JP5627992B2 - Lamp unit - Google Patents

Lamp unit Download PDF

Info

Publication number
JP5627992B2
JP5627992B2 JP2010243070A JP2010243070A JP5627992B2 JP 5627992 B2 JP5627992 B2 JP 5627992B2 JP 2010243070 A JP2010243070 A JP 2010243070A JP 2010243070 A JP2010243070 A JP 2010243070A JP 5627992 B2 JP5627992 B2 JP 5627992B2
Authority
JP
Japan
Prior art keywords
fluorescent member
projection lens
light
lamp unit
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010243070A
Other languages
Japanese (ja)
Other versions
JP2012094466A (en
Inventor
貴夫 齋藤
貴夫 齋藤
佐藤 孝
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010243070A priority Critical patent/JP5627992B2/en
Priority to EP11008605.5A priority patent/EP2447600B1/en
Priority to US13/286,203 priority patent/US8702289B2/en
Publication of JP2012094466A publication Critical patent/JP2012094466A/en
Application granted granted Critical
Publication of JP5627992B2 publication Critical patent/JP5627992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、灯具ユニットに関する。   The present invention relates to a lamp unit.

従来、車両用前照灯等に用いられる灯具ユニットとして、例えば特許文献1に記載のように、半導体発光素子と蛍光体とを組み合わせて用いるものが知られている。この特許文献1に記載の灯具ユニットは、半導体発光素子からの励起光を受けて蛍光体が出射した可視光を、反射鏡によって前方へ反射させて所定の配光パターンを形成している。   2. Description of the Related Art Conventionally, as a lamp unit used for a vehicle headlamp or the like, a unit using a combination of a semiconductor light emitting element and a phosphor as described in Patent Document 1, for example, is known. In the lamp unit described in Patent Document 1, visible light emitted from a phosphor upon receiving excitation light from a semiconductor light emitting element is reflected forward by a reflecting mirror to form a predetermined light distribution pattern.

特許第4047266号公報Japanese Patent No. 4047266

しかしながら、上記特許文献1に記載の灯具ユニットでは、蛍光体の発光態様や反射鏡の反射態様が一定であるため、単一の配光パターンしか形成することができない。
この点、いわゆるカラーホイールのように、複数の蛍光体を切り替え可能に構成して複数の配光パターンを形成可能にすることも考えられる。しかしながら、このような構成では、意図しない光が複数の蛍光体の間から漏れないように当該複数の蛍光体間を遮光しなければならないところ、そのための遮光部材が光束密度の高い半導体発光素子からの光によって熱変形してしまう恐れがある。そのため、半導体発光素子からの光は、遮光されることなく常時蛍光体に照射されていることが望ましい。
However, in the lamp unit described in Patent Document 1, since the light emission mode of the phosphor and the reflection mode of the reflecting mirror are constant, only a single light distribution pattern can be formed.
In this respect, it is also conceivable that a plurality of phosphors can be switched to form a plurality of light distribution patterns like a so-called color wheel. However, in such a configuration, it is necessary to shield between the plurality of phosphors so that unintended light does not leak between the plurality of phosphors. There is a risk of thermal deformation due to the light. For this reason, it is desirable that the light from the semiconductor light emitting element is always irradiated to the phosphor without being blocked.

本発明は、上記事情を鑑みてなされたもので、半導体発光素子からの光を遮光することなく、複数の配光パターンを形成することのできる灯具ユニットの提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the lamp unit which can form a some light distribution pattern, without light-shielding the light from a semiconductor light-emitting device.

上記課題を解決するために、請求項1に記載の発明は、
半導体発光素子と、
前記半導体発光素子から出射された励起光を受けて可視光を出射する蛍光体から形成された蛍光部材と、
前記蛍光部材の近傍に位置する物側焦点を有し、前記蛍光部材から出射された前記可視光の発光形状を前方へ投影する投影レンズと、
を備える灯具ユニットにおいて、
前記蛍光部材は、
前記投影レンズの光軸に直交する回動軸を中心に回動可能に構成されるとともに、当該蛍光部材を複数の所定の回動位置に回動させたときに前記投影レンズから見た外形が変化するような立体形状に形成されており、
前記投影レンズから見た外形が、当該蛍光部材を所定の第1の回動位置に回動させた状態では、所定の第1の配光パターンを上下反転させた外形となり、当該蛍光部材を前記第1の回動位置とは異なる第2の回動位置に回動させた状態では、前方から見て前記第1の配光パターンとは外形が異なる所定の第2の配光パターンを上下反転させた外形となることを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
A semiconductor light emitting device;
A fluorescent member formed of a phosphor that receives excitation light emitted from the semiconductor light emitting element and emits visible light;
A projection lens that has an object-side focal point located in the vicinity of the fluorescent member and projects the light emission shape of the visible light emitted from the fluorescent member forward;
A lamp unit comprising:
The fluorescent member is
The projection lens is configured to be rotatable around a rotation axis orthogonal to the optical axis of the projection lens, and an outer shape viewed from the projection lens when the fluorescent member is rotated to a plurality of predetermined rotation positions. It is formed in a three-dimensional shape that changes ,
When the fluorescent member is rotated to the predetermined first rotation position, the external shape viewed from the projection lens is an external shape obtained by vertically inverting the predetermined first light distribution pattern. When rotated to a second rotation position different from the first rotation position, a predetermined second light distribution pattern having an outer shape different from that of the first light distribution pattern as viewed from the front is inverted upside down. It is characterized by having a contoured shape .

請求項2に記載の発明は、請求項1に記載の灯具ユニットにおいて、
所定の移動方向へ移動可能に構成されるとともに、前記移動方向に沿って曲率が変化する可変反射面を有し、前記半導体発光素子から前記蛍光部材までの光路中に配設されて、前記半導体発光素子から出射された励起光を前記可変反射面で反射させて前記蛍光部材へ照射するフレキシブルミラーを備えることを特徴とする。
The invention according to claim 2 is the lamp unit according to claim 1,
The semiconductor is configured to be movable in a predetermined movement direction, has a variable reflection surface whose curvature changes along the movement direction, and is disposed in an optical path from the semiconductor light emitting element to the fluorescent member. It comprises a flexible mirror that reflects the excitation light emitted from the light emitting element on the variable reflecting surface and irradiates the fluorescent member.

