JP5626003B2 - Super finishing unit - Google Patents

Super finishing unit Download PDF

Info

Publication number
JP5626003B2
JP5626003B2 JP2011038156A JP2011038156A JP5626003B2 JP 5626003 B2 JP5626003 B2 JP 5626003B2 JP 2011038156 A JP2011038156 A JP 2011038156A JP 2011038156 A JP2011038156 A JP 2011038156A JP 5626003 B2 JP5626003 B2 JP 5626003B2
Authority
JP
Japan
Prior art keywords
inner ring
outer ring
raceway surface
grindstone
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038156A
Other languages
Japanese (ja)
Other versions
JP2012171078A (en
Inventor
健剛 水浦
健剛 水浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011038156A priority Critical patent/JP5626003B2/en
Priority to CN201180002688.1A priority patent/CN102781625B/en
Priority to PCT/JP2011/073727 priority patent/WO2012114576A1/en
Publication of JP2012171078A publication Critical patent/JP2012171078A/en
Application granted granted Critical
Publication of JP5626003B2 publication Critical patent/JP5626003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、つば付き内輪の複数のつば部(面)に対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことを可能にする超仕上加工ユニットに関し、これにより、内輪軌道面に対する超仕上加工と同時に、複数のつば部(面)に対する超仕上加工を全自動で行うことを可能にする。   The present invention relates to a super finishing unit that can automatically perform super finishing on a plurality of brim portions (surfaces) of a collared inner ring with a single (one) facility at the same time. Thereby, it is possible to perform super-finishing for a plurality of collar portions (surfaces) fully automatically at the same time as super-finishing for the inner ring raceway surface.

従来、つば付き内輪において、つば部(面)に対する超仕上加工と、内輪軌道面に対する超仕上加工とを同時に行うことを可能にする超仕上げ装置が知られている(例えば、特許文献1参照)。これによれば、オシレーション機構をコンパクト化することで、装置全体の小型化を図ることができる。   2. Description of the Related Art Conventionally, there has been known a superfinishing apparatus capable of simultaneously performing superfinishing on a collar portion (surface) and superfinishing on an inner ring raceway surface in a collared inner ring (see, for example, Patent Document 1). . According to this, the size of the entire apparatus can be reduced by downsizing the oscillation mechanism.

特許第4389554号公報Japanese Patent No. 4389554

ところで、つば付き内輪では、例えば、単列の軌道面両側に沿って周方向に延在するつば部(面)に対する超仕上加工や、複列の軌道面相互間に沿って周方向に延在するつば部(面)の両側周面に対する超仕上加工などのように、複数個所(即ち、2ヶ所以上)に亘って超仕上加工を行う場合が想定される。   By the way, in the case of an inner ring with a collar, for example, superfinishing for a flange portion (surface) extending in the circumferential direction along both sides of a single row raceway surface, or extending in the circumferential direction between two rows of raceway surfaces. It is assumed that superfinishing is performed over a plurality of locations (that is, two or more locations), such as superfinishing on both circumferential surfaces of the collar portion (surface).

このような場合には、1ヶ所のつば部(面)に対する超仕上加工を行った後に、別時期に、同一の超仕上げ装置で残りのつば部(面)に対する超仕上加工を行うか、或いは、当該残りのつば部(面)に対して、別工程(例えば、他の超仕上げ装置)にて超仕上加工を行うのが一般的である。   In such a case, after performing superfinishing on one collar part (surface), superfinishing the remaining collar part (surface) with the same superfinishing apparatus at another time, or The superficial finishing is generally performed on the remaining collar portion (surface) in a separate process (for example, another superfinishing apparatus).

また、つば部(面)に対する超仕上加工と、内輪軌道面に対する超仕上加工とを同時に行う場合、内輪軌道面に対する超仕上加工は、加工対象領域が広範囲に亘っているため、つば部(面)に対する超仕上加工に比べて、加工に要する時間がかかる。   In addition, when performing superfinishing on the collar part (surface) and superfinishing on the inner ring raceway surface simultaneously, the superfinishing process on the inner ring raceway surface has a wide processing target area. Compared with the super-finishing processing), it takes time for processing.

ここで、例えば、1ヶ所のつば部(面)に対する超仕上加工を行った後、別時期に、同一の超仕上げ装置で残りのつば部(面)に対する超仕上加工を行う工程に際し、両工程の間に内輪軌道面に対する超仕上加工が行われると、当該内輪軌道面に対する超仕上加工が完了するまで、残りのつば部(面)に対する超仕上加工を長時間に亘って停止(延期)しなければならない。そうなると、複数のつば部(面)に対する加工効率が低下するため、つば付き内輪の生産性を向上させるには一定の限界がある。   Here, for example, after the superfinishing process is performed on one collar part (surface), both processes are performed at the same time in the process of performing superfinishing process on the remaining collar part (surface) with the same superfinishing apparatus. If the superfinishing process is performed on the inner ring raceway during this period, the superfinishing process on the remaining collar (surface) is stopped (postponed) for a long time until the superfinishing process on the inner ring raceway surface is completed. There must be. If it becomes so, since the process efficiency with respect to a some collar part (surface) will fall, there exists a certain limit in improving the productivity of an inner ring | wheel with a collar.

また、例えば、複数の超仕上げ装置によって複数のつば部(面)に対する超仕上加工を個別に行う場合、複数のつば部(面)専用の超仕上げ装置がそれぞれ独立して必要となるため、その分だけ装置が大型化すると共に、設備投資費並びに消費電力が増加し、これにより、コンパクト化及び低コスト化並びに省エネ化には一定の限界がある。   In addition, for example, when superfinishing processing for a plurality of collar portions (surfaces) is individually performed by a plurality of superfinishing devices, a superfinishing device dedicated to a plurality of collar portions (surfaces) is required independently. As the size of the apparatus increases, the capital investment cost and power consumption increase, and there is a certain limit to downsizing, cost reduction, and energy saving.

この場合、複数のつば部(面)専用のそれぞれの超仕上げ装置について、例えば、それぞれのつば部(面)に対する超仕上用砥石の位置決め作業などを個別に行わなければならず、超仕上加工に要する手間や時間がかかるため、超仕上加工の作業効率を向上させるには一定の限界がある。特に、多品種小ロット化が要求される製造ラインでは、上記した各作業を頻繁に繰り返さなければならなくなり、そうなると、超仕上加工の稼働率が低下してしまう。   In this case, for each superfinishing device dedicated to a plurality of brim parts (surfaces), for example, positioning work of the superfinishing grindstone with respect to each brim part (surface) must be performed individually, for superfinishing processing. Due to the time and effort required, there is a certain limit to improving the work efficiency of super finishing. In particular, in a production line that requires a large variety of small lots, the above-mentioned operations must be repeated frequently, and the operation rate of super finishing is reduced.

本発明は、このような問題を解決するためになされており、その目的は、つば付き内輪の複数のつば部(面)に対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことを可能にする超仕上加工ユニットを提供することにある。   The present invention has been made in order to solve such problems, and its purpose is to perform superfinishing on a plurality of collar portions (surfaces) of a collared inner ring simultaneously with a single (one) facility. The object is to provide a super-finishing processing unit that can be automatically and collectively performed.

このような目的を達成するために、本発明は、つば付き内輪の複数のつば部に対する超仕上加工を、単一の設備で内輪軌道面に対する超仕上加工と同時に一括して自動的に行うことを可能にする超仕上加工ユニットであって、つば部用砥石を支持するつば部加工ヘッドと、前記つば部加工ヘッドを反転軸を中心に反転可能に支持し、かつ、前記反転軸回りに前記つば部用砥石を所望の角度で反転させる反転機構と、前記反転機構を支持し、かつ、前記反転機構と共に前記つば部加工ヘッドを所望の方向に旋回させると共に、微少往復運動させる作動装置とを備えている。
本発明において、前記作動装置は、駆動源によって回転可能な回転軸を有すると共に、当該回転軸の回転運動を往復運動に変換して前記反転機構に伝達することで、前記つば部加工ヘッドのつば部用砥石を微少往復運動させるオシレーション機構と、前記回転軸と同心に構成され、前記反転機構を旋回させることで、前記つば部加工ヘッドのつば部用砥石を所望の角度まで旋回させる旋回機構とを備えている。
本発明において、前記オシレーション機構は、前記回転軸に設けられた偏心軸部と、前記偏心軸部に対して相対回転可能に取り付けられ、かつ、前記反転機構を支持するオシレーション部とを備えており、前記回転軸を回転させると、その回転運動が前記偏心軸部から前記オシレーション部を介して往復運動に変換されて前記反転機構に伝達することで、前記つば部加工ヘッドのつば部用砥石を微少往復運動させる。
本発明において、前記旋回機構は、前記オシレーション機構の回転軸と同心状に回転可能で、かつ、当該回転軸とは別軸で構成された角度調整ギヤ軸部と、前記角度調整ギヤ軸部に連結され、前記オシレーション部を所望の角度まで回転させる角度調整テーブルとを備えており、前記角度調整ギヤ軸部を回転させると、その回転運動が前記角度調整テーブルから前記オシレーション部に伝達され、当該角度調整テーブルと共にオシレーション部を回転させることで、前記反転機構と共に前記つば部加工ヘッドを所望の角度まで旋回させる。

To achieve the above object, the present invention provides a superfinished to a plurality of flange portions of the flanged inner ring, automatically performed collectively in superfinished simultaneously against the inner ring raceway surface in a single facility it a superfinished unit to allow a flange portion machining head for supporting the grindstone for the flange portion, and reversible supporting the flange portion processing head around the inversion axis, and the inversion axis a reversing mechanism for reversing the whetstone said flange portion at a desired angle, to support the reversing mechanism, and the flange portion processing head with pivoting in a desired direction with the reversing mechanism, the actuating device for small reciprocating It has.
In the present invention, the actuating device, which has a shaft rotatable rotated by a driving source, that converts the rotary motion of the rotary shaft into reciprocating motion is transmitted to the reversing mechanism, flange of the flange processing head and oscillation mechanism for the parts grindstone minutely reciprocate, is configured concentrically with the rotary shaft, by pivoting the reversing mechanism, the turning mechanism for turning the flange portion grindstone of the flange processing head to a desired angle And.
In the present invention, the oscillation mechanism includes an eccentric shaft portion provided on the rotary shaft, the relative rotatably mounted relative to the eccentric shaft portion, and a oscillation portion supporting the reversing mechanism and has the when the rotary shaft, that the rotational movement is transmitted from the eccentric shaft to the reversing mechanism is converted into reciprocating motion through the oscillation portion, the flange portion of the flange portion processing head A small reciprocating movement of the grinding wheel.
In the present invention, the swing mechanism, the oscillation mechanism rotatable axis of rotation concentric with, and the angle adjustment gear shaft portion configured by another shaft with the rotation axis, the angle adjustment gear shaft is connected to the transmitting, the and the oscillation portion and a angle adjustment table that rotates to the desired angle, rotating the angle adjusting gear shaft, the oscillation portion from its rotational movement the angular adjustment table is, by rotating the oscillation portion with the angle adjustment table, the flange portion machining head together with the reversing mechanism is pivoted to the desired angle.

本発明によれば、つば付き内輪の複数のつば部(面)に対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことを可能にする超仕上加工ユニットを実現することができ、これにより、内輪軌道面に対する超仕上加工と同時に、複数のつば部(面)に対する超仕上加工を全自動で行うことが可能となる。   According to the present invention, super finishing that enables super finishing of a plurality of brim portions (surfaces) of a collared inner ring to be automatically performed simultaneously in a single (one) facility at the same time. A unit can be realized, and it becomes possible to fully automatically perform super finishing on a plurality of collar portions (surfaces) simultaneously with super finishing on the inner ring raceway surface.

本発明の一実施形態に係る内外輪兼用超仕上盤の全体構成を概略的に示す平面図であって、(a)は、内輪に対する超仕上加工のセット状態を示す図、(b)は、外輪に対する超仕上加工のセット状態を示す図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view schematically showing an overall configuration of an inner / outer ring super finishing board according to an embodiment of the present invention, wherein (a) is a diagram showing a set state of super finishing for an inner ring, and (b) is The figure which shows the set state of the super-finishing process with respect to an outer ring | wheel. (a)は、内外輪兼用軌道輪保持機構の構成を示す平面図、(b)は、同図(a)に示す内外輪兼用軌道輪保持機構の縦断面図。(a) is a plan view showing the configuration of the inner / outer ring combined raceway holding mechanism, and (b) is a longitudinal sectional view of the inner / outer ring combined raceway holding mechanism shown in FIG. (a)は、円すい内輪の(単列)軌道面に超仕上加工が行われている状態を一部拡大して示す斜視図、(b)は、円すい外輪の(単列)軌道面に超仕上加工が行われている状態を一部拡大して示す斜視図。(a) is a partially enlarged perspective view showing a state in which superfinishing is being performed on the (single row) raceway surface of the conical inner ring, and (b) is a diagram showing a state where the (single row) raceway surface of the cone outer ring is superposed. The perspective view which partially enlarges and shows the state in which finishing is performed. (a)は、内輪軌道面用砥石及び外輪軌道面用砥石を備えた内外輪兼用加圧ヘッドの構成を示す部分断面図、(b)は、内輪軌道面用砥石によって円すい内輪の(単列)軌道面に超仕上加工が行われている状態を示す図、(c)は、外輪軌道面用砥石によって円すい外輪の(単列)軌道面に超仕上加工が行われている状態を示す図。(a) is a partial cross-sectional view showing a configuration of a pressure head for both inner and outer rings provided with an inner ring raceway surface grindstone and an outer ring raceway surface grindstone, and (b) is a diagram showing a conical inner ring (single row) with an inner ring raceway surface grindstone. ) The figure which shows the state where superfinishing is done to the raceway surface, (c) is the figure which shows the state where superfinishing is done to the (single row) raceway surface of the conical outer ring with the grindstone for outer ring raceway surface . (a)は、内輪軌道面用砥石によって円筒内輪の(単列,複列)軌道面に超仕上加工が行われている状態を示す図、(b)は、内輪軌道面用砥石によって円筒内輪の(複列)軌道面に超仕上加工が行われている状態を示す図、(c)は、内輪軌道面用砥石によって円すい内輪の(複列)軌道面に超仕上加工が行われている状態を示す図、(d)は、外輪軌道面用砥石によって円筒外輪の(単列)軌道面に超仕上加工が行われている状態を示す図、(e)は、外輪軌道面用砥石によって円筒外輪の(単列,複列)軌道面に超仕上加工が行われている状態を示す図、(f)は、外輪軌道面用砥石によって円筒外輪の(複列)軌道面に超仕上加工が行われている状態を示す図、(g)は、外輪軌道面用砥石によって円すい外輪の(複列)軌道面に超仕上加工が行われている状態を示す図。(a) is a figure which shows the state in which superfinishing is performed on the (single row, double row) raceway surface of the cylindrical inner ring by the inner ring raceway surface grinding wheel, and (b) is the cylindrical inner ring by the inner ring raceway surface grinding wheel. The figure which shows the state in which superfinishing is performed on the (double row) raceway surface, (c) is the superfinishing being performed on the (double row) raceway surface of the conical inner ring by the inner ring raceway surface grinding wheel The figure which shows a state, (d) is a figure which shows the state in which superfinishing is performed to the (single row) raceway surface of a cylindrical outer ring with the outer ring raceway surface grindstone, (e) is the outer ring raceway surface grindstone The figure which shows the state where superfinishing is performed on the (single row, double row) raceway surface of the cylindrical outer ring, (f) is superfinishing on the (double row) raceway surface of the cylindrical outer ring with the grinding wheel for outer ring raceway surface (G) shows a state where the superfinishing is performed on the (double row) raceway surface of the conical outer ring by the outer ring raceway surface grinding wheel. It shows the that state. (a)は、つば部超仕上加工ユニットによって内輪つば部に超仕上加工が行われている状態を一部拡大して示す図、(b)は、内輪軌道面と内輪つば部に同時に超仕上加工が行われている状態を一部拡大して示す図。(a) is a partially enlarged view showing a state in which the inner ring collar is being superfinished by the collar superfinishing processing unit, and (b) is a superfinishing process on the inner ring raceway surface and the inner ring collar simultaneously. The figure which expands and shows the state in which the process is performed partially expanded. (a)は、つば部超仕上加工ユニットを搭載する構造を示す平面図、(b)は、同図(a)のb−b線に沿う断面図、(c)は、同図(b)のc−c線に沿う断面図。(a) is a top view which shows the structure which mounts a brim part super finishing processing unit, (b) is sectional drawing which follows the bb line | wire of the same figure (a), (c) is the same figure (b). Sectional drawing which follows the cc line | wire. (a)は、(複列)円すい内輪の中つば部に超仕上加工が行われている状態を示す図、(b)は、(単列,複列)円筒内輪の一方側つば部に超仕上加工が行われている状態を示す図、(c)は、(単列,複列)円筒内輪の他方側つば部に超仕上加工が行われている状態を示す図。(a) is a diagram showing a state in which superfinishing is performed on the middle collar portion of the (double row) conical inner ring, and (b) is a diagram showing one side collar portion of the (single row, double row) cylindrical inner race. The figure which shows the state in which finishing is performed, (c) is the figure which shows the state in which superfinishing is performed to the other side collar part of the (single row, double row) cylindrical inner ring | wheel.

本発明の内外輪兼用超仕上盤においては、内輪及び外輪に対する超仕上加工を単一(1台)の設備で自動的に行えるようにすることで、内輪に対する超仕上加工のためのセット(仕様)と、外輪に対する超仕上加工のためのセット(仕様)との切り換え(即ち、内外輪の交互加工)を全自動で行うことを可能にする技術を実現することにある。なお、以下では簡単のため、内輪に対する超仕上加工のためのセット(仕様)を「内輪用セット」、外輪に対する超仕上加工のためのセット(仕様)を「外輪用セット」という。   In the super finishing panel for both inner and outer rings of the present invention, the super finishing process for the inner ring and the outer ring can be automatically performed by a single (one unit) equipment, so that the set (specification for super finishing process for the inner ring can be performed. ) And a set (specification) for super-finishing processing for the outer ring (ie, alternate processing of the inner and outer rings) is realized in a fully automatic manner. In the following, for the sake of simplicity, a set (specification) for super finishing for the inner ring is referred to as “inner ring set”, and a set (specification) for the super finishing for the outer ring is referred to as “outer ring set”.

かかる技術を実現するために、本発明の一実施形態に係る内外輪兼用超仕上盤は、図1(a),(b)に示すように、内輪2及び外輪4の各軌道面(即ち、内輪軌道面2s、外輪軌道面4s)を限りなく平滑化させる(例えば、研削済み軌道面をさらに平らで滑らかにさせる)超仕上加工を行うための内外輪兼用軌道面超仕上加工ユニットU1と、つば付き内輪2のつば部(面)2tを限りなく平滑化させる(例えば、研削済みつば部(面)をさらに平らで滑らかにさせる)超仕上加工を行うためのつば部超仕上加工ユニットU2とを備えて構成されている。   In order to realize such a technique, the superfinishing board for both inner and outer rings according to an embodiment of the present invention is shown in FIGS. 1 (a) and 1 (b). The inner ring raceway surface 2s and the outer ring raceway surface 4s) are smoothed as much as possible (for example, the ground raceway surface is further flattened and smoothed). A collar part superfinishing processing unit U2 for performing superfinishing to smooth the collar part (surface) 2t of the inner ring 2 with collar as much as possible (for example, to make the grounded collar part (surface) flat and smooth); It is configured with.

以下、本実施形態の内外輪兼用超仕上盤について説明するが、その説明において、「内外輪兼用軌道面超仕上加工ユニットU1」について、図1〜図5を参照して説明した後、「つば部超仕上加工ユニットU2」について、図1、図6〜図8を参照して説明する。なお、ここでは一例として、単列円すいころ軸受用のつば付き内輪2及びのつば無し外輪4を適用し、その内輪軌道面2s及び外輪軌道面4s、並びに、内輪軌道面2sに沿って延在するつば部(面)2tに超仕上加工を行う場合を想定する。   Hereinafter, the inner / outer ring combined super finishing panel of the present embodiment will be described. In the description, “inner / outer ring combined raceway surface finishing unit U1” will be described with reference to FIGS. The part super finishing processing unit U2 "will be described with reference to FIGS. 1 and 6 to 8. FIG. Here, as an example, a flanged inner ring 2 and a flangeless outer ring 4 for single-row tapered roller bearings are applied, and the inner ring raceway surface 2s, the outer ring raceway surface 4s, and the inner ring raceway surface 2s extend. A case is assumed in which superfinishing is performed on the collar portion (surface) 2t.

