JP5626593B2 - Thermoelectric cooling type current lead - Google Patents

Thermoelectric cooling type current lead Download PDF

Info

Publication number
JP5626593B2
JP5626593B2 JP2011219575A JP2011219575A JP5626593B2 JP 5626593 B2 JP5626593 B2 JP 5626593B2 JP 2011219575 A JP2011219575 A JP 2011219575A JP 2011219575 A JP2011219575 A JP 2011219575A JP 5626593 B2 JP5626593 B2 JP 5626593B2
Authority
JP
Japan
Prior art keywords
semiconductor element
thermoelectric semiconductor
thermoelectric
current terminal
current lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011219575A
Other languages
Japanese (ja)
Other versions
JP2013080798A (en
Inventor
山口 作太郎
作太郎 山口
敏男 河原
敏男 河原
康雄 引地
康雄 引地
秀夫 菅根
秀夫 菅根
昌啓 箕輪
昌啓 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Chubu University Educational Foundation
Original Assignee
SWCC Showa Cable Systems Co Ltd
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd, Chubu University Educational Foundation filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2011219575A priority Critical patent/JP5626593B2/en
Priority to PCT/JP2012/006344 priority patent/WO2013051254A1/en
Publication of JP2013080798A publication Critical patent/JP2013080798A/en
Application granted granted Critical
Publication of JP5626593B2 publication Critical patent/JP5626593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices

Description

本発明は、常温の電源と低温の超電導コイルや超電導ケーブルとの電気的接続を行う熱電半導体を利用した熱電冷却型電流リードに関し、特に、熱電変換(ペルチェ効果)により冷却作用を行い、外部からの熱進入と自己のジュール熱を低減させる熱電冷却型電流リードに関する。   The present invention relates to a thermoelectric cooling type current lead using a thermoelectric semiconductor that performs electrical connection between a normal temperature power source and a low temperature superconducting coil or superconducting cable, and in particular, performs a cooling action by thermoelectric conversion (Peltier effect), and externally The present invention relates to a thermoelectrically cooled current lead that reduces heat penetration and self Joule heat.

極低温で稼動する超電導応用機器では、断熱が極めて重要である。外部からの熱進入が大きいと、その熱も冷却する必要が生じるため、冷却コストが増大し、場合によっては冷却することができずに運転が不可能となってしまう可能性がある。   Thermal insulation is extremely important in superconducting applications that operate at cryogenic temperatures. If the heat entry from the outside is large, it is necessary to cool the heat, which increases the cooling cost. In some cases, the heat cannot be cooled and the operation may be impossible.

外部からの熱進入経路は、2つある。1つは低温機器を納める容器を経由する経路であり、他の1つは常温にある電源と低温にある超電導コイル等とを接続する電流リードを通じて進入する経路である。容器として真空断熱容器を用い、低温機器部をその中に入れることにより容器からの熱進入を大きく低減することが可能である。   There are two external heat entry paths. One is a path that goes through a container that houses a low-temperature device, and the other is a path that enters through a current lead that connects a power supply at room temperature to a superconducting coil at a low temperature. By using a vacuum heat insulating container as the container and placing the low-temperature equipment part therein, it is possible to greatly reduce the heat entry from the container.

電流リードは、大きな熱進入の原因になる。電流リードは、例えばOFCu(Oxygen Free Copper)等の常電導体から形成され、高い電気伝導率を有するが、熱伝導率も高いため、常温空間からの熱が容易に侵入し低温空間側に流入してしまうことになる。熱進入のプロセスには、温度差による熱伝導と電流によって発生するジュール熱の2つのプロセスがある。   Current leads cause significant heat ingress. The current lead is formed from a normal conductor such as OFCu (Oxygen Free Copper) and has a high electric conductivity, but also has a high thermal conductivity, so that heat from a room temperature space easily enters and flows into the low temperature space side. Will end up. There are two processes for heat entry: heat conduction due to temperature difference and Joule heat generated by current.

最近、常温側に常電導体、低温側に高温超電導体(酸化物超電導体)を設けた超電導電流リードが開発されている。高温超電導体は、酸化物であるため熱伝導率が低く、かつ、超電導のためジュール熱を生じない。   Recently, a superconducting current lead having a normal conductor on the normal temperature side and a high temperature superconductor (oxide superconductor) on the low temperature side has been developed. The high temperature superconductor is an oxide and thus has low thermal conductivity, and does not generate Joule heat due to superconductivity.

低温機器部が20K以下の極低温(例えば液体ヘリウムによる浸漬冷却、液体ヘリウムを用いた伝熱冷却、冷凍機を用いた伝導冷却で運転する超電導マグネット)であれば、酸化物超電導体を用いた超電導電流リードを使用することにより、電流リードを通じた熱進入を低減することができる。これは、酸化物超電導体の低熱伝導率と、ジュール熱がゼロであることを利用している。しかし、この超電導電流リードは、低温機器部が64K以上(例えば過冷却液体窒素による浸漬冷却で運転する超電導ケーブル)であると、超電導状態となるまで冷却されず、使用することができない。   An oxide superconductor was used if the cryogenic equipment part was an extremely low temperature of 20K or less (for example, a superconducting magnet operated by immersion cooling using liquid helium, heat transfer cooling using liquid helium, or conduction cooling using a refrigerator). By using a superconducting current lead, heat ingress through the current lead can be reduced. This utilizes the low thermal conductivity of the oxide superconductor and the fact that the Joule heat is zero. However, this superconducting current lead cannot be used because it is not cooled until it is in a superconducting state when the low-temperature equipment section is 64K or more (for example, a superconducting cable operated by immersion cooling with supercooled liquid nitrogen).

この場合、例えば特許文献1に示すように、熱電半導体を用いた熱電冷却型電流リードを使用する。この熱電冷却型電流リードは、熱電半導体の低熱伝導率(Cuの1/200程度)と、ペルチェ効果(通電することにより片端から吸熱し他方の片端へ排熱する現象)によるヒートポンプ効果を利用する。具体的には、電源の正極側にN型熱電半導体素子を使用したN型の熱電冷却型電流リードを配置し、電源の負極側にP型熱電半導体素子を使用したP型の熱電冷却型電流リードを設置する。そして、電源からの電流がN型及びP型の熱電半導体素子を経て電源に戻る電流回路を構成する。ここで、超電導電流リードを設置できる場合、上記熱電冷却型電流リードと組み合わせて使用することも可能である。超電導電流リードを組み合わせて使用する場合は、さらに熱進入量の低減が期待できる。   In this case, for example, as shown in Patent Document 1, a thermoelectric cooling type current lead using a thermoelectric semiconductor is used. This thermoelectric cooling type current lead utilizes the heat pump effect due to the low thermal conductivity (about 1/200 of Cu) of the thermoelectric semiconductor and the Peltier effect (a phenomenon in which heat is absorbed from one end and discharged to the other end when energized). . Specifically, an N-type thermoelectric cooling current lead using an N-type thermoelectric semiconductor element is disposed on the positive electrode side of the power supply, and a P-type thermoelectric cooling current using a P-type thermoelectric semiconductor element on the negative electrode side of the power supply Install the lead. A current circuit is configured in which the current from the power source returns to the power source through the N-type and P-type thermoelectric semiconductor elements. Here, when a superconducting current lead can be installed, it can be used in combination with the thermoelectric cooling current lead. When a superconducting current lead is used in combination, a further reduction in the amount of heat penetration can be expected.

熱電冷却型電流リードは、N型又はP型熱電半導体素子の両端部に、電極である発熱側電流端子及び吸熱側電流端子を接合した構成である。熱電半導体素子としてはBiTe系又はBiTeSb系が用いられる。BiTe化合物は、室温以下の温度領域において熱電特性が高い。熱電冷却型電流リードの両端部は、熱電半導体素子の発熱側電流端子及び吸熱側電流端子の接合面に、Niメッキを施し、ハンダにより接合する。   The thermoelectric cooling type current lead has a configuration in which an exothermic side current terminal and an endothermic side current terminal, which are electrodes, are joined to both ends of an N-type or P-type thermoelectric semiconductor element. BiTe or BiTeSb is used as the thermoelectric semiconductor element. BiTe compounds have high thermoelectric properties in the temperature range below room temperature. Both ends of the thermoelectric cooling type current lead are subjected to Ni plating on the joining surface of the heat generating side current terminal and the heat absorbing side current terminal of the thermoelectric semiconductor element, and are joined by soldering.

