JP5621528B2 - Enzymatic saccharification method of lignocellulosic material - Google Patents

Enzymatic saccharification method of lignocellulosic material Download PDF

Info

Publication number
JP5621528B2
JP5621528B2 JP2010253594A JP2010253594A JP5621528B2 JP 5621528 B2 JP5621528 B2 JP 5621528B2 JP 2010253594 A JP2010253594 A JP 2010253594A JP 2010253594 A JP2010253594 A JP 2010253594A JP 5621528 B2 JP5621528 B2 JP 5621528B2
Authority
JP
Japan
Prior art keywords
enzyme
treatment
saccharification
raw material
enzymatic saccharification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253594A
Other languages
Japanese (ja)
Other versions
JP2012100617A (en
Inventor
優子 五十嵐
優子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2010253594A priority Critical patent/JP5621528B2/en
Publication of JP2012100617A publication Critical patent/JP2012100617A/en
Application granted granted Critical
Publication of JP5621528B2 publication Critical patent/JP5621528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、糖化に適した処理を施したリグノセルロースを含有するバイオマスをセルロース分解酵素やヘミセルロース分解酵素からなる酵素群により糖化処理する反応を含むリグノセルロース系バイオマスの酵素糖化処理方法において、使用する酵素群を反応液から高回収率で回収して長期間にわたって循環利用することを可能とするリグノセルロース系バイオマスの酵素糖化処理方法に関する。   The present invention is used in a method for enzymatic saccharification of lignocellulosic biomass including a reaction in which a biomass containing lignocellulose subjected to a treatment suitable for saccharification is saccharified by an enzyme group consisting of a cellulolytic enzyme or a hemicellulose degrading enzyme. The present invention relates to a method for enzymatic saccharification of lignocellulosic biomass that enables an enzyme group to be recovered from a reaction solution at a high recovery rate and recycled over a long period of time.

糖化に適した処理を施したリグノセルロース原料から糖を製造する技術は、この糖を微生物の発酵基質として用いることによりガソリンの代替燃料となるアルコールや、プラスチック原料となるコハク酸や乳酸などの化成品原料を製造することができることから、循環型社会の形成に有益な技術である。
植物系バイオマス中の多糖類から発酵基質となる単糖や小糖類を製造する方法は2つに大別できる。一つは鉱酸を用いて加水分解する酸糖化法であり、もう一つは酵素やその酵素を生産する微生物を用いて加水分解する酵素糖化法である。
The technology to produce sugar from lignocellulose raw material that has been treated suitable for saccharification is the use of this sugar as a fermentation substrate for microorganisms to convert alcohol as an alternative fuel for gasoline, succinic acid and lactic acid as plastic raw materials. Since it can produce raw materials for products, it is a useful technology for the formation of a recycling society.
Methods for producing monosaccharides and small saccharides as fermentation substrates from polysaccharides in plant biomass can be broadly classified into two. One is an acid saccharification method in which hydrolysis is performed using a mineral acid, and the other is an enzyme saccharification method in which hydrolysis is performed using an enzyme and a microorganism that produces the enzyme.

酸糖化法は酵素糖化法に比べて技術的に完成されているが、リグノセルロース系バイオマスを原料とする方法の場合は、澱粉や廃糖蜜などを原料とする方法に比べて糖収率が低いことに加えて、処理工程から排出される廃酸の処理設備や、酸による腐食に耐え得る大型の設備が必要となること等が製品コストの増大原因となっていて実用化の大きな障壁となっている。   The acid saccharification method has been technically completed compared to the enzymatic saccharification method, but in the case of the method using lignocellulosic biomass as a raw material, the sugar yield is lower than the method using starch or waste molasses as a raw material. In addition, the need for a treatment facility for waste acid discharged from the treatment process and a large facility that can withstand the corrosion caused by the acid is the cause of the increase in product cost and becomes a major barrier to practical use. ing.

一方、酵素糖化法は、近年酵素の価格が下がってきていることと技術の進歩から、後処理まで含めた全体のコストで酸糖化法のコストに近づいてきてはいるが、酵素糖化法の全体コストに占める割合が高い酵素の価格は依然として高いことから、酵素糖化法の実用化のためには酵素にかかる費用の一層の低減が重要である。   On the other hand, the enzymatic saccharification method has been approaching the cost of acid saccharification method at the total cost including post-treatment due to the recent decrease in enzyme prices and technological progress. Since the price of an enzyme that accounts for a high percentage of the cost is still high, it is important to further reduce the cost of the enzyme for practical use of the enzymatic saccharification method.

酵素糖化法のコストを下げる技術としては、セルロース繊維への酵素のアクセスを容易にする前処理の方法の開発や、結晶性セルロースを効率よく糖化する方法の開発、更には酵素の効率的な回収、再利用方法の開発などが考えられる。   Technologies to reduce the cost of enzymatic saccharification include the development of pretreatment methods that facilitate enzyme access to cellulose fibers, the development of efficient saccharification of crystalline cellulose, and the efficient recovery of enzymes. Development of a reuse method can be considered.

リグニンを除去していないリグノセルロース材料は、リグニンを除去したリグノセルロース材料と比べて酵素によって分解されにくく、糖化されずに樹脂、金属などの不純物と一緒に糖化液中に残渣として残る。一般に、この残渣はスクリーン、遠心分離等により分離し廃棄される。この残渣には酵素糖化法におけるコストの中で大きな比重を占めている酵素が多量に吸着されているため、反応液から分離した残渣をそのまま廃棄してしまうと高価な酵素も廃棄されてしまうという問題があった。   The lignocellulose material from which lignin has not been removed is less susceptible to degradation by enzymes than the lignocellulose material from which lignin has been removed, and remains as a residue in the saccharified solution together with impurities such as resin and metal without being saccharified. In general, the residue is separated and discarded by screen, centrifugation, or the like. This residue is adsorbed with a large amount of enzyme that occupies a large specific gravity in the cost of enzymatic saccharification, so if the residue separated from the reaction solution is discarded as it is, the expensive enzyme is also discarded. There was a problem.

上記のような残渣中の酵素の回収手段として、残渣の洗浄が考えられる。しかし、酵素は、その分子内に有しているセルロースに特異的に吸着するセルロースバインディングドメイン(CBD)等によりセルロースと強固に結合しているため、単なる水洗浄ではセルロースに吸着した酵素を十分に回収することは困難であった。
そこで、酵素の回収率の改善を目的として界面活性剤を添加して処理する方法(特許文献1参照)などが提案されている。しかし、界面活性剤処理法でも、酵素の回収率が十分であるとはいえず、また、薬品添加による酵素の失活や、処理工程付加に伴うコストアップ及び後の発酵段階における微生物への悪影響などが懸念されることなどから実用的ではない。
As a means for recovering the enzyme in the residue as described above, washing of the residue can be considered. However, since the enzyme is strongly bound to cellulose by the cellulose binding domain (CBD) that specifically adsorbs to the cellulose contained in the molecule, the enzyme adsorbed to the cellulose can be sufficiently obtained by simple water washing. It was difficult to recover.
Therefore, a method of adding a surfactant to treat the enzyme for the purpose of improving the enzyme recovery rate (see Patent Document 1) has been proposed. However, even with the surfactant treatment method, it cannot be said that the enzyme recovery rate is sufficient. In addition, the enzyme is deactivated by the addition of chemicals, the cost increases due to the addition of the treatment process, and the adverse effects on microorganisms in the subsequent fermentation stage. It is not practical because of concerns.

糖液からの酵素の回収法としては、限外濾過を用いた方法(特許文献2参照)、糖液に再度セルロースを添加して酵素を吸着回収する方法(特許文献3参照)などが提案されている。しかし、限外濾過法は微少な不純物がろ過膜につまり十分な処理速度及び酵素回収率が得られない問題があるし、セルロース添加による回収法では十分な酵素回収が困難であった。   As a method for recovering an enzyme from a sugar solution, a method using ultrafiltration (see Patent Document 2), a method of adding cellulose to the sugar solution again and adsorbing and recovering the enzyme (see Patent Document 3), and the like have been proposed. ing. However, the ultrafiltration method has a problem that minute impurities are present in the filtration membrane, that is, a sufficient processing speed and enzyme recovery rate cannot be obtained, and sufficient recovery of the enzyme is difficult by the recovery method by adding cellulose.

吸着した酵素を剥離させる工程を経ずに、酵素が吸着しているリグノセルロース残渣を次回分の酵素糖化に再利用する方法が提案されている(特許文献4)。この方法では、残渣の蓄積は避けられないので反応効率が低下することが懸念される。また、CBH(セロビオヒドラーゼ)等、CBDを有する酵素に関してはリグノセルロース残渣を次回分で再処理することで酵素の循環利用が可能であるが、β−グルコシダーゼ等は上清中に遊離している場合もあるので、添加したセルラーゼの全てを循環利用することは困難である。   There has been proposed a method of reusing the lignocellulose residue adsorbed by the enzyme for the next enzymatic saccharification without going through the step of peeling off the adsorbed enzyme (Patent Document 4). In this method, accumulation of residue is unavoidable, so there is a concern that the reaction efficiency may be lowered. In addition, for enzymes having CBD, such as CBH (cellobiohydrase), the lignocellulose residue can be recycled by reprocessing the next time, but β-glucosidase and the like are released into the supernatant. In some cases, it is difficult to recycle all of the added cellulase.