「内外輪兼用軌道面超仕上加工ユニットU1」
図1(a),(b)に示すように、内外輪兼用軌道面超仕上加工ユニットU1は、回転軸Axを中心にして軌道輪(内輪2、外輪4)を回転可能(例えば、矢印K方向に回転可能)に保持する軌道輪保持機構6と、軌道輪保持機構6によって回転可能に保持された軌道輪2,4の軌道面(内輪軌道面2s、外輪軌道面4s)に超仕上加工を施す軌道面加工機構8(図3参照)とを有している。なお、図1(a)では、軌道面加工機構8に支持されている内輪軌道面用砥石8aのみを示し、図1(b)では、軌道面加工機構8に支持されている外輪軌道面用砥石8bのみを示す。
"Inner and outer ring combined raceway surface finishing unit U1"
As shown in FIGS. 1 (a) and 1 (b), the inner / outer ring combined raceway surface finishing unit U1 can rotate the bearing rings (inner ring 2, outer ring 4) about the rotation axis Ax (for example, an arrow K). The bearing ring holding mechanism 6 that is held in a rotating manner) and the raceway surfaces (the inner ring raceway surface 2s and the outer ring raceway surface 4s) of the bearing rings 2 and 4 that are rotatably held by the bearing ring holding mechanism 6 are superfinished. And a raceway surface machining mechanism 8 (see FIG. 3). 1A shows only the inner ring raceway surface grindstone 8a supported by the raceway surface machining mechanism 8, and FIG. 1B shows the outer ring raceway surface supported by the raceway surface machining mechanism 8. Only the grindstone 8b is shown.

図2(a),(b)に示すように、軌道輪保持機構6は、その回転軸Axに対して同心円状に周方向に沿って所定間隔(例えば、等間隔)で配列され、かつ、軌道輪(内輪2、外輪4)を搭載可能な複数の軌道輪搭載用構造体10(ノーズピースともいう)と、加工対象となる軌道輪の種類に応じて、複数の軌道輪搭載用構造体(ノーズピース)10を同時に回転軸Axに向けて放射状(矢印S方向)に接近させ、かつ、回転軸Axから放射状(矢印S方向)に離間させることを可能にする構造体移動手段とを備えている。   As shown in FIGS. 2 (a) and 2 (b), the bearing ring holding mechanisms 6 are arranged concentrically with the rotation axis Ax along the circumferential direction at predetermined intervals (for example, at equal intervals), and A plurality of bearing ring mounting structures 10 (also referred to as nosepieces) on which the bearing rings (inner ring 2, outer ring 4) can be mounted, and a plurality of bearing ring mounting structures according to the type of the bearing ring to be processed. (Nosepiece) 10 is provided with structure moving means that allows the nosepiece 10 to simultaneously approach the rotation axis Ax in the radial direction (arrow S direction) and to be separated from the rotation axis Ax in the radial direction (arrow S direction). ing.

なお、軌道輪の種類とは、内輪2及び外輪4毎に割り振られている「型番」や「品番」等で分類された概念を指し、このような型番や品番等を参照することで、例えば、内輪2及び外輪4の大きさ(直径、半径、内径、外径、幅、厚さなど)や、内輪2及び外輪4の軌道面の形態(単列、複列、傾斜角度、幅、表面形状など)、或いは、つば部(面)2tの有無等を特定することができる。なお、型番や品番等は、後述するサーボモータによる位置決め制御(停止位置制御)のための入力データとして利用することができる。   Note that the type of raceway refers to a concept classified by “model number” or “part number” assigned to the inner ring 2 and the outer ring 4, and by referring to such model number, part number, etc., for example, , Size of inner ring 2 and outer ring 4 (diameter, radius, inner diameter, outer diameter, width, thickness, etc.) and form of raceway surface of inner ring 2 and outer ring 4 (single row, double row, inclination angle, width, surface) Shape), or the presence or absence of a collar portion (surface) 2t can be specified. The model number, product number, etc. can be used as input data for positioning control (stop position control) by a servo motor, which will be described later.

軌道輪保持機構6において、複数の軌道輪搭載用構造体(ノーズピース)10には、それぞれ、軌道輪(内輪2、外輪4)を搭載可能な搭載面10sが、互いに回転軸Axを直交する同一平面上に位置して設けられている。なお、各軌道輪搭載用構造体(ノーズピース)10の大きさや形状、配列個数については、例えば、内外輪兼用超仕上盤の使用目的や使用環境、或いは、軌道輪搭載用構造体(ノーズピース)10に搭載する軌道輪(内輪2、外輪4)の大きさや重量などに応じて設定されるため、ここでは特に限定しない。   In the bearing ring holding mechanism 6, the mounting surfaces 10 s on which the bearing rings (the inner ring 2 and the outer ring 4) can be mounted on the plurality of bearing ring mounting structures (nosepieces) 10, respectively, perpendicular to the rotation axis Ax. They are provided on the same plane. The size, shape, and number of arrangements of each bearing ring mounting structure (nosepiece) 10 are, for example, the purpose and environment of use of the super finishing panel for both inner and outer rings, or the structure for mounting the bearing ring (nosepiece). ) Since it is set according to the size, weight, etc. of the bearing rings (inner ring 2, outer ring 4) mounted on 10, there is no particular limitation here.

また、上記した軌道輪搭載用構造体(ノーズピース)10及び構造体移動手段は、軌道輪保持機構6の一構成を成す回転台12上に構築されており、回転台12は、図示しない制御系で駆動制御されたベルト又はモータからの回転力により、回転軸Axを中心にして例えば矢印K方向に回転させることができるようになっている。なお、回転台12の回転開始タイミング、回転速度や回転方向は制御系で管理され、これにより、例えば後述する位置決め機構及び圧接構造26(図3(a)参照)によって軌道輪(内輪2、外輪4)を搭載面10sに位置決め圧接させた後、所定のタイミングで回転台12を自動的に回転させることができる。   Further, the bearing ring mounting structure (nosepiece) 10 and the structure moving means described above are constructed on a turntable 12 constituting one structure of the bearing ring holding mechanism 6, and the turntable 12 is controlled by a control (not shown). By a rotational force from a belt or a motor that is driven and controlled by the system, the belt can be rotated in the direction of the arrow K, for example, about the rotation axis Ax. The rotation start timing, rotation speed, and rotation direction of the turntable 12 are managed by a control system, and thereby, for example, a bearing ring (inner ring 2, outer ring) by a positioning mechanism and a pressure contact structure 26 (see FIG. 3A) described later. After 4) is positioned and pressed against the mounting surface 10s, the turntable 12 can be automatically rotated at a predetermined timing.

また、構造体移動手段は、ボールねじとサーボモータとの組み合わせによって実現することが可能である。ここでは、構造体移動手段の一例として、複数の軌道輪搭載用構造体(ノーズピース)10の移動方向Sに沿って放射状に配置された複数のボールねじ(ねじ軸14とナット16の間でボールが転がり回転する構造)と、各ねじ軸14を同時にかつ同一方向に回転させる回転機構と、回転機構を回転させるサーボモータ(図示しない)とを備えて構成されている。なお、サーボモータとしては、例えばACサーボモータ、DCサーボモータなどがあるが、ここでは一例として、ACサーボモータを適用する。   The structure moving means can be realized by a combination of a ball screw and a servo motor. Here, as an example of the structure moving means, a plurality of ball screws (between the screw shaft 14 and the nut 16) arranged radially along the moving direction S of the plurality of bearing ring mounting structures (nosepieces) 10. A structure in which the ball rolls and rotates), a rotation mechanism that rotates each screw shaft 14 simultaneously and in the same direction, and a servo motor (not shown) that rotates the rotation mechanism. The servo motor includes, for example, an AC servo motor and a DC servo motor. Here, an AC servo motor is applied as an example.

複数のボールねじは、回転台12上に回転軸Axを中心にして放射方向Sに沿って延出した複数のボールねじ収容部18内に、1本ずつ回転可能に支持されており、それぞれのねじ軸14には、1つのナット16が螺合されている。また、各ボールねじ収容部18には、その上面に、放射方向S(即ち、各軌道輪搭載用構造体(ノーズピース)10の移動方向S)に沿って穿孔されたキー溝18gが形成されており、各軌道輪搭載用構造体(ノーズピース)10と各ナット16とは、それぞれ、キー溝18gに通されたボルト20によって相互に結合(連結)されている。   The plurality of ball screws are rotatably supported one by one in the plurality of ball screw accommodating portions 18 extending along the radial direction S about the rotation axis Ax on the turntable 12. One nut 16 is screwed onto the screw shaft 14. In addition, each ball screw accommodating portion 18 is formed with a key groove 18g perforated along the radial direction S (that is, the moving direction S of each bearing ring mounting structure (nosepiece) 10) on the upper surface thereof. Each bearing ring mounting structure (nosepiece) 10 and each nut 16 are coupled (coupled) to each other by a bolt 20 passed through the keyway 18g.

また、回転機構は、回転軸Axと同軸上に回転可能に設けられた1つのメイン傘歯車22と、上記した各ねじ軸14の回転軸Ax寄りの先端部に1つずつ設けられた複数のサブ傘歯車24とを有しており、双方の傘歯車22,24は、互いに直角に歯合している。なお、メイン傘歯車22は、ACサーボモータ(図示しない)によって回転制御されるようになっている。   In addition, the rotation mechanism includes a single main bevel gear 22 that is provided coaxially with the rotation axis Ax, and a plurality of one provided at the distal end portion of each screw shaft 14 near the rotation axis Ax. It has a sub bevel gear 24, and both bevel gears 22, 24 mesh with each other at right angles. The main bevel gear 22 is rotationally controlled by an AC servomotor (not shown).

この場合、ACサーボモータの回転力がメイン傘歯車22から各サブ傘歯車24を介して各ねじ軸14に伝達され、当該各ねじ軸14が同時に回転すると、これにより、各ナット16が各ねじ軸14に沿って同時に移動することで、複数の軌道輪搭載用構造体(ノーズピース)10を矢印S方向に沿って同時かつ同方向に移動させることができる。   In this case, the rotational force of the AC servomotor is transmitted from the main bevel gear 22 to each screw shaft 14 via each sub-bevel gear 24, and when each screw shaft 14 rotates simultaneously, each nut 16 thereby causes each screw 16 to rotate. By simultaneously moving along the shaft 14, a plurality of bearing ring mounting structures (nosepieces) 10 can be moved simultaneously and in the same direction along the arrow S direction.

ここで、複数の軌道輪搭載用構造体(ノーズピース)10の停止位置制御では、内輪2及び外輪4毎に割り振られている「型番」や「品番」等を制御装置(図示しない)に入力し、図示しないエンコーダ(回転検出器)によってACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較してフィードバック制御(位置制御や速度制御)を行う。   Here, in the stop position control of a plurality of bearing ring mounting structures (nosepieces) 10, “model number”, “product number”, etc. assigned to each of the inner ring 2 and the outer ring 4 are input to a control device (not shown). While detecting the rotational position and rotational speed of the output shaft of the AC servo motor by an encoder (rotation detector) (not shown), the present position (coordinate) signal is compared with the target position (coordinate) signal to perform feedback control (position Control and speed control).

このとき、現在位置(座標)信号と目標位置(座標)信号とに差がある場合、ACサーボモータを目標位置(座標)との差分を減少させる方向に動作(回転)させる。そして、かかる手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、複数の軌道輪搭載用構造体(ノーズピース)10の停止位置制御が行われる。なお、別の方法としてACサーボモータの現在位置情報をデジタル的に記録しておき、これに目標位置(座標)信号までの差分を与えて、その目的値に一度に到達する方法でもよい。   At this time, if there is a difference between the current position (coordinate) signal and the target position (coordinate) signal, the AC servo motor is operated (rotated) in a direction that reduces the difference from the target position (coordinate). Then, this procedure is repeated until the target value is finally reached or the allowable range is entered, whereby stop position control of the plurality of track ring mounting structures (nosepieces) 10 is performed. Another method is to record the current position information of the AC servomotor digitally, give a difference to the target position (coordinate) signal, and reach the target value at once.

この場合、ある特定の「型番」「品番」等の内輪2及び外輪4に対して、例えば交互に超仕上加工を行う場合を想定すると、複数の軌道輪搭載用構造体(ノーズピース)10の停止位置は、内輪2を保持する第1位置(座標)と、外輪4を保持する第2位置(座標)の2箇所に限定される。このため、第1位置信号(座標)と第2位置信号(座標)との差分を無くすように、ACサーボモータを動作(回転)させることで、複数の軌道輪搭載用構造体(ノーズピース)10を、上記第1位置(座標)「内輪用セット」と上記第2位置(座標)「外輪用セット」とに自動的に切り換えることができる。以下、これを「ノーズピースの内外輪セット切換」という。   In this case, assuming that, for example, superfinishing is alternately performed on the inner ring 2 and the outer ring 4 such as a specific “model number” and “product number”, a plurality of bearing ring mounting structures (nosepieces) 10 are provided. The stop positions are limited to two locations: a first position (coordinates) that holds the inner ring 2 and a second position (coordinates) that holds the outer ring 4. For this reason, by operating (rotating) the AC servo motor so as to eliminate the difference between the first position signal (coordinates) and the second position signal (coordinates), a plurality of structures for mounting a bearing ring (nosepiece) 10 can be automatically switched between the first position (coordinates) “inner ring set” and the second position (coordinates) “outer ring set”. Hereinafter, this is referred to as “nosepiece inner / outer ring set switching”.

図3(a)に示すように、上記した軌道輪保持機構6には、軌道輪(内輪2、外輪4)を上記した複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10s(図2参照)に圧接させる圧接構造26が設けられている。圧接構造26の形態としては、例えば、軌道輪(内輪2、外輪4)を各軌道輪搭載用構造体(ノーズピース)10に向けて押し付ける(押圧する)ようにして、各搭載面10sに圧接させる押圧方法や、軌道輪(内輪2、外輪4)を各軌道輪搭載用構造体(ノーズピース)10に向けて引き付ける(吸引する)ようにして、各搭載面10sに圧接させる吸引方法などを適用することができる。   As shown in FIG. 3A, the above-described bearing ring holding mechanism 6 includes the bearing rings (inner ring 2 and outer ring 4) and mounting surfaces 10s of the plurality of bearing ring mounting structures (nosepieces) 10 described above. A pressure contact structure 26 is provided for pressure contact (see FIG. 2). As the form of the pressure contact structure 26, for example, the race rings (inner ring 2 and outer ring 4) are pressed against each bearing ring mounting structure (nosepiece) 10 so as to be pressed against each mounting surface 10s. And a suction method in which the bearing rings (inner ring 2, outer ring 4) are attracted (sucked) toward each bearing ring mounting structure (nosepiece) 10 and pressed against each mounting surface 10 s. Can be applied.

図3(a)には、複数の軌道輪搭載用構造体(ノーズピース)10が、内輪2を保持する位置にセットされた状態が示されている。ここでは圧接構造26の一例として、押圧方法が適用されており、当該押圧方法に係る圧接構造26(プレッシャーロール機構ともいう)は、内輪2の中空円環状の端面2a(各搭載面10sに圧接されている端面に対して内輪軌道面2sを挟んで反対側の端面:以下、内輪端面2aという)に対して垂直下方に向けて押圧力を付与することが可能な一対のロール26rを備えている。   FIG. 3A shows a state in which a plurality of track ring mounting structures (nosepieces) 10 are set at positions where the inner ring 2 is held. Here, a pressing method is applied as an example of the press contact structure 26, and the press contact structure 26 (also referred to as a pressure roll mechanism) according to the press method is a hollow annular end surface 2a of the inner ring 2 (press contact with each mounting surface 10s). A pair of rolls 26r capable of applying a pressing force vertically downward with respect to the opposite end face of the inner ring raceway surface 2s (hereinafter referred to as the inner ring end face 2a). Yes.

一対のロール26rは、1本の仮想回転軸(図示しない)を中心にして回転可能に対向し、かつ、互いに平行を成して配置されており、中空円環状を成す内輪端面2aのうち、内輪2の中心軸を通る直径方向の両側部位にそれぞれセットされるようになっている。なお、一対のロール26rを内輪端面2aの両側部位にセットする段階では、内輪2は、複数の軌道輪搭載用構造体(ノーズピース)10によって保持された「内輪用セット」状態にある。この場合、後述する「シュー・プッシャの内外輪セット切換」によって、内輪2は、内輪用シュー44に向けて押圧され、当該内輪用シュー44を基準に回転可能にセットされている。   The pair of rolls 26r are opposed to each other so as to be rotatable about a single virtual rotation axis (not shown), and are arranged in parallel to each other, of the inner ring end face 2a forming a hollow annular shape, The inner ring 2 is set at both diametrical both sides passing through the central axis of the inner ring 2. At the stage where the pair of rolls 26r are set on both sides of the inner ring end face 2a, the inner ring 2 is in an “inner ring set” state held by a plurality of track ring mounting structures (nosepieces) 10. In this case, the inner ring 2 is pressed toward the inner ring shoe 44 by “switching of inner and outer rings of the shoe and pusher” described later, and is set so as to be rotatable with reference to the inner ring shoe 44.

かかるセットを実現するために、圧接構造26は、それぞれのロール26rを回転可能(例えば、回転フリー)に支持する一対のロールホルダ26hを備えている。一対のロールホルダ26hは、互いに平行に延在しており、その先端部にロール26rがそれぞれ支持されている。また、一対のロールホルダ26hの基端部は、当該ロールホルダ26hを移動させて、一対のロール26rを内輪端面2aの両側部位にセットさせるための移動機構(図示しない)に接続(支持)されている。   In order to realize such a set, the press contact structure 26 includes a pair of roll holders 26h that rotatably support each roll 26r (for example, rotation free). The pair of roll holders 26h extend in parallel with each other, and the rolls 26r are respectively supported at the tip portions thereof. Further, the base end portions of the pair of roll holders 26h are connected (supported) to a moving mechanism (not shown) for moving the roll holder 26h and setting the pair of rolls 26r on both side portions of the inner ring end surface 2a. ing.

移動機構は、上記した「内輪用セット」状態にある内輪2の径(内輪端面2a内径、外径、内外径の平均径など)に応じて、一対のロールホルダ26hを移動(相対的に接近又は離間)させることができるようになっている。これにより、一対のロール26rの相互間距離(間隔)を内輪2の径(内輪端面2a内径、外径、内外径の平均径など)に合わせて小さくしたり大きくしたりすることができる。なお、一対のロールホルダ26hを移動させる場合、互いに平行な位置関係を維持しつつ移動させることが好ましい。   The moving mechanism moves (relatively approaches) the pair of roll holders 26h in accordance with the diameter of the inner ring 2 in the “inner ring set” state (the inner diameter of the inner ring end surface 2a, the outer diameter, the average diameter of the inner and outer diameters, etc.). Or separated). Thereby, the distance (interval) between the pair of rolls 26r can be reduced or increased according to the diameter of the inner ring 2 (the inner diameter of the inner ring end surface 2a, the outer diameter, the average diameter of the inner and outer diameters, etc.). In addition, when moving a pair of roll holder 26h, it is preferable to move, maintaining a mutually parallel positional relationship.