特開2004−6859号公報JP 2004-6859 A

熱電冷却型電流リードは、ジュール熱とヒートポンプ効果のバランスから、通電容量に合わせた横断面積の熱電半導体素子を使用する必要がある。通電容量が大きい場合は、使用する熱電半導体素子の断面積も大きくなる。すると、熱電半導体素子と、発熱側電流端子及び吸熱側電流端子の接合部において、通電時の温度変化による熱膨張又は熱収縮を受けて剪断応力が大きくなり、接合部の剥離や熱電半導体素子自体の破損が発生する虞がある。   The thermoelectric cooling-type current lead needs to use a thermoelectric semiconductor element having a cross-sectional area that matches the current-carrying capacity from the balance between Joule heat and the heat pump effect. When the current carrying capacity is large, the cross-sectional area of the thermoelectric semiconductor element to be used is also large. Then, at the joint between the thermoelectric semiconductor element and the heat generation side current terminal and the heat absorption side current terminal, the shear stress increases due to thermal expansion or contraction due to temperature change during energization, and peeling of the joint or the thermoelectric semiconductor element itself There is a risk of damage.

Cu電極である発熱側電流端子及び吸熱側電流端子よりもBiTe化合物からなる熱電半導体素子の方が機械的強度が低いため、熱電半導体素子の破損が問題となる。熱電半導体素子の破損に至らないまでも接合部の剥離等により熱電冷却型電流リードとして安定した特性と耐久性を得ることができない虞がある。   A thermoelectric semiconductor element made of a BiTe compound has a lower mechanical strength than a heat generation side current terminal and a heat absorption side current terminal, which are Cu electrodes, so that the thermoelectric semiconductor element is damaged. Even if the thermoelectric semiconductor element is not damaged, there is a possibility that stable characteristics and durability cannot be obtained as a thermoelectric cooling type current lead due to peeling of the joint portion or the like.

本発明の目的は、熱電半導体素子と電極との接合部に働く面方向の剪断応力を低減し、接合部の破壊・損傷を防ぐことができる熱電冷却型電流リードを提供することである。   An object of the present invention is to provide a thermoelectric cooling type current lead capable of reducing a shear stress in a surface direction acting on a joint portion between a thermoelectric semiconductor element and an electrode and preventing destruction / damage of the joint portion.

本発明の第1の態様である熱電冷却型電流リードは、常温の電源と低温の超電導装置を接続する熱電冷却型電流リードであって、熱電半導体素子と、前記熱電半導体素子の通電方向の常温側端部に接続される発熱側電極と、前記熱電半導体素子の通電方向の低温側端部に接続される吸熱側電極と、を備え、前記熱電半導体素子、前記発熱側電極、及び前記吸熱側電極は、それぞれの接合面において、前記接合面から内方に向かうスリットによりマトリクス状に分割された複数の分割領域を有し、対向する分割領域同士が接合されている構成を採る。 The thermoelectric cooling type current lead according to the first aspect of the present invention is a thermoelectric cooling type current lead that connects a normal temperature power source and a low temperature superconducting device, and includes the thermoelectric semiconductor element and the normal temperature in the energization direction of the thermoelectric semiconductor element. comprising a heating-side electrode connected to the side edge portion, and the heat absorption side electrodes connected to the cold end of the current direction of the thermoelectric semiconductor element, and the thermoelectric semiconductor elements, the heating-side electrode, and the heat absorption side The electrode has a configuration in which each bonding surface has a plurality of divided regions divided in a matrix by slits inward from the bonding surface, and the opposed divided regions are bonded to each other .

本発明の第2の態様は、第1の態様の熱電冷却型電流リードにおいて、前記複数の分割領域は、それぞれ正方形状の断面を有し、前記正方形の一辺の長さが5.0mm以下であり、前記スリットの幅が、前記正方形の一辺の長さの0.5〜1.0%である構成を採る。 According to a second aspect of the present invention, in the thermoelectric cooling type current lead according to the first aspect , each of the plurality of divided regions has a square cross section, and the length of one side of the square is 5.0 mm or less. There is a configuration in which the width of the slit is 0.5 to 1.0% of the length of one side of the square .

本発明の第の態様は、第1又は2の態様である熱電冷却型電流リードにおいて、前記熱電半導体素子、前記発熱側電極、及び前記吸熱側電極は、4つの分割領域を有する構成を採る。 According to a third aspect of the present invention, in the thermoelectric cooling type current lead according to the first or second aspect, the thermoelectric semiconductor element, the heat generation side electrode, and the heat absorption side electrode have a configuration having four divided regions. .

本発明の第の態様は、第1乃至第の態様のいずれかの態様である熱電冷却型電流リードにおいて、前記分割領域の断面寸法に基づいて、前記スリットの深さ及び前記スリットの幅を設定する構成を採る。 According to a fourth aspect of the present invention, in the thermoelectric cooling type current lead according to any one of the first to third aspects, the depth of the slit and the width of the slit are based on a cross-sectional dimension of the divided region. Take the configuration to set.

本発明の第の態様は、第1乃至第の態様のいずれかの態様である熱電冷却型電流リードにおいて、前記熱電半導体素子は、BiTe化合物からなるN型又はP型熱電材料である構成を採る。 According to a fifth aspect of the present invention, in the thermoelectric cooling type current lead according to any one of the first to fourth aspects, the thermoelectric semiconductor element is an N-type or P-type thermoelectric material made of a BiTe compound. Take.

本発明の第の態様は、第1乃至第の態様のいずれかの態様である熱電冷却型電流リードにおいて、前記吸熱側電極と前記超電導装置との間には、高温超電導体が接合される構成を採る。 According to a sixth aspect of the present invention, in the thermoelectric cooling type current lead according to any one of the first to fifth aspects, a high temperature superconductor is joined between the heat absorption side electrode and the superconducting device. The structure is adopted.

本発明によれば、熱電半導体素子と電極との接合部に働く面方向の剪断応力を低減し、接合部の破壊・損傷を防ぐことができる。その結果、信頼性及び耐久性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the shear stress of the surface direction which acts on the junction part of a thermoelectric semiconductor element and an electrode can be reduced, and destruction / damage of a junction part can be prevented. As a result, reliability and durability can be improved.

本発明の一実施の形態に係る熱電冷却型電流リードの一例を模式的に示す図The figure which shows typically an example of the thermoelectric cooling type | mold current lead which concerns on one embodiment of this invention 本実施の形態に係る熱電冷却型電流リードの熱電半導体素子と電極との接合面の形成を示す斜視図The perspective view which shows formation of the joint surface of the thermoelectric semiconductor element and electrode of the thermoelectric cooling type current lead which concerns on this Embodiment 本実施の形態に係る熱電冷却型電流リードの構成を示す図The figure which shows the structure of the thermoelectric cooling type | mold current lead which concerns on this Embodiment 図3のA−A矢視断面図AA arrow sectional view of FIG. 本実施の形態に係る熱電冷却型電流リードの他の断面形状を示す断面図Sectional drawing which shows the other cross-sectional shape of the thermoelectric cooling type current lead which concerns on this Embodiment 本実施の形態に係る熱電冷却型電流リードの熱電半導体素子と電極の構成を示す概略図Schematic diagram showing the configuration of the thermoelectric semiconductor element and electrodes of the thermoelectric cooling current lead according to the present embodiment 本実施の形態に係る熱電冷却型電流リードの熱電半導体素子と電極の構成を示す概略図Schematic diagram showing the configuration of the thermoelectric semiconductor element and electrodes of the thermoelectric cooling current lead according to the present embodiment 本実施の形態に係る熱電冷却型電流リードの熱電半導体素子と電極の構成を示す概略図Schematic diagram showing the configuration of the thermoelectric semiconductor element and electrodes of the thermoelectric cooling current lead according to the present embodiment 本実施の形態に係る熱電冷却型電流リードの熱電半導体素子と電極の構成を示す概略図Schematic diagram showing the configuration of the thermoelectric semiconductor element and electrodes of the thermoelectric cooling current lead according to the present embodiment

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る熱電冷却型電流リードの一例を模式的に示す図である。本実施の形態の熱電冷却型電流リードは、高温超電導体を接合した超電導電流リードを組み合わせて使用する例である。   FIG. 1 is a diagram schematically showing an example of a thermoelectrically cooled current lead according to an embodiment of the present invention. The thermoelectric cooling type current lead of this embodiment is an example in which a superconducting current lead joined with a high temperature superconductor is used in combination.

図1に示すように、熱電冷却型電流リード100は、室温環境下に設置された電源11と極低温容器12内に配設された超電導マグネット13とを電気的に接続する。   As shown in FIG. 1, the thermoelectrically cooled current lead 100 electrically connects a power supply 11 installed in a room temperature environment and a superconducting magnet 13 disposed in a cryogenic container 12.