酵素のコストを下げる方法として、酵素を循環利用する方法が報告されている。Scott,C.D.らの方法(非特許文献1)によると、酵素を大量(濾紙分解活性で基質1gに対して80−160単位)に添加して古紙原料を酵素加水分解する主反応槽に、酵素加水分解液中の未反応古紙面から高剪断力で生成グルコースやセロビオース成分を除いて常に新しいセルロース繊維表面を露出させる高速遠心ポンプによる磨砕装置と、磨砕装置からの処理液から未反応原料と加水分解液を分離して未反応原料のみを主反応槽に循環する膜分離装置と、膜分離装置からの加水分解液から酵素と生成グルコース及びセロビオースを分離して酵素のみを主反応槽に循環する限外濾過装置とを有する循環ラインを設けた連続システムを想定してコストを予測している。このシステムにより、糖化率は25時間で100%であり、酵素の残存率は24時間で95%以上であるとされている。
また、酵素が残渣に吸着されて失われること、残渣の酵素の吸着機能はpHを5〜7に高めることで低下可能な場合があること、温度を5℃に下げることで低減できるという報告もあることが記載されている。
As a method for reducing the cost of the enzyme, a method of recycling the enzyme has been reported. Scott, C.I. D. According to these methods (Non-Patent Document 1), an enzyme hydrolyzate is added to a main reaction tank in which enzyme is hydrolyzed by adding enzyme in a large amount (80-160 units per 1 g of substrate with filter paper decomposition activity). A high-speed centrifugal pump that always exposes the surface of new cellulose fibers except for the glucose and cellobiose components generated from the unreacted old paper surface with high shear force, and unreacted raw materials and hydrolysis from the processing liquid from the grinding device A membrane separator that separates the liquid and circulates only unreacted raw materials to the main reaction tank, and a limit that circulates only the enzyme to the main reaction tank by separating the enzyme, produced glucose and cellobiose from the hydrolyzate from the membrane separator. Costs are estimated assuming a continuous system with a circulation line having an external filtration device. According to this system, the saccharification rate is 100% in 25 hours, and the residual rate of the enzyme is 95% or more in 24 hours.
There are also reports that the enzyme is adsorbed on the residue and lost, the adsorption function of the enzyme in the residue may be lowered by raising the pH to 5-7, and can be reduced by lowering the temperature to 5 ° C. It is described that there is.

酵素を回収再利用する方法として、蒸煮・爆砕処理したシラカンバ材を5質量% の濃度で糖化槽に加え、2万単位のセルラーゼを添加して、限外濾過により糖液と酵素液とを分離し、酵素を回収再利用しながら、8日間で2kgのシラカンバ材から単糖類を630g得ている方法も報告されており、この方法で酵素の使用量を20%節約できたとされている(非特許文献2)。   As a method of recovering and reusing the enzyme, steamed and crushed white birch material is added to the saccharification tank at a concentration of 5% by mass, 20,000 units of cellulase are added, and the sugar solution and the enzyme solution are separated by ultrafiltration. However, a method of obtaining 630 g of monosaccharides from 2 kg of birch wood in 8 days while recovering and reusing the enzyme has been reported, and it is said that this method saved 20% of the amount of enzyme used (non- Patent Document 2).

特許昭63-87994号公報Japanese Patent No. 63-87994 特許昭61-234790号公報Japanese Patent No. 61-234790 特開昭55-144885号公報Japanese Patent Laid-Open No. 55-144485 特開2010-98951号公報JP 2010-98951 A

Scott,C.D.,Rothrock,D.S.,Appl.Biochem.Biotechnol.,45/46,pp.641−653(1994 )Scott, C.I. D. Rothrock, D .; S. , Appl. Biochem. Biotechnol. , 45/46, pp. 641-653 (1994) Ishihara,M.,etal.,Biotechnol. Bioeng.,37,948−954(1991)Ishihara, M .; Et al. Biotechnol. Bioeng. 37, 948-954 (1991)

リグノセルロースなどのセルロース系原料から糖類を製造する技術は、これまで化石資源に頼ってきた燃料やプラスチック原料を新たに供給し得る技術であり、特に循環型社会の構築に役立つ技術である。前述したように、これまで様々な技術が開発されてはいるものの、糖化に要する酵素のコストが高いことが主たる原因で経済性がないことが課題となっている。   The technology for producing saccharides from cellulosic materials such as lignocellulose is a technology that can newly supply fuel and plastic materials that have been relied on fossil resources, and is particularly useful for the construction of a recycling society. As described above, although various technologies have been developed so far, there is a problem that the cost is not high mainly due to the high cost of the enzyme required for saccharification.

前記したように、糖化に用いた酵素を回収し繰り返し使用することにより酵素の使用量を削減しようという試みが種々なされているが、糖化の際に生じる残渣に酵素が強く吸着しているため、回収率が下ってしまい、問題の解決には至っていない。このように、酵素糖化の際に生じる残渣に酵素が強度に吸着することが、酵素回収の際の最大の問題であり、これを解決できれば酵素のリサイクル性は向上し、コストを低下させ、酵素糖化処理法の経済性は大きく改善できる。本発明は、リグノセルロース材料の酵素糖化処理のために投入される酵素を無駄なく有効利用することができる方法を提供することを目的とするものである。   As described above, various attempts have been made to reduce the amount of enzyme used by collecting and repeatedly using the enzyme used for saccharification, but because the enzyme is strongly adsorbed on the residue generated during saccharification, The recovery rate has fallen and the problem has not been solved. As described above, the strong adsorption of the enzyme to the residue generated during the enzymatic saccharification is the biggest problem in the recovery of the enzyme. If this can be solved, the recyclability of the enzyme is improved, the cost is reduced, and the enzyme is reduced. The economics of saccharification can be greatly improved. An object of the present invention is to provide a method capable of effectively using an enzyme introduced for enzymatic saccharification treatment of lignocellulose material without waste.

上記課題を解決するため、本発明者らは、連続的に酵素糖化反応を行う工程において、全体コストに極めて大きな割合を占める価格の高い酵素について、酵素の回収率を高めて繰り返し使用することによりコストを下げる方法を検討した結果、酵素糖化反応液中で、酵素がリグノセルロース原料や反応残渣等に酵素が吸着されることを抑制することができる新しい手段を見出し、以下の発明をなすに至ったものである。   In order to solve the above-mentioned problems, the present inventors have repeatedly used an enzyme with a high price, which accounts for a very large proportion of the total cost, in a process of continuously performing an enzymatic saccharification reaction with an increased enzyme recovery rate. As a result of investigating a method for reducing the cost, a new means capable of suppressing the enzyme from being adsorbed on the lignocellulose raw material, reaction residue, etc. in the enzyme saccharification reaction solution has been found, and the following invention has been made. It is a thing.

(1)酵素糖化反応に適した原料とする前処理が施されたリグノセルロース系原料をセルロース糖化酵素含有水中に添加してなる原料懸濁液を酵素糖化処理工程において攪拌下に酵素糖化処理して処理懸濁液を得、該処理懸濁液から反応生成物と酵素を分離回収し、回収した酵素含有液を酵素糖化処理工程用の酵素源として循環利用する酵素糖化処理方法であって、前記原料懸濁液に炭酸カルシウム粒子を添加して酵素糖化処理することを特徴とするリグノセルロース系原料の酵素糖化処理方法。 (1) Enzymatic saccharification of a raw material suspension obtained by adding a pretreated lignocellulosic raw material to a cellulose saccharifying enzyme-containing water as a raw material suitable for enzymatic saccharification reaction in the enzymatic saccharification treatment step with stirring. An enzyme saccharification treatment method in which a reaction suspension and an enzyme are separated and recovered from the treatment suspension, and the collected enzyme-containing liquid is recycled as an enzyme source for the enzyme saccharification treatment step, A method for enzymatic saccharification of a lignocellulosic material, characterized in that calcium carbonate particles are added to the raw material suspension to perform enzymatic saccharification treatment.

(2)前記炭酸カルシウム粒子が、リグノセルロース原料(絶乾)100質量部に対して1〜10質量部の割合で添加される(1)項記載のリグノセルロース系原料の酵素糖化処理方法。 (2) The method for enzymatic saccharification of a lignocellulose-based material according to (1), wherein the calcium carbonate particles are added at a ratio of 1 to 10 parts by mass with respect to 100 parts by mass of the lignocellulose material (absolutely dry).

(3)前記セルロース糖化酵素がセルラーゼである(1)項又は(2)項に記載のリグノセルロース系原料の酵素糖化処理方法。 (3) The method for enzymatic saccharification of a lignocellulosic material according to (1) or (2), wherein the cellulose saccharifying enzyme is cellulase.

(4)前記酵素糖化反応に適した原料とする前処理が、リグノセルロース系原料をアルカリ薬品含有溶液で浸漬処理する化学的処理、加圧熱水処理、破砕繊維化処理又は磨砕処理よりなる機械的処理から選択される少なくとも1種を含む前処理である(1)項〜(3)項のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。 (4) The pretreatment as a raw material suitable for the enzyme saccharification reaction comprises a chemical treatment in which a lignocellulosic raw material is immersed in an alkaline chemical-containing solution, a pressurized hot water treatment, a crushed fiber treatment or a grinding treatment. The method for enzymatic saccharification of a lignocellulosic material according to any one of (1) to (3), which is a pretreatment comprising at least one selected from mechanical treatments.

(5)前記酵素糖化反応工程に循環される酵素含有液が、糖化酵素及び生成糖類中のオリゴ糖類を含有する酵素含有液である(1)項〜(4)項のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。 (5) The enzyme-containing liquid circulated in the enzyme saccharification reaction step is an enzyme-containing liquid containing saccharifying enzymes and oligosaccharides in the produced saccharides, according to any one of items (1) to (4). Enzymatic saccharification method of lignocellulosic raw material.

(6)前記酵素糖化反応工程に循環される酵素含有液が、生成糖類が除かれた酵素含有液である(1)項〜(4)項のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。 (6) The lignocellulosic raw material according to any one of (1) to (4), wherein the enzyme-containing liquid circulated in the enzyme saccharification reaction step is an enzyme-containing liquid from which the produced saccharide has been removed. Enzymatic saccharification method.

(7)前記酵素糖化処理方法が、リグノセルロース系原料に酵素糖化反応に適した原料とする処理を施す前処理工程、セルロース糖化酵素含有水に該前処理が施されたリグノセルロース系原料と炭酸カルシウム粒子を添加してなる原料懸濁液を攪拌下に酵素糖化処理する酵素糖化処理工程、該酵素糖化処理工程から出る処理懸濁液から固形残渣を除去する固液分離工程、該固液分離工程から出る液体留分を遠心分離して残留残渣を除去する遠心分離工程、該遠心分離工程から出る残留残渣が除去された液体留分から酵素含有液と生成糖含有液を分離する膜分離工程、該膜分離工程から得られる酵素含有液を酵素貯留槽を経て酵素糖化処理工程に酵素源として循環供給する酵素循環工程を有する一連の工程に従ってリグノセルロース系原料を糖化処理する方法である(1)項〜(6)項のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。 (7) The enzyme saccharification treatment method includes a pretreatment step in which a lignocellulose raw material is treated as a raw material suitable for an enzymatic saccharification reaction, a lignocellulosic raw material obtained by subjecting the cellulose saccharifying enzyme-containing water to the pretreatment and carbonic acid Enzymatic saccharification treatment step in which the raw material suspension obtained by adding calcium particles is subjected to enzymatic saccharification treatment with stirring, solid-liquid separation step in which solid residue is removed from the treatment suspension discharged from the enzymatic saccharification treatment step, and the solid-liquid separation A centrifugal separation step of centrifuging the liquid fraction from the step to remove residual residues, a membrane separation step of separating the enzyme-containing liquid and the product sugar-containing liquid from the liquid fraction from which the residual residues from the centrifugal step have been removed, The lignocellulosic raw material is sugar-treated according to a series of steps including an enzyme circulation step in which the enzyme-containing liquid obtained from the membrane separation step is circulated and supplied as an enzyme source to the enzyme saccharification treatment step through an enzyme storage tank. A method of treating (1) to (6) enzymatic saccharification method lignocellulosic feedstock according to any one of clauses.