かかる移動機構は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、一対のロールホルダ26hをそれぞれ個別にナットを介してねじ軸に連結させると共に、各ねじ軸にACサーボモータをそれぞれ連結させ、各ACサーボモータによって各ねじ軸を回転制御すればよい。なお、各ねじ軸の配置の姿勢は、一対のロールホルダ26hの平行な位置関係に対して、その中程の位置に、これを直交する方向に設定することが好ましい。別の捉え方をすると、各ねじ軸の配置の姿勢は、上記した一対のロール26rの1本の仮想回転軸に対して平行となるように設定することが好ましい。これにより、一対のロールホルダ26hを移動させて、一対のロール26rの相互間距離(間隔)を内輪2の径(内輪端面2a内径、外径、内外径の平均径など)に合わせて調整することができる。   Such a moving mechanism can be realized by a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Although not particularly illustrated, for example, the pair of roll holders 26h are individually connected to the screw shafts via nuts, and AC screw motors are connected to the screw shafts, and the rotations of the screw shafts are controlled by the AC servo motors. That's fine. In addition, it is preferable to set the attitude | position of arrangement | positioning of each screw shaft in the direction orthogonal to this in the middle position with respect to the parallel positional relationship of a pair of roll holder 26h. In another way of understanding, it is preferable that the orientation of the arrangement of each screw shaft is set to be parallel to one virtual rotation axis of the pair of rolls 26r described above. As a result, the pair of roll holders 26h are moved, and the distance (interval) between the pair of rolls 26r is adjusted to the diameter of the inner ring 2 (the inner diameter of the inner ring end surface 2a, the outer diameter, the average diameter of the inner and outer diameters, etc.). be able to.

更に、移動機構は、上記した「内輪用セット」状態にある内輪2の幅(内輪端面の相互間距離、別の捉え方をすると、軌道輪搭載用構造体(ノーズピース)10の搭載面10sから内輪端面2aまでの高さ)に応じて、一対のロールホルダ26hを移動(縦型の内外輪兼用超仕上盤では上下動)させることができるようになっている。これにより、一対のロール26rを内輪2(内輪端面2a)に対して接近させたり離間させたりすることができる。なお、一対のロールホルダ26hを移動させる場合、互いに平行な位置関係を維持しつつ移動させることが好ましい。   Further, the moving mechanism is configured so that the width of the inner ring 2 in the “set for inner ring” state (the distance between the inner ring end faces, the other way of understanding, the mounting surface 10s of the bearing ring mounting structure (nosepiece) 10). To the inner ring end face 2a), the pair of roll holders 26h can be moved (up and down in a vertical type superfinishing board for inner and outer rings). Thereby, a pair of roll 26r can be made to approach or separate with respect to the inner ring | wheel 2 (inner ring end surface 2a). In addition, when moving a pair of roll holder 26h, it is preferable to move, maintaining a mutually parallel positional relationship.

かかる移動機構は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、一対のロールホルダ26hの基端部を、上下方向に延在させたねじ軸に対してナットを介して連結させ、ACサーボモータによってねじ軸を回転制御すればよい。これにより、一対のロールホルダ26hを上下に移動させて、一対のロール26rを内輪2に接近させ、内輪端面2aの両側部位に位置決めさせることができる。   Such a moving mechanism can be realized by a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Although not particularly illustrated, for example, the base end portions of the pair of roll holders 26h may be connected to a screw shaft extending in the vertical direction via a nut and the rotation of the screw shaft may be controlled by an AC servo motor. Thereby, a pair of roll holder 26h can be moved up and down, a pair of roll 26r can be approached to the inner ring | wheel 2, and can be positioned in the both-sides site | part of the inner ring | wheel end surface 2a.

この場合、上記した移動機構において、一対のロール26rを内輪端面2aの両側部位にセットするまでのプロセスは、内輪2の径に合わせて一対のロール26rの相互間距離(間隔)を調整した後、当該ロール26rを内輪端面2aの両側部位に位置決めするようにしてもよいし、これとは逆に、一対のロール26rを内輪端面2aの両側部位の近傍領域(例えば、当該両側部位の内側近傍領域、又は、外側近傍領域)に位置決めした後、内輪2の径に合わせて一対のロール26rの相互間距離(間隔)を調整するようにしてもよい。   In this case, in the moving mechanism described above, the process until the pair of rolls 26r are set on both sides of the inner ring end face 2a is performed after adjusting the distance (interval) between the pair of rolls 26r in accordance with the diameter of the inner ring 2. The roll 26r may be positioned at both side portions of the inner ring end surface 2a, and conversely, the pair of rolls 26r is positioned in the vicinity of both side portions of the inner ring end surface 2a (for example, near the inside of the both side portions). After positioning in the region or the region near the outside), the distance (interval) between the pair of rolls 26r may be adjusted in accordance with the diameter of the inner ring 2.

いずれのプロセスを経た場合であっても、その後の手順では、内輪端面2aの両側部位にセットされた一対のロール26rによって、当該内輪端面2aに対して垂直下方に向けて押圧力が付与される。かかる手順を実行するために、圧接構造26には、押圧力付与機構が設けられている。なお、押圧力付与機構としては、一対のロール26rを内輪端面2aに対して垂直下方に向けて移動させることができるものであればよい。   Regardless of which process is performed, in the subsequent procedure, a pressing force is applied to the inner ring end surface 2a vertically downward by the pair of rolls 26r set on both sides of the inner ring end surface 2a. . In order to execute such a procedure, the pressing structure 26 is provided with a pressing force applying mechanism. The pressing force applying mechanism may be any mechanism that can move the pair of rolls 26r vertically downward with respect to the inner ring end surface 2a.

例えば、上記した一対のロールホルダ26hの中程に、これを直交して設けられているねじ軸を支点にした「てこの原理」に基づいて、一対のロールホルダ26hの基端部を垂直上方に移動させることで、当該支点を中心にして、一対のロールホルダ26hの先端部を垂直下方に移動させることができ、一対のロール26rを内輪端面2aに対して垂直下方に向けて移動させることができる。これにより、内輪2を複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10s(図2参照)に圧接させることができる。   For example, in the middle of the pair of roll holders 26h, the base end portions of the pair of roll holders 26h are vertically upward based on the “lever principle” using a screw shaft provided perpendicularly to the middle of the pair of roll holders 26h. , The tip end portions of the pair of roll holders 26h can be moved vertically downward about the fulcrum, and the pair of rolls 26r is moved vertically downward with respect to the inner ring end surface 2a. Can do. Thereby, the inner ring | wheel 2 can be press-contacted to each mounting surface 10s (refer FIG. 2) of the some structure (nosepiece) 10 for a bearing ring mounting.

このように、圧接構造26によって内輪2を各搭載面10sに圧接させることで、内輪2は、圧接構造26と複数の軌道輪搭載用構造体(ノーズピース)10との間に挟持された状態となり、これにより、内輪2は、各軌道輪搭載用構造体(ノーズピース)10と一体となって回転可能となる。なお、上記では、圧接構造26と内輪2との関係について説明したが、外輪4(図3(b)参照)も同様であり、上記した圧接構造26と同様のプロセスを適用することで、一対のロール26rを外輪端面4a(図3(b)参照)の両側部位にセットし、これにより、外輪4を複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10sに圧接させることができる。   Thus, the inner ring 2 is sandwiched between the pressure contact structure 26 and a plurality of bearing ring mounting structures (nosepieces) 10 by pressing the inner ring 2 to each mounting surface 10 s by the pressure contact structure 26. Thus, the inner ring 2 can be rotated integrally with each bearing ring mounting structure (nosepiece) 10. In the above description, the relationship between the pressure contact structure 26 and the inner ring 2 has been described, but the same applies to the outer ring 4 (see FIG. 3B). Rolls 26r are set on both sides of the outer ring end face 4a (see FIG. 3B), and thereby the outer ring 4 is brought into pressure contact with each mounting surface 10s of the plurality of bearing ring mounting structures (nosepieces) 10. Can do.

ここで、一対のロール26rを内輪端面2a及び外輪端面4aの両側部位にセットする際において、一対のロールホルダ26hの停止位置制御(換言すると、一対のロール26rの停止位置制御ともいう)では、内輪2及び外輪4毎に割り振られている「型番」や「品番」等を制御装置(図示しない)に入力し、図示しないエンコーダ(回転検出器)によって、上記したそれぞれのACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較してフィードバック制御(位置制御や速度制御)を行う。   Here, when the pair of rolls 26r are set on both sides of the inner ring end surface 2a and the outer ring end surface 4a, the stop position control of the pair of roll holders 26h (in other words, the stop position control of the pair of rolls 26r) The “model number” and “product number” assigned to each of the inner ring 2 and the outer ring 4 are input to a control device (not shown), and the output shaft of each of the above AC servo motors by an encoder (rotation detector) not shown. The present position (coordinate) signal is compared with the target position (coordinate) signal, and feedback control (position control or speed control) is performed while detecting the rotational position and rotational speed of.

このとき、現在位置(座標)信号と目標位置(座標)信号とに差がある場合、上記したACサーボモータを目標位置(座標)との差分を減少させる方向に動作(回転)させる。そして、かかる手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、一対のロールホルダ26hの停止位置制御が行われる。なお、別の方法として、上記したACサーボモータの現在位置情報をデジタル的に記録しておき、これに目標位置(座標)信号までの差分を与えて、その目的値に一度に到達する方法でもよい。   At this time, if there is a difference between the current position (coordinate) signal and the target position (coordinate) signal, the AC servo motor described above is operated (rotated) in a direction that reduces the difference from the target position (coordinate). Then, by repeating this procedure until the target value is finally reached or enters the allowable range, the stop position control of the pair of roll holders 26h is performed. As another method, the current position information of the AC servo motor described above is digitally recorded, and a difference to the target position (coordinate) signal is given to the current position information so that the target value is reached at once. Good.

この場合、ある特定の「型番」「品番」等の内輪2及び外輪4に対して、例えば交互に超仕上加工を行う場合を想定すると、一対のロールホルダ26hの停止位置は、一対のロール26rを内輪端面2aの両側部位にセットする第1位置(座標)と、一対のロール26rを外輪端面4aの両側部位にセットする第2位置(座標)の2箇所に限定される。このため、第1位置信号(座標)と第2位置信号(座標)との差分を無くすように、ACサーボモータを動作(回転)させることで、一対のロール26rを、上記第1位置(座標)「内輪用セット」と上記第2位置(座標)「外輪用セット」とに自動的に切り換えることができる。以下、これを「プレッシャーロールの内外輪セット切換」という。   In this case, assuming that, for example, superfinishing is alternately performed on the inner ring 2 and the outer ring 4 such as a specific “model number” and “product number”, the stop position of the pair of roll holders 26h is the pair of rolls 26r. The first position (coordinates) is set at both sides of the inner ring end face 2a, and the second position (coordinates) is set at a pair of rolls 26r at both sides of the outer ring end face 4a. For this reason, the AC servo motor is operated (rotated) so as to eliminate the difference between the first position signal (coordinates) and the second position signal (coordinates), so that the pair of rolls 26r can be moved to the first position (coordinates). ) It is possible to automatically switch between the “inner ring set” and the second position (coordinates) “outer ring set”. Hereinafter, this is referred to as “pressure roll inner / outer ring set switching”.

図3(a),(b)に示すように、上記した軌道輪保持機構6によって回転可能に保持された軌道輪2,4の軌道面(内輪軌道面2s、外輪軌道面4s)は、続いて、軌道面加工機構8によって超仕上加工が施される。この場合、軌道面加工機構8は、内輪軌道面用砥石8a及び外輪軌道面用砥石8bの双方を共に支持する軌道面用砥石ホルダHa,Hbと、軌道面(内輪軌道面2s、外輪軌道面4s)に対する超仕上加工に際し、軌道面用砥石ホルダHa,Hbを所望の方向に移動させると共に、所望の角度に旋回させることが可能なホルダ移動旋回手段28とを備えている。   As shown in FIGS. 3 (a) and 3 (b), the raceway surfaces (inner ring raceway surface 2s, outer ring raceway surface 4s) of the race rings 2 and 4 rotatably held by the race ring holding mechanism 6 described above continue. Thus, superfinishing is performed by the raceway surface machining mechanism 8. In this case, the raceway surface machining mechanism 8 includes a raceway surface grindstone holder Ha, Hb that supports both the inner ring raceway surface grindstone 8a and the outer ring raceway surface grindstone 8b, and raceway surfaces (inner ring raceway surface 2s, outer ring raceway surface). In the super finishing for 4s), a holder moving turning means 28 capable of moving the raceway surface grindstone holders Ha, Hb in a desired direction and turning at a desired angle is provided.

軌道面(内輪軌道面2s、外輪軌道面4s)に対する超仕上加工では、上記した一対のロール26rによって各軌道輪搭載用構造体(ノーズピース)10と一体となっている内輪2(又は、外輪4)を、回転台12の回転に伴って所定方向Kに回転させた状態で、内輪軌道面2s(又は、外輪軌道面4s)に対して垂直方向から内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を所定の圧力Fa,Fb(図1(a),(b)参照)で押し付けつつ、オシレーション(微少往復運動)させながら内輪軌道面2s(又は、外輪軌道面4s)に沿ってトラバースする処理が行われる。   In super finishing for the raceway surfaces (inner ring raceway surface 2s, outer ring raceway surface 4s), the inner ring 2 (or outer ring) integrated with each bearing ring mounting structure (nosepiece) 10 by the pair of rolls 26r described above. 4) is rotated in the predetermined direction K along with the rotation of the turntable 12, and the inner ring raceway surface grindstone 8a (or outer ring) is perpendicular to the inner ring raceway surface 2s (or outer ring raceway surface 4s). The inner ring raceway surface 2s (or the outer ring raceway surface 4s) while oscillating (slightly reciprocating) while pressing the raceway surface grindstone 8b) at a predetermined pressure Fa, Fb (see FIGS. 1A and 1B). The process of traversing along is performed.

かかる超仕上加工においては、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を超仕上加工開始位置にセットする処理が行われる。ここで、超仕上加工開始位置とは、内輪軌道面2s(又は、外輪軌道面4s)に対して内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)が垂直方向に位置決めされた位置を想定する。この場合、軌道輪(内輪2、外輪4)の「型番」「品番」等に応じて、内輪軌道面2s(又は、外輪軌道面4s)の形状や傾斜角度、或いは、広さなどが特定されるため、それに合わせて、当該内輪軌道面2s(又は、外輪軌道面4s)に対する内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)の姿勢や位置を調整する必要がある。   In such super finishing, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is set at the superfinishing start position. Here, the superfinishing start position is a position where the inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b) is positioned in the vertical direction with respect to the inner ring raceway surface 2s (or outer ring raceway surface 4s). Is assumed. In this case, the shape, inclination angle, width, etc. of the inner ring raceway surface 2s (or outer ring raceway surface 4s) are specified according to the “model number”, “product number”, etc. of the race rings (inner ring 2, outer ring 4). Therefore, the posture and position of the inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b) with respect to the inner ring raceway surface 2s (or outer ring raceway surface 4s) must be adjusted accordingly.

ホルダ移動旋回手段28には、かかる調整を行うための構成が設けられている。
その一例として、ホルダ移動旋回手段28は、各軌道輪搭載用構造体(ノーズピース)10と一体となっている内輪2(又は、外輪4)を横切る方向Xに移動可能な移動体(図示しない)上に、θ方向に回転可能な回転ホルダ30、並びに、Z方向に移動可能なスライダ32を搭載して構成されている。この場合、回転ホルダ30の回転軸(図示しない)は、上記した軌道輪保持機構6(回転台12)の回転軸Axに直交する方向に設定されている。また、スライダ32は、回転ホルダ30上に搭載されており、そのスライド方向Zは、回転ホルダ30の回転軸に直交する方向に設定されている。
The holder movement turning means 28 is provided with a configuration for performing such adjustment.
As an example, the holder moving turning means 28 is a movable body (not shown) that can move in the direction X across the inner ring 2 (or the outer ring 4) integrated with each track ring mounting structure (nosepiece) 10. ) And a rotary holder 30 that is rotatable in the θ direction and a slider 32 that is movable in the Z direction. In this case, the rotation axis (not shown) of the rotation holder 30 is set in a direction orthogonal to the rotation axis Ax of the above-described bearing ring holding mechanism 6 (the turntable 12). The slider 32 is mounted on the rotary holder 30, and the slide direction Z is set in a direction orthogonal to the rotation axis of the rotary holder 30.

かかるホルダ移動旋回手段28は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、移動体の場合は、X方向に配置したねじ軸にナットを介して移動体を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。また、回転ホルダ30の場合は、その回転軸にACサーボモータを連結させ、当該ACサーボモータによって回転軸を回転制御すればよい。更に、スライダ32の場合は、Z方向に配置したねじ軸にナットを介してスライダ32を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。   Such holder moving and turning means 28 can be realized by a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Although not specifically illustrated, for example, in the case of a moving body, the moving body is connected to a screw shaft arranged in the X direction via a nut, and an AC servo motor is connected to the screw shaft, and the screw shaft is rotated by the AC servo motor. Control is sufficient. In the case of the rotary holder 30, an AC servo motor may be connected to the rotary shaft, and the rotary shaft may be rotationally controlled by the AC servo motor. Further, in the case of the slider 32, the slider 32 may be connected to the screw shaft arranged in the Z direction via a nut, and an AC servo motor may be connected to the screw shaft, and the screw shaft may be rotationally controlled by the AC servo motor. .

この場合、上記したホルダ移動旋回手段28において、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を超仕上加工開始位置にセットするまでのプロセスは、任意に設定することができる。その一例として、移動体をX方向に移動させて内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を、各軌道輪搭載用構造体(ノーズピース)10と一体となっている内輪2(又は、外輪4)に接近させる。次に、回転ホルダ30をθ方向に所定角度だけ回転させる。このときの回転角度は、内輪軌道面2s(又は、外輪軌道面4s)の傾斜角度に基づいて調整する。続いて、スライダ32をZ方向にスライドさせて、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を内輪軌道面2s(又は、外輪軌道面4s)に対向配置させる。   In this case, in the above-described holder movement turning means 28, the process until the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is set at the superfinishing start position can be arbitrarily set. As an example, the inner ring in which the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is integrated with each bearing ring mounting structure (nosepiece) 10 by moving the moving body in the X direction. 2 (or outer ring 4). Next, the rotary holder 30 is rotated by a predetermined angle in the θ direction. The rotation angle at this time is adjusted based on the inclination angle of the inner ring raceway surface 2s (or the outer ring raceway surface 4s). Subsequently, the slider 32 is slid in the Z direction so that the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is disposed opposite to the inner ring raceway surface 2s (or outer ring raceway surface 4s).

そして、このようなプロセスを、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を超仕上加工開始位置にセットすることができる。この場合、超仕上加工(オシレーション、トラバース)において、内輪軌道面2s(又は、外輪軌道面4s)に対する圧力Fa,Fb(図1(a),(b)参照)の向きが、上記した軌道輪保持機構6(回転台12)の回転軸Axを通る径方向に一致するように、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を超仕上加工開始位置にセットすることが好ましい。   Then, by repeating such a process until the target value is finally reached or enters an allowable range, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is set to the superfinishing start position. Can be set. In this case, in super finishing (oscillation, traverse), the directions of the pressures Fa and Fb (see FIGS. 1A and 1B) with respect to the inner ring raceway surface 2s (or outer ring raceway surface 4s) are the above-described tracks. The inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) may be set at the superfinishing start position so as to coincide with the radial direction passing through the rotation axis Ax of the wheel holding mechanism 6 (the turntable 12). preferable.

ここで、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を超仕上加工開始位置にセットする際において、ホルダ移動旋回手段28の停止位置制御(換言すると、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)の停止位置制御ともいう)では、内輪2及び外輪4毎に割り振られている「型番」や「品番」等を制御装置(図示しない)に入力し、図示しないエンコーダ(回転検出器)によって、上記したそれぞれのACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較してフィードバック制御(位置制御や速度制御)を行う。   Here, when the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is set at the superfinishing start position, the stop position control of the holder moving turning means 28 (in other words, the inner ring raceway surface grindstone 8a). (Or, it is also referred to as stop position control of the outer ring raceway surface grindstone 8b), the “model number” or “part number” assigned to each of the inner ring 2 and the outer ring 4 is input to a control device (not shown) and illustrated. Feedback control by comparing the current position (coordinate) signal with the target position (coordinate) signal while detecting the rotational position and rotational speed of the output shaft of each AC servo motor by the encoder (rotation detector) (Position control and speed control) are performed.