熱電冷却型電流リード100は、電源11の正極側にN型熱電半導体素子を使用した第1の熱電冷却型電流リード110と、電源11の負極側にP型熱電半導体素子を使用した第2の熱電冷却型電流リード120とからなる。   The thermoelectric cooling type current lead 100 includes a first thermoelectric cooling type current lead 110 using an N type thermoelectric semiconductor element on the positive side of the power source 11 and a second type using a P type thermoelectric semiconductor element on the negative side of the power source 11. It consists of a thermoelectrically cooled current lead 120.

第1の熱電冷却型電流リード110は、発熱側電流端子(Cu:純度99.99%以上)111と、N型熱電半導体素子112と、吸熱側電流端子(Cu:純度99.99%以上)113とを有する。第1の熱電冷却型電流リード110は、N型熱電半導体素子112の両端部に、発熱側電流端子111及び吸熱側電流端子113を接合した構成である。N型熱電半導体素子112と発熱側電流端子111及び吸熱側電流端子113は、ハンダ(材質:例えばSn-Ag-Cu)等により接合される。   The first thermoelectric cooling type current lead 110 includes a heat generation side current terminal (Cu: purity 99.99% or more) 111, an N type thermoelectric semiconductor element 112, and a heat absorption side current terminal (Cu: purity 99.99% or more). 113. The first thermoelectric cooling type current lead 110 has a configuration in which a heat generation side current terminal 111 and a heat absorption side current terminal 113 are joined to both ends of an N type thermoelectric semiconductor element 112. The N-type thermoelectric semiconductor element 112, the heat generation side current terminal 111, and the heat absorption side current terminal 113 are joined by solder (material: for example, Sn-Ag-Cu).

N型熱電半導体素子112と発熱側電流端子111及び吸熱側電流端子113との接合面には、スリット114により複数の分割領域が形成され、分割領域が形成された状態で両者は接合される。分割の詳細については、図2により後述する。   A plurality of divided regions are formed by slits 114 on the bonding surfaces of the N-type thermoelectric semiconductor element 112, the heat generation side current terminal 111, and the heat absorption side current terminal 113, and both are bonded in a state where the divided regions are formed. Details of the division will be described later with reference to FIG.

同様に、第2の熱電冷却型電流リード120は、発熱側電流端子121と、P型熱電半導体素子122と、吸熱側電流端子123とを有する。第2の熱電冷却型電流リード120は、P型熱電半導体素子122の両端部に、発熱側電流端子121及び吸熱側電流端子123を接合した構成である。P型熱電半導体素子122と発熱側電流端子121及び吸熱側電流端子123は、ハンダ(材質:例えばSn-Ag-Cu)等により接合される。   Similarly, the second thermoelectric cooling type current lead 120 includes a heat generation side current terminal 121, a P type thermoelectric semiconductor element 122, and a heat absorption side current terminal 123. The second thermoelectric cooling type current lead 120 has a configuration in which a heat generation side current terminal 121 and a heat absorption side current terminal 123 are joined to both ends of a P type thermoelectric semiconductor element 122. The P-type thermoelectric semiconductor element 122, the heat generation side current terminal 121, and the heat absorption side current terminal 123 are joined by solder (material: for example, Sn—Ag—Cu).

P型熱電半導体素子122と発熱側電流端子121及び吸熱側電流端子123との接合面には、スリット124により複数の分割領域が形成され、分割領域が形成された状態で両者は接合される。   A plurality of divided regions are formed by slits 124 on the bonding surfaces of the P-type thermoelectric semiconductor element 122, the heat generation side current terminal 121, and the heat absorption side current terminal 123, and both are bonded in a state where the division regions are formed.

N型及びP型熱電半導体素子112,122としては、例えば、BiTe系又はBiTeSb系又はBiSb系熱電半導体などが用いられる。より具体的には、BiTe系又はBiTeSb系熱電半導体としては、BiTe、(BiSb)Teなどが用いられる。 As the N-type and P-type thermoelectric semiconductor elements 112 and 122, for example, a BiTe-based, BiTeSb-based, or BiSb-based thermoelectric semiconductor is used. More specifically, Bi 2 Te 3 , (BiSb) 2 Te 3 or the like is used as the BiTe-based or BiTeSb-based thermoelectric semiconductor.

これらの熱電半導体素子112,122は、不純物として例えばSbIを添加することによりN型になり、例えばPbIを添加することによりP型になる。また、構成元素の量を化学量論比からわずかにずらすことによっても、N型又はP型に変化させることができる。 These thermoelectric semiconductor elements 112 and 122 become N-type by adding, for example, SbI 3 as an impurity, and become P-type by adding, for example, PbI 3 . Moreover, it can be changed to N-type or P-type by slightly shifting the amount of the constituent elements from the stoichiometric ratio.

BiTe系又はBiTeSb系熱電半導体をペルチェ素子として利用した場合、常温から200K付近までの温度範囲で良好な冷却能力を得ることができる。また、BiSb系熱電半導体をペルチェ素子として利用した場合、200K付近から液体窒素温度(77K)付近までの温度範囲で良好な冷却能力を得ることができる。   When a BiTe-based or BiTeSb-based thermoelectric semiconductor is used as a Peltier element, good cooling capacity can be obtained in a temperature range from room temperature to around 200K. In addition, when a BiSb-based thermoelectric semiconductor is used as a Peltier element, a good cooling capacity can be obtained in a temperature range from around 200 K to around liquid nitrogen temperature (77 K).

N型及びP型熱電半導体素子112,122は、室温以下の低温において、性能指数Z(Z=α2/(κρ) 但しαはゼーベック係数、κは熱伝導率、ρは比抵抗)の値が最大となるように組成が調整されたものを使用することが好ましい。 N-type and P-type thermoelectric semiconductor elements 112 and 122 have values of performance index Z (Z = α 2 / (κρ) where α is the Seebeck coefficient, κ is the thermal conductivity, and ρ is the specific resistance) at a low temperature of room temperature or lower. It is preferable to use a composition whose composition is adjusted so as to be maximized.

N型熱電半導体素子112の発熱側電流端子111から吸熱側電流端子113の方向、P型熱電半導体素子122の吸熱側電流端子123から発熱側電流端子121の方向に直流電流を流すと、ペルチェ効果によりN型及びP型熱電半導体素子112,122と吸熱側電流端子113,123の接合部で吸熱が生じ、N型及びP型熱電半導体素子112,122と発熱側電流端子111,121の接合部で発熱が生じることにより、熱電冷却が行われる。   When a direct current is passed from the heat generation side current terminal 111 of the N-type thermoelectric semiconductor element 112 to the heat absorption side current terminal 113 and from the heat absorption side current terminal 123 of the P type thermoelectric semiconductor element 122 to the heat generation side current terminal 121, the Peltier effect is caused. As a result, heat is absorbed at the junction between the N-type and P-type thermoelectric semiconductor elements 112 and 122 and the heat-absorption-side current terminals 113 and 123, and the junction between the N-type and P-type thermoelectric semiconductor elements 112 and 122 and the heat-generation-side current terminals 111 and 121. When heat is generated at, thermoelectric cooling is performed.

さらに、第1の熱電冷却型電流リード110の吸熱側電流端子113と超電導マグネット13との間には、高温超電導体115が接合される。また、第2の熱電冷却型電流リード120の吸熱側電流端子123と超電導マグネット13との間には、高温超電導体125が接合される。   Further, a high temperature superconductor 115 is joined between the heat absorption side current terminal 113 of the first thermoelectric cooling type current lead 110 and the superconducting magnet 13. Further, a high temperature superconductor 125 is joined between the heat absorption side current terminal 123 of the second thermoelectric cooling type current lead 120 and the superconducting magnet 13.

本実施の形態の熱電冷却型電流リード100は、高温超電導体115,125を用いた超電導電流リードが組み合わせて構成されている。これにより、さらに熱進入量が低減される。本実施の形態は、高温超電導体115,125の両方がTc(臨界温度)以下に冷却できない場合には適用できない。   The thermoelectric cooling type current lead 100 of the present embodiment is configured by combining superconducting current leads using high temperature superconductors 115 and 125. This further reduces the amount of heat entering. This embodiment cannot be applied when both of the high-temperature superconductors 115 and 125 cannot be cooled below Tc (critical temperature).

図2は、熱電冷却型電流リードの熱電半導体素子と電極との接合面の形成を示す斜視図である。図3は、熱電冷却型電流リードの構成を示す図である。図4は、図3のA−A矢視断面図である。   FIG. 2 is a perspective view showing the formation of the joint surface between the thermoelectric semiconductor element of the thermoelectric cooling type current lead and the electrode. FIG. 3 is a diagram showing a configuration of a thermoelectric cooling type current lead. 4 is a cross-sectional view taken along line AA in FIG.