(8)前記酵素糖化処理工程を、単糖類を醗酵基質とする発酵用微生物を添加して酵素糖化処理と該酵素糖化処理によって生成する糖類中の単糖類を基質とする発酵処理を併行して行う併行糖化発酵処理工程とし、併行糖化発酵処理工程から出る処理懸濁液から発酵生成物と酵素を分離回収し、回収酵素を含有する酵素含有液を酵素糖化処理工程に酵素源として循環供給することを特徴とする(1)項〜(6)項のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。 (8) The enzyme saccharification treatment step is performed by adding a fermentation microorganism having a monosaccharide as a fermentation substrate and performing a fermentation treatment using the enzyme saccharification treatment and a monosaccharide in the saccharide produced by the enzyme saccharification treatment as a substrate. The parallel saccharification and fermentation process is performed, the fermentation product and the enzyme are separated and recovered from the suspension treated from the parallel saccharification and fermentation process, and the enzyme-containing liquid containing the recovered enzyme is circulated and supplied to the enzyme saccharification process as an enzyme source. The method for enzymatic saccharification of a lignocellulosic material according to any one of items (1) to (6), wherein

(9)前記発酵用微生物がアルコール酵母である(8)項に記載のリグノセルロース系原料の酵素糖化処理方法。 (9) The method for enzymatic saccharification of a lignocellulosic material according to item (8), wherein the fermentation microorganism is alcohol yeast.

(10)前記酵素糖化処理方法が、リグノセルロース系原料に酵素糖化反応に適した原料とする処理を施す前処理工程、セルロース糖化酵素含有水に該前処理が施されたリグノセルロース系原料、炭酸カルシウム粒子、及び単糖類を発酵基質とする発酵用微生物を添加してなる原料懸濁液を攪拌しながら酵素糖化処理と生成糖類中の単糖類の発酵処理を併行して行う酵素糖化処理工程、該酵素糖化処理工程から出る処理懸濁液から固形残渣を除去する固液分離工程、該固液分離工程から出る液体留分を減圧蒸留して発酵生成物を分離回収する蒸留工程、該蒸留工程から出る蒸留残液を遠心分離して残留残渣を除去する遠心分離工程、該遠心分離工程から出る残留残渣が除去された液体留分を酵素含有液と生成糖含有液に分離する膜分離工程、該膜分離工程から得られる酵素含有液を酵素貯留槽を経て酵素糖化処理工程に循環供給する回収酵素循環工程を有する一連の工程に従ってリグノセルロース系原料を併行糖化発酵処理する方法である(8)項又は(9)項に記載のリグノセルロース系原料の酵素糖化処理方法。 (10) The enzyme saccharification treatment method includes a pretreatment step in which a lignocellulosic raw material is treated as a raw material suitable for an enzymatic saccharification reaction, a lignocellulosic raw material obtained by subjecting the cellulose saccharifying enzyme-containing water to the pretreatment, Enzymatic saccharification treatment step in which the enzymatic saccharification treatment and the fermentation treatment of monosaccharides in the produced saccharide are performed in parallel while stirring the raw material suspension obtained by adding the microorganisms for fermentation using calcium particles and monosaccharide as a fermentation substrate, A solid-liquid separation step for removing solid residues from the treated suspension discharged from the enzyme saccharification treatment step, a distillation step for separating and recovering a fermentation product by vacuum distillation of a liquid fraction discharged from the solid-liquid separation step, the distillation step A centrifugal separation step of removing the residual residue by centrifuging the distillation residual liquid from the membrane, a membrane separation step of separating the liquid fraction from which the residual residue from the centrifugal separation step has been removed into an enzyme-containing liquid and a product sugar-containing liquid; (8) A method in which lignocellulosic raw materials are subjected to saccharification and fermentation treatment in accordance with a series of steps including a recovery enzyme circulation step for supplying an enzyme-containing liquid obtained from a membrane separation step to an enzyme saccharification treatment step through an enzyme storage tank. Or the enzyme saccharification processing method of the lignocellulose raw material as described in (9).

本発明の酵素糖化処理方法によれば、リグノセルロース未反応原料や反応残渣等への糖化酵素の吸着が抑えられて、酵素糖化処理懸濁液からの糖化酵素の分離・回収が容易となる結果、酵素損失が少なく経済性の高い連続的なリグノセルロース系原料の酵素糖化処理方法が提供される。   According to the enzymatic saccharification treatment method of the present invention, the adsorption of the saccharifying enzyme to lignocellulose unreacted raw materials and reaction residues is suppressed, and the saccharifying enzyme is easily separated and recovered from the enzymatic saccharification suspension. A continuous lignocellulosic raw material enzymatic saccharification treatment method with low enzyme loss and high economic efficiency is provided.

リグノセルロース系原料から糖類を製造する酵素糖化処理方法を実施する工程を示す図である。It is a figure which shows the process of implementing the enzyme saccharification processing method which manufactures saccharides from a lignocellulose raw material. リグノセルロース系原料から糖類及び発酵生成物の製造を併行して行う酵素糖化処理方法を実施する工程を示す図である。It is a figure which shows the process of implementing the enzyme saccharification processing method performed in parallel with manufacture of saccharides and a fermentation product from a lignocellulosic raw material.

以下、本発明のリグノセルロース系原料の酵素糖化処理方法をさらに詳しく説明する。
<リグノセルロース系原料>
本発明の方法で使用するリグノセルロース系原料としては、木質系として、製紙用樹木、林地残材、間伐材等のチップ又は樹皮、製材工場等から発生する鋸屑又はおがくず、街路樹の剪定枝葉、建築廃材等が挙げられ、草本系として、ケナフ、稲藁、麦わら、バガスなどの農産廃棄物、草本系エネルギー作物のエリアンサス、ミスカンサスやネピアグラス等が挙げられる。なお、本発明におけるリグノセルロース系原料としては、木材由来の紙、古紙、パルプ、パルプスラッジ等も利用可能である。
Hereinafter, the enzymatic saccharification method of the lignocellulosic material of the present invention will be described in more detail.
<Lignocellulose raw material>
As the lignocellulosic raw material used in the method of the present invention, as woody wood, chips or bark such as papermaking trees, forest residue, thinned wood, sawdust or sawdust generated from sawmills, pruned branches of street trees, Examples of herbaceous materials include agricultural waste such as kenaf, rice straw, straw, bagasse, herbaceous energy crops Eliansus, Miscanthus, and Napiergrass. In addition, as the lignocellulosic material in the present invention, paper derived from wood, waste paper, pulp, pulp sludge and the like can be used.

前記木質系のリグノセルロース原料の中でも、木材の樹皮は、現在ほとんど有効利用されておらず、製材工場やチップ工場で均一な品質のものが大量に入手可能であり、木材の木部部分より柔軟かつ可溶性成分が多いため、糖化処理や併行糖化発酵処理の原料として特に好ましい。例えば、製紙原料用として一般に用いられるユーカリ(Eucalyptus)属又はアカシア(Acacia)属等の樹種の樹皮は、製紙原料用の製材工場やチップ工場等から安定して大量に入手可能であるため、特に好適に用いられる。   Among the wood-based lignocellulose raw materials, the bark of wood is hardly used at present and is available in large quantities in a lumber factory or chip factory, and is more flexible than the wood part of wood. And since there are many soluble components, it is especially preferable as a raw material of a saccharification process or a concurrent saccharification and fermentation process. For example, bark of tree species such as Eucalyptus genus or Acacia genus commonly used for papermaking raw materials can be obtained in large quantities stably from lumber mills and chip factories for papermaking raw materials. Preferably used.

<酵素糖化処理に適した原料とする前処理>
本発明の酵素糖化処理に適した原料とする前処理とは、図1及び図2に示されている「前処理工程」において、前記リグノセルロース系原料に以下の前処理を施してリグノセルロース系原料を酵素糖化反応を受けやすい状態とする処理である。
化学的処理、水熱処理、加圧熱水処理、二酸化炭素添加水熱処理、蒸煮処理、湿式粉砕処理、機械的磨砕処理、破砕繊維化処理、希硫酸処理、水蒸気爆砕処理、アンモニア爆砕処理、二酸化炭素爆砕処理、超音波照射処理、マイクロ波照射処理、電子線照射処理、γ線照射処理、超臨界処理、亜臨界処理、有機溶媒処理、相分離処理、木材腐朽菌処理、グリーン溶媒活性化処理、各種触媒処理、ラジカル反応処理、オゾン酸化処理。
これらの処理は、各単独の処理もしくは複数を組み合わせた処理のいずれであってもよい。中でも、リグノセルロース含有バイオマスに対し、アルカリ処理、加圧熱水処理、破砕繊維化処理及び機械的磨砕処理から選択される1つ以上の前処理を施すことが好ましい。
<Pre-treatment as a raw material suitable for enzymatic saccharification>
The pretreatment to be a raw material suitable for the enzymatic saccharification treatment of the present invention means that in the “pretreatment step” shown in FIGS. 1 and 2, the lignocellulosic raw material is subjected to the following pretreatment and the lignocellulose type It is the process which makes a raw material easy to receive an enzyme saccharification reaction.
Chemical treatment, hydrothermal treatment, pressurized hot water treatment, carbon dioxide-added hydrothermal treatment, steaming treatment, wet grinding treatment, mechanical grinding treatment, crushed fiber treatment, dilute sulfuric acid treatment, steam explosion treatment, ammonia explosion treatment, dioxide dioxide Carbon explosion treatment, ultrasonic irradiation treatment, microwave irradiation treatment, electron beam irradiation treatment, gamma ray irradiation treatment, supercritical treatment, subcritical treatment, organic solvent treatment, phase separation treatment, wood decay fungus treatment, green solvent activation treatment , Various catalyst treatment, radical reaction treatment, ozone oxidation treatment.
These processes may be either single processes or a combination of a plurality of processes. Among these, it is preferable to perform one or more pretreatments selected from alkali treatment, pressurized hot water treatment, crushed fiber treatment, and mechanical grinding treatment on lignocellulose-containing biomass.