請求項3に記載の発明は、請求項1又は2に記載の灯具ユニットにおいて、
前記蛍光部材から前記投影レンズへ前記可視光が出射される部分を除く前記蛍光部材の周囲を覆うとともに、内周面が前記蛍光部材と同心状の反射面とされた反射鏡を備えることを特徴とする。
The invention according to claim 3 is the lamp unit according to claim 1 or 2,
A reflection mirror that covers the periphery of the fluorescent member excluding a portion where the visible light is emitted from the fluorescent member to the projection lens, and has an inner peripheral surface that is a concentric reflection surface with the fluorescent member. And

請求項4に記載の発明は、請求項1〜3の何れか一項に記載の灯具ユニットにおいて、
前記蛍光部材は、拡散材を含有することを特徴とする。
The invention according to claim 4 is the lamp unit according to any one of claims 1 to 3,
The fluorescent member contains a diffusing material.

請求項5に記載の発明は、請求項1〜4の何れか一項に記載の灯具ユニットにおいて、
前記半導体発光素子は、レーザーダイオードであることを特徴とする。
Invention of Claim 5 is a lamp unit as described in any one of Claims 1-4,
The semiconductor light emitting device is a laser diode.

請求項1に記載の発明によれば、投影レンズに向けて可視光を出射させる蛍光部材が、投影レンズの光軸に直交する回動軸を中心に回動可能に構成されるとともに、回動させたときに投影レンズから見た外形が変化するような立体形状に形成されているので、投影レンズから投影される発光形状を蛍光部材の回動によって変化させることができる。したがって、半導体発光素子からの光を遮光することなく、蛍光部材を回動させるだけで複数の配光パターンを形成することができる。   According to the first aspect of the present invention, the fluorescent member that emits visible light toward the projection lens is configured to be rotatable about a rotation axis that is orthogonal to the optical axis of the projection lens. Since the outer shape viewed from the projection lens changes when the projection lens is formed, the light emission shape projected from the projection lens can be changed by rotating the fluorescent member. Therefore, a plurality of light distribution patterns can be formed by merely rotating the fluorescent member without blocking light from the semiconductor light emitting element.

請求項2に記載の発明によれば、所定の移動方向へ移動可能に構成されるとともに、移動方向に沿って曲率が変化する可変反射面を有し、半導体発光素子から出射された励起光を可変反射面で反射させて蛍光部材へ照射するフレキシブルミラーを備えているので、このフレキシブルミラーの移動に伴って、半導体発光素子からの励起光が入射する可変反射面内の位置を異なる曲率の部分へ移動させ、フレキシブルミラーから蛍光部材への励起光の照射範囲を変化させることができる。これにより、励起光が照射される蛍光部材の被照射範囲を変化させ、ひいては蛍光部材が出射する可視光の輝度分布を変化させて、配光パターンの照度分布を変化させることができる。   According to the second aspect of the present invention, the excitation light emitted from the semiconductor light emitting device is configured to be movable in a predetermined movement direction, and has a variable reflection surface whose curvature changes along the movement direction. Since it has a flexible mirror that reflects on the variable reflecting surface and irradiates the fluorescent member, the position in the variable reflecting surface where the excitation light from the semiconductor light emitting element is incident varies with the movement of the flexible mirror. The irradiation range of the excitation light from the flexible mirror to the fluorescent member can be changed. Accordingly, it is possible to change the illuminance distribution of the light distribution pattern by changing the irradiation range of the fluorescent member to which the excitation light is irradiated, and by changing the luminance distribution of the visible light emitted from the fluorescent member.

請求項3に記載の発明によれば、蛍光部材から投影レンズへ可視光が出射される部分を除く蛍光部材の周囲を覆うとともに、内周面が蛍光部材と同心状の反射面とされた反射鏡を備えているので、投影レンズ以外に向けて蛍光部材から出射された可視光や、蛍光部材を透過した励起光を、反射面で反射させて蛍光部材へ再入射させ、投影レンズへ向かう有効な可視光とすることができる。したがって、光束利用率を向上させることができる。   According to the third aspect of the present invention, the reflection of the fluorescent member that covers the periphery of the fluorescent member excluding the portion from which the visible light is emitted from the fluorescent member to the projection lens and whose inner peripheral surface is a reflective surface concentric with the fluorescent member. Since it has a mirror, the visible light emitted from the fluorescent member toward the direction other than the projection lens and the excitation light transmitted through the fluorescent member are reflected by the reflecting surface and re-incident on the fluorescent member, and effective toward the projection lens. Visible light. Therefore, the luminous flux utilization factor can be improved.

