are installed every time, a total of 50 power leads 20' are required. Assuming that five trains travel in the section where the superconducting feeder 50 and the power lead 20 'are installed in this way, the heat penetration amount Qin into the superconducting feeder 50 is 45 (in a non-energized state) Power lead) x 73 (W) + 5 (power lead in energized state) x 350 (W) ≒ 5.0 (kW) (2)
Is calculated by Under this assumption, as shown in (2), since the heat penetration amount Qin reaches a value of 5.0 (kW), the power lead 20 ′ according to the comparative example cannot be cooled sufficiently and put into practical use. It is difficult.

図10は、本実施例に係るパワーリード20において、I=2500(A)の電流を600秒間通電した場合の導体部22の長さ方向の温度分布を示すグラフ図である。横軸は導体部22の超電導饋電線50との連結部を基準とするパワーリード20の長さz(cm)であり、縦軸は横軸に対応する長さzにおける導体部22の温度(K)である。上述の比較例では、導線22´の半径をR=1.15(cm)とした場合、図9に示すように最高温度が900(K)まで上昇しているのに対し、本実施例に係るパワーリード20では、図10に示すように、導体部22の半径をR=1.15(cm)とすると、最高温度を700(K)程度に抑制することができる。   FIG. 10 is a graph showing the temperature distribution in the length direction of the conductor portion 22 when a current of I = 2500 (A) is applied for 600 seconds in the power lead 20 according to this example. The horizontal axis is the length z (cm) of the power lead 20 with reference to the connecting portion of the conductor portion 22 to the superconducting feeder cable 50, and the vertical axis is the temperature of the conductor portion 22 at the length z corresponding to the horizontal axis ( K). In the above comparative example, when the radius of the conductor 22 ′ is R = 1.15 (cm), the maximum temperature rises to 900 (K) as shown in FIG. In the power lead 20, as shown in FIG. 10, the maximum temperature can be suppressed to about 700 (K) when the radius of the conductor 22 is R = 1.15 (cm).

続いて図11は、本実施例に係るパワーリード20において、所定の期間において一時的に通電を行った場合の(a)導体部22への熱侵入量Qin及び(b)スリット部25を介して内空部21に導入された寒剤26の量(以下、適宜「寒剤導入量」と称する)の経時変化を示すグラフ図である。図11の例においてパワーリード20に電流が印加されている所定の期間は、時刻t1=600秒からt2=1200秒までの間であり、印加されている電流値は2500Aである。尚、図11において導体部22の半径はR=1.15(cm)である。   Subsequently, FIG. 11 shows (a) the amount of heat penetration Qin into the conductor portion 22 and (b) the slit portion 25 when the power lead 20 according to this embodiment is energized temporarily for a predetermined period. 6 is a graph showing the change over time of the amount of cryogen 26 introduced into the inner space 21 (hereinafter referred to as “the cryogen introduction amount” as appropriate). In the example of FIG. 11, the predetermined period during which the current is applied to the power lead 20 is from time t1 = 600 seconds to t2 = 1200 seconds, and the applied current value is 2500A. In FIG. 11, the radius of the conductor 22 is R = 1.15 (cm).

まず非通電時(t<t1)では、棒状部材23の先端に設けられたスリット部25はシール部材24から内空部21側に露出していないため、内空部21に寒剤26は導入されない(即ち、寒剤導入量はゼロである)。時刻t1に達すると、2500Aの電流がパワーリード20に流れ、導体部22の温度が上昇する。導体部22の温度上昇に伴い、スリット部25が内空部21に露出し始め、寒剤26の内空部21への導入が開始する。そして、内空部21に導入された寒剤導入量の総量が十分大きくなると、通電による発熱量に比べて内空部21に導入された寒剤26による冷却量が勝り、熱侵入量Qinは減少に転じる。   First, at the time of non-energization (t <t1), since the slit portion 25 provided at the tip of the rod-shaped member 23 is not exposed to the inner space portion 21 side from the seal member 24, the cryogen 26 is not introduced into the inner space portion 21. (In other words, the amount of cryogen introduced is zero). When the time t1 is reached, a current of 2500 A flows through the power lead 20 and the temperature of the conductor portion 22 rises. As the temperature of the conductor portion 22 rises, the slit portion 25 begins to be exposed to the inner space portion 21 and introduction of the cryogen 26 into the inner space portion 21 starts. When the total amount of cryogen introduced into the inner space 21 becomes sufficiently large, the amount of cooling by the cryogen 26 introduced into the inner space 21 is superior to the amount of heat generated by energization, and the amount of heat penetration Qin decreases. Turn.