前記化学的処理は、酸やアルカリ等の薬品の水溶液にリグノセルロース系原料を浸漬して、次工程の酵素糖化処理に適した状態にする処理である。
化学的処理に使用する薬品等については特に限定されないが、たとえば、アルカリ金属又はアルカリ土類金属の水酸化物、硫酸、希硫酸などの硫化物、炭酸塩又は亜硫酸塩から1種以上選択されたものであり、水酸化ナトリウム、水酸化カルシウム、硫化ナトリウム、炭酸ナトリウム、亜硫酸ナトリウム等から選択された1種以上の薬品の水溶液に浸漬してなるアルカリ処理等が化学処理として好適である。また、オゾン、二酸化塩素などの酸化剤による化学的処理も可能である。
化学的処理は、前記破砕繊維化処理や機械的磨砕処理と組み合わせてそれらの前処理の後処理として行うことが好適である。
The chemical treatment is a treatment in which a lignocellulosic raw material is immersed in an aqueous solution of a chemical such as acid or alkali to make it suitable for the enzymatic saccharification treatment in the next step.
The chemicals used for the chemical treatment are not particularly limited, but for example, at least one selected from alkali metal or alkaline earth metal hydroxides, sulfuric acid, dilute sulfuric acid sulfides, carbonates or sulfites. An alkali treatment or the like which is immersed in an aqueous solution of one or more kinds of chemicals selected from sodium hydroxide, calcium hydroxide, sodium sulfide, sodium carbonate, sodium sulfite and the like is suitable as the chemical treatment. Further, chemical treatment with an oxidizing agent such as ozone or chlorine dioxide is also possible.
The chemical treatment is preferably performed as a post-treatment of the pretreatment in combination with the crushing fiberization treatment or the mechanical grinding treatment.

化学的処理に使用する薬品の添加量は、状況に応じて任意に調整可能であるが、薬品コストの抑制やセルロースの溶出・過分解による収率低下を防止するためには、リグノセルロース系原料の絶乾100質量部に対して50質量部以下であることが望ましい。化学的処理における薬品の水溶液への浸漬時間及び処理温度は、使用する原料や薬品によって任意に設定可能であるが、処理時間30分〜1時間、処理温度80〜130℃が好ましい。処理条件を厳しくすることで、原料中のセルロースの液側への溶出又は過分解が起こる場合もあるため、処理時間は1時間以下、処理温度は130℃以下であることが好ましい。   The amount of chemicals used for chemical treatment can be arbitrarily adjusted according to the situation, but in order to reduce chemical costs and to prevent yield loss due to cellulose elution / overdecomposition, lignocellulosic raw materials It is desirable that it is 50 mass parts or less with respect to 100 mass parts of the absolutely dry. The immersion time and the treatment temperature of the chemical in the chemical treatment can be arbitrarily set depending on the raw materials and chemicals to be used, but a treatment time of 30 minutes to 1 hour and a treatment temperature of 80 to 130 ° C. are preferable. By tightening the processing conditions, elution or excessive decomposition of cellulose in the raw material may occur, so that the processing time is preferably 1 hour or less and the processing temperature is 130 ° C. or less.

酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料に対しては、リグノセルロース系原料懸濁液の調製に使用する前に、殺菌処理を施すことが好ましい。リグノセルロース系原料中に雑菌が混入していると、酵素による糖化を行う際に雑菌が糖を消費して生成物の収量が低下してしまうという問題が発生する。
殺菌処理は、酸やアルカリなど、菌の生育困難なpHに原料を晒す方法でもよいが、高温下で処理する方法でもよく、両方を組み合わせてもよい。酸処理後やアルカリ処理後の原料については酵素反応や発酵反応に支障のない弱酸性領域から弱アルカリ性領域にまたがるpH領域に調整されている原料懸濁液の状態で使用することが好ましい。また、高温殺菌した場合も、室温もしくは酵素反応や発酵反応に支障のない温度まで降温させてから原料として使用することが好ましい。
The lignocellulosic raw material that has been pretreated as a raw material suitable for the enzymatic saccharification reaction is preferably subjected to a sterilization treatment before use in the preparation of the lignocellulosic raw material suspension. When miscellaneous bacteria are mixed in the lignocellulosic raw material, there is a problem in that when saccharification is performed by an enzyme, the miscellaneous bacteria consume sugar and the yield of the product decreases.
The sterilization treatment may be a method in which the raw material is exposed to a pH at which bacteria are difficult to grow, such as acid or alkali, but may be a method in which the raw material is treated at a high temperature, or a combination of both. About the raw material after an acid treatment or an alkali treatment, it is preferable to use it in the state of the raw material suspension adjusted to the pH area | region which spans a weakly alkaline area | region from the weakly acidic area | region which does not interfere with an enzyme reaction or a fermentation reaction. In addition, even when pasteurized at a high temperature, it is preferably used as a raw material after the temperature is lowered to room temperature or a temperature that does not hinder enzyme reaction or fermentation reaction.

<酵素糖化処理工程>
酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料が適量の水に酵素と共に添加され、混合されて酵素糖化処理用の原料懸濁液が調製され、酵素糖化処理工程に供給される。糖類の製造を目的とした酵素糖化処理は、図1の「糖化処理工程」における処理である。
「酵素糖化工程」では、前処理工程で酵素糖化処理に適した状態に処理されたリグノセルロース系原料がセルロース分解酵素含有水中に炭酸カルシウム粒子とともに添加されて原料懸濁液が調製され、攪拌下に酵素糖化処理される。
<Enzymatic saccharification process>
Lignocellulosic raw material that has been pretreated as a raw material suitable for enzymatic saccharification is added to an appropriate amount of water together with the enzyme, and mixed to prepare a raw material suspension for enzymatic saccharification treatment. To be supplied. The enzymatic saccharification treatment for the purpose of producing saccharides is a treatment in the “saccharification treatment step” of FIG.
In the “enzymatic saccharification step”, the lignocellulosic raw material treated in the pretreatment step so as to be suitable for the enzymatic saccharification treatment is added to the cellulose-degrading enzyme-containing water together with calcium carbonate particles to prepare a raw material suspension. Enzymatic saccharification treatment.

酵素糖化処理工程における原料懸濁液中のリグノセルロース系原料(絶乾)の懸濁濃度は、1〜30質量%であることが好ましい。1質量%未満であると、最終的に生産物の濃度が低すぎて生産物の濃縮のコストが高くなるという問題が発生する。また、30質量%を超えて高濃度となるにしたがって原料の攪拌が困難になり、生産性が低下するという問題が発生する。   The suspension concentration of the lignocellulosic raw material (absolutely dry) in the raw material suspension in the enzymatic saccharification treatment step is preferably 1 to 30% by mass. If it is less than 1% by mass, there is a problem in that the concentration of the product is ultimately too low and the cost for concentrating the product becomes high. Moreover, as the concentration exceeds 30% by mass, it becomes difficult to stir the raw materials, resulting in a problem that productivity is lowered.

酵素糖化処理工程で使用するセルロース分解酵素は、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する、所謂セルラーゼと総称される酵素である。
各セルロース分解酵素は、夫々の活性を有する酵素を適宜の量で添加することができる。市販されているセルラーゼ製剤には、上記の各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多いので市販のセルラーゼ製剤を用いればよい。
Cellulose-degrading enzymes used in the enzymatic saccharification treatment step are enzymes collectively called cellulases having cellobiohydrolase activity, endoglucanase activity, and betaglucosidase activity.
Each cellulolytic enzyme can be added with an appropriate amount of an enzyme having each activity. Since many commercially available cellulase preparations have the above-mentioned various cellulase activities and also have hemicellulase activity, commercially available cellulase preparations may be used.

市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム属(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス属(Trametes)、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、GC220(ジェネンコア社製)等が挙げられる。
原料固形分(絶乾)100質量部に対するセルラーゼ製剤の使用量は0.5〜100質量部が好ましく、1〜50質量部が特に好ましい。
Commercial cellulase preparations include Trichoderma, Acremonium, Aspergillus, Phanerocheet, Trametes, Humicola, and Humicola. There are cellulase preparations derived from the above. Commercially available products of such cellulase preparations are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), multifect CX10L (manufactured by Genencor) ), GC220 (manufactured by Genencor).
The amount of cellulase preparation used is preferably 0.5 to 100 parts by weight, particularly preferably 1 to 50 parts by weight, based on 100 parts by weight of the raw material solids (absolutely dry).

酵素糖化処理工程に添加する炭酸カルシウム粒子としては、軽質炭酸カルシウム及び重質炭酸カルシウムのいずれも使用可能である。また、その粒径も、酵素糖化処理槽内の攪拌反応条件下で安定な懸濁状態を維持できる粒径であれば特に制限はない。一般的には、平均粒径0.001〜50μm以下、好ましくは1.0μm〜20.0μmの範囲のものが使用される。
炭酸カルシウム粒子の添加割合は、原料リグノセルロース(絶乾)100質量部に対して炭酸カルシウム1〜10質量部、好ましくは5〜10質量部である。1質量部より少なくなるにしたがって添加効果が十分発揮されない状態となるし、10質量部を超えて添加しても添加量の増加に見合った酵素回収率の向上は期待できない。
As the calcium carbonate particles to be added to the enzymatic saccharification treatment step, either light calcium carbonate or heavy calcium carbonate can be used. The particle size is not particularly limited as long as the particle size can maintain a stable suspended state under the stirring reaction condition in the enzyme saccharification treatment tank. In general, an average particle size of 0.001 to 50 μm or less, preferably 1.0 μm to 20.0 μm is used.
The addition ratio of the calcium carbonate particles is 1 to 10 parts by mass, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the raw material lignocellulose (absolutely dry). As the amount is less than 1 part by mass, the effect of addition is not sufficiently exhibited, and even if the amount exceeds 10 parts by mass, an improvement in the enzyme recovery rate commensurate with the increase in the amount added cannot be expected.