第一の実施形態における灯具ユニットの要部を示す斜視図である。It is a perspective view which shows the principal part of the lamp unit in 1st embodiment. 第一の実施形態におけるフレキシブルミラーの変形例を示す図である。It is a figure which shows the modification of the flexible mirror in 1st embodiment. 第一の実施形態における蛍光部材の形状を説明するための図である。It is a figure for demonstrating the shape of the fluorescent member in 1st embodiment. 第一の実施形態における灯具ユニットでの光路を説明するための図である。It is a figure for demonstrating the optical path in the lamp unit in 1st embodiment. 第二の実施形態における灯具ユニットの要部を示す側面図である。It is a side view which shows the principal part of the lamp unit in 2nd embodiment. 第二の実施形態における蛍光部材の形状を説明するための図である。It is a figure for demonstrating the shape of the fluorescent member in 2nd embodiment.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第一の実施形態]
図1は、本発明の第一の実施形態における灯具ユニット1の要部を示す斜視図である。
灯具ユニット1は、車両に搭載されて車両前方を照らす車両用前照灯であり、図1に示すように、レーザーダイオード(以下、LDという)11と、フレキシブルミラー12と、蛍光部材13と、反射鏡14と、投影レンズ15とを備えている。
このうち、LD11は、本発明に係る半導体発光素子であり、蛍光部材13の励起光としての青色のレーザー光を左右方向に沿って出射する。
[First embodiment]
FIG. 1 is a perspective view showing a main part of a lamp unit 1 according to the first embodiment of the present invention.
The lamp unit 1 is a vehicle headlamp that is mounted on a vehicle and illuminates the front of the vehicle. As shown in FIG. 1, a laser diode (hereinafter referred to as LD) 11, a flexible mirror 12, a fluorescent member 13, A reflecting mirror 14 and a projection lens 15 are provided.
Among these, the LD 11 is a semiconductor light emitting element according to the present invention, and emits blue laser light as excitation light of the fluorescent member 13 along the left-right direction.

フレキシブルミラー12は、LD11の右方であって蛍光部材13の下方に配置されており、LD11から出射された青色光を表面の反射面12aで反射させて上方の蛍光部材13へ照射する。このフレキシブルミラー12は、上下方向へ移動可能に構成されるとともに、前後方向に垂直な断面内での反射面12aの曲率が上下方向に沿って変化するように形成されている。そのため、フレキシブルミラー12を上下方向へ移動させると、反射面12a内でLD11からの青色光が入射する部分が移動して、その曲率が変化する結果、上方へ反射される青色光の左右方向への照射範囲が変化する。
なお、フレキシブルミラー12は、図2(a)又は図2(b)に示すように、一端を固定端とし他端を自由端として、当該他端が図の矢印方向へ移動するように構成してもよいし、図2(c)に示すように、投影レンズ15の光軸Axと平行な所定軸を支点とし、両端が移動して両方向へ線対称に曲率が連続的に変化するように構成してもよい。
The flexible mirror 12 is disposed on the right side of the LD 11 and below the fluorescent member 13, and reflects the blue light emitted from the LD 11 by the reflection surface 12 a on the surface and irradiates the upper fluorescent member 13. The flexible mirror 12 is configured to be movable in the vertical direction, and is formed so that the curvature of the reflecting surface 12a in the cross section perpendicular to the front-rear direction changes along the vertical direction. Therefore, when the flexible mirror 12 is moved in the vertical direction, the portion of the reflective surface 12a where the blue light from the LD 11 is incident is moved and the curvature thereof changes, so that the blue light reflected upward is moved in the horizontal direction. The irradiation range changes.
As shown in FIG. 2A or 2B, the flexible mirror 12 is configured such that one end is a fixed end and the other end is a free end, and the other end moves in the direction of the arrow in the figure. Alternatively, as shown in FIG. 2 (c), with a predetermined axis parallel to the optical axis Ax of the projection lens 15 as a fulcrum, both ends move so that the curvature continuously changes symmetrically in both directions. It may be configured.

図3(a)は、蛍光部材13の斜視図であり、図3(b)及び図3(c)は、図3(a)のA矢視図及びB矢視図である。
これらの図に示すように、蛍光部材13は、左右方向に長尺な形状に形成されており、具体的には、左右方向に直交するA方向から見ると左右方向に長尺な楕円状の外形となり、左右方向及びA方向に直交するB方向から見ると左右方向に長尺な楕円状のうち上部の左半部が切り欠かれた外形となるように、立体的な形状に形成されている。より詳しくは、A方向から見た蛍光部材13の外形が走行ビームを左右反転させた外形となっており、B方向から見た蛍光部材13の外形がすれ違いビームを左右反転させた外形となっている。また、蛍光部材13の大きさは、例えば、直径1mm×長さ6mmの円柱に内接する程度のサイズである。
FIG. 3A is a perspective view of the fluorescent member 13, and FIG. 3B and FIG. 3C are a view as viewed from an arrow A and a view as viewed from an arrow B in FIG.
As shown in these drawings, the fluorescent member 13 is formed in an elongated shape in the left-right direction. Specifically, when viewed from the A direction orthogonal to the left-right direction, the fluorescent member 13 has an elliptical shape elongated in the left-right direction. The outer shape is formed in a three-dimensional shape so that when viewed from the left and right direction and the B direction orthogonal to the A direction, the upper left half of the elliptical shape elongated in the left and right direction is cut out. Yes. More specifically, the external shape of the fluorescent member 13 viewed from the A direction is an external shape obtained by horizontally reversing the traveling beam, and the external shape of the fluorescent member 13 viewed from the B direction is an external shape obtained by horizontally reversing the passing beam. Yes. The size of the fluorescent member 13 is, for example, a size that is inscribed in a cylinder having a diameter of 1 mm and a length of 6 mm.

この蛍光部材13は、LD11から出射された青色光を受けることで励起されて黄色光を発する蛍光体から主に形成されている。そのため、この蛍光部材13が青色光を受けると、当該蛍光部材13で散乱した青色光が黄色光と混色される結果、白色光が放射状に出射される。この蛍光部材13を形成する蛍光体には、希土類添加のYAG(Yttrium Aluminum Garnet)など、種々のものを用いることができる。
なお、蛍光部材13には、LD11から出射された青色光を拡散させる拡散材を含有させてもよい。拡散材としては、炭酸カルシウムや酸化チタン,アルミナなどを用いることができる。この場合、蛍光体と拡散材とは、樹脂などのバインダーを用いて混合材とするのではなく、焼結によって一体化させることが耐久性・耐熱性の点から好ましい。
The fluorescent member 13 is mainly formed of a phosphor that emits yellow light when excited by receiving blue light emitted from the LD 11. Therefore, when the fluorescent member 13 receives blue light, the blue light scattered by the fluorescent member 13 is mixed with yellow light, so that white light is emitted radially. Various phosphors such as rare earth-doped YAG (Yttrium Aluminum Garnet) can be used as the phosphor forming the phosphor member 13.
The fluorescent member 13 may contain a diffusing material that diffuses the blue light emitted from the LD 11. As the diffusion material, calcium carbonate, titanium oxide, alumina, or the like can be used. In this case, it is preferable from the viewpoint of durability and heat resistance that the phosphor and the diffusing material are integrated by sintering rather than using a binder such as a resin.