熱侵入量Qinが減少に転じると、やがて導体部22の温度も減少に転じる。これに伴い、シール部材24から内空部21側へのスリット部25の露出度もまた減少し、寒剤導入量は次第に減少していく。そして、時刻t2に達すると通電が終了する。t2<tでは、熱侵入量Qinは当初(即ち時刻t1以前)の熱侵入量Qinに向かって収束するように振る舞う。尚、時刻t2以降においても、スリット部25の露出した部分が残っているため、寒剤導入量はすぐにはゼロに戻らず、導体部22の温度が十分に冷却されて、スリット部25が図4に示す位置に完全に戻るまでの間(つまり、時刻txまでの間)、寒剤26は内空部21に導入され続ける。そして、時刻txに達するタイミングで、スリット25の露出した部分は消滅し、寒剤導入量はゼロに達する。図11の例では、寒剤26の内空部21への最大流量はm=720(mg/sec)=0.72(g/sec)であり、熱侵入量Qinは最大で100(W)程度であった。これは、比較例(350(W))に比べて熱侵入量が1/3以下に抑制されており、極めて良好な冷却効果が得られていることを示している。   When the heat penetration amount Qin starts to decrease, the temperature of the conductor portion 22 also starts decreasing. Along with this, the degree of exposure of the slit portion 25 from the seal member 24 toward the inner space portion 21 also decreases, and the amount of cryogen introduced gradually decreases. Then, when the time t2 is reached, the energization ends. When t2 <t, the heat penetration amount Qin behaves so as to converge toward the initial (that is, before time t1) heat penetration amount Qin. In addition, since the exposed part of the slit part 25 remains after time t2, the amount of the cryogen introduced does not immediately return to zero, the temperature of the conductor part 22 is sufficiently cooled, and the slit part 25 is shown in FIG. The cryogen 26 continues to be introduced into the inner space 21 until it completely returns to the position shown in FIG. 4 (that is, until time tx). At the time when the time tx is reached, the exposed portion of the slit 25 disappears, and the amount of cryogen introduced reaches zero. In the example of FIG. 11, the maximum flow rate of the cryogen 26 into the inner space 21 is m = 720 (mg / sec) = 0.72 (g / sec), and the heat penetration amount Qin is about 100 (W) at the maximum. Met. This indicates that the heat penetration amount is suppressed to 1/3 or less as compared with the comparative example (350 (W)), and an extremely good cooling effect is obtained.

この結果を前述の例(超電導饋電線50の長さが10kmであり、200m毎に計50本のパワーリード20が設置され、当該区間を5つの列車が走行すると仮定した場合)に当てはめて考える。まず、5本のパワーリード20が通電状態にあるので、パワーリードの冷却に用いられる寒剤導入量は最大で
0.72×5=3.6(g/sec) ・・・(3)
と、算出される。
This result is considered to be applied to the above example (assuming that the length of the superconducting feeder 50 is 10 km, a total of 50 power leads 20 are installed every 200 m, and five trains run in the section). . First, since the five power leads 20 are energized, the maximum amount of cryogen used for cooling the power leads is 0.72 × 5 = 3.6 (g / sec) (3)
And calculated.

通常、10km級の超電導饋電線に冷却として用いられる液体窒素の流量は、超電導饋電線へのパワーリード以外の要素による熱侵入量を約1(W/m)、液体窒素の比熱をCp=2(J/g−K)、超電導饋電線の上流側端末温度を65(K)、超電導饋電線の下流側端末温度を75(K)と仮定して計算する。このモデリングに基づいて超電導饋電線50に接続された50本のパワーリード20のうち、非通電状態にある45本のパワーリード20から超電導饋電線50への熱侵入量は次式
53×45=2385(W) ・・・(4)
により算出される。一方、通電状態にある残り5本のパワーリード20から超電導饋電線50への熱侵入量は
100×5=500(W) ・・・(5)
により算出される。更に、パワーリード20以外の要素による超電導饋電線50への熱侵入量は
10(km)×1(W/m)=10000(W) ・・・(6)
により算出される。従って、本システムを冷却するために必要な寒剤26の総流量は(3)から(6)の計算結果を合計して、649(g/sec)と算出される。
Normally, the flow rate of liquid nitrogen used for cooling a 10 km class superconducting feeder is about 1 (W / m) of heat penetration by elements other than the power lead into the superconducting feeder, and the specific heat of liquid nitrogen is Cp = 2. (J / g-K), assuming that the upstream terminal temperature of the superconducting feeder cable is 65 (K) and the downstream terminal temperature of the superconducting feeder cable is 75 (K). Based on this modeling, among the 50 power leads 20 connected to the superconducting feeder cable 50, the heat penetration amount from the 45 power leads 20 in the non-energized state into the superconducting feeder cable 50 is expressed by the following equation 53 × 45 = 2385 (W) (4)
Is calculated by On the other hand, the amount of heat penetration from the remaining five power leads 20 in the energized state into the superconducting feeder 50 is 100 × 5 = 500 (W) (5)
Is calculated by Furthermore, the amount of heat penetration into the superconducting feeder 50 by elements other than the power lead 20 is 10 (km) × 1 (W / m) = 10000 (W) (6)
Is calculated by Therefore, the total flow rate of the cryogen 26 necessary for cooling the system is calculated as 649 (g / sec) by adding the calculation results of (3) to (6).

同様の条件下で、比較例に係るパワーリード20´を用いた場合、超電導饋電線50へのパワーリード20´以外の要素による熱侵入量が10(kW)、非通電状態にあるパワーリード20´からの熱侵入量が53×45=2385(W)、通電状態にあるパワーリード20´からの熱侵入量が5×350=1750(W)であることから、システム全体で必要な寒剤26の総流量は706(g/sec)となる。従って、比較例と比べると、システム全体で必要とされる寒剤量を約10%低減することができる。言い換えれば、寒剤26の量を一定に固定した場合、超電導饋電線50の冷却長を10%延ばすことができる。   When the power lead 20 ′ according to the comparative example is used under the same conditions, the heat penetration amount by elements other than the power lead 20 ′ into the superconducting feeder 50 is 10 (kW), and the power lead 20 is in a non-energized state. ′ Is 53 × 45 = 2385 (W), and the heat penetration amount from the power lead 20 ′ in the energized state is 5 × 350 = 1750 (W). The total flow rate is 706 (g / sec). Therefore, compared with the comparative example, the amount of cryogen required for the entire system can be reduced by about 10%. In other words, when the amount of the cryogen 26 is fixed, the cooling length of the superconducting feeder 50 can be extended by 10%.

以上説明したように、本実施例に係るパワーリード20によれば、導体部22の温度に応じて、内空部21に寒剤26が導入され、パワーリード20の冷却が自動的に行われる。パワーリード20のこのような動作は、専ら導体部22及び棒状部材23の熱変形によって行われるため、エネルギー消費量を増加させることなく済む。また、導体部22に電流が流れた際に生じる発熱量に応じて寒剤26が導入されるため、寒剤26の消費量を効果的に抑制することができる。   As described above, according to the power lead 20 according to the present embodiment, the cryogen 26 is introduced into the inner space 21 according to the temperature of the conductor 22 and the power lead 20 is automatically cooled. Since such an operation of the power lead 20 is performed exclusively by thermal deformation of the conductor portion 22 and the rod-shaped member 23, it is not necessary to increase the energy consumption. In addition, since the cryogen 26 is introduced according to the amount of heat generated when a current flows through the conductor portion 22, the consumption of the cryogen 26 can be effectively suppressed.