酵素糖化処理工程における懸濁液のpHは、酵素反応の至適pH数値の範囲内であれば特に制限はなく、3.5〜10.0の範囲で適宜選択されるが、4.0〜7.5の範囲に維持することが好ましい。
酵素糖化処理温度は、酵素反応の至適温度の数値範囲内であれば特に制限はなく、通例25〜50℃が好ましく、30〜40℃がさらに好ましい。反応は、連続式でもバッチ方式でもよい。反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜160時間である。連続式の場合も、平均滞留時間が、10〜150時間、好ましくは15〜100時間である。
The pH of the suspension in the enzyme saccharification treatment step is not particularly limited as long as it is within the range of the optimum pH value for the enzyme reaction, and is appropriately selected within the range of 3.5 to 10.0. It is preferable to maintain in the range of 7.5.
The enzyme saccharification treatment temperature is not particularly limited as long as it is within the numerical range of the optimum temperature for the enzyme reaction, and is usually preferably 25 to 50 ° C, more preferably 30 to 40 ° C. The reaction may be continuous or batch. The reaction time varies depending on the enzyme concentration, but in the case of a batch system, it is 10 to 240 hours, more preferably 15 to 160 hours. Also in the case of the continuous type, the average residence time is 10 to 150 hours, preferably 15 to 100 hours.

<固液分離工程>
酵素糖化処理工程を出た処理懸濁液は、図1における「固液分離工程」で濾過装置によりリグニン、ヘミセルロース、セルロース及び炭酸カルシウム粒子を含んだ固形残渣が除かれる。この固形残渣中のセルロース成分はリグニン等により保護されている状態であり、糖化原料として利用し難いものであるため他の固形分と共に系外に排出される。液体留分は次工程の遠心分離工程に送られる。
<Solid-liquid separation process>
From the treated suspension that has exited the enzymatic saccharification treatment step, the solid residue containing lignin, hemicellulose, cellulose, and calcium carbonate particles is removed by a filtration device in the “solid-liquid separation step” in FIG. The cellulose component in this solid residue is in a state protected by lignin or the like, and is difficult to use as a saccharification raw material, so it is discharged out of the system together with other solid components. The liquid fraction is sent to the subsequent centrifugation step.

<遠心分離工程>
固形残渣成分が除かれた液体留分は、図1の「遠心分離」の工程で随伴されている微細炭酸カルシウム粒子や液体残渣成分が除去されて、酵素、生成糖類を含有する液体留分が得られる。
<Centrifuge separation>
The liquid fraction from which the solid residue component has been removed is obtained by removing the fine calcium carbonate particles and the liquid residue component accompanying the “centrifugation” step in FIG. can get.

<膜分離工程>
遠心分離工程から出る液体留分は、次いで、図1の「膜分離」の工程で限外濾過装置により生成糖類含有液と酵素含有液に分離され、生成糖類含有液は図1に「糖」として示されている糖類貯槽に送られる。生成糖類含有液は製品として回収される。他方、酵素含有液は、図1に「回収酵素」として示されている酵素貯槽を経て酵素糖化処理工程の酵素源として循環される。
<Membrane separation process>
The liquid fraction exiting the centrifugation step is then separated into a product saccharide-containing solution and an enzyme-containing solution by an ultrafiltration device in the “membrane separation” step of FIG. 1, and the product saccharide-containing solution is shown in FIG. Sent to a sugar storage tank, shown as The product sugar-containing liquid is recovered as a product. On the other hand, the enzyme-containing liquid is circulated as an enzyme source in the enzymatic saccharification treatment step through an enzyme storage tank shown as “recovered enzyme” in FIG.

<併行糖化発酵処理>
図2に示されるように、「糖化工程」における酵素糖化処理を、酵素糖化処理によって生成する糖類中の単糖類を発酵基質(発酵原料)とした発酵処理を同時に行う併行糖化発酵処理とすることにより発酵生産物を製造することを主たる目的とする併行糖化発酵処理方法を実施する工程とすることができる。
前処理工程で酵素糖化処理に適した状態とする処理が施されたリグノセルロース系原料は酵素糖化処理工程に供給され、ここで、セルロース分解酵素、発酵用微生物、たとえばアルコール酵母、炭酸カルシウム粒子等を含有する原料懸濁液が調製され、酵素糖化反応と生成する単糖類を基質とする発酵反応が併行して進行する併行糖化発酵処理が行われる。
<Concurrent saccharification and fermentation treatment>
As shown in FIG. 2, the enzymatic saccharification process in the “saccharification process” is a parallel saccharification and fermentation process in which a fermentation process using a monosaccharide in a saccharide produced by the enzymatic saccharification process as a fermentation substrate (fermentation raw material) is performed simultaneously. By this, it can be set as the process of implementing the concurrent saccharification and fermentation treatment method whose main purpose is to produce a fermentation product.
The lignocellulosic raw material that has been subjected to a treatment suitable for enzymatic saccharification treatment in the pretreatment step is supplied to the enzymatic saccharification treatment step, where cellulolytic enzymes, fermentation microorganisms such as alcohol yeast, calcium carbonate particles, etc. Is prepared, and a parallel saccharification and fermentation process is performed in which an enzymatic saccharification reaction and a fermentation reaction using the produced monosaccharide as a substrate proceed in parallel.

併行糖化発酵処理のための発酵用の微生物としてはアルコール酵母などが用いられる。酵母などの発酵用微生物はそれらの増殖培地と一緒に反応系に添加することができる。酵母としては特許文献3、4などに記載される周知の酵母が使用できる。
発酵用微生物は固定化しておいてもよい。発酵用微生物を固定化しておくと酵母の回収が容易となる。また、凝集性のある微生物を選択することにより微生物の回収、再利用を可能にすることもできる。
Alcohol yeast is used as a fermentation microorganism for the concurrent saccharification and fermentation treatment. Fermentation microorganisms such as yeast can be added to the reaction system along with their growth media. As the yeast, known yeasts described in Patent Documents 3 and 4 can be used.
The microorganism for fermentation may be immobilized. If the fermentation microorganisms are immobilized, the yeast can be easily recovered. It is also possible to collect and reuse microorganisms by selecting microorganisms that have aggregation properties.

併行糖化発酵工程では、酵素糖化反応によって六炭糖、即ちグルコース、マンノース、ガラクトース等、ヘミセルロースに由来する五炭糖、即ちキシロースなどのほかにオリゴ糖類が生成し、グルコース等の六炭糖類が主として発酵基質とされエタノールのようなアルコール等が生成する。なお、生成する五炭糖はエタノール酵母の発酵基質として消化されることなく処理懸濁液中に残存する場合があるし、オリゴ糖類も発酵基質とはならないので残存するので、五炭糖については発酵基質とする微生物を併用するか、あるいは、五炭糖のみを別工程で処理してもよい。また、オリゴ糖類は後述するように回収酵素と共に併行糖化発酵工程に供給してさらに酵素分解処理してもよいし、糖製品として回収してもよく、いずれの実施態様も本発明の技術的範囲に含まれる。   In the concurrent saccharification and fermentation process, an saccharide saccharification reaction produces saccharides such as glucose, mannose, galactose, pentose derived from hemicellulose, ie, xylose, oligosaccharides, and glucose and other hexoses mainly. Alcohol such as ethanol is produced as a fermentation substrate. Note that the pentose produced may remain in the treated suspension without being digested as a fermentation substrate for ethanol yeast, and oligosaccharides will not remain as a fermentation substrate. A microorganism used as a fermentation substrate may be used in combination, or only pentose may be treated in a separate step. Further, as described later, the oligosaccharide may be supplied to the parallel saccharification and fermentation process together with the recovered enzyme and further subjected to enzymatic decomposition treatment, or may be recovered as a sugar product, and any embodiment is within the technical scope of the present invention. include.

併行糖化発酵処理後の処理懸濁液は、酵素糖化処理工程を出て図2に「固液分離」として示されている工程に送られ、濾過装置によりリグニン、ヘミセルロース、セルロース、炭酸カルシウム及び酵母を含んでいる固形残渣と生成アルコール、オリゴ糖類、酵素等を含有する液体留分とに分離される。分離される固形残渣中のセルロース分はリグニン等により保護されている状態で酵素糖化原料として適さないのでその他の固形分と共に残渣分としては系外に排出される。   The treated suspension after the concurrent saccharification and fermentation treatment exits the enzymatic saccharification treatment step and is sent to the step shown as “solid-liquid separation” in FIG. 2, and lignin, hemicellulose, cellulose, calcium carbonate and yeast are filtered by a filtration device. And a liquid fraction containing the produced alcohol, oligosaccharide, enzyme and the like. Since the cellulose content in the separated solid residue is protected by lignin or the like and is not suitable as an enzyme saccharification raw material, it is discharged out of the system as a residue together with other solid content.

固液分離工程を出る液体留分は、図2に「蒸留」として示されている減圧蒸留装置からなる蒸留工程に送られて発酵生成物、たとえばエタノールが回収されて「エタノール」として示されている貯槽に蓄えられる。
蒸留工程を減圧工程とすることにより、低い温度で発酵生成物を分離できるため酵素が失活することを防ぐことができる。減圧蒸留装置としてはロータリーエバポレーター、フラッシュエバポレーターなどを用いることができる。
蒸留温度は25〜60℃が好ましい。25℃未満であると、生成物の蒸留に時間がかかって生産性が低下する。また、60℃より高いと、酵素が熱変性して失活してしまい、新たに追加する酵素量が増加するため経済性が悪化する。蒸留後の蒸留残液中に残る発酵生成物濃度は0.1質量%以下とすることが好ましい
The liquid fraction leaving the solid-liquid separation step is sent to a distillation step consisting of a vacuum distillation apparatus shown as “distillation” in FIG. 2 where the fermentation product, eg ethanol, is recovered and shown as “ethanol”. Stored in a storage tank.
By making the distillation step a decompression step, the fermentation product can be separated at a low temperature, so that the enzyme can be prevented from being deactivated. A rotary evaporator, a flash evaporator, etc. can be used as a vacuum distillation apparatus.
The distillation temperature is preferably 25 to 60 ° C. If it is lower than 25 ° C., it takes time to distill the product, and the productivity is lowered. On the other hand, when the temperature is higher than 60 ° C., the enzyme is heat-denatured to be inactivated, and the amount of newly added enzyme is increased, so that the economic efficiency is deteriorated. The concentration of the fermentation product remaining in the distillation residue after distillation is preferably 0.1% by mass or less.