また、蛍光部材13は、左右方向に延在する回動軸16を中心に回動可能に構成されている。回動軸16は、蛍光部材13を貫通しておらず、その延長線が蛍光部材13の中心を通るように、蛍光部材13の左右両端から左右方向へ延出している。この回動軸16は、蛍光体のストークス損による発熱を逃がすための放熱部材でもあることから、銅やアルミニウムなどの熱伝導率の高い金属製であることが好ましい。回動軸16の先端には、ステッピングモータなどの回動角を制御可能なアクチュエータ(図示せず)が接続されている。   Further, the fluorescent member 13 is configured to be rotatable around a rotation shaft 16 extending in the left-right direction. The rotating shaft 16 does not penetrate the fluorescent member 13, and extends from the left and right ends of the fluorescent member 13 in the left-right direction so that the extension line passes through the center of the fluorescent member 13. Since the rotating shaft 16 is also a heat radiating member for releasing heat generated by the Stokes loss of the phosphor, the rotating shaft 16 is preferably made of a metal having a high thermal conductivity such as copper or aluminum. An actuator (not shown) such as a stepping motor that can control the rotation angle is connected to the tip of the rotation shaft 16.

反射鏡14は、図1に示すように、蛍光部材13よりも大径で左右方向に長尺な円筒状に形成され、その中心軸を回動軸16と一致させて蛍光部材13の周囲を覆うように配設されている。但し、反射鏡14は、蛍光部材13から前方の投影レンズ15へ白色光が出射される範囲の前側の一部が開口しており、当該一部を除いて蛍光部材13の周囲を覆っている。この反射鏡14の下部には、フレキシブルミラー12で上方へ反射された青色光を透過させる透光孔14aが形成されている。また、反射鏡14の内周の円筒面は、その中心軸が回動軸16と一致して蛍光部材13と同心状に形成されるとともに、蛍光部材13から出射された光を反射させる反射面14bとなっている。   As shown in FIG. 1, the reflecting mirror 14 is formed in a cylindrical shape having a larger diameter than the fluorescent member 13 and elongated in the left-right direction. It is arrange | positioned so that it may cover. However, the reflecting mirror 14 is open at a part of the front side of the range in which white light is emitted from the fluorescent member 13 to the front projection lens 15 and covers the periphery of the fluorescent member 13 except for the part. . A translucent hole 14 a that transmits blue light reflected upward by the flexible mirror 12 is formed below the reflecting mirror 14. Further, the cylindrical surface on the inner periphery of the reflecting mirror 14 is formed concentrically with the fluorescent member 13 so that the central axis thereof coincides with the rotation shaft 16 and reflects the light emitted from the fluorescent member 13. 14b.

投影レンズ15は、前後方向に沿った光軸Ax上に蛍光部材13が位置するように、蛍光部材13及び反射鏡14の前方に配置されている。この投影レンズ15は、蛍光部材13の近傍に位置する物側焦点を有しており、蛍光部材13から前方へ出射された白色光を上下左右に反転させつつ車両前方へ投影する。   The projection lens 15 is disposed in front of the fluorescent member 13 and the reflecting mirror 14 so that the fluorescent member 13 is positioned on the optical axis Ax along the front-rear direction. The projection lens 15 has an object-side focal point located in the vicinity of the fluorescent member 13 and projects the white light emitted forward from the fluorescent member 13 to the front of the vehicle while being inverted vertically and horizontally.

図4は、灯具ユニット1での光路を説明するための図である。
この図に示すように、灯具ユニット1では、LD11から出射された青色光(励起光)がフレキシブルミラー12の反射面12aで上方へ反射され、透光孔14aを透過して蛍光部材13に入射した後、当該蛍光部材13で白色光とされて放射状に出射される。このうち、蛍光部材13から前方の投影レンズ15に向かって出射されなかった白色光は、蛍光部材13を透過してしまった青色光とともに反射鏡14の反射面14bで反射されて再び蛍光部材13に入射する。一方、蛍光部材13から投影レンズ15へ出射された白色光は、投影レンズ15で上下左右に反転されつつ車両前方へ投影される。
FIG. 4 is a view for explaining an optical path in the lamp unit 1.
As shown in this figure, in the lamp unit 1, blue light (excitation light) emitted from the LD 11 is reflected upward by the reflecting surface 12 a of the flexible mirror 12, passes through the light transmitting hole 14 a, and enters the fluorescent member 13. After that, white light is emitted from the fluorescent member 13 and emitted radially. Among these, the white light that has not been emitted from the fluorescent member 13 toward the front projection lens 15 is reflected by the reflecting surface 14b of the reflecting mirror 14 together with the blue light that has passed through the fluorescent member 13, and is again emitted from the fluorescent member 13. Is incident on. On the other hand, the white light emitted from the fluorescent member 13 to the projection lens 15 is projected forward of the vehicle while being inverted vertically and horizontally by the projection lens 15.