本発明は、例えば、寒剤で冷却された超電導饋電線及び該超電導饋電線の給電先であるトロリー線(架線)間を電気的に接続するパワーリード、並びに当該パワーリードを備えた送電システムに利用可能である。   The present invention is used for, for example, a superconducting feeder cable cooled with a cryogen, a power lead that electrically connects a trolley wire (overhead wire) to which the superconducting feeder is fed, and a power transmission system including the power lead. Is possible.

1 超電導発電システム
20 パワーリード
21 内空部
22 導体部
23 棒状部材
24 シール部材
25 スリット部
26 寒剤
50 超電導饋電線
80 トロリー線(架線)
DESCRIPTION OF SYMBOLS 1 Superconducting power generation system 20 Power lead 21 Inner space part 22 Conductor part 23 Bar-shaped member 24 Seal member 25 Slit part 26 Cold agent 50 Superconducting feeder 80 Trolley wire (overhead wire)

Claims (7)

延在方向に沿って寒剤が流れる流路を内部に有する超電導饋電線の側面を該超電導饋電線の給電先であるトロリー線電気的に接続するパワーリードにおいて、
内部に長さ方向に沿って延在する内空部が形成された円筒形状を有し、一端が前記超電導饋電線の側面に設けられた開口部を囲むように接続され、且つ、他端が前記トロリー線に電気的に接続された導体部と、
前記内空部の内部に配置され、前記導体部の長さ方向に沿って前記開口部を貫通して前記寒剤に至るまで延在する棒状部材と、
前記開口部及び前記棒状部材間に形成された隙間を、前記棒状部材が前記導体部に対して相対的に移動可能にシールするシール部材と
を備え、
前記棒状部材は、前記導体部に比べて線熱膨張率が小さい材料から形成され、前記棒状部材の前記一端には、前記導体部の非発熱時に前記内空部が前記寒剤から隔離され、且つ、前記導体部の発熱時に前記内空部が前記寒剤の流路に連通するように、前記他端側に向かって凹状に形成されたスリット部が設けられていることを特徴とするパワーリード。
The sides of the superconducting feeder cable having a flow path through which cryogen along the extending direction within the power lead electrically connected to the trolley line is a power supply destination of the superconducting feeder line,
It has a cylindrical shape in which an inner space extending along the length direction is formed, and one end is connected so as to surround an opening provided on the side surface of the superconducting feeder cable, and the other end is A conductor portion electrically connected to the trolley wire;
Is disposed in the interior of said hollow portion, and a rod-like member that Mashimasu extends up to the conductor portion of the through said opening along the length cryogen,
A seal member that seals the gap formed between the opening and the rod-like member so that the rod-like member can move relative to the conductor portion ;
The rod-shaped member is formed of a material having a smaller coefficient of linear thermal expansion than the conductor portion, and the one end of the rod-shaped member has the inner space portion isolated from the cryogen when the conductor portion does not generate heat, and A power lead comprising a slit formed in a concave shape toward the other end so that the inner space communicates with the cryogen flow path when the conductor portion generates heat .
記導体部の温度が所定の閾値以下である場合に、前記内空部は前記シール部によって前記寒剤の流路から隔離され、前記導体部の温度が前記所定の閾値より大きい場合に、前記導体部及び前記棒状部材が熱変形することによって、前記内空部に前記スリット部の少なくとも一部が露出し、該露出したスリット部を介して前記内空部に前記寒剤導入されることを特徴とする請求項1に記載のパワーリード。 When the temperature of the front Symbol conductor portion is below a predetermined threshold, the inside hollow portion is isolated from the flow path of the cryogen by the seal portion, when the temperature of the conductor portion is larger than the predetermined threshold value, the When the conductor portion and the rod-shaped member are thermally deformed , at least a part of the slit portion is exposed in the inner space portion, and the cryogen is introduced into the inner space portion through the exposed slit portion. The power lead according to claim 1, wherein 前記導体部には、前記導入された寒剤の気化ガスを排出するための排出口が設けられていることを特徴とする請求項1又は2に記載のパワーリード。   The power lead according to claim 1, wherein the conductor portion is provided with a discharge port for discharging the vaporized gas of the introduced cryogen. 前記導体部及び前記棒状部材前記トロリー線側の端部前記トロリー線に電気的に接続する固体部材を更に備えることを特徴とする請求項1から3のいずれか一項に記載のパワーリード。 Power lead according to any one of claims 1 to 3, further comprising a solid member for electrically connecting the end portion of the trolley wire side of the conductor portion and the rod-shaped member to the trolley line . 前記固定部材は前記導体部の熱変形に伴う機械的歪みを吸収可能な弾性材料からなることを特徴とする請求項4に記載のパワーリード。   The power lead according to claim 4, wherein the fixing member is made of an elastic material capable of absorbing mechanical strain accompanying thermal deformation of the conductor portion. 前記導体部は銅からなり、前記棒状部材はステンレス、タンタル、鉄或いは炭素等からなる前記導体部に比べて線熱膨張率の小さい棒材であることを特徴とする請求項1から5のいずれか一項のパワーリード。   6. The conductor according to claim 1, wherein the conductor is made of copper, and the rod-shaped member is a rod having a smaller coefficient of linear thermal expansion than the conductor made of stainless steel, tantalum, iron, carbon, or the like. Or power lead. 前記超電導饋電線から前記トロリー線に電力を供給するための送電システムであって、
前記超電導饋電線及び前記トロリー線間は、前記請求項1から6のいずれか一項に記載のパワーリードを介して電気的に接続されていることを特徴とする送電システム。
A power transmission system for supplying electric power from the superconducting feeder cable to the trolley wire,
The power transmission system, wherein the superconducting feeder cable and the trolley wire are electrically connected via the power lead according to any one of claims 1 to 6.
JP2010225869A 2010-10-05 2010-10-05 Power lead and power transmission system including the power lead Active JP5628620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225869A JP5628620B2 (en) 2010-10-05 2010-10-05 Power lead and power transmission system including the power lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010225869A JP5628620B2 (en) 2010-10-05 2010-10-05 Power lead and power transmission system including the power lead

Publications (2)

Publication Number Publication Date
JP2012076692A JP2012076692A (en) 2012-04-19
JP5628620B2 true JP5628620B2 (en) 2014-11-19

Family

ID=46237415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225869A Active JP5628620B2 (en) 2010-10-05 2010-10-05 Power lead and power transmission system including the power lead

Country Status (1)

Country Link
JP (1) JP5628620B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656902B2 (en) * 1983-06-24 1994-07-27 株式会社東芝 Superconducting device
JP5566714B2 (en) * 2010-02-04 2014-08-06 古河電気工業株式会社 Cryogenic cable termination connection
JP5669506B2 (en) * 2010-10-05 2015-02-12 株式会社前川製作所 Cryogen introduction amount control valve

Also Published As

Publication number Publication date
JP2012076692A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5118815B2 (en) Electric bushings for superconducting members
JP6046341B2 (en) Cooling device for superconducting power supply system
US10151521B2 (en) Method for cooling a plant for superconductive cables
US20210358657A1 (en) Passively cooled high power electric cable, system and method
WO2013089219A1 (en) Superconducting cable, and device and method for cooling superconducting cable
WO2006011358A1 (en) Superconductive cable line
JP2006324325A (en) Super-conducting magnet apparatus
GB2476716B (en) A cryogenically cooled current lead assembly for a superconducting magnet and its method of use
JP5628620B2 (en) Power lead and power transmission system including the power lead
JPS6248444B2 (en)
KR20160030279A (en) Temperature control device for an electrochemical power source
JP4686429B2 (en) Device for powering superconducting devices under medium or high voltage
JP6719601B2 (en) Circuit breaker
JP2006108560A (en) Current lead for superconductive apparatus
JP6520334B2 (en) Superconducting equipment
JP2011040705A (en) Terminal connection system of superconducting cable
JP5669506B2 (en) Cryogen introduction amount control valve
JP5204548B2 (en) Superconducting magnet device
US12016161B2 (en) Power conductor and vehicle power distribution circuit incorporating the same
JP2008211923A (en) Conductor
JPS63292610A (en) Current supply lead for superconducting device
KR101835268B1 (en) Transport current variable type power cable
JP2013143474A (en) Superconducting magnet device and current lead for the same
JP2724086B2 (en) Gas insulated bushing
JPH0548156A (en) Current lead for superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250