蒸留残液は、図2に「遠心分離」として示されている工程で残留している残渣分を遠心分離によって除去した後、液体留分は「膜分離」として示されている工程に送られて限外濾過装置により酵素含有液とオリゴ糖類を主成分とする糖含有液に分離され、酵素含有液は「回収酵素」として示されている酵素貯槽を経て併行糖化発酵工程に循環される。オリゴ糖を主成分とする糖含有液は製品として回収される。
また、遠心分離工程で残渣分が除去された酵素と生成糖類を含有する液体留分は、膜分離工程を経ずにそのまま酵素糖化処理工程に供給して含まれるオリゴ糖成分をさらに酵素糖化処理に付すことも可能である。
The distillation residue is removed by centrifugation after the residue remaining in the step shown as “centrifugation” in FIG. 2, and the liquid fraction is sent to the step shown as “membrane separation”. The enzyme-containing liquid and the saccharide-containing liquid mainly composed of oligosaccharides are separated by an ultrafiltration device, and the enzyme-containing liquid is circulated through the enzyme storage tank indicated as “recovered enzyme” to the parallel saccharification and fermentation process. A sugar-containing liquid mainly composed of oligosaccharide is recovered as a product.
In addition, the liquid fraction containing the enzyme and the produced saccharide from which the residue was removed in the centrifugation step is supplied to the enzyme saccharification treatment step as it is without going through the membrane separation step, and the oligosaccharide component contained therein is further subjected to the enzyme saccharification treatment. It is also possible to attach to.

次に実施例により本発明をさらに詳細に説明する。
<酵素糖化試験>
実施例1
(前処理)
ユーカリ・グロブラスの樹皮を20mmの丸穴スクリーンを取り付けた一軸破砕機(西邦機工社製、SC-15)で破砕し、木質系原料として用いた。
反応容器に上記原料200g(絶乾)に水1400mlを添加し、150℃で2時間加熱処理を行った。加熱処理後、40メッシュのスクリーンで固液分離し、固形分(絶乾)質量に対して6倍量の水を添加して混合した後、レファイナー(熊谷理機工業製、KRK高濃度ディスクレファイナー:クリアランス0.5mm)で摩砕した。摩砕物を40メッシュのスクリーンで固液分離後、固形物に水を添加し、40メッシュのスクリーンを用いて脱水することにより溶液の電気伝導度が30μS/cmになるまで洗浄した。固液分離後の固形物を前処理物(原料)として次の酵素糖化試験で用いた。
Next, the present invention will be described in more detail with reference to examples.
<Enzyme saccharification test>
Example 1
(Preprocessing)
Eucalyptus globulus bark was crushed with a uniaxial crusher (Seiho Kiko Co., Ltd., SC-15) equipped with a 20 mm round hole screen and used as a woody material.
To the reaction vessel, 1400 ml of water was added to 200 g (absolutely dry) of the above raw material, and heat treatment was performed at 150 ° C. for 2 hours. After heat treatment, solid-liquid separation is performed with a 40-mesh screen. After adding and mixing 6 times the amount of water with respect to the solid content (absolute dryness), a refiner (manufactured by Kumagai Riki Kogyo Co., Ltd., KRK high concentration discreet). (Fineer: clearance 0.5 mm). The milled product was solid-liquid separated on a 40 mesh screen, and then water was added to the solid material, followed by dehydration using a 40 mesh screen to wash the solution until the electric conductivity of the solution reached 30 μS / cm. The solid after solid-liquid separation was used as a pre-processed product (raw material) in the next enzymatic saccharification test.

300ml容三角フラスコ(滅菌済)に前処理物原料(絶乾)の最終濃度が4質量%になるように添加した。次に、原料(絶乾)100質量部に対して10質量部の炭酸カルシウム粉末(和光純薬、特級炭酸カルシウム、粒径12μm)を添加後、市販セルラーゼ(ジェネンコア社製GC220:セロビオヒドロラーゼ活性100U/mL、β−グルコシダーゼ活性200U/mL)2mlを添加し、最終容量を蒸留水で100mlにメスアップした。この混合液を30℃で24時間培養した。培養後の培養液を遠心分離(5000rpm、20分間)し、上清液を得た。   A 300 ml Erlenmeyer flask (sterilized) was added so that the final concentration of the pretreated material (absolutely dried) was 4% by mass. Next, after adding 10 parts by mass of calcium carbonate powder (Wako Pure Chemicals, special grade calcium carbonate, particle size 12 μm) to 100 parts by mass of the raw material (absolutely dry), commercially available cellulase (GC220: cellobiohydrolase activity by Genencor) 2 ml of 100 U / mL, β-glucosidase activity 200 U / mL) was added, and the final volume was made up to 100 ml with distilled water. This mixed solution was cultured at 30 ° C. for 24 hours. The culture solution after the culture was centrifuged (5000 rpm, 20 minutes) to obtain a supernatant.

上清液の酵素活性(セロビオヒドロラーゼ、β−グルコシダーゼ)を測定した。セロビオヒドロラーゼ活性は、下記の方法で測定した。1.25mM 4−Methyl−umbelliferyl cellobioside を含有する100mM酢酸緩衝液(pH5)32μl、100mMグルコノ-δ-ラクトン4μl、サンプル4μlを96ウェルプレートに添加し37℃で30分間インキュベーションした。500mM Glycine−NaOH緩衝液(pH10.5)200μlを反応液に添加し、蛍光プレートリーダーで460nmの蛍光波長(励起光350nm)を測定した。検量線は0−500pmol の4−Methyl umbelliferonを用いて作製した。1分間に1μmolのMethyl umbelliferonを生成する酵素量を1単位(U)とした。   The enzyme activity (cellobiohydrolase, β-glucosidase) of the supernatant was measured. Cellobiohydrolase activity was measured by the following method. 32 μl of 100 mM acetate buffer (pH 5) containing 1.25 mM 4-Methyl-umbelliferyl cellioside, 4 μl of 100 mM glucono-δ-lactone and 4 μl of sample were added to a 96-well plate and incubated at 37 ° C. for 30 minutes. 200 μl of 500 mM Glycine-NaOH buffer (pH 10.5) was added to the reaction solution, and a fluorescence wavelength of 460 nm (excitation light 350 nm) was measured with a fluorescence plate reader. A calibration curve was prepared using 0-500 pmol of 4-methyl umiferiferon. The amount of enzyme that produced 1 μmol of methyl umbelliferon per minute was defined as 1 unit (U).

β−グルコシダーゼは下記の方法で測定した。1.25mM 4−Methyl−umbelliferyl glucoside を含有する100mM酢酸緩衝液(pH5)16μl、サンプル4μlを添加し37℃で30分間インキュベーションした。500mM Glycine−NaOH緩衝液(pH10.5)100μlを反応液に添加し、蛍光プレートリーダーで460nmの蛍光波長(励起光350nm)を測定した。検量線は0−500pmolの4−Methyl umbelliferonを用いて作製した。1分間に1μmolのMethyl umbelliferonを生成する酵素量を1単位(U)とした。酵素(セロビオヒドロラーゼおよびβ−グルコシダーゼ)の回収率は下記の式を用いて算出した。
酵素回収率(%)=上清の酵素活性/添加した酵素活性
β-glucosidase was measured by the following method. 16 μl of 100 mM acetate buffer (pH 5) containing 4 mg of 1.25 mM 4-methyl-umbelliferyl glucoside and 4 μl of sample were added and incubated at 37 ° C. for 30 minutes. 100 μl of 500 mM Glycine-NaOH buffer (pH 10.5) was added to the reaction solution, and a fluorescence wavelength of 460 nm (excitation light 350 nm) was measured with a fluorescence plate reader. A calibration curve was prepared using 0-500 pmol of 4-methyl umiferiferon. The amount of enzyme that produced 1 μmol of methyl umbelliferon per minute was defined as 1 unit (U). The recovery rates of the enzymes (cellobiohydrolase and β-glucosidase) were calculated using the following formula.
Enzyme recovery rate (%) = supernatant enzyme activity / added enzyme activity

実施例2
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1の(前処理)と同様の方法で処理した。
(酵素糖化試験)
実施例1の(酵素糖化試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの添加量を原料(絶乾)100質量部に対して5質量部として試験を実施した。
Example 2
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1 (pretreatment).
(Enzyme saccharification test)
The test was carried out in the same manner as in Example 1 (enzymatic saccharification test). However, the test was carried out with the addition amount of calcium carbonate being 5 parts by mass with respect to 100 parts by mass of the raw material (absolutely dry).

実施例3
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1の(前処理)と同様の方法で処理した。
(酵素糖化試験)
実施例1の(酵素糖化試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの添加量を原料(絶乾)100質量部に対して1質量部として試験を実施した。
Example 3
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1 (pretreatment).
(Enzyme saccharification test)
The test was carried out in the same manner as in Example 1 (enzymatic saccharification test). However, the test was carried out with the addition amount of calcium carbonate being 1 part by mass with respect to 100 parts by mass of the raw material (absolutely dry).

比較例1
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1と同様の方法で処理した。
(酵素糖化試験)
実施例1の(酵素糖化試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの替わりに蒸留水を添加して試験を実施した。
Comparative Example 1
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1.
(Enzyme saccharification test)
The test was carried out in the same manner as in Example 1 (enzymatic saccharification test). However, the test was carried out by adding distilled water instead of calcium carbonate.

セロビオヒドロラーゼ、およびβ−グルコシダーゼの回収率の結果を表1に示す。原料100質量部に対する炭酸カルシウムの添加量を10質量部(実施例1)、5質量部(実施例2)、1質量部(実施例3)とした場合では、炭酸カルシウムを添加しない場合(比較例1)と比較しセロビオヒドロラーゼおよびβ−グルコシダーゼの回収率が高かった(上清中の酵素活性が高かった)。   Table 1 shows the results of cellobiohydrolase and β-glucosidase recovery. When the amount of calcium carbonate added to 100 parts by mass of the raw material is 10 parts by mass (Example 1), 5 parts by mass (Example 2), and 1 part by mass (Example 3), when calcium carbonate is not added (comparison) The recovery rate of cellobiohydrolase and β-glucosidase was higher than in Example 1) (enzyme activity in the supernatant was high).

Figure 0005621528
Figure 0005621528

<併行糖化発酵試験>
実施例4
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1と同様の方法で処理した。
(併行糖化発酵試験)
液体培地A(ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/L、グルコース30g/L、蒸留水に溶解、pH 5.6)100mlと液体培地B(ポリペプトン15g/L、酵母エキス10g/L、麦芽エキス10g/L:蒸留水に溶解)20mlを混合した培地で市販酵母(商品名:Maurivin: Mauri Yeast Australia Pty Limited)を30℃、24時間培養した。培養後の培養液100mlを遠心分離(5000rpm、20分間)し、上清を取り除き培養液の容量を10mlに調製(酵母を集菌)した(濃縮酵母菌体)。300ml容三角フラスコ(滅菌済)に前処理物(絶乾原料)の最終濃度が4質量部になるように添加した。次に、原料(絶乾)100質量部に対して10質量部の炭酸カルシウム(和光純薬、特級炭酸カルシウム、粒径12μm)を添加後、濃縮酵母菌体10ml、市販セルラーゼ(ジェネンコア社製GC220:セロビオヒドロラーゼ活性100U/mL、β−グルコシダーゼ活性200U/mL)2mlを添加し、最終容量を蒸留水で100mlにメスアップした。この混合液を30℃で24時間培養した。培養後の培養液を遠心分離(5000rpm、20分間)し、上清液を得た。上清液の酵素活性(セロビオヒドロラーゼ、β−グルコシダーゼ)を実施例1と同様の方法で測定した。
<Concurrent saccharification and fermentation test>
Example 4
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1.
(Concurrent saccharification and fermentation test)
Liquid medium A (polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, glucose 30 g / L, dissolved in distilled water, pH 5.6) 100 ml and liquid medium B (polypeptone 15 g / L, yeast extract 10 g / L, malt extract 10 g / L: dissolved in distilled water) In a medium mixed with 20 ml, commercially available yeast (trade name: Maurivin: Mauri Yeast Australia Pty Limited) was cultured at 30 ° C. for 24 hours. Centrifugation (5000 rpm, 20 minutes) of the culture solution after culturing was performed, and the supernatant was removed, and the volume of the culture solution was adjusted to 10 ml (yeast was collected) (concentrated yeast cells). A 300 ml Erlenmeyer flask (sterilized) was added so that the final concentration of the pretreated product (absolutely dried raw material) was 4 parts by mass. Next, after adding 10 parts by mass of calcium carbonate (Wako Pure Chemicals, special grade calcium carbonate, particle size 12 μm) to 100 parts by mass of the raw material (absolutely dry), 10 ml of concentrated yeast cells, commercially available cellulase (GC220 manufactured by Genencor) 2 ml of cellobiohydrolase activity 100 U / mL, β-glucosidase activity 200 U / mL) was added, and the final volume was made up to 100 ml with distilled water. This mixed solution was cultured at 30 ° C. for 24 hours. The culture solution after the culture was centrifuged (5000 rpm, 20 minutes) to obtain a supernatant. The enzyme activity (cellobiohydrolase, β-glucosidase) of the supernatant was measured in the same manner as in Example 1.

実施例5
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1の(前処理)と同様の方法で処理した。
(併行糖化発酵試験)
実施例4の(併行糖化発酵試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの添加量を原料(絶乾)100質量部に対して5質量部として試験を実施した。
Example 5
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1 (pretreatment).
(Concurrent saccharification and fermentation test)
The test was carried out in the same manner as in Example 4 (concurrent saccharification and fermentation test). However, the test was carried out with the addition amount of calcium carbonate being 5 parts by mass with respect to 100 parts by mass of the raw material (absolutely dry).

実施例6
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1の(前処理)と同様の方法で処理した。
(併行糖化発酵試験)
実施例4の(併行糖化発酵試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの添加量を原料(絶乾)100質量部に対して1質量部として試験を実施した。
Example 6
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1 (pretreatment).
(Concurrent saccharification and fermentation test)
The test was carried out in the same manner as in Example 4 (concurrent saccharification and fermentation test). However, the test was carried out with the addition amount of calcium carbonate being 1 part by mass with respect to 100 parts by mass of the raw material (absolutely dry).

比較例2
(前処理)
ユーカリ・グロブラスの樹皮を、実施例1と同様の方法で処理した。
(併行糖化発酵試験)
実施例4の(併行糖化発酵試験)と同様の方法で試験を実施した。但し、炭酸カルシウムの替わりに蒸留水を添加して実施した。
Comparative Example 2
(Preprocessing)
Eucalyptus globulus bark was treated in the same manner as in Example 1.
(Concurrent saccharification and fermentation test)
The test was carried out in the same manner as in Example 4 (concurrent saccharification and fermentation test). However, distilled water was added instead of calcium carbonate.

セロビオヒドロラーゼ、およびβ−グルコシダーゼの回収率の結果を表2に示す。原料100質量部に対する炭酸カルシウムの添加量を10質量部(実施例4)、5質量部(実施例5)、1質量部(実施例6)とした場合では、炭酸カルシウムを添加しない場合(比較例2)と比較してセロビオヒドロラーゼおよびβ−グルコシダーゼの回収率が高かった(上清中の酵素活性が高かった)。   Table 2 shows the results of cellobiohydrolase and β-glucosidase recovery. When the amount of calcium carbonate added to 100 parts by mass of the raw material is 10 parts by mass (Example 4), 5 parts by mass (Example 5), and 1 part by mass (Example 6), no calcium carbonate is added (comparison) The recovery rate of cellobiohydrolase and β-glucosidase was higher than in Example 2) (enzyme activity in the supernatant was higher).

Figure 0005621528
Figure 0005621528

表1及び表2の結果から、本発明の酵素糖化処理方法を炭酸カルシウム粒子の存在下で行う方法により、酵素活性の経時での低下が少なくすることが可能となることは明白である。このような結果は、酵素糖化処理系に炭酸カルシウムを添加することで固形残渣分に酵素が吸着されることが抑制されて、系外に排出され廃棄される酵素量が顕著に減少することによってもたらされるものである。   From the results shown in Tables 1 and 2, it is clear that the enzyme saccharification treatment method of the present invention can be carried out in the presence of calcium carbonate particles to reduce the decrease in enzyme activity over time. Such a result is that by adding calcium carbonate to the enzyme saccharification treatment system, the adsorption of the enzyme to the solid residue is suppressed, and the amount of the enzyme discharged and discarded out of the system is remarkably reduced. It is brought about.

本発明によれば、リグノセルロース系原料の酵素糖化処理方法における酵素のリサイクル性が向上して酵素糖化処理法の経済性は大きく改善されるので、リグノセルロース材料の酵素糖化処理による糖類等の商業的な生産に途を拓くものである。
According to the present invention, the recyclability of the enzyme in the enzymatic saccharification treatment method for lignocellulosic raw materials is improved and the economic efficiency of the enzymatic saccharification treatment method is greatly improved. It opens the way for efficient production.

Claims (10)

酵素糖化反応に適した原料とする前処理が施されたリグノセルロース系原料をセルロース糖化酵素含有水中に添加してなる原料懸濁液を酵素糖化処理工程において攪拌下に酵素糖化処理して処理懸濁液を得、該処理懸濁液から反応生成物と酵素を分離回収し、回収した酵素含有液を酵素糖化処理工程用の酵素源として循環利用する酵素糖化処理方法であって、前記原料懸濁液に炭酸カルシウム粒子を添加して酵素糖化処理することを特徴とするリグノセルロース系原料の酵素糖化処理方法。   A raw material suspension obtained by adding a pretreated lignocellulosic raw material as a raw material suitable for enzymatic saccharification reaction into water containing cellulose saccharifying enzyme is subjected to enzymatic saccharification treatment with stirring in the enzymatic saccharification treatment step, and the process is suspended. An enzyme saccharification method comprising obtaining a suspension, separating and recovering a reaction product and an enzyme from the treated suspension, and recycling the collected enzyme-containing solution as an enzyme source for the enzyme saccharification treatment step, A method for enzymatic saccharification of a lignocellulosic material, characterized in that calcium carbonate particles are added to a suspension for enzymatic saccharification treatment. 前記炭酸カルシウム粒子が、リグノセルロース原料(絶乾)100質量部に対して1〜10質量部の割合で添加される請求項1記載のリグノセルロース系原料の酵素糖化処理方法。   The method for enzymatic saccharification of a lignocellulosic raw material according to claim 1, wherein the calcium carbonate particles are added at a ratio of 1 to 10 parts by mass with respect to 100 parts by mass of the lignocellulose raw material (absolutely dry). 前記セルロース糖化酵素がセルラーゼである請求項1又は2に記載のリグノセルロース系原料の酵素糖化処理方法。   The method for enzymatic saccharification of a lignocellulosic material according to claim 1 or 2, wherein the cellulose saccharifying enzyme is cellulase. 前記酵素糖化反応に適した原料とする前処理が、リグノセルロース系原料をアルカリ薬品含有溶液で浸漬処理する化学的処理、加圧熱水処理、破砕繊維化処理又は磨砕処理よりなる機械的処理から選択される少なくとも1種を含む前処理である請求項1〜3のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。   The mechanical treatment which the pre-processing used as the raw material suitable for the enzyme saccharification reaction comprises a chemical treatment in which a lignocellulosic raw material is immersed in an alkaline chemical-containing solution, a pressurized hot water treatment, a crushed fiber treatment or a grinding treatment. The method for enzymatic saccharification of a lignocellulosic raw material according to any one of claims 1 to 3, wherein the pretreatment comprises at least one selected from the group consisting of: 前記酵素糖化反応工程に循環される酵素含有液が、糖化酵素及び生成糖類中のオリゴ糖類を含有する酵素含有液である請求項1〜4のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。   The enzyme of lignocellulosic raw material according to any one of claims 1 to 4, wherein the enzyme-containing liquid circulated in the enzyme saccharification reaction step is an enzyme-containing liquid containing an oligosaccharide in a saccharifying enzyme and a generated saccharide. Saccharification method. 前記酵素糖化反応工程に循環される酵素含有液が、生成糖類が除かれた酵素含有液である請求項1〜4のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。   The method for enzymatic saccharification of a lignocellulosic material according to any one of claims 1 to 4, wherein the enzyme-containing liquid circulated in the enzyme saccharification reaction step is an enzyme-containing liquid from which produced saccharides have been removed. 前記酵素糖化処理方法が、リグノセルロース系原料に酵素糖化反応に適した原料とする処理を施す前処理工程、セルロース糖化酵素含有水に該前処理が施されたリグノセルロース系原料と炭酸カルシウム粒子を添加してなる原料懸濁液を攪拌下に酵素糖化処理する酵素糖化処理工程、該酵素糖化処理工程から出る処理懸濁液から固形残渣を除去する固液分離工程、該固液分離工程から出る液体留分を遠心分離して残留残渣を除去する遠心分離工程、該遠心分離工程から出る残留残渣が除去された液体留分から酵素含有液と生成糖含有液を分離する膜分離工程、該膜分離工程から得られる酵素含有液を酵素貯留槽を経て酵素糖化処理工程に酵素源として循環供給する酵素循環工程を有する一連の工程に従ってリグノセルロース系原料を糖化処理する方法である請求項1〜6のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。   The enzyme saccharification treatment method comprises a pretreatment step in which a lignocellulosic raw material is treated as a raw material suitable for an enzymatic saccharification reaction, a cellulose saccharifying enzyme-containing water subjected to the pretreatment and a lignocellulose raw material and calcium carbonate particles. Enzymatic saccharification treatment step of saccharifying the added material suspension with stirring, solid-liquid separation step of removing solid residues from the treatment suspension exiting the enzymatic saccharification treatment step, exiting from the solid-liquid separation step A centrifugal separation step of centrifuging the liquid fraction to remove residual residues, a membrane separation step of separating the enzyme-containing liquid and the product sugar-containing liquid from the liquid fraction from which the residual residues from the centrifugal separation step have been removed, the membrane separation The lignocellulosic raw material is saccharified according to a series of steps including an enzyme circulation step in which the enzyme-containing liquid obtained from the step is circulated and supplied as an enzyme source to the enzyme saccharification treatment step through the enzyme storage tank. Enzymatic saccharification treatment method lignocellulosic feedstock according to any one of claims 1 to 6 is that method. 前記酵素糖化処理工程を、単糖類を醗酵基質とする発酵用微生物を添加して酵素糖化処理と該酵素糖化処理によって生成する糖類中の単糖類を基質とする発酵処理を併行して行う併行糖化発酵処理工程とし、併行糖化発酵処理工程から出る処理懸濁液から発酵生成物と酵素を分離回収し、回収酵素を含有する酵素含有液を酵素糖化処理工程に酵素源として循環供給することを特徴とする請求項1〜6のいずれか1項に記載のリグノセルロース系原料の酵素糖化処理方法。   The enzymatic saccharification treatment step is performed by adding a fermentation microorganism using a monosaccharide as a fermentation substrate and performing the enzyme saccharification treatment and the fermentation treatment using the monosaccharide in the saccharide produced by the enzyme saccharification treatment as a substrate. It is a fermentation process, and the fermentation product and enzyme are separated and recovered from the suspension processed from the parallel saccharification and fermentation process, and the enzyme-containing liquid containing the recovered enzyme is circulated and supplied to the enzyme saccharification process as an enzyme source. The method for enzymatic saccharification of a lignocellulosic material according to any one of claims 1 to 6. 前記発酵用微生物がアルコール酵母である請求項8記載のリグノセルロース系原料の酵素糖化処理方法。   The method for enzymatic saccharification of a lignocellulosic material according to claim 8, wherein the fermentation microorganism is alcohol yeast. 前記酵素糖化処理方法が、リグノセルロース系原料に酵素糖化反応に適した原料とする処理を施す前処理工程、セルロース糖化酵素含有水に該前処理が施されたリグノセルロース系原料、炭酸カルシウム粒子、及び単糖類を発酵基質とする発酵用微生物を添加してなる原料懸濁液を攪拌しながら酵素糖化処理と生成糖類中の単糖類の発酵処理を併行して行う酵素糖化処理工程、該酵素糖化処理工程から出る処理懸濁液から固形残渣を除去する固液分離工程、該固液分離工程から出る液体留分を減圧蒸留して発酵生成物を分離回収する蒸留工程、該蒸留工程から出る蒸留残液を遠心分離して残留残渣を除去する遠心分離工程、該遠心分離工程から出る残留残渣が除去された液体留分を酵素含有液と生成糖含有液に分離する膜分離工程、該膜分離工程から得られる酵素含有液を酵素貯留槽を経て酵素糖化処理工程に循環供給する回収酵素循環工程を有する一連の工程に従ってリグノセルロース系原料を併行糖化発酵処理する方法である請求項8又は9に記載のリグノセルロース系原料の酵素糖化処理方法。   The enzyme saccharification treatment method is a pretreatment step in which a lignocellulose raw material is treated as a raw material suitable for an enzymatic saccharification reaction, lignocellulosic raw material obtained by subjecting the cellulose saccharifying enzyme-containing water to the pretreatment, calcium carbonate particles, And an enzymatic saccharification treatment step in which the enzymatic saccharification treatment and the fermentation treatment of the monosaccharides in the produced saccharide are simultaneously performed while stirring the raw material suspension obtained by adding a fermentation microorganism having a monosaccharide as a fermentation substrate, A solid-liquid separation step for removing solid residues from the treated suspension from the treatment step, a distillation step for separating and recovering the fermentation product by distilling the liquid fraction from the solid-liquid separation step under reduced pressure, a distillation from the distillation step Centrifugation step for centrifuging residual liquid to remove residual residue, membrane separation step for separating liquid fraction from which residual residue from the centrifugation step is removed into enzyme-containing liquid and product sugar-containing liquid, the membrane separation The method according to claim 8 or 9, wherein the lignocellulosic raw material is subjected to a simultaneous saccharification and fermentation treatment according to a series of steps including a recovered enzyme circulation step for supplying the enzyme-containing liquid obtained from the step to the enzyme saccharification treatment step via an enzyme storage tank. The enzyme saccharification processing method of the lignocellulose raw material of description.
JP2010253594A 2010-11-12 2010-11-12 Enzymatic saccharification method of lignocellulosic material Active JP5621528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253594A JP5621528B2 (en) 2010-11-12 2010-11-12 Enzymatic saccharification method of lignocellulosic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253594A JP5621528B2 (en) 2010-11-12 2010-11-12 Enzymatic saccharification method of lignocellulosic material

Publications (2)

Publication Number Publication Date
JP2012100617A JP2012100617A (en) 2012-05-31
JP5621528B2 true JP5621528B2 (en) 2014-11-12

Family

ID=46391850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253594A Active JP5621528B2 (en) 2010-11-12 2010-11-12 Enzymatic saccharification method of lignocellulosic material

Country Status (1)

Country Link
JP (1) JP5621528B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714396B2 (en) * 2011-04-18 2015-05-07 株式会社日本触媒 Biomass saccharification method
JP2014100073A (en) * 2012-11-16 2014-06-05 Toray Ind Inc Composition for biomass degradation and production process for sugar solution using it
WO2014129489A1 (en) 2013-02-20 2014-08-28 東レ株式会社 Sugar-solution production method
US10041100B2 (en) 2013-03-04 2018-08-07 Toray Industries, Inc. Method of producing sugar solution
CA2921891C (en) 2013-08-22 2022-08-02 Toray Industries, Inc. Method of producing a sugar liquid from cellulose - containing biomass
KR101965841B1 (en) * 2017-09-05 2019-04-04 한국화학연구원 Method for pretreatment of biomass
KR20200128904A (en) * 2019-05-07 2020-11-17 고려대학교 산학협력단 Method for cellulase recycling in high-solids enzymatic hydrolysis of pretreated lignocellulose

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865898A (en) * 1992-08-06 1999-02-02 The Texas A&M University System Methods of biomass pretreatment
JP5019421B2 (en) * 2006-10-13 2012-09-05 独立行政法人産業技術総合研究所 Method for producing sugar
JP2008206484A (en) * 2007-02-28 2008-09-11 Oji Paper Co Ltd Method for collecting enzyme
JP5260007B2 (en) * 2007-09-21 2013-08-14 国立大学法人名古屋大学 Method for saccharification of celluloses
JP2010098951A (en) * 2008-10-21 2010-05-06 Hitachi Zosen Corp Method for simply collecting and reusing cellulose-saccharifying amylase
JP2010136702A (en) * 2008-12-15 2010-06-24 Forestry & Forest Products Research Institute Method for producing ethanol
US20100159522A1 (en) * 2008-12-19 2010-06-24 E.I. De Pont De Nemours And Company Organosolv and ozone treatment of biomass to enhance enzymatic saccharification
CN102257150A (en) * 2008-12-19 2011-11-23 纳幕尔杜邦公司 Organic solvent pretreatment of biomass to enhance enzymatic saccharification
US8241873B2 (en) * 2008-12-19 2012-08-14 E I Du Pont De Nemours And Company Organic solvent pretreatment of biomass to enhance enzymatic saccharification
JP2011019483A (en) * 2009-07-17 2011-02-03 Jgc Corp Saccharified solution preparation method and saccharification reaction device
EP2505657A1 (en) * 2009-11-27 2012-10-03 Mitsui Chemicals, Inc. Process for production of monosaccharide
JP6003056B2 (en) * 2010-03-15 2016-10-05 東レ株式会社 Method for producing sugar solution
JP4947223B1 (en) * 2010-08-31 2012-06-06 王子製紙株式会社 Enzymatic saccharification method for lignocellulose-containing biomass

Also Published As

Publication number Publication date
JP2012100617A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
CA2809519C (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
AU2009308624B2 (en) Sugar production process and ethanol production process
JP5621528B2 (en) Enzymatic saccharification method of lignocellulosic material
JP5353554B2 (en) Ethanol production method from woody biomass
JP2006087319A (en) Method for continuously saccharifying lignocellulose
JP4947223B1 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP5685959B2 (en) Method for producing valuable material from lignocellulose-containing biomass
JP4930650B1 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6213612B2 (en) Method for producing ethanol from lignocellulosic material
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP6331490B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2015167480A (en) Method for enzymatic saccharification of biomass containing lignocellulose
JP2014132052A (en) Fuel composition
JP5910367B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass
JP6343967B2 (en) Method for producing ferulic acid
JP5637254B2 (en) A method for producing ethanol from woody biomass.
JP2013183690A (en) Method of pretreating biomass containing lignocellulose
JP2015167530A (en) Method for enzymatic saccharification treatment of biomass containing lignocellulose
JP2013247924A (en) Method for preprocessing biomass containing lignocellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250