このとき、蛍光部材13が、図3(a)に示すA方向を後方に一致させた状態にある場合には、図3(b)に示すA矢視での蛍光部材13の外形を上下反転させた外形が投影レンズ15を通じて反転投影され、車両前方に走行ビームが形成される。
また、この状態から蛍光部材13を90度回動させて、蛍光部材13が図3(a)に示すB方向を後方に一致させた状態(図1に示す状態)にされた場合には、図3(c)に示すB矢視での蛍光部材13の外形を上下反転させた外形が投影レンズ15を通じて反転投影され、車両前方にすれ違いビームが形成される。
このように、蛍光部材13を回動させたときに、投影レンズ15から見た蛍光部材13の外形、つまり投影レンズ15によって投影される蛍光部材13の発光形状が変化するため、走行ビームとすれ違いビームとに配光パターンを変更することができる。
At this time, when the fluorescent member 13 is in a state in which the A direction shown in FIG. 3A coincides backward, the outer shape of the fluorescent member 13 as viewed in the direction of arrow A shown in FIG. The contoured shape is inverted and projected through the projection lens 15 to form a traveling beam in front of the vehicle.
In addition, when the fluorescent member 13 is rotated 90 degrees from this state and the fluorescent member 13 is brought into a state (the state shown in FIG. 1) in which the B direction shown in FIG. The outer shape obtained by vertically inverting the outer shape of the fluorescent member 13 as viewed in the direction of arrow B shown in FIG. 3C is inverted and projected through the projection lens 15 to form a passing beam in front of the vehicle.
As described above, when the fluorescent member 13 is rotated, the outer shape of the fluorescent member 13 viewed from the projection lens 15, that is, the light emission shape of the fluorescent member 13 projected by the projection lens 15 changes. The light distribution pattern can be changed to the beam.

また、図示は省略するが、フレキシブルミラー12を上下に移動させて、上方へ反射される青色光の左右方向への照射範囲を変化させると、この青色光が照射される蛍光部材13の左右方向の被照射範囲が変化し、蛍光部材13が出射する白色光の輝度分布も変化する結果、蛍光部材13から投影レンズ15を通じて形成される配光パターンの照度分布が変化する。具体的には、蛍光部材13の被照射範囲を狭くして当該蛍光部材13の中心寄りに青色光を集光させた場合には、中心が明るく左右周辺部が暗い配光パターンが形成され、蛍光部材13の被照射範囲を広くして当該蛍光部材13の全体に亘って青色光を照射した場合には、より全体的に均一な照度の配光パターンが形成される。   Although not shown, when the flexible mirror 12 is moved up and down to change the left and right irradiation range of the blue light reflected upward, the left and right direction of the fluorescent member 13 irradiated with the blue light is changed. As a result, the luminance distribution of the white light emitted from the fluorescent member 13 changes, and as a result, the illuminance distribution of the light distribution pattern formed from the fluorescent member 13 through the projection lens 15 changes. Specifically, when the irradiated range of the fluorescent member 13 is narrowed and blue light is collected near the center of the fluorescent member 13, a light distribution pattern is formed in which the center is bright and the left and right peripheral portions are dark, When the irradiated range of the fluorescent member 13 is widened and the blue light is irradiated over the entire fluorescent member 13, a light distribution pattern having a more uniform illuminance is formed overall.

以上の灯具ユニット1によれば、投影レンズ15から投影される蛍光部材13の発光形状を当該蛍光部材13の回動によって変化させることができる。したがって、LD11からの光を遮光することなく、蛍光部材13を回動させるだけで、走行ビーム及びすれ違いビームの2つの配光パターンを形成することができる。   According to the lamp unit 1 described above, the light emission shape of the fluorescent member 13 projected from the projection lens 15 can be changed by the rotation of the fluorescent member 13. Therefore, it is possible to form two light distribution patterns of the traveling beam and the low beam by simply rotating the fluorescent member 13 without blocking the light from the LD 11.

また、フレキシブルミラー12の移動に伴って、LD11からの青色光が入射する反射面12a内の位置を異なる曲率の部分へ移動させ、フレキシブルミラー12から蛍光部材13への青色光の照射範囲を変化させることができる。これにより、青色光が照射される蛍光部材13の被照射範囲を変化させ、ひいては蛍光部材13が出射する白色光の輝度分布を変化させて、配光パターンの照度分布を変化させることができる。   Further, as the flexible mirror 12 moves, the position within the reflecting surface 12a where the blue light from the LD 11 is incident is moved to a portion with a different curvature, and the irradiation range of the blue light from the flexible mirror 12 to the fluorescent member 13 is changed. Can be made. Thereby, it is possible to change the illuminance distribution of the light distribution pattern by changing the irradiation range of the fluorescent member 13 irradiated with the blue light, and changing the luminance distribution of the white light emitted from the fluorescent member 13.

また、投影レンズ15以外に向けて蛍光部材13から出射された白色光や、蛍光部材13を透過した青色光を、反射鏡14の反射面14bで反射させて蛍光部材13へ再入射させ、投影レンズ15へ向かう有効な白色光とすることができる。したがって、光束利用率を向上させることができる。   Further, the white light emitted from the fluorescent member 13 toward the direction other than the projection lens 15 and the blue light transmitted through the fluorescent member 13 are reflected by the reflecting surface 14b of the reflecting mirror 14 and re-incident on the fluorescent member 13 for projection. Effective white light toward the lens 15 can be obtained. Therefore, the luminous flux utilization factor can be improved.

また、蛍光部材13の下方から青色光を入射させて前方へ白色光を出射させており、つまり蛍光部材13を介して光軸方向を変えているので、コヒーレント光である青色光が蛍光部材13の拡散材で拡散されることなく当該蛍光部材13を透過してしまった場合でも、当該青色光が投影レンズ15を通じて灯具外へ照射されることを防止でき、安全性を確保することができる。   Further, blue light is incident from the lower side of the fluorescent member 13 to emit white light forward, that is, the optical axis direction is changed via the fluorescent member 13, so that the blue light that is coherent light is converted into the fluorescent member 13. Even when the fluorescent member 13 is transmitted without being diffused by the diffusing material, it is possible to prevent the blue light from being irradiated to the outside of the lamp through the projection lens 15 and to ensure safety.