このとき、現在位置(座標)信号と目標位置(座標)信号とに差がある場合、上記したACサーボモータを目標位置(座標)との差分を減少させる方向に動作(回転)させる。そして、かかる手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、ホルダ移動旋回手段28の停止位置制御が行われる。なお、別の方法として、上記したACサーボモータの現在位置情報をデジタル的に記録しておき、これに目標位置(座標)信号までの差分を与えて、その目的値に一度に到達する方法でもよい。   At this time, if there is a difference between the current position (coordinate) signal and the target position (coordinate) signal, the AC servo motor described above is operated (rotated) in a direction that reduces the difference from the target position (coordinate). Then, by repeating this procedure until the target value is finally reached or enters the allowable range, the stop position control of the holder moving and turning means 28 is performed. As another method, the current position information of the AC servo motor described above is digitally recorded, and a difference to the target position (coordinate) signal is given to the current position information so that the target value is reached at once. Good.

この場合、ある特定の「型番」「品番」等の内輪2及び外輪4に対して、例えば交互に超仕上加工を行う場合を想定すると、ホルダ移動旋回手段28の停止位置は、内輪軌道面2sに対して内輪軌道面用砥石8aを超仕上加工開始位置にセットする第1位置(座標)と、外輪軌道面4sに対して外輪軌道面用砥石8bを超仕上加工開始位置にセットする第2位置(座標)の2箇所に限定される。このため、第1位置信号(座標)と第2位置信号(座標)との差分を無くすように、ACサーボモータを動作(回転)させることで、内輪軌道面2sに対して内輪軌道面用砥石8aが超仕上加工開始位置にセットされる位置「内輪用セット」(図3(a))と、外輪軌道面4sに対して外輪軌道面用砥石8bが超仕上加工開始位置にセットされる位置「外輪用セット」(図3(b))とに自動的に切り換えることができる。以下、これを「超仕上加工開始位置の内外輪セット切換」という。   In this case, assuming that, for example, superfinishing is alternately performed on the inner ring 2 and the outer ring 4 such as a specific “model number” and “product number”, the stop position of the holder moving swivel means 28 is the inner ring raceway surface 2s. In contrast, a first position (coordinates) for setting the inner ring raceway surface grindstone 8a at the superfinishing start position and a second position for setting the outer ring raceway surface grindstone 8b at the superfinishing start position with respect to the outer ring raceway surface 4s. It is limited to two locations (coordinates). For this reason, by operating (rotating) the AC servo motor so as to eliminate the difference between the first position signal (coordinates) and the second position signal (coordinates), the inner ring raceway surface grinding wheel with respect to the inner ring raceway surface 2s. The position “8a for setting the inner ring” (FIG. 3A) where the superfinishing start position 8a is set, and the position where the outer ring raceway surface grindstone 8b is set for the superfinishing starting position with respect to the outer ring raceway surface 4s. It is possible to automatically switch to the “outer ring set” (FIG. 3B). Hereinafter, this is referred to as “switching of the inner and outer ring sets at the super finishing machining start position”.

続いて、上記した超仕上加工開始位置セットが完了した後、内輪軌道面2s(又は、外輪軌道面4s)に対して垂直方向から内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を所定の圧力Fa,Fb(図1(a),(b)参照)で押し付ける処理が行われる。なお、かかる処理は、回転台12の回転に伴って内輪2(又は、外輪4)を所定方向Kに回転させた後に行ってもよいし、或いは、内輪2(又は、外輪4)を所定方向Kに回転させると同時、又は、回転させる前に行ってもよい。   Subsequently, after the above-described super finishing processing start position set is completed, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) from the direction perpendicular to the inner ring raceway surface 2s (or outer ring raceway surface 4s). Is pressed at predetermined pressures Fa and Fb (see FIGS. 1A and 1B). Such processing may be performed after the inner ring 2 (or outer ring 4) is rotated in a predetermined direction K as the turntable 12 rotates, or the inner ring 2 (or outer ring 4) is moved in a predetermined direction. It may be performed at the same time as rotating to K or before rotating.

いずれの場合でも、上記した押し付け処理を行うために、上記したスライダ32の端部には、内外輪兼用の砥石押付手段34(即ち、加圧ヘッド34)が設けられている。この場合、当該加圧ヘッド34には、上記した軌道面用砥石ホルダHa,Hbが所定方向に移動可能に保持されている。そして、当該加圧ヘッド34には、軌道面用砥石ホルダHa,Hbを所定方向に移動させることで、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を内輪軌道面2s(又は、外輪軌道面4s)に所定の圧力Fa,Fb(図1(a),(b)参照)で押し付ける構成が施されている。   In either case, in order to perform the pressing process described above, the end of the slider 32 is provided with a grindstone pressing means 34 (that is, a pressure head 34) that also serves as an inner / outer ring. In this case, the pressure head 34 holds the raceway surface grindstone holders Ha and Hb movably in a predetermined direction. Then, by moving the raceway surface grindstone holders Ha, Hb in a predetermined direction, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) is moved to the inner ring raceway surface 2s (or The outer ring raceway surface 4s) is pressed with predetermined pressures Fa and Fb (see FIGS. 1A and 1B).

図4(a)に示すように、加圧ヘッド34には、上記した軌道面用砥石ホルダHa,Hbが両側に振り分けて、かつ、互いに対向する位置関係を成して配置されている。図面では一例として、図面向かって左側に、内輪軌道面用砥石8aを支持する軌道面用砥石ホルダHa(以下、内輪軌道面用砥石ホルダHaという)が配置され、これに対し、図面向かって右側に、外輪軌道面用砥石8bを支持する軌道面用砥石ホルダHb(以下、外輪軌道面用砥石ホルダHbという)が配置されている。   As shown in FIG. 4A, the pressure head 34 has the raceway surface grindstone holders Ha and Hb arranged on both sides and in a positional relationship facing each other. In the drawing, as an example, a raceway surface grindstone holder Ha that supports the inner ring raceway surface grindstone 8a (hereinafter referred to as an inner ring raceway surface grindstone holder Ha) is disposed on the left side of the drawing, and on the right side of the drawing. In addition, a raceway surface grindstone holder Hb for supporting the outer ring raceway surface grindstone 8b (hereinafter referred to as an outer ring raceway surface grindstone holder Hb) is disposed.

また、加圧ヘッド34には、一対の案内シャフト36a,36bが互いに平行に設けられており、当該案内シャフト36a,36bは、平行状態を維持しつつ同方向に沿って移動可能に構成配置されている。また、一対の案内シャフト36a,36bの両側には、内輪軌道面用砥石ホルダHaと外輪軌道面用砥石ホルダHbと取り付けられている。この場合、内輪軌道面用砥石ホルダHaに支持された内輪軌道面用砥石8aと、外輪軌道面用砥石ホルダHbに支持された外輪軌道面用砥石8bとは、同一平面上において、互いに同一方向に沿って1列に並んだ位置関係に配置構成されている。   The pressure head 34 is provided with a pair of guide shafts 36a and 36b in parallel with each other, and the guide shafts 36a and 36b are configured and arranged to be movable in the same direction while maintaining a parallel state. ing. Further, an inner ring raceway surface grindstone holder Ha and an outer ring raceway surface grindstone holder Hb are attached to both sides of the pair of guide shafts 36a, 36b. In this case, the inner ring raceway surface grindstone 8a supported by the inner ring raceway surface grindstone holder Ha and the outer ring raceway surface grindstone 8b supported by the outer ring raceway surface grindstone holder Hb are in the same direction on the same plane. Are arranged and arranged in a positional relationship arranged in a line along.

ここで、一対の案内シャフト36a,36bを一方向にスライドさせると、これに伴って、内輪軌道面用砥石ホルダHa及び外輪軌道面用砥石ホルダHbが同方向に同時に移動することで、内輪軌道面用砥石8a及び外輪軌道面用砥石8bを同方向に同時に移動(スライド)させることができる。これに対し、一対の案内シャフト36a,36bを他方向にスライドさせると、これに伴って、内輪軌道面用砥石ホルダHa及び外輪軌道面用砥石ホルダHbが同方向に同時に移動することで、内輪軌道面用砥石8a及び外輪軌道面用砥石8bを同方向に同時に移動(スライド)させることができる。   Here, when the pair of guide shafts 36a and 36b are slid in one direction, the inner ring raceway surface grindstone holder Ha and the outer ring raceway surface grindstone holder Hb are simultaneously moved in the same direction, thereby the inner ring raceway. The surface grindstone 8a and the outer ring raceway surface grindstone 8b can be simultaneously moved (slid) in the same direction. On the other hand, when the pair of guide shafts 36a and 36b are slid in the other direction, the inner ring raceway surface grindstone holder Ha and the outer ring raceway surface grindstone holder Hb move simultaneously in the same direction. The raceway surface grindstone 8a and the outer ring raceway surface grindstone 8b can be simultaneously moved (slid) in the same direction.

また、加圧ヘッド34には、一対の案内シャフト36a,36b相互間に、これら案内シャフト36a,36bと平行に加圧ピストンが構築されている。加圧ピストンは、加圧ヘッド34に構築されたシリンダ38内を往復運動するピストン本体40と、ピストン本体40の両側から延出した2本のピストンロッド42a,42bとを備えている。2本のピストンロッド42a,42bは、上記した一対の案内シャフト36a,36bと平行に延出しており、一方のピストンロッド42aは、内輪軌道面用砥石ホルダHaに連結され、他方のピストンロッド42bは、外輪軌道面用砥石ホルダHbに連結されている。   In addition, a pressure piston is constructed in the pressure head 34 between the pair of guide shafts 36a and 36b in parallel with the guide shafts 36a and 36b. The pressurizing piston includes a piston main body 40 that reciprocates in a cylinder 38 constructed in the pressurizing head 34, and two piston rods 42 a and 42 b extending from both sides of the piston main body 40. The two piston rods 42a and 42b extend in parallel with the above-described pair of guide shafts 36a and 36b. One piston rod 42a is connected to the inner ring raceway surface grindstone holder Ha, and the other piston rod 42b. Is connected to the outer ring raceway surface grindstone holder Hb.

シリンダ38内には、ピストン本体40の両側に蓄圧室(以下、左チャンバ38a、右チャンバ38bという)が構成されており、圧縮空気供給源(図示しない)から左チャンバ38a又は右チャンバ38bのいずれか一方に圧縮空気を送り込むことで、ピストン本体40を移動させることができる。図面では一例として、右チャンバ38bに圧縮空気を送り込んでいる状態が示されており、このとき、ピストン本体40が左チャンバ38a方向に移動することで、2本のピストンロッド42a,42bが同方向に移動する。これにより、当該ピストンロッド42a,42bに連結されている内輪軌道面用砥石ホルダHa及び外輪軌道面用砥石ホルダHbを、上記した一対の案内シャフト36a,36bによってガイドしつつ、同方向に同時に移動させることができる。   In the cylinder 38, pressure accumulating chambers (hereinafter referred to as a left chamber 38a and a right chamber 38b) are formed on both sides of the piston body 40, and either a left chamber 38a or a right chamber 38b is supplied from a compressed air supply source (not shown). The piston main body 40 can be moved by sending compressed air into one of them. As an example, the drawing shows a state in which compressed air is fed into the right chamber 38b. At this time, the piston main body 40 moves in the direction of the left chamber 38a, so that the two piston rods 42a and 42b are in the same direction. Move to. Accordingly, the inner ring raceway surface grindstone holder Ha and the outer ring raceway surface grindstone holder Hb connected to the piston rods 42a and 42b are simultaneously moved in the same direction while being guided by the pair of guide shafts 36a and 36b. Can be made.

このような加圧ヘッド34によれば、上記した超仕上加工開始位置セットが完了し、続いて押し付け処理を行う際に、右チャンバ38b(又は、左チャンバ38a)に圧縮空気を送り込むことで、内輪軌道面2s(又は、外輪軌道面4s)に対して垂直方向から内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を所定の圧力Fa,Fbで押し付けることができる(図4(b),(c))。このとき、圧力Fa,Fbの向きは、上記した「超仕上加工開始位置の内外輪セット切換」により、上記した軌道輪保持機構6(回転台12)の回転軸Axを通る径方向に一致するようにセットされている(図1(a),(b)参照)。   According to such a pressure head 34, when the above-described super-finishing processing start position set is completed and then the pressing process is performed, by sending compressed air to the right chamber 38b (or the left chamber 38a), The inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b) can be pressed from the direction perpendicular to the inner ring raceway surface 2s (or outer ring raceway surface 4s) with predetermined pressures Fa and Fb (FIG. 4 ( b), (c)). At this time, the directions of the pressures Fa and Fb coincide with the radial direction passing through the rotation axis Ax of the raceway ring holding mechanism 6 (the turntable 12) by the above-described “switching of the inner and outer ring sets at the superfinishing start position”. (See FIGS. 1 (a) and 1 (b)).

そして、当該セット状態において、内輪2(又は、外輪4)を所定方向Kに回転させている間に、内輪軌道面2s(又は、外輪軌道面4s)に対して垂直方向から内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を所定の圧力Fa,Fbで押し付けつつ、オシレーション(微少往復運動)Osさせながら内輪軌道面2s(又は、外輪軌道面4s)に沿ってトラバースTrする処理(超仕上加工)が行われる(図4(b),(c))。   Then, in the set state, while the inner ring 2 (or outer ring 4) is rotated in the predetermined direction K, the inner ring raceway surface grindstone from the direction perpendicular to the inner ring raceway surface 2s (or outer ring raceway surface 4s). While traversing Tr along the inner ring raceway surface 2s (or the outer ring raceway surface 4s) while pressing the 8a (or the outer ring raceway surface grindstone 8b) with predetermined pressures Fa and Fb and causing oscillation (small reciprocation) Os. Processing (super finishing) is performed (FIGS. 4B and 4C).

なお、超仕上加工に際し、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)によって内輪軌道面2s(又は、外輪軌道面4s)を高精度かつ高精細に平滑化するために、内輪軌道面用砥石8aの砥面Saは、丸味を帯びた凹面状に、一方、外輪軌道面用砥石8bの砥面Sbは、丸味を帯びた凸面状にそれぞれ構成することが好ましい。   In super finishing, the inner ring raceway surface 2s (or outer ring raceway surface 4s) is smoothed with high precision and high precision by the inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b). The grinding surface Sa of the raceway surface grindstone 8a is preferably configured in a rounded concave shape, while the grinding surface Sb of the outer ring raceway surface grinding stone 8b is configured in a rounded convex shape.

また、超仕上加工に際し、加圧ヘッド34によって、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を内輪軌道面2s(又は、外輪軌道面4s)に圧力Fa,Fbで押し付けるタイミングは、例えば内輪軌道面用砥石8aを使用する場合、シリンダ38の左チャンバ38aに圧縮空気を送り込み、内輪軌道面用砥石ホルダHaと共に内輪軌道面用砥石8aをバック(後退)させた状態で、内輪軌道面2sに対する超仕上加工開始位置にセットし、そのとき、右チャンバ38bに圧縮空気を送り込むことで、内輪軌道面用砥石8aを内輪軌道面2sに圧力Faで押し付ければよい。なお、外輪軌道面用砥石8bを使用する場合には、上記とは逆のプロセスを実行すればよい。   In super finishing, the pressure head 34 is used to press the inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b) against the inner ring raceway surface 2s (or outer ring raceway surface 4s) with pressures Fa and Fb. For example, when the inner ring raceway surface grindstone 8a is used, the compressed air is fed into the left chamber 38a of the cylinder 38, and the inner ring raceway surface grindstone 8a is backed (retreated) together with the inner ring raceway surface grindstone holder Ha. The inner ring raceway surface 2s is set at the superfinishing start position, and at that time, the compressed air is fed into the right chamber 38b so that the inner ring raceway surface grindstone 8a is pressed against the inner ring raceway surface 2s with the pressure Fa. In addition, what is necessary is just to perform the process contrary to the above, when using the grindstone 8b for outer ring raceway surfaces.

ところで、軌道面(内輪軌道面2s、外輪軌道面4s)に対する超仕上加工では、その加工精度を一定にかつ高く維持するために、内輪2(又は、外輪4)を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転させることが好ましい。そのためには、上記した「ノーズピースの内外輪セット切換」の際、内輪2(又は、外輪4)の中心軸を、上記した軌道輪保持機構6の回転軸Axに対して一定距離だけ一定方向にずらす(偏心させる)ように、複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10s(図2参照)に搭載させる必要がある。   By the way, in the super finishing for the raceway surfaces (the inner ring raceway surface 2s and the outer ring raceway surface 4s), the inner ring 2 (or the outer ring 4) is directed toward the inner ring shoe 44 in order to maintain the machining accuracy constant and high. The inner ring shoe 44 is preferably rotated with the inner ring shoe 44 as a reference. For this purpose, the center axis of the inner ring 2 (or outer ring 4) is set in a fixed direction by a fixed distance with respect to the rotation axis Ax of the above-described track ring holding mechanism 6 in the above-described "nosepiece inner / outer ring set switching". It is necessary to mount it on each mounting surface 10s (see FIG. 2) of the plurality of bearing ring mounting structures (nosepieces) 10 so as to be shifted (eccentric).

そこで、図1(a),(b)に示すように、本実施形態の内外輪兼用超仕上盤は、軌道輪保持機構6の両側に回転軸Axを直交する方向に沿って対向配置され、かつ、複数の軌道輪搭載用構造体(ノーズピース)10に搭載させる軌道輪(内輪2、外輪4)の位置を調整し、当該軌道輪(内輪2、外輪4)をシュー44,46に向けて押圧させるための一対の位置決め機構(内輪用位置決め機構、外輪用位置決め機構)を有している。   Therefore, as shown in FIGS. 1 (a) and 1 (b), the inner / outer ring combined super finishing panel of the present embodiment is disposed opposite to the both sides of the bearing ring holding mechanism 6 along the direction orthogonal to the rotation axis Ax, In addition, the positions of the bearing rings (inner ring 2 and outer ring 4) to be mounted on the plurality of bearing ring mounting structures (nosepieces) 10 are adjusted, and the bearing rings (inner ring 2, outer ring 4) are directed toward the shoes 44 and 46. A pair of positioning mechanisms (an inner ring positioning mechanism and an outer ring positioning mechanism).

一対の位置決め機構(即ち、内輪用位置決め機構、又は、外輪用位置決め機構)は、それぞれ、超仕上加工に際し、内輪2(又は、外輪4)の外径面を支持する構成として兼用される内輪用シュー44(又は、外輪用シュー46)と、内輪用シュー44(又は、外輪用シュー46)に向けて内輪2(又は、外輪4)を押圧する内輪用位置決めプッシャ48(又は、外輪用位置決めプッシャ50)と、各シュー44,46及び各位置決めプッシャ48,50を内輪2(又は、外輪4)に向けて接近させ、かつ、内輪2(又は、外輪4)から離間させることを可能にする位置決め機構移動手段(即ち、内輪用位置決め機構移動手段、又は、外輪用位置決め機構移動手段)とを備えている。   A pair of positioning mechanisms (that is, an inner ring positioning mechanism or an outer ring positioning mechanism) are used for an inner ring that is also used as a configuration that supports the outer diameter surface of the inner ring 2 (or outer ring 4) during super finishing. The inner ring positioning pusher 48 (or outer ring positioning pusher) that presses the inner ring 2 (or outer ring 4) toward the shoe 44 (or outer ring shoe 46) and the inner ring shoe 44 (or outer ring shoe 46). 50) and positioning that enables each shoe 44, 46 and each positioning pusher 48, 50 to approach the inner ring 2 (or outer ring 4) and to be separated from the inner ring 2 (or outer ring 4). Mechanism moving means (that is, inner ring positioning mechanism moving means or outer ring positioning mechanism moving means).

かかる構成によれば、加工対象となる軌道輪が内輪2の場合、一方の外輪用シュー46及び外輪用位置決めプッシャ50を内輪2から離間(後退)させると共に、他方の内輪用シュー44及び内輪用位置決めプッシャ48を内輪2に向けて接近(前進)させ、他方の内輪用位置決めプッシャ48によって内輪2を他方の内輪用シュー44に当て付けることで、内輪2を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転可能にセットさせることができる(図1(a)、図3(a)参照)。なお、図3(a)では、内輪用位置決めプッシャ48が省略されている。   According to this configuration, when the raceway to be processed is the inner ring 2, the outer ring shoe 46 and the outer ring positioning pusher 50 are separated (retracted) from the inner ring 2, and the other inner ring shoe 44 and inner ring shoe are used. The positioning pusher 48 is approached (advanced) toward the inner ring 2 and the inner ring 2 is pressed against the other inner ring shoe 44 by the other inner ring positioning pusher 48, thereby pressing the inner ring 2 toward the inner ring shoe 44. Thus, the inner ring shoe 44 can be set to be rotatable with reference to the inner ring shoe 44 (see FIGS. 1A and 3A). In FIG. 3A, the inner ring positioning pusher 48 is omitted.

一方、加工対象となる軌道輪が外輪4の場合、他方の内輪用シュー44及び内輪用位置決めプッシャ48を外輪4から離間(後退)させると共に、一方の外輪用シュー46及び外輪用位置決めプッシャ50を外輪4に向けて接近(前進)させ、一方の外輪用位置決めプッシャ50によって外輪4を一方の外輪用シュー46に当て付けることで、外輪4を、外輪用シュー46に向けて押圧させ、当該外輪用シュー46を基準に回転可能にセットさせることができる(図1(b)、図3(b)参照)。なお、図3(b)では、外輪用位置決めプッシャ50が省略されている。   On the other hand, when the raceway to be processed is the outer ring 4, the other inner ring shoe 44 and the inner ring positioning pusher 48 are separated (retracted) from the outer ring 4, and one outer ring shoe 46 and the outer ring positioning pusher 50 are moved. The outer ring 4 is approached (advanced) toward the outer ring 4, and the outer ring 4 is pressed against one outer ring shoe 46 by one outer ring positioning pusher 50, thereby pressing the outer ring 4 toward the outer ring shoe 46. The shoe 46 can be set to be rotatable with reference to the shoe 46 (see FIGS. 1B and 3B). In FIG. 3B, the outer ring positioning pusher 50 is omitted.

まず、内輪用位置決め機構において、内輪用シュー44には、当該内輪用シュー44を矢印X1方向に沿って移動させて内輪2に接近させた状態で、内輪2の位置決め時並びにその後の超仕上加工時に、内輪2の外径面(内輪軌道面2s、又は、つば部(面)2t)に当て付いて、当該内輪2と共に回転する一対の内輪用ロール44rが設けられている。一対の内輪用ロール44rは、内輪用シュー44の移動方向X1を横断(直交)する方向に沿って対向配置され、かつ、軌道輪保持機構6の回転軸Axに対して対称となる位置関係に設定されている。   First, in the inner ring positioning mechanism, the inner ring shoe 44 is moved to the inner ring shoe 44 along the direction of the arrow X1 so as to approach the inner ring 2 during the positioning of the inner ring 2 and the subsequent super finishing. Sometimes, a pair of inner ring rolls 44r is provided that contacts the outer diameter surface of the inner ring 2 (the inner ring raceway surface 2s or the collar portion (surface) 2t) and rotates together with the inner ring 2. The pair of inner ring rolls 44r are disposed to face each other along a direction that intersects (orthogonally) the movement direction X1 of the inner ring shoe 44, and are symmetrical with respect to the rotation axis Ax of the track ring holding mechanism 6. Is set.

また、一対の内輪用ロール44rは、それぞれ、内輪用ロールホルダ44hによって回転可能(例えば、回転フリー)に支持されている。そして、各内輪用ロールホルダ44hには、内輪2に対する内輪用ロール44rの高さ位置、径方向位置をそれぞれ調整し、内輪2の位置決め時並びにその後の超仕上加工時に、一対の内輪用ロール44rを正確に内輪2の外径面に当て付けることを可能にする調整機構が設けられている。   Further, the pair of inner ring rolls 44r are respectively supported by the inner ring roll holder 44h so as to be rotatable (for example, free to rotate). In each inner ring roll holder 44h, the height position and the radial position of the inner ring roll 44r with respect to the inner ring 2 are adjusted, and a pair of inner ring rolls 44r is positioned during positioning of the inner ring 2 and subsequent superfinishing. Is provided with an adjustment mechanism that makes it possible to accurately apply the torque to the outer diameter surface of the inner ring 2.

高さ位置とは、内輪2が軌道輪搭載用構造体(ノーズピース)10の搭載面10s(図2参照)に搭載された状態において、搭載面10sから内輪端面2aまでの高さ(幅)を想定する。また、径方向位置とは、軌道輪保持機構6の回転軸Axを通って規定される径方向に沿って、内輪2の外径面と内輪用ロール44rとの間の距離(間隔)を想定する。なお、各内輪用ロール44rの高さ位置、径方向位置は、内輪用シュー44を動作させる前に予め調整され、その調整された状態に維持されるものとする。   The height position means the height (width) from the mounting surface 10s to the inner ring end surface 2a in a state where the inner ring 2 is mounted on the mounting surface 10s (see FIG. 2) of the bearing ring mounting structure (nosepiece) 10. Is assumed. Further, the radial position is assumed to be the distance (interval) between the outer diameter surface of the inner ring 2 and the inner ring roll 44r along the radial direction defined through the rotation axis Ax of the bearing ring holding mechanism 6. To do. The height position and the radial position of each inner ring roll 44r are adjusted in advance before the inner ring shoe 44 is operated, and are maintained in the adjusted state.

ここで、高さ位置の調整機構として、例えば図3(a)に示すように、各内輪用ロールホルダ44hの端面(内輪2に対向する側面)に上下方向に延出させたアリ溝44gをそれぞれ形成すると共に、内輪用ロール44rを回転可能に保持したホゾ部材44pを各アリ溝44gに挿入し、当該アリ溝44gに沿って各ホゾ部材44pを移動させることで、内輪2に対する各内輪用ロール44rの高さ位置を調整することができる。この場合、移動させた各ホゾ部材44pを位置決め固定するための位置決め固定構造をそれぞれ設けることが好ましい。図面では、位置決め固定構造の一例として、ネジ止め構造44sが示されているが、これ以外の方法でもよい。   Here, as an adjustment mechanism for the height position, for example, as shown in FIG. 3 (a), dovetail grooves 44g extended in the vertical direction on the end surface (side surface facing the inner ring 2) of each inner ring roll holder 44h are provided. Each of the inner ring rolls 44r is formed and inserted into each dovetail groove 44g, and each hozo member 44p is moved along the dovetail groove 44g. The height position of the roll 44r can be adjusted. In this case, it is preferable to provide a positioning and fixing structure for positioning and fixing each of the moved hozo members 44p. In the drawing, the screwing structure 44s is shown as an example of the positioning and fixing structure, but other methods may be used.

また、径方向位置の調整機構として、例えば、回転軸Axを通って規定される径方向に沿って、内輪用シュー44に一対のガイド溝(図示しない)を形成すると共に、各内輪用ロールホルダ44hの一部を各ガイド溝に挿入(係合)し、当該ガイド溝に沿って各内輪用ロールホルダ44hを矢印44T方向(図1(b)参照)に移動させることで、内輪2に対する各内輪用ロール44rの径方向位置を調整することができる。この場合、移動させた各内輪用ロールホルダ44hを位置決め固定するための位置決め固定構造をそれぞれ設けることが好ましい。なお、位置決め固定構造の一例として、ネジ止め構造(図示しない)を適用することができるが、これ以外の方法でもよい。   Further, as a radial position adjustment mechanism, for example, a pair of guide grooves (not shown) are formed in the inner ring shoe 44 along the radial direction defined through the rotation axis Ax, and each inner ring roll holder A part of 44h is inserted (engaged) into each guide groove, and each inner ring roll holder 44h is moved along the guide groove in the direction of arrow 44T (see FIG. 1B), thereby The radial position of the inner ring roll 44r can be adjusted. In this case, it is preferable to provide a positioning and fixing structure for positioning and fixing each of the moved inner ring roll holders 44h. As an example of the positioning and fixing structure, a screwing structure (not shown) can be applied, but other methods may be used.

次に、内輪用位置決め機構において、内輪用位置決めプッシャ48は、当該内輪用位置決めプッシャ48を矢印E1方向に沿って移動させて内輪2に接近させた状態で、内輪2の位置決め時並びにその後の超仕上加工時に、当該内輪2の外径面に当て付いて当該内輪2と共に回転するロールとして構成されている。この場合、内輪2に対する超仕上加工時においては、上記した内輪軌道面用砥石8aが内輪軌道面2sに圧接しているため、内輪用位置決めプッシャ(ロール)48は、これを回避(オフセット)した位置で、内輪2の外径面に当て付けられるように設定されている。   Next, in the inner ring positioning mechanism, the inner ring positioning pusher 48 moves the inner ring positioning pusher 48 along the direction of the arrow E1 so that the inner ring positioning pusher 48 approaches the inner ring 2. At the time of finishing, it is configured as a roll that contacts the outer diameter surface of the inner ring 2 and rotates together with the inner ring 2. In this case, the inner ring raceway surface grindstone 8a is in pressure contact with the inner ring raceway surface 2s during the superfinishing process for the inner ring 2, so the inner ring positioning pusher (roll) 48 avoids (offsets) this. The position is set so as to be applied to the outer diameter surface of the inner ring 2.

また、内輪用位置決めプッシャ(ロール)48は、プッシャ支持部材52によって回転可能(例えば、回転フリー)に支持されており、当該プッシャ支持部材52は、プッシャ位置調整部54によって、矢印E1方向に沿って伸縮可能に保持されている。特に図示しないが、プッシャ位置調整部54は、プッシャ支持部材52を移動(上下動)させることで、内輪2に対する内輪用位置決めプッシャ(ロール)48の高さ位置を調整し、内輪2の位置決め時並びにその後の超仕上加工時に、内輪用位置決めプッシャ(ロール)48を正確に内輪2の外径面に当て付けることを可能にする調整機構(図示しない)が設けられている。なお、調整機構は、周知の技術をそのまま利用すれば足りるため、その説明は省略する。また、内輪用位置決めプッシャ(ロール)48の高さ位置は、当該プッシャ48を動作させる前に予め調整され、その調整された状態に維持されるものとする。   Further, the inner ring positioning pusher (roll) 48 is rotatably supported (for example, rotation-free) by a pusher support member 52, and the pusher support member 52 is moved along the direction of the arrow E 1 by a pusher position adjustment unit 54. And can be stretched. Although not shown in particular, the pusher position adjustment unit 54 adjusts the height position of the inner ring positioning pusher (roll) 48 relative to the inner ring 2 by moving the pusher support member 52 (moving up and down). In addition, an adjustment mechanism (not shown) is provided that enables the inner ring positioning pusher (roll) 48 to be accurately applied to the outer diameter surface of the inner ring 2 during subsequent superfinishing. The adjustment mechanism need not be described because it is sufficient to use a known technique as it is. Also, the height position of the inner ring positioning pusher (roll) 48 is adjusted in advance before the pusher 48 is operated, and is maintained in the adjusted state.

そして、内輪用位置決め機構において、内輪用位置決め機構移動手段は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、内輪用シュー44の場合は、矢印X1方向に沿って配置したねじ軸にナットを介して内輪用シュー44を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。また、内輪用位置決めプッシャ48の場合は、矢印E1方向に沿って配置したねじ軸にナットを介してプッシャ支持部材52を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。   In the inner ring positioning mechanism, the inner ring positioning mechanism moving means can be realized by a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Although not specifically illustrated, for example, in the case of the inner ring shoe 44, the inner ring shoe 44 is connected to the screw shaft arranged along the arrow X1 direction via a nut, and the AC servo motor is connected to the screw shaft. The rotation of the screw shaft may be controlled by a servo motor. Further, in the case of the inner ring positioning pusher 48, the pusher support member 52 is connected to the screw shaft arranged along the arrow E1 direction via a nut, and the AC servo motor is connected to the screw shaft. What is necessary is just to carry out rotation control of the screw shaft.

この場合、上記した内輪用位置決め機構移動手段において、内輪2の位置決め時並びにその後の超仕上加工時に、内輪2を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転させるように(換言すると、内輪2の中心軸を、上記した軌道輪保持機構6の回転軸Axに対して一定距離だけ一定方向にずらす(偏心させる)ように)、内輪用シュー44及び内輪用位置決めプッシャ48をセットするまでのプロセスは、任意に設定することができる。   In this case, in the above-described inner ring positioning mechanism moving means, the inner ring 2 is pressed toward the inner ring shoe 44 during the positioning of the inner ring 2 and the subsequent superfinishing process, and the inner ring shoe 44 is rotated with reference to the inner ring shoe 44. In other words (in other words, the center axis of the inner ring 2 is shifted (decentered) in a certain direction by a certain distance with respect to the rotation axis Ax of the bearing ring holding mechanism 6), the inner ring shoe 44 and the inner ring positioning The process until the pusher 48 is set can be arbitrarily set.

一例として、プッシャ支持部材52をE1方向に移動させて内輪用位置決めプッシャ48を、上記した複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10s(図2参照)に搭載されている内輪2に接近させ、その外径面に当接させることで、内輪2の中心軸と軌道輪保持機構6の回転軸Axとの間のおおよその位置決めを行う。これと同時或いはその後所定のタイミングで、内輪用シュー44を矢印X1方向に移動させて一対の内輪用ロール44rを当該内輪2に接近させ目標位置に固定する。そして、これと同時或いはその後所定のタイミングで、プッシャ支持部材52を矢印E1方向に移動させて内輪用位置決めプッシャ48を内輪用シュー44に接近させることで、内輪2を内輪用シュー44に向けて押圧する。   As an example, the pusher support member 52 is moved in the E1 direction so that the inner ring positioning pusher 48 is mounted on each mounting surface 10s (see FIG. 2) of the plurality of bearing ring mounting structures (nosepieces) 10 described above. By approaching the inner ring 2 being in contact with the outer diameter surface thereof, approximate positioning between the central axis of the inner ring 2 and the rotation axis Ax of the race ring holding mechanism 6 is performed. At the same time or at a predetermined timing thereafter, the inner ring shoe 44 is moved in the direction of the arrow X1 to bring the pair of inner ring rolls 44r closer to the inner ring 2 and fixed at the target position. At the same time or at a predetermined timing thereafter, the pusher support member 52 is moved in the direction of the arrow E1 to bring the inner ring positioning pusher 48 closer to the inner ring shoe 44, so that the inner ring 2 faces the inner ring shoe 44. Press.

そして、このようなプロセスを、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、内輪2を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転させるように、内輪用シュー44及び内輪用位置決めプッシャ48をセットすることができる。なお、上記したようなセットプロセスが行われている間、外輪用シュー46及び外輪用位置決めプッシャ50は内輪2から離間(後退)させておく。   Then, by repeating such a process until the target value is finally reached or enters an allowable range, the inner ring 2 is pressed toward the inner ring shoe 44, and the inner ring shoe 44 is rotated with reference to the inner ring shoe 44. Thus, the inner ring shoe 44 and the inner ring positioning pusher 48 can be set. Note that the outer ring shoe 46 and the outer ring positioning pusher 50 are separated (retreated) from the inner ring 2 while the setting process as described above is performed.

一方、外輪用位置決め機構において、外輪用シュー46には、当該外輪用シュー46を矢印X2方向に沿って移動させて外輪4に接近させた状態で、外輪4の位置決め時並びにその後の超仕上加工時に、外輪4の外径面(外輪軌道面4s)に当て付いて、当該外輪4と共に回転する一対の外輪用ロール46rが設けられている。一対の外輪用ロール46rは、外輪用シュー46の移動方向X2を横断(直交)する方向に沿って対向配置され、かつ、軌道輪保持機構6の回転軸Axに対して対称となる位置関係に設定されている。   On the other hand, in the outer ring positioning mechanism, the outer ring shoe 46 is moved in the direction of the arrow X2 so as to approach the outer ring 4 while the outer ring 4 is positioned and thereafter superfinishing. Sometimes, a pair of outer ring rolls 46r is provided that contacts the outer diameter surface (outer ring raceway surface 4s) of the outer ring 4 and rotates together with the outer ring 4. The pair of outer ring rolls 46r are arranged to face each other along a direction transverse (orthogonal) to the moving direction X2 of the outer ring shoe 46, and are symmetrical with respect to the rotation axis Ax of the track ring holding mechanism 6. Is set.

また、一対の外輪用ロール46rは、それぞれ、外輪用ロールホルダ46hによって回転可能(例えば、回転フリー)に支持されている。そして、各外輪用ロールホルダ46hには、外輪4に対する外輪用ロール46rの高さ位置、径方向位置をそれぞれ調整し、外輪4の位置決め時並びにその後の超仕上加工時に、一対の外輪用ロール46rを正確に外輪4の外径面に当て付けることを可能にする調整機構が設けられている。   Further, the pair of outer ring rolls 46r are supported by the outer ring roll holder 46h so as to be rotatable (for example, free to rotate). Each of the outer ring roll holders 46h adjusts the height position and the radial position of the outer ring roll 46r with respect to the outer ring 4, and a pair of outer ring rolls 46r during positioning of the outer ring 4 and subsequent super finishing. Is provided with an adjustment mechanism that makes it possible to accurately apply the torque to the outer diameter surface of the outer ring 4.

高さ位置とは、外輪4が軌道輪搭載用構造体(ノーズピース)10の搭載面10s(図2参照)に搭載された状態において、搭載面10sから外輪端面4aまでの高さ(幅)を想定する。また、径方向位置とは、軌道輪保持機構6の回転軸Axを通って規定される径方向に沿って、外輪4の外径面と外輪用ロール46rとの間の距離(間隔)を想定する。なお、各外輪用ロール46rの高さ位置、径方向位置は、外輪用シュー46を動作させる前に予め調整され、その調整された状態に維持されるものとする。   The height position refers to the height (width) from the mounting surface 10s to the outer ring end surface 4a when the outer ring 4 is mounted on the mounting surface 10s (see FIG. 2) of the bearing ring mounting structure (nosepiece) 10. Is assumed. Further, the radial position is assumed to be the distance (interval) between the outer diameter surface of the outer ring 4 and the outer ring roll 46r along the radial direction defined through the rotation axis Ax of the track ring holding mechanism 6. To do. The height position and the radial position of each outer ring roll 46r are adjusted in advance before the outer ring shoe 46 is operated, and are maintained in the adjusted state.

ここで、高さ位置の調整機構として、例えば図3(b)に示すように、各外輪用ロールホルダ46hの端面(外輪4に対向する側面)に上下方向に延出させたアリ溝46gをそれぞれ形成すると共に、外輪用ロール46rを回転可能に保持したホゾ部材46pを各アリ溝46gに挿入し、当該アリ溝46gに沿って各ホゾ部材46pを移動させることで、外輪4に対する各外輪用ロール46rの高さ位置を調整することができる。この場合、移動させた各ホゾ部材46pを位置決め固定するための位置決め固定構造をそれぞれ設けることが好ましい。図面では、位置決め固定構造の一例として、ネジ止め構造46sが示されているが、これ以外の方法でもよい。   Here, as an adjustment mechanism for the height position, for example, as shown in FIG. 3B, dovetail grooves 46g extended in the vertical direction on the end surfaces (side surfaces facing the outer ring 4) of the respective outer ring roll holders 46h are provided. For each outer ring with respect to the outer ring 4, each of the outer ring 4 is formed and inserted into each dovetail groove 46 g and the dowel member 46 p is moved along the dovetail groove 46 g. The height position of the roll 46r can be adjusted. In this case, it is preferable to provide a positioning and fixing structure for positioning and fixing each of the moved hozo members 46p. In the drawing, the screwing structure 46s is shown as an example of the positioning and fixing structure, but other methods may be used.

また、径方向位置の調整機構として、例えば、回転軸Axを通って規定される径方向に沿って、外輪用シュー46に一対のガイド溝(図示しない)を形成すると共に、各外輪用ロールホルダ46hの一部を各ガイド溝に挿入(係合)し、当該ガイド溝に沿って各外輪用ロールホルダ46hを矢印46T方向(図1(a)参照)に移動させることで、外輪4に対する各外輪用ロール46rの径方向位置を調整することができる。この場合、移動させた各外輪用ロールホルダ46hを位置決め固定するための位置決め固定構造をそれぞれ設けることが好ましい。なお、位置決め固定構造の一例として、ネジ止め構造(図示しない)を適用することができるが、これ以外の方法でもよい。   Further, as a radial position adjusting mechanism, for example, a pair of guide grooves (not shown) are formed in the outer ring shoe 46 along the radial direction defined through the rotation axis Ax, and each outer ring roll holder is formed. A part of 46h is inserted (engaged) into each guide groove, and each outer ring roll holder 46h is moved along the guide groove in the direction of arrow 46T (see FIG. 1A), thereby The radial position of the outer ring roll 46r can be adjusted. In this case, it is preferable to provide a positioning and fixing structure for positioning and fixing each outer ring roll holder 46h that has been moved. As an example of the positioning and fixing structure, a screwing structure (not shown) can be applied, but other methods may be used.

次に、外輪用位置決め機構において、外輪用位置決めプッシャ50は、当該外輪用位置決めプッシャ50を矢印E2方向に沿って移動させて外輪4に接近させた状態で、外輪4の位置決め時並びにその後の超仕上加工時に、当該外輪4の外径面に当て付いて当該外輪4と共に回転するロールとして構成されている。   Next, in the outer ring positioning mechanism, the outer ring positioning pusher 50 moves the outer ring positioning pusher 50 along the direction of the arrow E2 so that the outer ring positioning pusher 50 approaches the outer ring 4. At the time of finishing, the roll is configured as a roll that contacts the outer diameter surface of the outer ring 4 and rotates together with the outer ring 4.

また、外輪用位置決めプッシャ(ロール)50は、プッシャ支持部材56によって回転可能(例えば、回転フリー)に支持されており、当該プッシャ支持部材56は、プッシャ位置調整部58によって、矢印E2方向に沿って伸縮可能に保持されている。特に図示しないが、プッシャ位置調整部58は、プッシャ支持部材56を移動(上下動)させることで、外輪4に対する外輪用位置決めプッシャ(ロール)50の高さ位置を調整し、外輪4の位置決め時並びにその後の超仕上加工時に、外輪用位置決めプッシャ(ロール)50を正確に外輪4の外径面に当て付けることを可能にする調整機構(図示しない)が設けられている。なお、調整機構は、周知の技術をそのまま利用すれば足りるため、その説明は省略する。また、外輪用位置決めプッシャ(ロール)50の高さ位置は、当該プッシャ50を動作させる前に予め調整され、その調整された状態に維持されるものとする。   The outer ring positioning pusher (roll) 50 is rotatably supported by a pusher support member 56 (for example, rotation free), and the pusher support member 56 is moved along the direction of the arrow E2 by a pusher position adjusting unit 58. And can be stretched. Although not particularly illustrated, the pusher position adjusting unit 58 adjusts the height position of the outer ring positioning pusher (roll) 50 with respect to the outer ring 4 by moving the pusher support member 56 (up and down movement). In addition, an adjustment mechanism (not shown) is provided that enables the outer ring positioning pusher (roll) 50 to be accurately applied to the outer diameter surface of the outer ring 4 during subsequent superfinishing. The adjustment mechanism need not be described because it is sufficient to use a known technique as it is. Further, the height position of the outer ring positioning pusher (roll) 50 is adjusted in advance before the pusher 50 is operated, and is maintained in the adjusted state.

そして、外輪用位置決め機構において、外輪用位置決め機構移動手段は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、外輪用シュー46の場合は、矢印X2方向に沿って配置したねじ軸にナットを介して外輪用シュー46を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。また、外輪用位置決めプッシャ50の場合は、矢印E2方向に沿って配置したねじ軸にナットを介してプッシャ支持部材56を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。   In the outer ring positioning mechanism, the outer ring positioning mechanism moving means can be realized by a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Although not specifically shown, for example, in the case of the outer ring shoe 46, the outer ring shoe 46 is connected to the screw shaft arranged along the arrow X2 direction via a nut, and the AC servo motor is connected to the screw shaft. The rotation of the screw shaft may be controlled by a servo motor. In the case of the outer ring positioning pusher 50, the pusher support member 56 is connected to the screw shaft arranged along the arrow E2 direction via a nut, and the AC servo motor is connected to the screw shaft. What is necessary is just to carry out rotation control of the screw shaft.

この場合、上記した内輪用位置決め機構移動手段において、外輪4の位置決め時並びにその後の超仕上加工時に、外輪4を、外輪用シュー46に向けて押圧させ、当該外輪用シュー46を基準に回転させるように(換言すると、外輪4の中心軸を、上記した軌道輪保持機構6の回転軸Axに対して一定距離だけ一定方向にずらす(偏心させる)ように)、外輪用シュー46及び外輪用位置決めプッシャ50をセットするまでのプロセスは、任意に設定することができる。   In this case, in the above-described inner ring positioning mechanism moving means, the outer ring 4 is pressed toward the outer ring shoe 46 during the positioning of the outer ring 4 and the subsequent superfinishing process, and the outer ring shoe 46 is rotated with reference to the outer ring shoe 46. In other words (in other words, the center axis of the outer ring 4 is shifted (decentered) in a certain direction by a certain distance with respect to the rotation axis Ax of the bearing ring holding mechanism 6), the outer ring shoe 46 and the outer ring positioning The process until the pusher 50 is set can be arbitrarily set.

一例として、プッシャ支持部材56をE2方向に移動させて外輪用位置決めプッシャ50を、上記した複数の軌道輪搭載用構造体(ノーズピース)10の各搭載面10s(図2参照)に搭載されている外輪4に接近させ、その外径面に当接させることで、外輪4の中心軸と軌道輪保持機構6の回転軸Axとの間のおおよその位置決めを行う。これと同時或いはその後所定のタイミングで、外輪用シュー46を矢印X2方向に移動させて一対の外輪用ロール46rを当該外輪4に接近させ目標位置に固定する。そして、これと同時或いはその後所定のタイミングで、プッシャ支持部材56を矢印E2方向に移動させて外輪用位置決めプッシャ50を外輪用シュー46に接近させることで、外輪4を外輪用シュー46に向けて押圧する。   As an example, the pusher support member 56 is moved in the E2 direction so that the outer ring positioning pusher 50 is mounted on each mounting surface 10s (see FIG. 2) of the plurality of bearing ring mounting structures (nosepieces) 10 described above. By bringing the outer ring 4 close to the outer ring 4 and bringing it into contact with the outer diameter surface, approximate positioning between the central axis of the outer ring 4 and the rotation axis Ax of the race ring holding mechanism 6 is performed. At the same time or at a predetermined timing thereafter, the outer ring shoe 46 is moved in the direction of the arrow X2 to bring the pair of outer ring rolls 46r closer to the outer ring 4 and fixed at the target position. At the same time or at a predetermined timing thereafter, the pusher support member 56 is moved in the direction of arrow E2 to bring the outer ring positioning pusher 50 closer to the outer ring shoe 46, so that the outer ring 4 faces the outer ring shoe 46. Press.

そして、このようなプロセスを、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、外輪4を、外輪用シュー46に向けて押圧させ、当該外輪用シュー46を基準に回転させるように、外輪用シュー46及び外輪用位置決めプッシャ50をセットすることができる。なお、上記したようなセットプロセスが行われている間、内輪用シュー44及び内輪用位置決めプッシャ48は外輪4から離間(後退)させておく。   Then, by repeating such a process until the target value is finally reached or enters an allowable range, the outer ring 4 is pressed toward the outer ring shoe 46, and the outer ring shoe 46 is rotated as a reference. Thus, the outer ring shoe 46 and the outer ring positioning pusher 50 can be set. During the setting process as described above, the inner ring shoe 44 and the inner ring positioning pusher 48 are separated (retreated) from the outer ring 4.

ここで、内輪2(又は、外輪4)を、内輪用シュー44(又は、外輪用シュー46)に向けて押圧させ、当該内輪用シュー44(又は、外輪用シュー46)を基準に回転させるように、内輪用シュー44(又は、外輪用シュー46)、及び、内輪用位置決めプッシャ48(又は、外輪用位置決めプッシャ50)をセットする際において、上記した位置決め機構移動手段(即ち、内輪用位置決め機構移動手段、又は、外輪用位置決め機構移動手段)の停止位置制御では、内輪2及び外輪4毎に割り振られている「型番」や「品番」等を制御装置(図示しない)に入力し、図示しないエンコーダ(回転検出器)によって、上記したそれぞれのACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較してフィードバック制御(位置制御や速度制御)を行う。   Here, the inner ring 2 (or the outer ring 4) is pressed toward the inner ring shoe 44 (or the outer ring shoe 46), and is rotated based on the inner ring shoe 44 (or the outer ring shoe 46). When the inner ring shoe 44 (or outer ring shoe 46) and the inner ring positioning pusher 48 (or outer ring positioning pusher 50) are set, the above-described positioning mechanism moving means (that is, the inner ring positioning mechanism) is set. In the stop position control of the moving means or the outer ring positioning mechanism moving means), the “model number”, “product number”, etc. assigned to the inner ring 2 and the outer ring 4 are input to a control device (not shown), not shown. The current position (coordinate) signal and target position (seat) are detected while detecting the rotational position and rotational speed of the output shaft of each AC servo motor by the encoder (rotation detector). ) Is compared with the signal for feedback control (position control and speed control) by.

このとき、現在位置(座標)信号と目標位置(座標)信号とに差がある場合、上記したACサーボモータを目標位置(座標)との差分を減少させる方向に動作(回転)させる。そして、かかる手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、上記した位置決め機構移動手段の停止位置制御が行われる。なお、別の方法として、上記したACサーボモータの現在位置情報をデジタル的に記録しておき、これに目標位置(座標)信号までの差分を与えて、その目的値に一度に到達する方法でもよい。   At this time, if there is a difference between the current position (coordinate) signal and the target position (coordinate) signal, the AC servo motor described above is operated (rotated) in a direction that reduces the difference from the target position (coordinate). Then, the above-described stop position control of the positioning mechanism moving unit is performed by repeating this procedure until the target value is finally reached or the allowable value is entered. As another method, the current position information of the AC servo motor described above is digitally recorded, and a difference to the target position (coordinate) signal is given to the current position information so that the target value is reached at once. Good.

この場合、ある特定の「型番」「品番」等の内輪2及び外輪4に対して、例えば交互に超仕上加工を行う場合を想定すると、上記した位置決め機構移動手段の停止位置は、内輪2を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転させるように、内輪用シュー44及び内輪用位置決めプッシャ48をセットする第1位置(座標)と、外輪4を、外輪用シュー46に向けて押圧させ、当該外輪用シュー46を基準に回転させるように、外輪用シュー46及び外輪用位置決めプッシャ50をセットする第2位置(座標)の2箇所に限定される。   In this case, assuming a case where, for example, superfinishing is alternately performed on the inner ring 2 and the outer ring 4 such as a specific “model number” and “product number”, the stop position of the positioning mechanism moving unit described above is the inner ring 2. The inner ring shoe 44 and the inner ring positioning pusher 48 are set so that the inner ring shoe 44 and the inner ring positioning pusher 48 are rotated with reference to the inner ring shoe 44 and the outer ring 4. The outer ring shoe 46 and the outer ring positioning pusher 50 are limited to two positions (coordinates) where the outer ring shoe 46 and the outer ring positioning pusher 50 are set so as to be pressed toward the outer shoe 46 and rotated with reference to the outer ring shoe 46.

このため、第1位置信号(座標)と第2位置信号(座標)との差分を無くすように、ACサーボモータを動作(回転)させることで、内輪2を、内輪用シュー44に向けて押圧させ、当該内輪用シュー44を基準に回転させるように、内輪用シュー44及び内輪用位置決めプッシャ48がセットされる位置「内輪用セット」(図1(a)、図3(a))と、外輪4を、外輪用シュー46に向けて押圧させ、当該外輪用シュー46を基準に回転させるように、外輪用シュー46及び外輪用位置決めプッシャ50がセットされる位置「外輪用セット」(図1(b)、図3(b))とに自動的に切り換えることができる。以下、これを「シュー・プッシャの内外輪セット切換」という。   For this reason, the inner ring 2 is pressed toward the inner ring shoe 44 by operating (rotating) the AC servo motor so as to eliminate the difference between the first position signal (coordinates) and the second position signal (coordinates). A position “inner ring set” (FIG. 1 (a), FIG. 3 (a)) at which the inner ring shoe 44 and the inner ring positioning pusher 48 are set so as to rotate with respect to the inner ring shoe 44; The position “outer ring set” where the outer ring shoe 46 and the outer ring positioning pusher 50 are set so that the outer ring 4 is pressed toward the outer ring shoe 46 and rotated with the outer ring shoe 46 as a reference (FIG. 1). (b) and FIG. 3 (b)) can be automatically switched. Hereinafter, this is referred to as “switching of inner and outer rings of shoe pusher”.

以上、内外輪兼用超仕上盤の内外輪兼用軌道面超仕上加工ユニットU1によれば、内輪2及び外輪4に対する超仕上加工を単一(1台)の設備で自動的に行えるようにすることで、内輪2に対する超仕上加工のためのセット(仕様)と、外輪4に対する超仕上加工のためのセット(仕様)との切り換え(即ち、内外輪2,4の交互加工)を全自動で行うことを可能にする技術を実現することができる。   As described above, according to the inner / outer ring combined raceway surface super finishing machining unit U1 of the inner / outer ring combined super finishing panel, it is possible to automatically perform super finishing on the inner ring 2 and the outer ring 4 with a single (one) facility. Thus, switching between a set (specification) for super finishing for the inner ring 2 and a set (specification) for super finishing for the outer ring 4 (ie, alternate machining of the inner and outer rings 2, 4) is performed automatically. The technology that makes this possible can be realized.

具体的には、軌道輪(内輪2、外輪4)の軌道面(内輪軌道面2s、外輪軌道面4s)に対する超仕上加工に際し、「ノーズピースの内外輪セット切換」により、複数の軌道輪搭載用構造体(ノーズピース)10を、内輪2を保持するセットと、外輪4を保持するセットとに自動的に切り換えることができる。これにより、内輪2(又は、外輪4)を当該各搭載面10sに対して自動的に搭載させることができる(図2(a),(b))。   Specifically, when superfinishing the raceway (inner ring raceway surface 2s, outer ring raceway surface 4s) of the raceway rings (inner ring 2, outer ring 4), a plurality of raceway rings are mounted by “switching the inner and outer ring sets of the nosepiece”. The structural body (nosepiece) 10 can be automatically switched between a set for holding the inner ring 2 and a set for holding the outer ring 4. As a result, the inner ring 2 (or the outer ring 4) can be automatically mounted on each mounting surface 10s (FIGS. 2A and 2B).

これに同期(追従)して、「シュー・プッシャの内外輪セット切換」により、内輪用シュー44及び内輪用位置決めプッシャ48、並びに、外輪用シュー46及び外輪用位置決めプッシャ50を、内輪用シュー44に内輪2を押圧させた状態で回転させるセットと、外輪用シュー46に外輪4を押圧させた状態で回転させるセットとに自動的に切り換えることができる。これにより、上記した複数の軌道輪搭載用構造体(ノーズピース)10上における内輪2(又は、外輪4)の内輪用シュー44(又は、外輪用シュー46)に対する位置合わせ(芯出し)を自動的に行うことができる(図1(a),(b))。   In synchronization (following) with this, the inner ring shoe 44 and the inner ring positioning pusher 48, and the outer ring shoe 46 and the outer ring positioning pusher 50 are replaced with the inner ring shoe 44 by “switching the inner and outer rings of the shoe and pusher”. It is possible to automatically switch between a set that rotates with the inner ring 2 pressed and a set that rotates with the outer ring shoe 46 pressed against the outer ring shoe 46. This automatically aligns (centers) the inner ring 2 (or outer ring 4) with the inner ring shoe 44 (or outer ring shoe 46) on the plurality of track ring mounting structures (nosepieces) 10 described above. (FIGS. 1A and 1B).

これに同期(追従)して、「プレッシャーロールの内外輪セット切換」により、一対のロール26rを、内輪2を各搭載面10sに圧接させるセットと、外輪4を各搭載面10sに圧接させるセットとに自動的に切り換えることができる。これにより、内輪2(又は、外輪4)は、各搭載面10sに自動的に圧接され、各軌道輪搭載用構造体(ノーズピース)10と一体となって回転可能となる(図3(a),(b))。   Synchronously (following), a set in which the inner ring 2 is pressed against each mounting surface 10s and a set of the outer ring 4 pressed against each mounting surface 10s by "pressure roll inner / outer ring set switching". And can be switched automatically. Thereby, the inner ring 2 (or the outer ring 4) is automatically pressed into contact with each mounting surface 10s, and can be rotated integrally with each bearing ring mounting structure (nosepiece) 10 (FIG. 3A ), (b)).

これに同期(追従)して、「超仕上加工開始位置の内外輪セット切換」により、内輪軌道面用砥石8a及び外輪軌道面用砥石8bを、内輪軌道面2sの超仕上加工開始位置に向けて移動旋回させるセットと、外輪軌道面4sの超仕上加工開始位置に向けて移動旋回させるセットとに自動的に切り換えることができる。これにより、内輪2(又は、外輪4)の内輪軌道面2s(又は、外輪軌道面4s)の超仕上加工開始位置に対して、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を自動的にセットさせることができる(図3(a),(b))。   Synchronously (following), the inner ring raceway surface grindstone 8a and the outer ring raceway surface grindstone 8b are directed to the superfinishing machining start position of the inner ring raceway surface 2s by “switching the inner and outer ring sets at the superfinishing processing start position”. Thus, it is possible to automatically switch between a set for moving and turning and a set for moving and turning toward the super-finishing start position of the outer ring raceway surface 4s. As a result, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) with respect to the superfinishing start position of the inner ring raceway surface 2s (or outer ring raceway surface 4s) of the inner ring 2 (or outer ring 4). Can be automatically set (FIGS. 3A and 3B).

これに同期(追従)して、各軌道輪搭載用構造体(ノーズピース)10と一体となっている内輪2(又は、外輪4)を、回転台12の回転に伴って所定方向Kに回転させた状態で、内輪軌道面2s(又は、外輪軌道面4s)に対して垂直方向から内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)を所定の圧力Fa,Fbで押し付けつつ、オシレーション(微少往復運動)Osさせながら内輪軌道面2s(又は、外輪軌道面4s)に沿ってトラバースTrする処理を行うことができる(図4(b),(c))。   In synchronization (following) with this, the inner ring 2 (or the outer ring 4) integrated with each track ring mounting structure (nosepiece) 10 is rotated in a predetermined direction K as the turntable 12 rotates. In this state, while pressing the inner ring raceway surface grindstone 8a (or outer ring raceway surface grindstone 8b) from the direction perpendicular to the inner ring raceway surface 2s (or outer ring raceway surface 4s) with predetermined pressures Fa and Fb, A process of traversing Tr along the inner ring raceway surface 2s (or outer ring raceway surface 4s) can be performed while oscillating (small reciprocating motion) Os (FIGS. 4B and 4C).

このとき、内輪軌道面用砥石8a(又は、外輪軌道面用砥石8b)と、内輪用シュー44の一対の内輪用ロール44r(又は、外輪用シュー46の一対の内輪用ロール46r)とは、内輪軌道面2s(又は、外輪軌道面4s)に作用する内輪軌道面用砥石8aの圧力Fa(又は、外輪軌道面用砥石8bの圧力Fb)を打ち消し合う位置関係にある。   At this time, the inner ring raceway surface grindstone 8a (or the outer ring raceway surface grindstone 8b) and the pair of inner ring rolls 44r of the inner ring shoe 44 (or the pair of inner ring rolls 46r of the outer ring shoe 46) are: The inner ring raceway surface 2s (or the outer ring raceway surface 4s) has a positional relationship in which the pressure Fa of the inner ring raceway surface grindstone 8a (or the pressure Fb of the outer ring raceway surface grindstone 8b) cancels out.

この状態において、回転中の内輪2(又は、外輪4)は、常時、内輪用シュー44(又は、外輪用シュー46)に向けて押圧されることとなる。これにより、内輪2(又は、外輪4)を、内輪用シュー44(又は、外輪用シュー46)を基準に回転させることができるため、内輪軌道面2s(又は、外輪軌道面4s)に対して極めて高精度に超仕上加工を施すことができる。   In this state, the rotating inner ring 2 (or outer ring 4) is always pressed toward the inner ring shoe 44 (or outer ring shoe 46). As a result, the inner ring 2 (or outer ring 4) can be rotated with reference to the inner ring shoe 44 (or outer ring shoe 46), so that the inner ring raceway surface 2s (or outer ring raceway surface 4s) can be rotated. Super-finishing can be performed with extremely high accuracy.

これによれば、内輪2及び外輪4に対する超仕上加工を単一(1台)の設備で自動的に行えるようにしたことにより、従来のような内輪軌道面専用の超仕上加工設備と、外輪軌道面専用の超仕上加工設備とをそれぞれ独立して設ける必要がないため、その分だけ設置スペースを確保する必要がなくなると共に、設備投資費並びに消費電力を低減させることができる。これにより、従来に比べて大幅な低コスト化及び省スペース化並びに省エネ化を達成することができる。   According to this, the super finishing processing for the inner ring 2 and the outer ring 4 can be automatically performed by a single (one) facility, so that the super finishing processing equipment dedicated to the inner ring raceway surface as in the prior art, Since it is not necessary to provide the super finishing processing equipment dedicated to the raceway surface independently, it is not necessary to secure the installation space by that amount, and the capital investment cost and power consumption can be reduced. Thereby, it is possible to achieve significant cost reduction, space saving, and energy saving as compared with the conventional case.

更に、内輪2に対する超仕上加工のためのセット(仕様)と、外輪4に対する超仕上加工のためのセット(仕様)との切り換え(即ち、内外輪2,4の交互加工)を全自動で行うことを可能にしたことにより、例えば内輪2及び外輪4を保持するための保持部材の位置合わせ作業や、内輪軌道面2s及び外輪軌道面4sに対する超仕上用砥石8a,8bの位置決め作業などが一切不要となり、その結果、超仕上加工に要する手間や時間を大幅に省くことができる。このため、超仕上加工の作業効率を飛躍的に向上させることが可能となり、特に、上記した内外輪兼用超仕上盤を多品種小ロット化が要求される製造ラインに導入することで、超仕上加工の稼働率アップに大きく貢献することができる。   Furthermore, switching between a set (specification) for super finishing for the inner ring 2 and a set (specification) for super finishing for the outer ring 4 (that is, alternate machining of the inner and outer rings 2, 4) is performed automatically. For example, the positioning work of the holding member for holding the inner ring 2 and the outer ring 4 and the positioning work of the super finishing grindstones 8a and 8b with respect to the inner ring raceway surface 2s and the outer ring raceway surface 4s are all possible. As a result, the labor and time required for super-finishing can be greatly reduced. For this reason, it is possible to dramatically improve the work efficiency of super finishing, and in particular, by introducing the above-described super finishing panel for both inner and outer rings into a production line that requires a large variety of small lots, This can greatly contribute to the improvement of the working rate.

なお、上記した実施形態では、単列円すいころ軸受用のつば付き内輪2及びのつば無し外輪4を適用し、その内輪軌道面2s及び外輪軌道面4sに超仕上加工を行う場合を想定したが、これに限定されることはなく、つば部(面)2tを有する複列の円筒及び円すい内輪2(図5(a)〜(c))や、その他の各種外輪軌道面4sを有する外輪4(図5(d)〜(g))にも、同様に、超仕上加工を行うことができることは言うまでもない。特に、複列の内外輪2,4(図5(b),(c),(f),(g))の超仕上加工もワンチャックで行うことができるため、加工効率を飛躍的に向上させることができる。   In the above-described embodiment, it is assumed that the inner ring 2 with a flange and the outer ring 4 without a flange for a single row tapered roller bearing are applied, and the inner ring raceway surface 2s and the outer ring raceway surface 4s are superfinished. However, the present invention is not limited to this, and a double-row cylinder and conical inner ring 2 (FIGS. 5A to 5C) having a collar portion (surface) 2t, and an outer ring 4 having various other outer ring raceway surfaces 4s. It goes without saying that superfinishing can also be performed in the same way (FIGS. 5D to 5G). In particular, the super-finishing of the double-row inner and outer rings 2, 4 (Figs. 5 (b), (c), (f), (g)) can also be performed with one chuck, dramatically improving the processing efficiency. Can be made.

また、上記した実施形態では、「プレッシャーロールの内外輪セット切換」において、一対のロール26rによって内輪2(又は、外輪4)を各軌道輪搭載用構造体(ノーズピース)10と一体化させるようにしたが、これに代えて例えば、軌道輪保持機構6の一構成を成す回転台12をマグネットチャックとして構成すると共に、各軌道輪搭載用構造体(ノーズピース)10を導電性材料で構成する。そして、当該マグネットチャックの磁気作用によって、導電性を有する内輪2(又は、外輪4)を各軌道輪搭載用構造体(ノーズピース)10に吸着させて一体化させるようにしてもよい。この場合、当該マグネットチャックと一対のロール26rとを併用してもよい。なお、マグネットチャックにより内輪2(又は、外輪4)を各軌道輪搭載用構造体(ノーズピース)10に吸着させる場合(即ち、内輪用シュー44(又は、外輪用シュー46)を用いない場合)、内輪2(又は、外輪4)の中心軸と軌道輪保持機構6の回転軸Axとを一致させるように、当該内輪2(又は、外輪4)を各軌道輪搭載用構造体(ノーズピース)10に搭載させる。   In the above-described embodiment, the inner ring 2 (or the outer ring 4) is integrated with each track ring mounting structure (nosepiece) 10 by the pair of rolls 26r in the “pressure roll inner / outer ring set switching”. However, instead of this, for example, the rotating base 12 constituting one structure of the bearing ring holding mechanism 6 is configured as a magnet chuck, and each bearing ring mounting structure (nosepiece) 10 is configured of a conductive material. . Then, the inner ring 2 (or the outer ring 4) having conductivity may be attracted to and integrated with each track ring mounting structure (nose piece) 10 by the magnetic action of the magnet chuck. In this case, the magnet chuck and the pair of rolls 26r may be used in combination. When the inner ring 2 (or outer ring 4) is attracted to each track ring mounting structure (nose piece) 10 by a magnet chuck (that is, when the inner ring shoe 44 (or outer ring shoe 46) is not used). The inner ring 2 (or outer ring 4) is connected to each bearing ring mounting structure (nose piece) so that the central axis of the inner ring 2 (or outer ring 4) and the rotation axis Ax of the bearing ring holding mechanism 6 coincide with each other. 10 is mounted.

「つば部超仕上加工ユニットU2」
図1(a)に示すように、本実施形態のつば部超仕上加工ユニットU2は、つば付き内輪2の複数のつば部(面)2t(同図では、1つのつば部(面)2tを示す)に対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことを可能にするように構成されている。これにより、上記した内輪軌道面2sに対する超仕上加工と同時に、各つば部(面)2tに対する超仕上加工を全自動で行うことを可能にしている。
"Tub part super finishing unit U2"
As shown in FIG. 1 (a), the brim portion superfinishing processing unit U2 of the present embodiment includes a plurality of brim portions (surfaces) 2t (in the figure, one brim portion (surface) 2t). It is possible to perform superfinishing with respect to (shown) automatically at the same time with a single (one) facility. Thereby, it is possible to perform the super finishing process for each collar portion (surface) 2t fully automatically at the same time as the super finishing process for the inner ring raceway surface 2s.

図1(a)、図6(a),(b)、図7(a),(b)に示すように、つば部超仕上加工ユニットU2は、1個のつば部用砥石60aを支持するつば部加工ヘッド60と、つば部加工ヘッド60を反転可能に支持し、かつ、その反転軸R回りにつば部用砥石60aを所望の角度で反転させる反転機構62と、反転機構62を支持し、かつ、反転機構62と共につば部加工ヘッド60を所望の方向θに旋回させると共に、微少往復運動(オシレーション)Osさせる作動装置64とを備えている。   As shown in FIGS. 1 (a), 6 (a), 6 (b), 7 (a), and 7 (b), the brim portion superfinishing processing unit U2 supports one brim portion grindstone 60a. The collar part machining head 60, the collar part machining head 60 are supported in a reversible manner, and the reversing mechanism 62 for reversing the collar part grindstone 60a around the reversing axis R at a desired angle, and the reversing mechanism 62 are supported. The reversing mechanism 62 and the collar portion machining head 60 are swung in a desired direction θ, and an operating device 64 is provided for minute reciprocation (oscillation) Os.

作動装置64は、駆動源Mによって回転可能な回転軸66(図7(b)参照)を有すると共に、当該回転軸66の回転運動を往復運動に変換して反転機構62に伝達することで、つば部加工ヘッド60のつば部用砥石60aを微少往復運動させるオシレーション機構68と、回転軸66と同心に構成され、反転機構62を旋回させることで、つば部加工ヘッド60のつば部用砥石60aを所望の角度まで旋回させる旋回機構70とを備えている。   The actuating device 64 has a rotating shaft 66 (see FIG. 7B) that can be rotated by the driving source M, and converts the rotating motion of the rotating shaft 66 into a reciprocating motion and transmits it to the reversing mechanism 62. An oscillation mechanism 68 configured to reciprocate the collar part grindstone 60a of the collar part machining head 60 and a rotary shaft 66 concentrically, and by turning the reversing mechanism 62, the collar part grindstone of the collar part machining head 60 is rotated. And a turning mechanism 70 that turns the 60a to a desired angle.

オシレーション機構68は、回転軸66に一体的に設けられ、その回転中心が回転軸66の回転中心から偏心している(ずれている)偏心軸部66p(図7(b)参照)と、偏心軸部66pに対して相対回転可能に取り付けられ、かつ、反転機構62を支持するオシレーション部68pとを備えている。   The oscillation mechanism 68 is provided integrally with the rotation shaft 66. When the rotation center is eccentric (displaced) from the rotation center of the rotation shaft 66, the oscillation mechanism 68 is eccentric (see FIG. 7B). An oscillation portion 68p that is attached to the shaft portion 66p so as to be rotatable relative to the shaft portion 66p and supports the reversing mechanism 62 is provided.

旋回機構70は、オシレーション機構68の回転軸66と同心状に回転可能で、かつ、当該回転軸66とは別軸で構成された角度調整ギヤ軸部72と、角度調整ギヤ軸部72に連結され、オシレーション部68pを所望の角度まで回転させる角度調整テーブル74とを備えている。   The turning mechanism 70 can be rotated concentrically with the rotation shaft 66 of the oscillation mechanism 68, and the angle adjustment gear shaft portion 72, which is a separate shaft from the rotation shaft 66, and the angle adjustment gear shaft portion 72. An angle adjustment table 74 that is connected and rotates the oscillation unit 68p to a desired angle is provided.

この場合、角度調整ギヤ軸部72は、回転軸66の外周に沿って同心に設けられた中空のスピンドル軸76(図7(b)参照)と、スピンドル軸76の外周に沿って同心に固定された中空円環状の角度調整ギヤ78(図7(b)参照)とを備えて構成されている。また、上記した角度調整テーブル74は、角度調整ギヤ78に固定されており、当該角度調整ギヤ78と共に、スピンドル軸76と同心に回転するようになっている。   In this case, the angle adjusting gear shaft portion 72 is fixed concentrically along the outer periphery of the spindle shaft 76 and the hollow spindle shaft 76 (see FIG. 7B) provided concentrically along the outer periphery of the rotating shaft 66. And a hollow annular angle adjusting gear 78 (see FIG. 7B). The angle adjustment table 74 described above is fixed to the angle adjustment gear 78 and rotates concentrically with the spindle shaft 76 together with the angle adjustment gear 78.

なお、回転軸66とスピンドル軸76との間には、複数(図面では一例として、2つ)の軸受80(図7(b)参照)が介在されており、これら軸受80によって、回転軸66とスピンドル軸76とは相対回転可能に位置決めされている。また、スピンドル軸76は、その外周に設けられた複数(図面では一例として、2つ)の軸受82(図7(b)参照)を介して固定ハウジング84(図7(b)参照)内に回転可能に位置決めされており、固定ハウジング84には、上記した駆動源Mが搭載されている。   A plurality of (for example, two in the drawing) bearings 80 (see FIG. 7B) are interposed between the rotary shaft 66 and the spindle shaft 76, and the rotary shaft 66 is driven by these bearings 80. And the spindle shaft 76 are positioned so as to be relatively rotatable. Further, the spindle shaft 76 is provided in a fixed housing 84 (see FIG. 7B) via a plurality of bearings 82 (see FIG. 7B) provided on the outer periphery of the spindle shaft 76 (see FIG. 7B). The drive source M is mounted on the fixed housing 84 and is positioned so as to be rotatable.

図7(b),(c)に示すように、オシレーション機構68において、上記したオシレーション部68pと偏心軸部66pとは、軸受86を介して相対回転可能に連結されている。また、オシレーション部68pは、後述するACサーボモータによって、上記した角度調整ギヤ軸部72(具体的には、角度調整テーブル74が固定された角度調整ギヤ78)に歯合した歯車機構88(後述する)を回転制御することで、所望の角度に保持されるようになっている。このため、当該オシレーション部68pは、上記した回転軸66と共に偏心回転する偏心軸部66pと連れ回りすることはない。   As shown in FIGS. 7B and 7C, in the oscillation mechanism 68, the above-described oscillation portion 68p and the eccentric shaft portion 66p are coupled to each other via a bearing 86 so as to be relatively rotatable. Further, the oscillation unit 68p is a gear mechanism 88 (specifically, meshed with the angle adjustment gear shaft portion 72 (specifically, the angle adjustment gear 78 to which the angle adjustment table 74 is fixed) by an AC servo motor described later. The rotation is controlled at a desired angle (described later). For this reason, the oscillation part 68p does not rotate with the eccentric shaft part 66p that rotates eccentrically with the rotary shaft 66 described above.

これにより、駆動源Mによって回転軸66を回転させると、その回転運動が偏心軸部66pからオシレーション部68pを介して往復運動に変換されて反転機構62に伝達することで、つば部加工ヘッド60のつば部用砥石60aを微少往復運動(オシレーション)Osさせることができる。なお、図7(c)には、オシレーション部68pの構成が示されているが、回転軸66の回転運動を偏心軸部66pからオシレーション部68pを介して往復運動に変換できるものであれば、当該オシレーション部68pは、図7(c)に示された構成に限定されることはなく、これ以外の構成としてもよい。   As a result, when the rotary shaft 66 is rotated by the drive source M, the rotary motion is converted from the eccentric shaft portion 66p to the reciprocating motion via the oscillation portion 68p and transmitted to the reversing mechanism 62. The 60 bristle grindstones 60a can be finely reciprocated (oscillated) Os. FIG. 7 (c) shows the configuration of the oscillation portion 68p. However, it is possible to convert the rotational motion of the rotary shaft 66 from the eccentric shaft portion 66p to the reciprocating motion via the oscillation portion 68p. For example, the oscillation unit 68p is not limited to the configuration shown in FIG. 7C, and may have a configuration other than this.

そして、角度調整ギヤ軸部72(即ち、角度調整ギヤ78)を回転させると、その回転運動が角度調整テーブル74からオシレーション部68pに伝達され、当該角度調整テーブル74と共にオシレーション部68pを回転させることで、反転機構62と共につば部加工ヘッド60を所望の角度θまで旋回させることができる。   When the angle adjustment gear shaft 72 (that is, the angle adjustment gear 78) is rotated, the rotational movement is transmitted from the angle adjustment table 74 to the oscillation unit 68p, and the oscillation unit 68p is rotated together with the angle adjustment table 74. By doing so, the collar part processing head 60 can be turned to a desired angle θ together with the reversing mechanism 62.

ここで、角度調整ギヤ78を角度調整テーブル74と共に回転させて、つば部加工ヘッド60を所望の角度θまで旋回させる動作は、当該角度調整ギヤ78に歯合している歯車機構88と、ACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、歯車機構88の回転軸にACサーボモータを連結させ、当該ACサーボモータによって回転軸を回転制御すればよい。これにより、つば部加工ヘッド60を所望の角度θまで旋回させることができる。   Here, the operation of rotating the angle adjusting gear 78 together with the angle adjusting table 74 and turning the collar portion machining head 60 to the desired angle θ includes the gear mechanism 88 meshed with the angle adjusting gear 78 and the AC. It can be realized by a combination with a servo motor. Although not particularly illustrated, for example, an AC servo motor may be connected to the rotation shaft of the gear mechanism 88, and the rotation shaft may be rotationally controlled by the AC servo motor. Thereby, the collar part processing head 60 can be rotated to desired angle (theta).

このようなつば部超仕上加工ユニットU2は、矢印Z方向に移動可能なZ軸テーブル90に搭載されており、上記した固定ハウジング84はこれに搭載されている駆動源Mと共に、当該Z軸テーブル90上に固定されている。更に、Z軸テーブル90は、矢印X方向に移動可能なX軸テーブル92に搭載されている。これによれば、Z軸テーブル90及びX軸テーブル92をそれぞれ所望の距離(位置)まで移動させることで、つば部加工ヘッド60を所望方向に所望量(距離)だけ移動させることができる。   Such a brim portion superfinishing processing unit U2 is mounted on a Z-axis table 90 that is movable in the arrow Z direction, and the above-described fixed housing 84, together with the drive source M mounted on the Z-axis table 90, is mounted on the Z-axis table. 90 is fixed on. Further, the Z-axis table 90 is mounted on an X-axis table 92 that can move in the arrow X direction. According to this, by moving the Z-axis table 90 and the X-axis table 92 to a desired distance (position), the collar part machining head 60 can be moved in a desired direction by a desired amount (distance).

ここで、Z軸テーブル90及びX軸テーブル92をそれぞれ所望の距離(位置)まで移動させる動作は、ボールねじ(ねじ軸とナットの間でボールが転がり回転する構造)とACサーボモータとの組み合わせによって実現することが可能である。特に図示しないが例えば、Z軸テーブル90の場合は、矢印Z方向に沿って配置したねじ軸にナットを介してZ軸テーブル90を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。また、X軸テーブル92の場合は、矢印X方向に沿って配置したねじ軸にナットを介してX軸テーブル92を連結させると共に、ねじ軸にACサーボモータを連結させ、当該ACサーボモータによってねじ軸を回転制御すればよい。   Here, the operation of moving the Z-axis table 90 and the X-axis table 92 to each desired distance (position) is a combination of a ball screw (a structure in which a ball rolls and rotates between a screw shaft and a nut) and an AC servo motor. Can be realized. Although not specifically illustrated, for example, in the case of the Z-axis table 90, the Z-axis table 90 is connected to the screw shaft arranged along the arrow Z direction via a nut, and the AC servo motor is connected to the screw shaft. The rotation of the screw shaft may be controlled by a servo motor. In the case of the X-axis table 92, the X-axis table 92 is connected to the screw shaft arranged along the arrow X direction via a nut, and the AC servo motor is connected to the screw shaft. The rotation of the shaft may be controlled.

この場合、上記した角度調整テーブル74によるつば部加工ヘッド60の旋回制御、及び、上記したZ軸テーブル90及びX軸テーブル92によるつば部加工ヘッド60の移動制御を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、例えば図6(b)に示すように、つば部超仕上加工ユニットU2を、上記した内外輪兼用軌道面超仕上加工ユニットU1と干渉しない位置にセットすることができ、これにより、つば部加工ヘッド60に支持されているつば部用砥石60aを、内輪2のつば部(面)2tにセットすることができる。   In this case, the turning control of the collar part machining head 60 by the angle adjustment table 74 and the movement control of the collar part machining head 60 by the Z-axis table 90 and the X-axis table 92 finally reach the target value. Or by repeating until it is within the allowable range, as shown in FIG. 6B, for example, as shown in FIG. 6B, the brim portion super finishing unit U2 is set at a position where it does not interfere with the inner / outer ring combined raceway surface super finishing unit U1. As a result, the flange portion grindstone 60a supported by the flange portion processing head 60 can be set on the flange portion (surface) 2t of the inner ring 2.

ここで、つば部用砥石60aを内輪2のつば部(面)2tにセットする際において、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御では、つば付き内輪2の種類毎に割り振られている「型番」や「品番」等を制御装置(図示しない)に入力し、図示しないエンコーダ(回転検出器)によって、上記した各ACサーボモータの出力軸の回転位置や回転速度を検知しながら、現在位置(座標)信号と目標位置(座標)信号とを比較してフィードバック制御(位置制御や速度制御)を行う。   Here, when setting the collar portion grindstone 60a on the collar portion (surface) 2t of the inner ring 2, in the stop position control of the angle adjustment table 74, the Z-axis table 90, and the X-axis table 92, the inner ring 2 with a collar is provided. The “model number” and “product number” assigned for each type are input to a control device (not shown), and an encoder (rotation detector) (not shown) While detecting the rotational speed, the current position (coordinate) signal and the target position (coordinate) signal are compared to perform feedback control (position control or speed control).

このとき、現在位置(座標)信号と目標位置(座標)信号とに差がある場合、上記したACサーボモータを目標位置(座標)との差分を減少させる方向に動作(回転)させる。そして、かかる手順を、最終的に目標値に到達するか、許容範囲に入るまで繰り返すことで、角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御が行われる。なお、別の方法として、上記したACサーボモータの現在位置情報をデジタル的に記録しておき、これに目標位置(座標)信号までの差分を与えて、その目的値に一度に到達する方法でもよい。   At this time, if there is a difference between the current position (coordinate) signal and the target position (coordinate) signal, the AC servo motor described above is operated (rotated) in a direction that reduces the difference from the target position (coordinate). Then, by repeating this procedure until the target value is finally reached or the allowable range is entered, stop position control of the angle adjustment table 74, the Z-axis table 90, and the X-axis table 92 is performed. As another method, the current position information of the AC servo motor described above is digitally recorded, and a difference to the target position (coordinate) signal is given to the current position information so that the target value is reached at once. Good.

かかる停止位置制御が完了すると、つば部用砥石60aが、内輪2のつば部(面)2tにセットされ、その状態で、上記したオシレーション機構68を動作、具体的には、駆動源Mによって回転軸66を回転させて、その回転運動を偏心軸部66pからオシレーション部68pを介して往復運動に変換して反転機構62に伝達し、つば部加工ヘッド60のつば部用砥石60aを微少往復運動(オシレーション)Osさせることで、上記した内輪軌道面2sに対する超仕上加工が行われている場合でも、これと同時に、つば部(面)2tに対する超仕上加工を行うことができる。   When the stop position control is completed, the collar portion grindstone 60a is set on the collar portion (surface) 2t of the inner ring 2, and in this state, the oscillation mechanism 68 described above is operated, specifically, by the drive source M. The rotary shaft 66 is rotated, and the rotational motion is converted from the eccentric shaft portion 66p to the reciprocating motion via the oscillation portion 68p and transmitted to the reversing mechanism 62, and the collar portion grindstone 60a of the collar portion machining head 60 is slightly changed. By performing reciprocation (oscillation) Os, even when the above-described superfinishing process is performed on the inner ring raceway surface 2s, the superfinishing process can be performed on the collar portion (surface) 2t at the same time.

また、本実施形態のつば部超仕上加工ユニットU2は、つば部加工ヘッド60を反転可能に支持し、かつ、その反転軸R回りにつば部用砥石60aを所望の角度で反転させる反転機構62を備えているため、複数のつば部(面)2tに対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことを可能にしている。   Further, the brim part super finishing unit U2 of the present embodiment supports the brim part machining head 60 in a reversible manner, and reverses the collar part grindstone 60a around the reverse axis R at a desired angle. Therefore, it is possible to automatically perform super finishing for a plurality of collar portions (surfaces) 2t in a single (one) facility at the same time.

例えば、図8(a)に示すように、複列円すい内輪2において、2つのつば面2tが周方向に沿って中央に対向配置されている場合、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御を行って、つば部用砥石60aを一方側のつば面2tにセットし、つば部用砥石60aを微少往復運動(オシレーション)Osさせて、当該つば面2tに対する超仕上加工を行う。   For example, as shown in FIG. 8 (a), in the double-row conical inner ring 2, when the two flange surfaces 2t are opposed to each other in the center along the circumferential direction, the angle adjustment table 74 and the Z-axis table 90 described above are used. Then, the stop position control of the X-axis table 92 is performed, the collar portion grindstone 60a is set on the collar surface 2t on one side, the collar portion grindstone 60a is slightly reciprocated (oscillated) Os, and the collar surface 2t Super finishing for

これに連続して、再び、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御を行って、つば部用砥石60aを他方側のつば面2tにセットする際(或いは、セットする前に予め)、反転機構62によってつば部加工ヘッド60を反転させ、その反転軸R回りにつば部用砥石60aを180°反転させる。これにより、当該つば部用砥石60aによって、他方のつば面2tに対する超仕上加工を行うことができる。   Subsequently, the stop position control of the angle adjustment table 74, the Z-axis table 90, and the X-axis table 92 described above is performed again to set the brim portion grindstone 60a on the other brim surface 2t (or , Before setting), the collar portion machining head 60 is reversed by the reversing mechanism 62 and the collar portion grinding stone 60a is reversed by 180 ° around the reversing axis R. Thereby, the superfinishing process with respect to the other collar surface 2t can be performed with the said grindstone 60a for collar parts.

また、図8(b)に示すように、単列(複列)円筒内輪2において、2つのつば面2tが周方向に沿って両側に対向配置されている場合、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御を行って、つば部用砥石60aを一方側のつば面2tにセットし、つば部用砥石60aを微少往復運動(オシレーション)Osさせて、当該つば面2tに対する超仕上加工を行う。   As shown in FIG. 8B, in the single-row (double-row) cylindrical inner ring 2, when the two flange surfaces 2t are disposed opposite to each other along the circumferential direction, the angle adjustment table 74 described above, The stop position control of the Z-axis table 90 and the X-axis table 92 is performed, the collar part grindstone 60a is set on the one collar face 2t, and the collar part grindstone 60a is slightly reciprocated (oscillated) Os. Super finishing is performed on the collar surface 2t.

これに連続して、図8(c)に示すように、再び、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置制御を行って、つば部用砥石60aを他方側のつば面2tにセットする際(或いは、セットする前に予め)、反転機構62によってつば部加工ヘッド60を反転させ、その反転軸R回りにつば部用砥石60aを180°反転させる。これにより、当該つば部用砥石60aによって、他方のつば面2tに対する超仕上加工を行うことができる。   Subsequently, as shown in FIG. 8 (c), the stop position control of the angle adjustment table 74, the Z-axis table 90, and the X-axis table 92 described above is performed again, and the collar portion grindstone 60a is moved to the other side. When setting the collar surface 2t (or before setting), the collar portion machining head 60 is reversed by the reversing mechanism 62, and the collar portion grindstone 60a is reversed by 180 ° around the reversing axis R. Thereby, the superfinishing process with respect to the other collar surface 2t can be performed with the said grindstone 60a for collar parts.

この場合、ある特定の「型番」「品番」等の内輪2の2つのつば面2tに対して、連続して超仕上加工を行う場合を想定すると、上記した角度調整テーブル74、Z軸テーブル90及びX軸テーブル92の停止位置は、つば部用砥石60aを一方側のつば面2tにセットする第1位置(座標)と、つば部用砥石60aを他方側のつば面2tにセットする第2位置(座標)の2箇所に限定される。このため、第1位置信号(座標)と第2位置信号(座標)との差分を無くすように、ACサーボモータを動作(回転)させることで、つば部用砥石60aを、上記第1位置(座標)と上記第2位置(座標)とに自動的に切り換えることができる。   In this case, assuming the case where superfinishing is continuously performed on the two flange surfaces 2t of the inner ring 2 such as a specific “model number” and “product number”, the angle adjustment table 74 and the Z-axis table 90 described above are assumed. And the stop position of the X-axis table 92 includes a first position (coordinates) for setting the collar portion grindstone 60a on one side collar surface 2t, and a second position for setting the collar portion grindstone 60a on the other side collar surface 2t. It is limited to two locations (coordinates). For this reason, by operating (rotating) the AC servo motor so as to eliminate the difference between the first position signal (coordinates) and the second position signal (coordinates), the collar part grindstone 60a is moved to the first position ( (Coordinates) and the second position (coordinates) can be automatically switched.

以上、内外輪兼用超仕上盤のつば部超仕上加工ユニットU2によれば、つば付き内輪2の複数のつば部(面2t)に対する超仕上加工を、単一(1台)の設備で同時期に一括して自動的に行うことができ、これにより、内輪軌道面2sに対する超仕上加工と同時に、複数のつば部(面)2tに対する超仕上加工を全自動で行うことが可能となる。   As described above, according to the super-finishing processing unit U2 for the inner and outer ring super finishing board, the super-finishing processing for the plurality of collar portions (surface 2t) of the inner ring 2 with the collar can be performed simultaneously with a single (one) facility. Thus, the super finishing for the plurality of collar portions (surfaces) 2t can be performed fully automatically simultaneously with the super finishing for the inner ring raceway surface 2s.

これによれば、複数のつば部(面2t)に対する超仕上加工を単一(1台)の設備で自動的に行えるようにしたことにより、従来のような複数のつば部(面)専用の超仕上げ装置をそれぞれ独立して設ける必要がないため、その分だけ装置を小型化することができると共に、設備投資費並びに消費電力を低減させることができる。これにより、大幅な低コスト化並びに省エネ化を達成することができる。   According to this, the superfinishing processing for a plurality of collar portions (surface 2t) can be automatically performed by a single (one) facility, so that a plurality of collar portions (surfaces) dedicated to conventional ones can be used. Since it is not necessary to provide each superfinishing device independently, the device can be reduced in size accordingly, and the capital investment cost and power consumption can be reduced. Thereby, significant cost reduction and energy saving can be achieved.

更に、内輪軌道面2sに対する超仕上加工と同時に、複数のつば部(面)2tに対する超仕上加工を全自動で行えるようにしたことにより、複数のつば部(面2t)に対する加工効率を高めることができるため、つば付き内輪2の生産性を飛躍的に向上させることができる。   Furthermore, simultaneously with super finishing for the inner ring raceway surface 2s, super finishing processing for the plurality of collar portions (surfaces) 2t can be performed fully automatically, thereby improving the processing efficiency for the plurality of collar portions (surface 2t). Therefore, the productivity of the collared inner ring 2 can be dramatically improved.

更にまた、一方側のつば面2tに対するつば部用砥石60aのセットと、他方側のつば面2tに対するつば部用砥石60aのセットとの切り換えを、同時期に一括して全自動で行うことを可能にしたことにより、例えば、複数のつば面2tに対するつば部用砥石60aの位置決め作業などが一切不要となり、その結果、超仕上加工に要する手間や時間を大幅に省くことができる。このため、超仕上加工の作業効率を飛躍的に向上させることが可能となり、特に、上記した内外輪兼用超仕上盤を多品種小ロット化が要求される製造ラインに導入することで、超仕上加工の稼働率アップに大きく貢献することができる。   Furthermore, the switching between the setting of the brim portion grindstone 60a for the one side brim surface 2t and the setting of the brim portion grindstone 60a for the other side brim surface 2t can be performed fully automatically at the same time. By making it possible, for example, the positioning work of the brim portion grindstone 60a with respect to the plurality of brim surfaces 2t becomes unnecessary, and as a result, labor and time required for super finishing can be greatly reduced. For this reason, it is possible to dramatically improve the work efficiency of super finishing, and in particular, by introducing the above-described super finishing panel for both inner and outer rings into a production line that requires a large variety of small lots, This can greatly contribute to the improvement of the working rate.

また更に、つば部加工ヘッド60のつば部用砥石60aを微少往復運動(オシレーション)させるための回転軸66と、つば部加工ヘッド60のつば部用砥石60aを旋回させるためのスピンドル軸76とを別軸で構成すると共に、回転軸66を回転させる駆動源Mを固定ハウジング84を介してZ軸テーブル90に固定したことにより、スピンドル軸76の旋回運動によって、例えば駆動源Mの動力ケーブル(図示しない)がねじられたり、これにより駆動源Mが故障したりするといったような不具合の発生を未然に防止することができる。   Still further, a rotary shaft 66 for reciprocating (oscillating) the collar portion grindstone 60a of the collar portion machining head 60, and a spindle shaft 76 for rotating the collar portion grindstone 60a of the collar portion machining head 60; And the drive source M for rotating the rotary shaft 66 is fixed to the Z-axis table 90 via the fixed housing 84, so that, for example, the power cable of the drive source M ( It is possible to prevent the occurrence of problems such as twisting (not shown) or the failure of the drive source M.

2 つば付き内輪
2t つば部(面)
60 つば部加工ヘッド
60a つば部用砥石
62 反転機構
64 作動装置
U2 超仕上加工ユニット
2 Inner ring with collar 2t Collar (surface)
60 Brim head 60a Brim grindstone 62 Reversing mechanism 64 Actuator U2 Super finishing machining unit

Claims (4)

つば付き内輪の複数のつば部に対する超仕上加工を、単一の設備で内輪軌道面に対する超仕上加工と同時に一括して自動的に行うことを可能にする超仕上加工ユニットであって、
つば部用砥石を支持するつば部加工ヘッドと、
前記つば部加工ヘッドを反転軸を中心に反転可能に支持し、かつ、前記反転軸回りに前記つば部用砥石を所望の角度で反転させる反転機構と、
前記反転機構を支持し、かつ、前記反転機構と共に前記つば部加工ヘッドを所望の方向に旋回させると共に、微少往復運動させる作動装置とを備えていることを特徴とする超仕上加工ユニット。
The superfinished to a plurality of flange portions of the flanged inner ring, a superfinished unit makes it possible to automatically performed collectively in superfinished simultaneously against the inner ring raceway surface at a single facility,
A brim processing head that supports the brimstone for the brim,
The flange portion processing head inverted rotatably supported about the inversion axis, and a reversing mechanism for reversing the flange portion grindstone to the reversing axis at a desired angle,
Supporting the reversing mechanism, and, along with turning the flange portion processing head in a desired direction with the reversing mechanism, superfinished unit, characterized by comprising an actuating device for small reciprocating motion.
前記作動装置は、
駆動源によって回転可能な回転軸を有すると共に、当該回転軸の回転運動を往復運動に変換して前記反転機構に伝達することで、前記つば部加工ヘッドのつば部用砥石を微少往復運動させるオシレーション機構と、
前記回転軸と同心に構成され、前記反転機構を旋回させることで、前記つば部加工ヘッドのつば部用砥石を所望の角度まで旋回させる旋回機構とを備えていることを特徴とする請求項1に記載の超仕上加工ユニット。
The actuating device is:
And has a shaft rotatable rotated by a driving source, that converts the rotary motion of the rotary shaft into reciprocating motion is transmitted to the reversing mechanism, oscillating for small reciprocating collar portion grindstone of the flange processing head Adjustment mechanism,
Is configured concentrically with the rotary shaft, by pivoting the reversing mechanism, according to claim 1, characterized in that the flange portion grindstone of the flange processing head and a turning mechanism for turning to the desired angle Super finishing processing unit described in 1.
前記オシレーション機構は、
前記回転軸に設けられた偏心軸部と、
前記偏心軸部に対して相対回転可能に取り付けられ、かつ、前記反転機構を支持するオシレーション部とを備えており、
前記回転軸を回転させると、その回転運動が前記偏心軸部から前記オシレーション部を介して往復運動に変換されて前記反転機構に伝達することで、前記つば部加工ヘッドのつば部用砥石を微少往復運動させることを特徴とする請求項2に記載の超仕上加工ユニット。
The oscillation mechanism is
An eccentric shaft portion provided on the rotary shaft,
Relatively rotatably attached to the eccentric shaft portion, and includes a oscillation portion supporting the reversing mechanism,
When rotating the rotary shaft, that the rotational movement is transmitted from the eccentric shaft to the reversing mechanism is converted into reciprocating motion through the oscillation portion, the flange portion grindstone of the flange processing head 3. The superfinishing processing unit according to claim 2, wherein the fine finishing unit is reciprocally moved.
前記旋回機構は、
前記オシレーション機構の回転軸と同心状に回転可能で、かつ、当該回転軸とは別軸で構成された角度調整ギヤ軸部と、
前記角度調整ギヤ軸部に連結され、前記オシレーション部を所望の角度まで回転させる角度調整テーブルとを備えており、
前記角度調整ギヤ軸部を回転させると、その回転運動が前記角度調整テーブルから前記オシレーション部に伝達され、当該角度調整テーブルと共にオシレーション部を回転させることで、前記反転機構と共に前記つば部加工ヘッドを所望の角度まで旋回させることを特徴とする請求項2又は3に記載の超仕上加工ユニット。
The turning mechanism is
Rotatable with the rotation shaft concentrically of the oscillation mechanism, and the angle adjustment gear shaft portion configured by another shaft with the rotating shaft,
Coupled to said angle adjusting gear shaft portion, the oscillation portion has a angle adjustment table that rotates to a desired angle,
When rotating the angle adjusting gear shaft, the rotary motion is transmitted to the oscillation portion from the angle adjustment table, by rotating the oscillation portion with the angle adjustment table, the flange working together with the reversing mechanism 4. The superfinishing processing unit according to claim 2, wherein the head is turned to a desired angle.
JP2011038156A 2011-02-24 2011-02-24 Super finishing unit Active JP5626003B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011038156A JP5626003B2 (en) 2011-02-24 2011-02-24 Super finishing unit
CN201180002688.1A CN102781625B (en) 2011-02-24 2011-10-14 Interior foreign steamer dual-purpose microstoning dish
PCT/JP2011/073727 WO2012114576A1 (en) 2011-02-24 2011-10-14 Superfinishing machine used for both inner and outer rings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038156A JP5626003B2 (en) 2011-02-24 2011-02-24 Super finishing unit

Publications (2)

Publication Number Publication Date
JP2012171078A JP2012171078A (en) 2012-09-10
JP5626003B2 true JP5626003B2 (en) 2014-11-19

Family

ID=46974453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038156A Active JP5626003B2 (en) 2011-02-24 2011-02-24 Super finishing unit

Country Status (1)

Country Link
JP (1) JP5626003B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2413000A1 (en) * 1974-03-18 1975-09-25 Supfina Maschf Hentzen PROCESS FOR FINE MACHINING OF CYLINDRICAL OR CONICAL SURFACES
JPH0172599U (en) * 1987-11-02 1989-05-16
JPH0236058A (en) * 1988-07-25 1990-02-06 Ntn Corp Simultaneous grinder for inner and outer diameter
DE102008046451B4 (en) * 2008-09-09 2011-06-09 Thielenhaus Technologies Gmbh Device for mechanical finishing of peripheral surfaces of rotationally symmetrical workpieces, in particular rolling bearing rings
JP5316936B2 (en) * 2008-09-30 2013-10-16 Ntn株式会社 Super finishing equipment
JP5287217B2 (en) * 2008-12-22 2013-09-11 日本精工株式会社 Super finishing equipment

Also Published As

Publication number Publication date
JP2012171078A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
WO2012114576A1 (en) Superfinishing machine used for both inner and outer rings
JP6459524B2 (en) Composite grinding machine and grinding method
US9999961B2 (en) Grinding machine
JP5609904B2 (en) Super finishing equipment
JP5640809B2 (en) Super finishing board for both inner and outer rings and super finishing method for inner and outer rings
KR102020853B1 (en) Machine and method for turning at least flat shoulders of a crankshaft that surround bearing pins
JP4812488B2 (en) Super finishing method of roller bearing raceway
CN103481195A (en) Multi-shaft driving device for single-face grinding polisher
JP4812489B2 (en) Super finishing machine for roller bearing races
JP5626003B2 (en) Super finishing unit
JP7021455B2 (en) Processing equipment
CN207642907U (en) A kind of disc-grinding mechanism being used for sanding and polishing and mirror finish lathe
JP4049786B2 (en) Grinding equipment
JP2016137530A (en) Processing method and processing device
JPH1128649A (en) Glass disk polishing device and glass disk polishing method
JP4250594B2 (en) Moving device and plane polishing machine using planetary gear mechanism
JP4078183B2 (en) Device wafer peripheral polishing equipment
JP2005038982A (en) Outer periphery polishing device for flat surface of semiconductor wafer
JP3318369B2 (en) Grinding machines and wheel side dressers
JP2008246589A (en) Simultaneous super-finishing device of double-row rolling surface
JP2011218506A (en) Superfinishing method and superfinishing device
TW200848196A (en) Gantry type machine tool
JPH0618762Y2 (en) Finishing equipment for ring parts
JP2011224677A (en) Workpiece peripheral surface grinding machine and workpiece peripheral surface grinding method
JP2009095949A (en) Dressing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5626003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150