図1の熱電冷却型電流リード100の第1の熱電冷却型電流リード110と第2の熱電冷却型電流リード120とは、本実施の形態では同一形状及び同一構造であるものとする。なお、第1の熱電冷却型電流リード110と第2の熱電冷却型電流リード120とは、異なる形状・構造であってもよい。   The first thermoelectric cooling type current lead 110 and the second thermoelectric cooling type current lead 120 of the thermoelectric cooling type current lead 100 of FIG. 1 are assumed to have the same shape and the same structure in this embodiment. The first thermoelectric cooling current lead 110 and the second thermoelectric cooling current lead 120 may have different shapes and structures.

以下、説明の便宜上、第1の熱電冷却型電流リード110を熱電冷却型電流リード200と命名し直して説明する。   Hereinafter, for convenience of explanation, the first thermoelectric cooling type current lead 110 is renamed as a thermoelectric cooling type current lead 200 and described.

図3に示すように、熱電冷却型電流リード200は、発熱側電流端子210と、熱電半導体素子220と、吸熱側電流端子230とを有する。   As shown in FIG. 3, the thermoelectric cooling type current lead 200 includes a heat generation side current terminal 210, a thermoelectric semiconductor element 220, and a heat absorption side current terminal 230.

発熱側電流端子210及び吸熱側電流端子230は、熱電半導体素子220の通電方向の両端に接続された電極である。   The heat generation side current terminal 210 and the heat absorption side current terminal 230 are electrodes connected to both ends of the thermoelectric semiconductor element 220 in the energization direction.

熱電半導体素子220と発熱側電流端子210との接合面、及び熱電半導体素子220と吸熱側電流端子230との接合面は、それぞれ複数(ここでは4つに)分割されている。以下、具体的に説明する。   The joint surface between the thermoelectric semiconductor element 220 and the heat generation side current terminal 210 and the joint surface between the thermoelectric semiconductor element 220 and the heat absorption side current terminal 230 are each divided into a plurality (four in this case). This will be specifically described below.

図2に示すように、発熱側電流端子210は、熱電半導体素子220に接合される側の端部211に、接合面から内方に向かって切れ込むスリット212,213が形成されている。スリット212は、図2のX軸方向に直線により切れ込む溝部、スリット213は、図2のY軸方向にスリット212と直交する溝部である。本実施の形態では、図4に示すように、発熱側電流端子210及び熱電半導体素子220の断面形状は、正方形である。なお、直線スリットは、加工が容易である利点がある。   As shown in FIG. 2, the heat generation side current terminal 210 is formed with slits 212 and 213 which are cut inward from the joint surface at the end portion 211 on the side joined to the thermoelectric semiconductor element 220. The slit 212 is a groove portion that is cut by a straight line in the X-axis direction of FIG. 2, and the slit 213 is a groove portion that is orthogonal to the slit 212 in the Y-axis direction of FIG. In the present embodiment, as shown in FIG. 4, the cross-sectional shapes of the heat generation side current terminal 210 and the thermoelectric semiconductor element 220 are square. The straight slit has an advantage that it can be easily processed.

スリット212,213によって、発熱側電流端子210の接合面は、各々独立した4つの領域に分割され、4つの接合面214a−dを有する構造となる。なお、発熱側電流端子210の他端には、ビス穴215(径:例えば3mmφ)が開孔している。   By the slits 212 and 213, the joining surface of the heat generating side current terminal 210 is divided into four independent regions, and has a structure having four joining surfaces 214a-d. A screw hole 215 (diameter: for example, 3 mmφ) is opened at the other end of the heat generation side current terminal 210.

ここで、発熱側電流端子210の接合面が分割される構成であれば、スリット212,213の形成方法はどのようなものでもよい。   Here, the slits 212 and 213 may be formed by any method as long as the joining surface of the heat generation side current terminal 210 is divided.

前記分割後の断面寸法は、熱電半導体素子220及び発熱側電流端子210の線膨張係数と適用温度条件に応じて決定される。本実施の形態にあっては、前記分割領域は、スリット212,213により形成される。   The sectional dimensions after the division are determined according to the linear expansion coefficients of the thermoelectric semiconductor element 220 and the heat generation side current terminal 210 and the application temperature condition. In the present embodiment, the divided region is formed by slits 212 and 213.

スリット212,213は、前記分割後の断面寸法に応じて、スリットの幅δ、スリット深さ、及びスリット間隔(すなわち、発熱側電流端子210の接合面を複数の領域に分割するスリット数)が決定される。   The slits 212 and 213 have a slit width δ, a slit depth, and a slit interval (that is, the number of slits that divide the joining surface of the heat generation side current terminal 210 into a plurality of regions) according to the sectional dimensions after the division. It is determined.

スリット212,213は、線膨張係数に影響を与える電流端子及び熱電半導体素子の材質、端部の形状・大きさ、適用温度条件等を考慮する。また、前記スリットを、本実施の形態のように発熱側電流端子210と熱電半導体素子220と吸熱側電流端子230とに設ける場合と、図6乃至図9で後述するように、これらのいずれか一つ以上に設ける場合とではスリットの幅δ、スリット深さ、及びスリット間隔は、異なる場合がある。   The slits 212 and 213 take into consideration the material of the current terminal and thermoelectric semiconductor element that affect the linear expansion coefficient, the shape and size of the end, the applicable temperature condition, and the like. Further, when the slit is provided in the heat generation side current terminal 210, the thermoelectric semiconductor element 220, and the heat absorption side current terminal 230 as in the present embodiment, as described later with reference to FIGS. The slit width δ, the slit depth, and the slit interval may be different from the case of providing one or more.

図3に示すように、発熱側電流端子210は、通電方向(軸方向)の長さ:約30mm、幅及び厚さ:10mmの場合、前記分割は、下記の通りである。   As shown in FIG. 3, when the heating-side current terminal 210 has a length in the energizing direction (axial direction) of about 30 mm and a width and thickness of 10 mm, the division is as follows.

発熱側電流端子210の材質がCu:純度99.99%以上、熱電半導体素子220の材質がBiTe化合物で、発熱側電流端子210が上記寸法で、4分割する場合、分割後の断面の幅及び厚さは、5mm以下となる。また、スリット212,213の深さは、分割後の断面の一辺の最長長さ(約5mm)以上とする。   When the material of the heat generation side current terminal 210 is Cu: purity 99.99% or more, the material of the thermoelectric semiconductor element 220 is a BiTe compound, and the heat generation side current terminal 210 is divided into four in the above dimensions, The thickness is 5 mm or less. The depths of the slits 212 and 213 are not less than the longest length (about 5 mm) of one side of the cross section after division.

さらに、スリット212,213の幅δは、線膨張係数に分割後の断面の幅又は厚さ及び温度差を乗じて得た値(一例として幅又は厚さの0.5%)によって決定する。   Further, the width δ of the slits 212 and 213 is determined by a value (0.5% of the width or thickness as an example) obtained by multiplying the linear expansion coefficient by the width or thickness of the section after division and the temperature difference.

以上のことから、例えば、分割後の断面の幅及び厚さが5mmの場合、スリット212,213の深さは、5mm以上、スリット212,213の隙間幅は、5mm×0.5%=0.025mm以上とする。   From the above, for example, when the width and thickness of the divided cross section are 5 mm, the depth of the slits 212 and 213 is 5 mm or more, and the gap width of the slits 212 and 213 is 5 mm × 0.5% = 0. 0.025 mm or more.

一方、熱電半導体素子220両端間の長さは10mmである。熱電半導体素子220は、発熱側電流端子210の接合面214a−dに対応して、4分割する。これにより、熱電半導体素子220の一方の接合面221は、発熱側電流端子210の各接合面214a−dに互いに対向する。また、熱電半導体素子220の他方の接合面222は、後述する吸熱側電流端子230の各接合面234a−dに互いに対向する。   On the other hand, the length between both ends of the thermoelectric semiconductor element 220 is 10 mm. The thermoelectric semiconductor element 220 is divided into four parts corresponding to the joint surfaces 214a-d of the heat generation side current terminal 210. Thereby, one joining surface 221 of the thermoelectric semiconductor element 220 is opposed to each joining surface 214a-d of the heat generation side current terminal 210. Further, the other bonding surface 222 of the thermoelectric semiconductor element 220 faces each bonding surface 234a-d of the heat absorption side current terminal 230 described later.

吸熱側電流端子230は、上記発熱側電流端子210と同様の形状である。すなわち、図2に示すように吸熱側電流端子230は、熱電半導体素子220に接合される側の端部231に、接合面から内方に向かって切れ込むスリット232,233に直交するスリット(図示略)が形成されている。   The heat absorption side current terminal 230 has the same shape as the heat generation side current terminal 210. That is, as shown in FIG. 2, the endothermic current terminal 230 has slits (not shown) orthogonal to the slits 232 and 233 that cut inward from the joint surface to the end portion 231 on the side joined to the thermoelectric semiconductor element 220. ) Is formed.

スリット232,233に直交するスリット(図示略)によって、吸熱側電流端子230の接合面は、各々独立した4つの領域に分割され、4つの接合面234a−dを有する構造となる。なお、吸熱側電流端子230の他端には、ビス穴235(径:例えば3mmφ)が開孔している。   By the slit (not shown) orthogonal to the slits 232 and 233, the bonding surface of the heat absorption side current terminal 230 is divided into four independent regions, and has a structure having four bonding surfaces 234a-d. A screw hole 235 (diameter: for example, 3 mmφ) is opened at the other end of the heat absorption side current terminal 230.

以下、熱電冷却型電流リード200の製作と評価(熱履歴試験)について説明する。熱電冷却型電流リード200の製作に当り、使用した材料と熱履歴試験結果をまとめて表1に示す。   Hereinafter, the manufacture and evaluation (thermal history test) of the thermoelectric cooling type current lead 200 will be described. Table 1 summarizes the materials used and thermal history test results for the production of the thermoelectrically cooled current lead 200.

Figure 0005626593
Figure 0005626593

(試験手順)
1.断面寸法の異なる2種類の熱電半導体素子と、前記2種類の熱電半導体素子と各々同一の断面形状・寸法の電極(電流端子)を用意し、熱電半導体素子の両面に電極を直列にハンダ接続することにより熱電冷却型電流リード200を製作する。
(Test procedure)
1. Two types of thermoelectric semiconductor elements having different cross-sectional dimensions and electrodes (current terminals) having the same cross-sectional shape and dimensions as those of the two types of thermoelectric semiconductor elements are prepared, and the electrodes are connected in series to both sides of the thermoelectric semiconductor elements. Thus, the thermoelectric cooling type current lead 200 is manufactured.

2.電極の熱電半導体素子との接合面近傍にT熱電対を設置する。   2. A T thermocouple is installed in the vicinity of the joint surface between the electrode and the thermoelectric semiconductor element.

3.製作した熱電冷却型電流リード200の素子部抵抗の初期値を、室温にて直流4端子法にて測定する。   3. The initial value of the element part resistance of the manufactured thermoelectric cooling type current lead 200 is measured at room temperature by the DC four-terminal method.

4.熱電冷却型電流リード200に直流電流を通電し、素子部両端の温度差が100℃以上となるよう電流値を調整する。   4). A direct current is passed through the thermoelectrically cooled current lead 200, and the current value is adjusted so that the temperature difference between both ends of the element portion is 100 ° C. or more.

5.温度差が付いた状態を10分間保持し、その後通電を中止し、大気中に放置することで素子部温度が室温となるまで冷却する。   5. The state with the temperature difference is maintained for 10 minutes, and then the energization is stopped and left in the atmosphere to cool the element portion temperature to room temperature.

6.上記4.乃至5.を50回繰り返し実施する熱履歴試験を行う。   6). 4. above. To 5. Is repeated 50 times to conduct a thermal history test.

7.熱履歴試験後の素子部抵抗を、上記3.と同様に測定する。   7). The element resistance after the thermal history test is the same as the above 3. Measure in the same way.

8.熱履歴試験後の素子部外観を観察する。   8). Observe the appearance of the device after the thermal history test.

表1に示す結果から、熱電半導体素子220、及び/又は電流端子210,230を分割にすることにより、素子の破損及び素子部抵抗の増大を防ぐことが可能になり、熱電冷却型電流リード200の耐久性が向上することを確認することができた。   From the results shown in Table 1, by dividing the thermoelectric semiconductor element 220 and / or the current terminals 210 and 230, it becomes possible to prevent damage to the element and increase in the resistance of the element portion. It was confirmed that the durability of was improved.

また、本実施の形態では、発熱側電流端子210と熱電半導体素子220と吸熱側電流端子230とが、直方体である場合を例に説明したが、これらは、直方体には限定されない。例えば、発熱側電流端子210、熱電半導体素子220又は吸熱側電流端子230が、円柱形状又は多角形形状である場合は、図5(a)(b)に示すように、断面形状が円形や多角形である。   In the present embodiment, the case where the heat generation side current terminal 210, the thermoelectric semiconductor element 220, and the heat absorption side current terminal 230 are rectangular parallelepipeds has been described as an example, but these are not limited to rectangular solids. For example, when the heat generation side current terminal 210, the thermoelectric semiconductor element 220, or the heat absorption side current terminal 230 has a columnar shape or a polygonal shape, the cross-sectional shape may be a circle or many as shown in FIGS. It is square.

(変形例)
以下、図6乃至図9を参照して、熱電冷却型電流リードの熱電半導体素子と電極の他の構成例について説明する。
(Modification)
Hereinafter, another example of the configuration of the thermoelectric semiconductor element and the electrode of the thermoelectric cooling type current lead will be described with reference to FIGS.

図6は、熱電冷却型電流リードの熱電半導体素子と電極の構成を示す概略図である。図6(a)は、発熱側電流端子と熱電半導体素子と吸熱側電流端子との接合前の分解斜視図、図6(b)は、その接合後の斜視図を示す。   FIG. 6 is a schematic diagram showing the configuration of thermoelectric semiconductor elements and electrodes of a thermoelectric cooling type current lead. FIG. 6A is an exploded perspective view before joining the heat generating side current terminal, the thermoelectric semiconductor element, and the heat absorbing side current terminal, and FIG. 6B shows a perspective view after the joining.

図6(a)に示すように、熱電冷却型電流リード300は、発熱側電流端子310と、熱電半導体素子320と、吸熱側電流端子330とを有する。   As shown in FIG. 6A, the thermoelectric cooling type current lead 300 includes a heat generation side current terminal 310, a thermoelectric semiconductor element 320, and a heat absorption side current terminal 330.

発熱側電流端子310及び吸熱側電流端子330は、熱電半導体素子320の通電方向の両端に接続された電極である。   The heat generation side current terminal 310 and the heat absorption side current terminal 330 are electrodes connected to both ends of the thermoelectric semiconductor element 320 in the energization direction.

熱電半導体素子320と発熱側電流端子310及び吸熱側電流端子330は、それぞれ複数(ここでは縦、横各々4分割、合計16分割)に分割されている。以下、具体的に説明する。   The thermoelectric semiconductor element 320, the heat generation side current terminal 310, and the heat absorption side current terminal 330 are each divided into a plurality (here, divided into 4 parts each in the vertical and horizontal directions, 16 divisions in total). This will be specifically described below.

発熱側電流端子310には、接合面から通電方向に切れ込むスリット312が形成されている。   The heat generation side current terminal 310 is formed with a slit 312 that cuts in the energization direction from the joint surface.

発熱側電流端子310の接合面313から通電方向にスリット312が形成されることで、発熱側電流端子310の接合面313は、16の領域に分割され、分割された各直方体の接合面(ここでは4×4マトリクス状の16個の接合面)が接合面となる。   By forming a slit 312 from the joint surface 313 of the heat generation side current terminal 310 in the energization direction, the joint surface 313 of the heat generation side current terminal 310 is divided into 16 regions. Then, 16 joint surfaces in a 4 × 4 matrix form are the joint surfaces.

ここで、発熱側電流端子310の接合面313が、分割される構成であれば、スリット312の形成方法はどのようなものでもよい。   Here, as long as the joining surface 313 of the heat generating side current terminal 310 is divided, any method may be used for forming the slit 312.

熱電半導体素子320には、発熱側電流端子310の分割に対応して、複数の(16個の)直方体に分割されている。16個の直方体に分割された熱電半導体素子320の一方の各接合面321は、発熱側電流端子310の各接合面313に対向し、同様に、他方の各接合面322は、吸熱側電流端子330の各接合面333に対向する。   The thermoelectric semiconductor element 320 is divided into a plurality of (16 pieces) rectangular parallelepipeds corresponding to the division of the heat generation side current terminal 310. One joining surface 321 of the thermoelectric semiconductor element 320 divided into 16 rectangular parallelepipeds faces each joining surface 313 of the heat generation side current terminal 310, and similarly, each other joining surface 322 is a heat absorption side current terminal. It opposes each joint surface 333 of 330.

熱電半導体素子320の場合と同様に、吸熱側電流端子330には、接合面から通電方向に切れ込むスリット332が形成されている。   As in the case of the thermoelectric semiconductor element 320, the heat absorption side current terminal 330 is formed with a slit 332 that cuts in the energization direction from the joint surface.

吸熱側電流端子330の接合面から通電方向にスリット332が形成されることで、吸熱側電流端子330の接合面333は、16個の領域に分割され、分割された各直方体の接合面(ここでは4×4マトリクス状の16個の接合面)が接合面となる。   By forming the slit 332 in the energization direction from the joint surface of the heat absorption side current terminal 330, the joint surface 333 of the heat absorption side current terminal 330 is divided into 16 regions, and the divided joint surfaces (here) Then, 16 joint surfaces in a 4 × 4 matrix form are the joint surfaces.

このように、発熱側電流端子310、熱電半導体素子320、及び吸熱側電流端子330は、通電方向に揃った16の直方体に分割され、発熱側電流端子310、熱電半導体素子320、及び吸熱側電流端子330のそれぞれの直方体の接合面が互いに対向する。   As described above, the heat generation side current terminal 310, the thermoelectric semiconductor element 320, and the heat absorption side current terminal 330 are divided into 16 rectangular parallelepipeds aligned in the energization direction, and the heat generation side current terminal 310, the thermoelectric semiconductor element 320, and the heat absorption side current are divided. The joint surfaces of the rectangular parallelepipeds of the terminals 330 face each other.

そして、図6(b)に示すように、発熱側電流端子310、熱電半導体素子320、及び吸熱側電流端子330の端部は、対応する接合面同士が互いに対向するように配置された上で、それぞれの接合面がハンダ(材質:例えばSn-Ag-Cu)により接合される。   Then, as shown in FIG. 6B, the end portions of the heat generation side current terminal 310, the thermoelectric semiconductor element 320, and the heat absorption side current terminal 330 are arranged so that the corresponding bonding surfaces face each other. The respective joint surfaces are joined by solder (material: for example, Sn—Ag—Cu).

このように、熱電半導体素子320と発熱側電流端子310及び吸熱側電流端子330は、接合面が複数に分割して接合されることで、熱電半導体素子320と発熱側電流端子310及び吸熱側電流端子330との線膨張係数の違いによる熱膨張又は熱収縮が、個々の分割領域毎に吸収される。これにより、線膨張係数の違いによる熱膨張又は熱収縮により発生する接合面の面方向の剪断応力を低減することができ、特に、熱電半導体素子320の破壊・損傷を防ぐことができる。   As described above, the thermoelectric semiconductor element 320, the heat generation side current terminal 310, and the heat absorption side current terminal 330 are joined to each other by dividing the bonding surface into a plurality of portions. Thermal expansion or contraction due to the difference in coefficient of linear expansion from the terminal 330 is absorbed for each divided region. Thereby, the shear stress in the surface direction of the joint surface generated by thermal expansion or thermal contraction due to the difference in linear expansion coefficient can be reduced, and in particular, destruction / damage of the thermoelectric semiconductor element 320 can be prevented.

また、前記熱膨張又は熱収縮は、分割後の断面寸法に正比例するため、分割数が大きい程(例えば4分割より16分割の方が)、剪断応力の低減効果が大きい。   Moreover, since the thermal expansion or shrinkage is directly proportional to the cross-sectional dimension after the division, the effect of reducing the shear stress is larger as the number of divisions is larger (for example, 16 divisions than four divisions).

図6では、発熱側電流端子310、熱電半導体素子320、及び吸熱側電流端子330が、複数の領域に分割され、分割された状態で接合されるので、熱電半導体素子320と発熱側電流端子310及び吸熱側電流端子330との線膨張係数の違いによる接合面の面方向の剪断応力を低減する効果が大きい。   In FIG. 6, the heat generation side current terminal 310, the thermoelectric semiconductor element 320, and the heat absorption side current terminal 330 are divided into a plurality of regions and joined in a divided state, so that the thermoelectric semiconductor element 320 and the heat generation side current terminal 310 are joined. And the effect of reducing the shear stress in the surface direction of the joint surface due to the difference in coefficient of linear expansion from the heat absorption side current terminal 330 is great.

図7は、熱電冷却型電流リード300Aの熱電半導体素子と電極の構成を示す概略図である。図6と同一構成部分には同一符号を付して重複箇所の説明を省略する。   FIG. 7 is a schematic diagram showing the configuration of the thermoelectric semiconductor elements and electrodes of the thermoelectric cooling type current lead 300A. The same components as those in FIG. 6 are denoted by the same reference numerals, and description of overlapping portions is omitted.

前記図6では、発熱側電流端子310、熱電半導体素子320、及び吸熱側電流端子330がそれぞれ、通電方向にマトリクス状に分割され、分割された状態で接合されていた。   In FIG. 6, the heat generation side current terminal 310, the thermoelectric semiconductor element 320, and the heat absorption side current terminal 330 are each divided in a matrix shape in the energization direction and joined in a divided state.

図7の熱電冷却型電流リード300Aは、発熱側電流端子310及び熱電半導体素子320のみが、通電方向に分割され、吸熱側電流端子330Aについては、分割は施されない。   In the thermoelectric cooling type current lead 300A of FIG. 7, only the heat generation side current terminal 310 and the thermoelectric semiconductor element 320 are divided in the energization direction, and the heat absorption side current terminal 330A is not divided.

線膨張係数の違いによる接合面の面方向の剪断応力は、発熱側電流端子310側においてより影響が大きい。   The shear stress in the surface direction of the joint surface due to the difference in linear expansion coefficient has a greater influence on the heat generating side current terminal 310 side.

したがって、熱電冷却型電流リード300Aの発熱側電流端子310及び熱電半導体素子320の接合面のみを分割する本態様であっても、図6と略同様の効果を得ることができる。図7では、吸熱側電流端子330Aを分割しないので、加工工数を減らす効果がある。   Therefore, even in this embodiment in which only the joining surface of the heat generating side current terminal 310 and the thermoelectric semiconductor element 320 of the thermoelectric cooling current lead 300A is divided, the same effect as in FIG. 6 can be obtained. In FIG. 7, since the heat absorption side current terminal 330A is not divided, there is an effect of reducing the number of processing steps.

図8は、熱電冷却型電流リード300Bの熱電半導体素子と電極の構成を示す概略図である。図6と同一構成部分には同一符号を付して重複箇所の説明を省略する。   FIG. 8 is a schematic diagram showing the configuration of the thermoelectric semiconductor elements and electrodes of the thermoelectric cooling type current lead 300B. The same components as those in FIG. 6 are denoted by the same reference numerals, and description of overlapping portions is omitted.

図8の熱電冷却型電流リード300Bは、発熱側電流端子310のみが、通電方向に分割され、熱電半導体素子320A及び吸熱側電流端子330Aについては、分割は施されない。   In the thermoelectric cooling type current lead 300B of FIG. 8, only the heat generation side current terminal 310 is divided in the energization direction, and the thermoelectric semiconductor element 320A and the heat absorption side current terminal 330A are not divided.

上述したように、電流端子と熱電半導体素子との線膨張係数の違いが、接合面の面方向の剪断応力を発生させる。また、線膨張係数の違いによる接合面の面方向の剪断応力は、発熱側電流端子310側において影響が大きい。このため、発熱側電流端子310のみを、通電方向に分割する態様でも、熱電半導体素子320Aと発熱側電流端子310との間の線膨張係数の違いによる前記剪断応力の発生を緩和させることができる。図8では、熱電半導体素子320A及び吸熱側電流端子330Aを分割しないので、加工工数を減らす効果がある。   As described above, the difference in linear expansion coefficient between the current terminal and the thermoelectric semiconductor element generates a shear stress in the surface direction of the joint surface. Further, the shear stress in the surface direction of the joint surface due to the difference in linear expansion coefficient has a large influence on the heat generating side current terminal 310 side. Therefore, even when only the heat generation side current terminal 310 is divided in the energization direction, the generation of the shear stress due to the difference in the linear expansion coefficient between the thermoelectric semiconductor element 320A and the heat generation side current terminal 310 can be reduced. . In FIG. 8, since the thermoelectric semiconductor element 320A and the heat absorption side current terminal 330A are not divided, there is an effect of reducing the number of processing steps.

図9は、熱電冷却型電流リード300Cの熱電半導体素子と電極の構成を示す概略図である。図6と同一構成部分には同一符号を付して重複箇所の説明を省略する。   FIG. 9 is a schematic diagram showing the configuration of the thermoelectric semiconductor elements and electrodes of the thermoelectric cooling type current lead 300C. The same components as those in FIG. 6 are denoted by the same reference numerals, and description of overlapping portions is omitted.

図9の熱電冷却型電流リード300Cは、熱電半導体素子320のみが、通電方向に分割され、発熱側電流端子310A及び吸熱側電流端子330Aについては、分割は施されない。   In the thermoelectric cooling current lead 300C of FIG. 9, only the thermoelectric semiconductor element 320 is divided in the energization direction, and the heat generation side current terminal 310A and the heat absorption side current terminal 330A are not divided.

前記線膨張係数の違いによる接合部の前記剪断応力の発生は、電流端子と熱電半導体素子との相対的な関係による。熱電半導体素子320のみを、通電方向に分割する態様でも、電流端子と熱電半導体素子との間の線膨張係数の違いによる前記剪断応力の発生を緩和させることができる。図9では発熱側電流端子310A及び吸熱側電流端子330Aを分割しないので、加工工数を減らす効果がある。   The generation of the shear stress at the joint due to the difference in the linear expansion coefficient depends on the relative relationship between the current terminal and the thermoelectric semiconductor element. Even in a mode in which only the thermoelectric semiconductor element 320 is divided in the energization direction, the generation of the shear stress due to the difference in linear expansion coefficient between the current terminal and the thermoelectric semiconductor element can be reduced. In FIG. 9, since the heat generation side current terminal 310A and the heat absorption side current terminal 330A are not divided, there is an effect of reducing the number of processing steps.

以上詳細に説明したように、本実施の形態の熱電冷却型電流リード200は、熱電半導体素子220と、熱電半導体素子220の通電方向の両端に接続した電極である発熱側電流端子210及び吸熱側電流端子230とを備える。発熱側電流端子210は、スリット212,213により端部211を4つの領域に分割し、4つの接合面214a−dを形成する。吸熱側電流端子230は、スリット232,233により端部231を4つの領域に分割し、4つの接合面234a−dを形成する。また、熱電半導体素子220は、発熱側電流端子210の端部211及び吸熱側電流端子230の端部231の分割に対応して4つに分割する。そして、対向する各接合面同士をハンダにより接合する。   As described above in detail, the thermoelectric cooling type current lead 200 of the present embodiment includes the thermoelectric semiconductor element 220, the heat generation side current terminal 210 that is an electrode connected to both ends of the conduction direction of the thermoelectric semiconductor element 220, and the heat absorption side. And a current terminal 230. The heat generation side current terminal 210 divides the end portion 211 into four regions by the slits 212 and 213 to form four joint surfaces 214a-d. The heat absorption side current terminal 230 divides the end portion 231 into four regions by slits 232 and 233 to form four joint surfaces 234a-d. The thermoelectric semiconductor element 220 is divided into four parts corresponding to the division of the end portion 211 of the heat generation side current terminal 210 and the end portion 231 of the heat absorption side current terminal 230. And each joining surface which opposes is joined by soldering.

これにより、熱電半導体素子220と発熱側電流端子210及び吸熱側電流端子230は、接合面が複数に分割して接合されるので、線膨張係数の違いによる熱膨張又は熱収縮により発生する接合面の面方向の剪断応力を個々の分割領域毎に吸収することで、該剪断応力を低減することができ、接合部の破壊・損傷を防ぐことができる。   As a result, the thermoelectric semiconductor element 220, the heat generation side current terminal 210, and the heat absorption side current terminal 230 are joined by dividing the joint surface into a plurality of portions, and therefore the joint surface generated by thermal expansion or thermal contraction due to a difference in linear expansion coefficient By absorbing the shear stress in the surface direction for each divided region, the shear stress can be reduced, and the breakage / damage of the joint can be prevented.

ここで、図3の場合、スリット212,232により分割された後の熱電半導体素子220及び発熱側電流端子210及び吸熱側電流端子230は、接合面が正方形の断面を有する直方体である。このとき、前記正方形の一辺の長さは5.0mm以下であることが好ましく、発熱側電流端子210及び吸熱側電流端子230のスリット212,232の幅は、前記正方形の一辺の長さの0.5〜1.0%とすることが好ましい。一辺の長さが5.0mmよりも長いと前記応力の緩和効果が小さくなり、熱電半導体素子220が破壊する虞がある。また、隣り合う前記正方形間の隙間(すなわち、スリット212,232の幅)が、0.5%未満であると、熱電半導体素子220と発熱側電流端子210及び吸熱側電流端子230が熱膨張したときの前記剪断応力を有効に緩和することができなくなる虞があり、1.0%を超えると熱電半導体素子の密度が低下し、電流リード本体の大きさが大きくなる虞がある。   Here, in the case of FIG. 3, the thermoelectric semiconductor element 220, the heat generation side current terminal 210, and the heat absorption side current terminal 230 after being divided by the slits 212 and 232 are rectangular parallelepipeds having a square cross section. At this time, the length of one side of the square is preferably 5.0 mm or less, and the widths of the slits 212 and 232 of the heat generation side current terminal 210 and the heat absorption side current terminal 230 are 0 of the length of one side of the square. 0.5 to 1.0% is preferable. If the length of one side is longer than 5.0 mm, the stress relaxation effect is reduced, and the thermoelectric semiconductor element 220 may be destroyed. In addition, when the gap between adjacent squares (that is, the width of the slits 212 and 232) is less than 0.5%, the thermoelectric semiconductor element 220, the heat generation side current terminal 210, and the heat absorption side current terminal 230 are thermally expanded. There is a possibility that the shearing stress at the time cannot be effectively relaxed, and when it exceeds 1.0%, the density of the thermoelectric semiconductor element is lowered, and the size of the current lead body may be increased.

熱電冷却型電流リード200に通電すると、熱電冷却型電流リード200自身のジュール熱と、ペルチェ効果により生じた温度差により、熱電半導体素子220両端間は、100℃以上の温度差を生じる。このとき、発熱側の熱膨張と吸熱側の熱収縮により、熱電半導体素子220に剪断応力(この剪断応力は、直方体形状から正四角錘台形状に変形する応力)が加わり、熱電半導体素子220にクラックが入るなどして破壊することがある。   When the thermoelectric cooling current lead 200 is energized, a temperature difference of 100 ° C. or more is generated between both ends of the thermoelectric semiconductor element 220 due to the Joule heat of the thermoelectric cooling current lead 200 itself and the temperature difference caused by the Peltier effect. At this time, due to thermal expansion on the heat generation side and thermal contraction on the heat absorption side, a shear stress is applied to the thermoelectric semiconductor element 220 (this shear stress is a stress that deforms from a rectangular parallelepiped shape to a regular square frustum shape). It may break down due to cracks.

本実施の形態では、スリット212,232により分割された後の熱電半導体素子220及び発熱側電流端子210及び吸熱側電流端子230の断面形状寸法を、一辺の長さ5mm以下とする。これにより、前記線膨張係数の違いによる接合部の前記剪断応力に加えて、熱電冷却型電流リード200の温度差による剪断応力についても、低減することができ、熱電半導体素子220の破壊を防止することが可能になる。   In the present embodiment, the cross-sectional shape dimensions of the thermoelectric semiconductor element 220, the heat generation side current terminal 210, and the heat absorption side current terminal 230 after being divided by the slits 212 and 232 are set to have a side length of 5 mm or less. Thereby, in addition to the shear stress of the joint due to the difference in the linear expansion coefficient, the shear stress due to the temperature difference of the thermoelectric cooling type current lead 200 can be reduced, and the destruction of the thermoelectric semiconductor element 220 is prevented. It becomes possible.

以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。   The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.

例えば、熱電半導体素子及び熱電半導体素子に接続される電極の端部の分割は、どのような分割でもよい。例えば、図2及び図3に示すように、4であってもよく、図6乃至図9に示すように16であってもよい。また、分割の形状も任意である。   For example, the division of the thermoelectric semiconductor element and the end of the electrode connected to the thermoelectric semiconductor element may be any division. For example, it may be 4 as shown in FIGS. 2 and 3, or 16 as shown in FIGS. Further, the shape of the division is also arbitrary.

また、分割の対象も熱電半導体素子、又は熱電半導体素子に接続される電極の端部のうち、少なくともいずれか一方であればよい。   Further, the object to be divided may be at least one of the thermoelectric semiconductor element and the end portion of the electrode connected to the thermoelectric semiconductor element.

また、上記実施の形態では、熱電冷却型電流リードという名称を用いたが、これは説明の便宜上であり、熱電冷却型パワーリード、ペルチェ電流リード等であってもよい。   Moreover, in the said embodiment, although the name thermoelectric cooling type | mold current lead was used, this is for convenience of explanation and a thermoelectric cooling type | mold power lead, a Peltier current lead, etc. may be sufficient.

本発明に係る熱電冷却型電流リードは、常温の電源と低温の超電導コイルや超電導ケーブルとの電気的接続を行う熱電半導体を利用した熱電冷却型電流リードとして有用である。   The thermoelectric cooling type current lead according to the present invention is useful as a thermoelectric cooling type current lead using a thermoelectric semiconductor for electrically connecting a normal temperature power source and a low temperature superconducting coil or a superconducting cable.

11 電源
12 極低温容器
13 超電導マグネット
100,200,300,300A,300B,300C 熱電冷却型電流リード
110 第1の熱電冷却型電流リード
111,121,210,310,310A 発熱側電流端子(電極)
112 N型熱電半導体素子
113,123,230,330,330A 吸熱側電流端子(電極)
114,124,212,213,232,233,312,323,332 スリット
115,125 高温超電導体
120 第2の熱電冷却型電流リード
122 P型熱電半導体素子
211 発熱側電流端子の端部
214a−d,313 発熱側電流端子の接合面
220,320,320A 熱電半導体素子
221,222,321,322 熱電半導体素子の接合面
231 吸熱側電流端子の端部
234a−d,333 吸熱側電流端子の接合面
11 Power supply 12 Cryogenic container 13 Superconducting magnet 100, 200, 300, 300A, 300B, 300C Thermoelectric cooling type current lead 110 First thermoelectric cooling type current lead 111, 121, 210, 310, 310A Heat generation side current terminal (electrode)
112 N-type thermoelectric semiconductor element 113, 123, 230, 330, 330A Heat absorption side current terminal (electrode)
114, 124, 212, 213, 232, 233, 312, 323, 332 Slit 115, 125 High temperature superconductor 120 Second thermoelectric cooling type current lead 122 P type thermoelectric semiconductor element 211 End portion of heat generating side current terminal 214 a-d , 313 Heat-sink-side current terminal joint surface 220, 320, 320 A Thermoelectric semiconductor element 221, 222, 321, 322 Thermo-electric semiconductor element joint surface 231 Endothermic-side current terminal end 234 a-d, 333 Heat-sink-side current terminal joint surface

Claims (6)

常温の電源と低温の超電導装置を接続する熱電冷却型電流リードであって、
熱電半導体素子と、
前記熱電半導体素子の通電方向の常温側端部に接続される発熱側電極と
前記熱電半導体素子の通電方向の低温側端部に接続される吸熱側電極と、を備え、
前記熱電半導体素子、前記発熱側電極、及び前記吸熱側電極は、それぞれの接合面において、前記接合面から内方に向かうスリットによりマトリクス状に分割された複数の分割領域を有し、対向する分割領域同士が接合されている、熱電冷却型電流リード。
A thermoelectrically cooled current lead connecting a power supply at room temperature and a superconducting device at low temperature,
A thermoelectric semiconductor element;
A heating-side electrode connected to a normal-temperature-side end in the energizing direction of the thermoelectric semiconductor element ;
An endothermic side electrode connected to a low temperature side end of the energizing direction of the thermoelectric semiconductor element ,
The thermoelectric semiconductor element , the heat generation side electrode, and the heat absorption side electrode each have a plurality of divided regions divided in a matrix by slits inward from the bonding surface, and are opposed to each other. Thermoelectrically cooled current lead where the regions are joined together .
前記複数の分割領域は、それぞれ正方形状の断面を有し、
前記正方形の一辺の長さが5.0mm以下であり、
前記スリットの幅が、前記正方形の一辺の長さの0.5〜1.0%である、請求項1に記載の熱電冷却型電流リード。
Each of the plurality of divided regions has a square cross section;
The length of one side of the square is 5.0 mm or less,
The thermoelectric cooling type current lead according to claim 1, wherein a width of the slit is 0.5 to 1.0% of a length of one side of the square.
前記熱電半導体素子、前記発熱側電極、及び前記吸熱側電極は、4つの分割領域を有する、請求項1又は2に記載の熱電冷却型電流リード。 The thermoelectric semiconductor element, the heat-side electrode, and the heat absorption side electrodes has four divided regions, a thermoelectric cooling type current lead according to claim 1 or 2. 前記分割領域の断面寸法に基づいて、前記スリットの深さ及び前記スリットの幅を設定する、請求項1乃至のいずれか一項に記載の熱電冷却型電流リード。 The thermoelectric cooling type current lead according to any one of claims 1 to 3 , wherein a depth of the slit and a width of the slit are set based on a cross-sectional dimension of the divided region . 前記熱電半導体素子は、BiTe化合物からなるN型又はP型熱電材料である、請求項1乃至のいずれか一項に記載の熱電冷却型電流リード。 The thermoelectric cooling current lead according to any one of claims 1 to 4 , wherein the thermoelectric semiconductor element is an N-type or P-type thermoelectric material made of a BiTe compound. 前記吸熱側電極と前記超電導装置との間には、高温超電導体が接合される、請求項1乃至のいずれか一項に記載の熱電冷却型電流リード。 The thermoelectric cooling type current lead according to any one of claims 1 to 5 , wherein a high temperature superconductor is joined between the heat absorption side electrode and the superconducting device.
JP2011219575A 2011-10-03 2011-10-03 Thermoelectric cooling type current lead Active JP5626593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011219575A JP5626593B2 (en) 2011-10-03 2011-10-03 Thermoelectric cooling type current lead
PCT/JP2012/006344 WO2013051254A1 (en) 2011-10-03 2012-10-03 Thermoelectric-cooling type current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219575A JP5626593B2 (en) 2011-10-03 2011-10-03 Thermoelectric cooling type current lead

Publications (2)

Publication Number Publication Date
JP2013080798A JP2013080798A (en) 2013-05-02
JP5626593B2 true JP5626593B2 (en) 2014-11-19

Family

ID=48043435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219575A Active JP5626593B2 (en) 2011-10-03 2011-10-03 Thermoelectric cooling type current lead

Country Status (2)

Country Link
JP (1) JP5626593B2 (en)
WO (1) WO2013051254A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480825B2 (en) * 2015-07-27 2019-03-13 昭和電線ケーブルシステム株式会社 Flange unit with current lead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377350B2 (en) * 1994-11-21 2003-02-17 株式会社ワイ・ワイ・エル Thermoelectric cooling type power lead
JPH09321354A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Metal pattern plate
JP4012736B2 (en) * 2002-01-18 2007-11-21 株式会社ワイ・ワイ・エル Current introduction terminal
US8895832B2 (en) * 2006-11-02 2014-11-25 Toyota Jidosha Kabushiki Kaisha Thermoelectric element and thermoelectric module

Also Published As

Publication number Publication date
JP2013080798A (en) 2013-05-02
WO2013051254A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Li et al. Bismuth telluride/half‐Heusler segmented thermoelectric unicouple modules provide 12% conversion efficiency
JP5697161B2 (en) Current lead
Joshi et al. Efficient and robust thermoelectric power generation device using hot-pressed metal contacts on nanostructured half-Heusler alloys
US3650844A (en) Diffusion barriers for semiconductive thermoelectric generator elements
KR101932979B1 (en) Thermoelectric power generation module
JP5544410B2 (en) Current lead
Choi et al. A resistance ratio analysis for cosb 3-based thermoelectric unicouples
KR20140021522A (en) Thermogenerator and process for producing a thermogenerator
Wesolowski et al. Development of a Bi2Te3-based thermoelectric generator with high-aspect ratio, free-standing legs
Wang et al. A novel multilayer composite structured thermoelectric module with high output power
US20230102920A1 (en) Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same
JP5626593B2 (en) Thermoelectric cooling type current lead
Tarantik et al. Thermoelectric modules based on silicides–development and characterization
US7531750B2 (en) Power supply line for cryogenic electrical systems
JP5347886B2 (en) Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
Vedernikov et al. Cooling thermoelements with superconducting leg
Bai et al. Segmented modules
JP6038079B2 (en) Current lead
JP6548292B2 (en) Current lead and method of manufacturing current lead
JP6484471B2 (en) Current lead
KR102333422B1 (en) Bulk thermoelectric element and manufacturing method thereof
JP5697162B2 (en) Current lead
JP6484470B2 (en) Current lead
Yamaguchi et al. Peltier current lead experiments with a thermoelectric semiconductor near 77 K [and HTSC]

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5626593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350