[第二の実施形態]
続いて、本発明の第二の実施形態について説明する。
図5は、本発明の第二の実施形態における灯具ユニット2の要部を示す側面図である。
灯具ユニット2は、高所から室内を照らす一般照明に用いられる照明灯であり、図5に示すように、LD21と、蛍光部材23と、投影レンズ25とを備えている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
FIG. 5 is a side view showing the main part of the lamp unit 2 in the second embodiment of the present invention.
The lamp unit 2 is an illuminating lamp used for general illumination that illuminates a room from a high place, and includes an LD 21, a fluorescent member 23, and a projection lens 25 as shown in FIG. 5.

このうち、LD21及び投影レンズ25は、上記第一の実施形態におけるLD11及び投影レンズ15と同様に構成されている。但し、LD21は、蛍光部材23の側方の比較的遠方に配置されて当該蛍光部材23に直接青色光を照射する。また、投影レンズ25は、光軸Axが上下方向に沿う向きとされた状態で、この光軸Ax上に蛍光部材23が位置するように当該蛍光部材23の下方に配置されている。   Among these, the LD 21 and the projection lens 25 are configured similarly to the LD 11 and the projection lens 15 in the first embodiment. However, the LD 21 is disposed relatively far to the side of the fluorescent member 23 and directly irradiates the fluorescent member 23 with blue light. Further, the projection lens 25 is disposed below the fluorescent member 23 so that the fluorescent member 23 is positioned on the optical axis Ax in a state where the optical axis Ax is oriented along the vertical direction.

図6(a)は、蛍光部材23の斜視図であり、図6(b),(c),(d)は、図6(a)のC矢視図,D矢視図,E矢視図である。
これらの図に示すように、蛍光部材23は、左右方向に直交するC方向から見ると円形の外形となり、左右方向及びC方向に直交するD方向から見ると一対の対辺が湾曲した略四角形の外形となり、左右方向に直交する方向であってD方向と約60度の角度をなすE方向から見ると六角形の外形となるように、立体的な形状に形成されている。この蛍光部材23の大きさは、例えば、一辺5mmの立方体に内接する程度のサイズである。
6 (a) is a perspective view of the fluorescent member 23, and FIGS. 6 (b), 6 (c), and 6 (d) are views as viewed from arrows C, D, and E in FIG. 6 (a). FIG.
As shown in these drawings, the fluorescent member 23 has a circular outer shape when viewed from the C direction orthogonal to the left-right direction, and has a substantially rectangular shape with a pair of opposite sides curved when viewed from the D direction orthogonal to the left-right direction and the C direction. The outer shape is formed in a three-dimensional shape so as to be a hexagonal shape when viewed from the E direction that is orthogonal to the left-right direction and forms an angle of about 60 degrees with the D direction. The size of the fluorescent member 23 is, for example, a size that is inscribed in a cube having a side of 5 mm.

また、蛍光部材23は、左右方向に延在する回動軸26を中心に回動可能に構成されている。回動軸26は、その延長線が蛍光部材23の中心を通るように、蛍光部材23の左端から左方へ突設されている。その他の回動軸26の構成は、上記第一の実施形態における回動軸16と同様である。なお、回動軸26は、蛍光部材23内に挿通させてもよいが、その場合には、接着剤を用いずに嵌合によって蛍光部材23と一体的に構成するのが好ましい。   The fluorescent member 23 is configured to be rotatable around a rotation shaft 26 extending in the left-right direction. The rotating shaft 26 protrudes from the left end of the fluorescent member 23 to the left so that the extension line passes through the center of the fluorescent member 23. Other configurations of the rotation shaft 26 are the same as those of the rotation shaft 16 in the first embodiment. The rotating shaft 26 may be inserted into the fluorescent member 23. In this case, it is preferable that the rotating shaft 26 is integrally formed with the fluorescent member 23 by fitting without using an adhesive.

以上の構成を具備する灯具ユニット2では、LD21から出射された青色光(励起光)が蛍光部材23に入射して白色光とされ、投影レンズ25を通じて下方へ照射される。
このとき、蛍光部材23が、図6(a)に示すC方向を下方に一致させた状態にある場合には、図6(b)に示すC矢視での蛍光部材23の外形が投影レンズ25を通じて投影され、下方に円形の配光パターンが形成される。
また、この状態から蛍光部材23を90度回動させて、蛍光部材23が図6(a)に示すD方向を下方に一致させた状態にされた場合には、図6(c)に示すD矢視での蛍光部材23の外形が投影レンズ25を通じて投影され、下方に略四角形の配光パターンが形成される。
更に、この状態から蛍光部材23を約60度回動させて、蛍光部材23が図6(a)に示すE方向を下方に一致させた状態にされた場合には、図6(d)に示すE矢視での蛍光部材23の外形が投影レンズ25を通じて投影され、下方に六角形の配光パターンが形成される。
In the lamp unit 2 having the above configuration, the blue light (excitation light) emitted from the LD 21 enters the fluorescent member 23 to become white light, and is irradiated downward through the projection lens 25.
At this time, when the fluorescent member 23 is in a state in which the C direction shown in FIG. 6A is aligned downward, the outer shape of the fluorescent member 23 in the direction of arrow C shown in FIG. 25, and a circular light distribution pattern is formed below.
Further, when the fluorescent member 23 is rotated 90 degrees from this state and the fluorescent member 23 is brought into a state where the D direction shown in FIG. 6A is aligned downward, it is shown in FIG. 6C. The outer shape of the fluorescent member 23 as viewed in the direction of arrow D is projected through the projection lens 25, and a substantially square light distribution pattern is formed below.
Furthermore, when the fluorescent member 23 is rotated about 60 degrees from this state and the fluorescent member 23 is brought into the state where the E direction shown in FIG. 6A is aligned downward, the state shown in FIG. The outer shape of the fluorescent member 23 as shown by the arrow E is projected through the projection lens 25, and a hexagonal light distribution pattern is formed below.

以上の灯具ユニット2によれば、上記第一の実施形態における灯具ユニット1と同様に、投影レンズ25から投影される蛍光部材23の発光形状を当該蛍光部材23の回動によって変化させることができる。したがって、LD21からの光を遮光することなく、蛍光部材23を回動させるだけで、複数の配光パターンを形成することができる。   According to the lamp unit 2 described above, similarly to the lamp unit 1 in the first embodiment, the light emission shape of the fluorescent member 23 projected from the projection lens 25 can be changed by the rotation of the fluorescent member 23. . Therefore, a plurality of light distribution patterns can be formed by merely rotating the fluorescent member 23 without blocking the light from the LD 21.

また、LD21が蛍光部材23の遠方に配置されているので、LD21から蛍光部材23までの青色光の輝線を演出用に利用することができる。加えて、蛍光部材23から投影レンズ25以外へ出射される白色光も、天井や壁面等に照射させて演出用に利用することができる。   Further, since the LD 21 is disposed far from the fluorescent member 23, the blue light emission line from the LD 21 to the fluorescent member 23 can be used for production. In addition, white light emitted from the fluorescent member 23 to other than the projection lens 25 can also be used for effects by irradiating the ceiling or wall surface.

なお、本発明は上記第一及び第二の実施形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。   It should be noted that the present invention should not be construed as being limited to the first and second embodiments described above, and of course can be modified or improved as appropriate.

例えば、上記第一及び第二の実施形態では、本発明に係る半導体発光素子としてレーザーダイオード(LD11,21)を用いることとしたが、発光ダイオードを用いることとしてもよい。但し、蛍光部材13,23への集光性の点や、フレキシブルミラー12による可変照度を実現する点からは、レーザーダイオードを用いることが好ましい。また、LD11,21から出射される青色光はコリメートされることが好ましい。   For example, in the first and second embodiments, the laser diode (LD11, 21) is used as the semiconductor light emitting element according to the present invention, but a light emitting diode may be used. However, it is preferable to use a laser diode from the viewpoint of condensing light to the fluorescent members 13 and 23 and realizing variable illuminance by the flexible mirror 12. Further, the blue light emitted from the LDs 11 and 21 is preferably collimated.

また、LD11,21が青色光を出射し、蛍光部材13,23が当該青色光により黄色光を発することとしたが、これに限定されず、白色光が得られる他の構成(励起光と蛍光体との組合せ)であってもよいし、白色光以外の可視光が得られる構成であってもよい。例えば、励起光を青色光とし、赤色光と緑色光とを発する各蛍光体を混在させてもよいし、励起光を紫外光とし、赤色光と緑色光と青色光とを発する各蛍光体を混在させてもよい。なお、後者の場合に、紫外光が漏れると不都合が生じるのであれば、蛍光部材13,23には拡散材を含有させない方がよい。   In addition, the LDs 11 and 21 emit blue light, and the fluorescent members 13 and 23 emit yellow light by the blue light. However, the present invention is not limited to this, and other configurations (excitation light and fluorescence) can be obtained. In combination with the body), or a configuration in which visible light other than white light can be obtained. For example, each phosphor that emits red light and green light may be mixed with excitation light as blue light, or each phosphor that emits red light, green light, and blue light as excitation light as ultraviolet light. You may mix. In the latter case, if there is inconvenience if ultraviolet light leaks, it is better not to include the diffusing material in the fluorescent members 13 and 23.

また、蛍光部材13,23の大きさは、上述した各サイズに限定されるものではない。但し、この蛍光部材13,23の大きさは、当該蛍光部材13,23を点光源に近づけるためには極力小さいことが好ましいものの、過度に小さいと加工性やハンドリング性を損ねるため、縦・横・高さがそれぞれ1mm〜30mmの範囲内であるのが好ましい。   Moreover, the magnitude | size of the fluorescent members 13 and 23 is not limited to each size mentioned above. However, the size of the fluorescent members 13 and 23 is preferably as small as possible in order to bring the fluorescent members 13 and 23 close to a point light source. However, if they are too small, the workability and handling properties are impaired. -It is preferable that each height is in the range of 1 mm to 30 mm.

また、蛍光部材13,23は、当該蛍光部材13,23を形成する蛍光体や拡散材の密度によって輝度が変化するため、例えば中心付近の密度を高くするなどのように、所望の配光パターンの照度分布に応じて蛍光体や拡散材の密度分布を調整してもよい。   In addition, since the luminance of the fluorescent members 13 and 23 varies depending on the density of the phosphors and the diffusing material that form the fluorescent members 13 and 23, a desired light distribution pattern such as increasing the density near the center is used. The density distribution of the phosphor and the diffusing material may be adjusted according to the illuminance distribution.

1,2 灯具ユニット
11,21 LD(半導体発光素子)
12 フレキシブルミラー
12a 反射面(可変反射面)
13,23 蛍光部材
14 反射鏡
14a 透光孔
14b 反射面
15,25 投影レンズ
16,26 回動軸
Ax 光軸
1, 2 Lamp unit 11, 21 LD (semiconductor light emitting device)
12 Flexible mirror 12a Reflecting surface (variable reflecting surface)
13, 23 Fluorescent member 14 Reflector 14a Translucent hole 14b Reflective surfaces 15, 25 Projection lenses 16, 26 Rotating axis Ax Optical axis

Claims (5)

半導体発光素子と、
前記半導体発光素子から出射された励起光を受けて可視光を出射する蛍光体から形成された蛍光部材と、
前記蛍光部材の近傍に位置する物側焦点を有し、前記蛍光部材から出射された前記可視光の発光形状を前方へ投影する投影レンズと、
を備える灯具ユニットにおいて、
前記蛍光部材は、
前記投影レンズの光軸に直交する回動軸を中心に回動可能に構成されるとともに、当該蛍光部材を複数の所定の回動位置に回動させたときに前記投影レンズから見た外形が変化
するような立体形状に形成されており、
前記投影レンズから見た外形が、当該蛍光部材を所定の第1の回動位置に回動させた状態では、所定の第1の配光パターンを上下反転させた外形となり、当該蛍光部材を前記第1の回動位置とは異なる第2の回動位置に回動させた状態では、前方から見て前記第1の配光パターンとは外形が異なる所定の第2の配光パターンを上下反転させた外形となることを特徴とする灯具ユニット。
A semiconductor light emitting device;
A fluorescent member formed of a phosphor that receives excitation light emitted from the semiconductor light emitting element and emits visible light;
A projection lens that has an object-side focal point located in the vicinity of the fluorescent member and projects the light emission shape of the visible light emitted from the fluorescent member forward;
A lamp unit comprising:
The fluorescent member is
The projection lens is configured to be rotatable around a rotation axis orthogonal to the optical axis of the projection lens, and an outer shape viewed from the projection lens when the fluorescent member is rotated to a plurality of predetermined rotation positions. It is formed in a three-dimensional shape that changes ,
When the fluorescent member is rotated to the predetermined first rotation position, the external shape viewed from the projection lens is an external shape obtained by vertically inverting the predetermined first light distribution pattern. When rotated to a second rotation position different from the first rotation position, a predetermined second light distribution pattern having an outer shape different from that of the first light distribution pattern as viewed from the front is inverted upside down. A lamp unit characterized by having a contoured shape .
所定の移動方向へ移動可能に構成されるとともに、前記移動方向に沿って曲率が変化する可変反射面を有し、前記半導体発光素子から前記蛍光部材までの光路中に配設されて、前記半導体発光素子から出射された励起光を前記可変反射面で反射させて前記蛍光部材へ照射するフレキシブルミラーを備えることを特徴とする請求項1に記載の灯具ユニット。   The semiconductor is configured to be movable in a predetermined movement direction, has a variable reflection surface whose curvature changes along the movement direction, and is disposed in an optical path from the semiconductor light emitting element to the fluorescent member. The lamp unit according to claim 1, further comprising a flexible mirror that reflects the excitation light emitted from the light emitting element on the variable reflecting surface and irradiates the fluorescent member. 前記蛍光部材から前記投影レンズへ前記可視光が出射される部分を除く前記蛍光部材の周囲を覆うとともに、内周面が前記蛍光部材と同心状の反射面とされた反射鏡を備えることを特徴とする請求項1又は2に記載の灯具ユニット。   A reflection mirror that covers the periphery of the fluorescent member excluding a portion where the visible light is emitted from the fluorescent member to the projection lens, and has an inner peripheral surface that is a concentric reflection surface with the fluorescent member. The lamp unit according to claim 1 or 2. 前記蛍光部材は、拡散材を含有することを特徴とする請求項1〜3の何れか一項に記載の灯具ユニット。   The lamp unit according to claim 1, wherein the fluorescent member contains a diffusing material. 前記半導体発光素子は、レーザーダイオードであることを特徴とする請求項1〜4の何れか一項に記載の灯具ユニット。   The lamp unit according to claim 1, wherein the semiconductor light emitting element is a laser diode.
JP2010243070A 2010-10-29 2010-10-29 Lamp unit Expired - Fee Related JP5627992B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010243070A JP5627992B2 (en) 2010-10-29 2010-10-29 Lamp unit
EP11008605.5A EP2447600B1 (en) 2010-10-29 2011-10-27 Vehicle headlight
US13/286,203 US8702289B2 (en) 2010-10-29 2011-10-31 Lighting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243070A JP5627992B2 (en) 2010-10-29 2010-10-29 Lamp unit

Publications (2)

Publication Number Publication Date
JP2012094466A JP2012094466A (en) 2012-05-17
JP5627992B2 true JP5627992B2 (en) 2014-11-19

Family

ID=46387570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243070A Expired - Fee Related JP5627992B2 (en) 2010-10-29 2010-10-29 Lamp unit

Country Status (1)

Country Link
JP (1) JP5627992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571532B2 (en) * 2010-11-09 2014-08-13 スタンレー電気株式会社 Vehicle headlamp
GB2535534B (en) * 2015-02-23 2018-11-14 Jaguar Land Rover Ltd Illumination device, method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337672A (en) * 1992-06-09 1993-12-21 Fujitsu Ltd Laser reflecting mirror
JP4047266B2 (en) * 2003-11-19 2008-02-13 株式会社小糸製作所 Lamp
JP4354435B2 (en) * 2005-07-13 2009-10-28 三菱電機株式会社 Light emitting device and lighting device
JP5358872B2 (en) * 2006-07-24 2013-12-04 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2012094466A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5259791B2 (en) Light emitting device, vehicle headlamp, lighting device, and vehicle
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP5656290B2 (en) Semiconductor light emitting device
US9291759B2 (en) Illumination device and vehicle headlight
JP5323998B2 (en) Luminaire with phosphor, excitation light source, optical system, and heat sink
US8702289B2 (en) Lighting unit
JP6258083B2 (en) Light emitting unit, light emitting device, lighting device, and vehicle headlamp
JP6509480B2 (en) Lighting device
JP2008513945A (en) LED collimator element with semi-parabolic reflector
JP6621631B2 (en) Light source module
JP5285038B2 (en) Light projecting structure and lighting device
JP6507035B2 (en) Light flux control member, light emitting device and lighting device
JP6033586B2 (en) Lighting device and vehicle headlamp
JP2007123027A (en) Lighting fixture for vehicle
JP2005259532A (en) Vehicular lighting fixture unit
JP5627992B2 (en) Lamp unit
JP6383583B2 (en) Vehicle lighting device
JP2010205418A (en) Lighting fixture for vehicle use
WO2015030096A1 (en) Vehicular lighting
JP2014170758A (en) Lighting device and vehicle headlight
JP5571532B2 (en) Vehicle headlamp
JP4884980B2 (en) Lighting device
JP2011040351A (en) Lighting fixture for vehicle
JP2006092887A (en) Lamp
JP2008084876A (en) Headlight for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5627992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees