JP5616481B1 - Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device - Google Patents

Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device Download PDF

Info

Publication number
JP5616481B1
JP5616481B1 JP2013101555A JP2013101555A JP5616481B1 JP 5616481 B1 JP5616481 B1 JP 5616481B1 JP 2013101555 A JP2013101555 A JP 2013101555A JP 2013101555 A JP2013101555 A JP 2013101555A JP 5616481 B1 JP5616481 B1 JP 5616481B1
Authority
JP
Japan
Prior art keywords
pressure
chamber
heat storage
gas
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013101555A
Other languages
Japanese (ja)
Other versions
JP2014222086A (en
Inventor
俊博 村元
俊博 村元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2013101555A priority Critical patent/JP5616481B1/en
Priority to CN201410196521.9A priority patent/CN104154377B/en
Application granted granted Critical
Publication of JP5616481B1 publication Critical patent/JP5616481B1/en
Publication of JP2014222086A publication Critical patent/JP2014222086A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/02Energy absorbers; Noise absorbers
    • F16L55/027Throttle passages
    • F16L55/02709Throttle passages in the form of perforated plates
    • F16L55/02718Throttle passages in the form of perforated plates placed transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Incineration Of Waste (AREA)
  • Pipe Accessories (AREA)

Abstract

【課題】流体供給源と該流体を処理する処理装置とを繋ぐ管路の圧力損失が高くならず、処理装置の作動により管路内に生じる流体圧力変動を効果的に吸収する圧力緩衝装置を提供する。また、当該圧力緩衝装置を備えることにより、ランニングコストの増大、及び設備全体の大型化を抑制できる蓄熱燃焼式排ガス処理装置を提供する。【解決手段】入口管と、出口管とが両端部に設けられた一定の容積を有するチャンバと、チャンバ内を複数の空間に分割する多数のパンチ孔又はメッシュ孔が形成された多孔板を有し、多孔板を流体の流れ方向に対向させて所定の間隔で配置してチャンバ内を複数の圧力緩衝室として構成し、流体の流れ方向の最上流側と最下流側の圧力緩衝室を除いた中央部の圧力緩衝室に、当該圧力緩衝室の内圧を検出する圧力検出手段を設けた。この圧力緩衝装置を処理装置の一例である蓄熱燃焼式排ガス処理装置に備えることが好ましい。【選択図】図3A pressure buffering device that effectively absorbs fluid pressure fluctuations generated in a pipe line due to operation of the processing apparatus without increasing pressure loss of a pipe line connecting a fluid supply source and the processing apparatus for processing the fluid. provide. Moreover, the thermal storage combustion type exhaust gas processing apparatus which can suppress the increase in running cost and the enlargement of the whole installation is provided by providing the said pressure buffer apparatus. An inlet pipe and an outlet pipe are provided at both end portions of a chamber having a constant volume, and a perforated plate having a number of punch holes or mesh holes dividing the chamber into a plurality of spaces. The perforated plates are arranged at a predetermined interval facing the fluid flow direction, and the inside of the chamber is configured as a plurality of pressure buffer chambers, excluding the pressure buffer chambers on the most upstream side and the most downstream side in the fluid flow direction. A pressure detecting means for detecting the internal pressure of the pressure buffering chamber is provided in the central pressure buffering chamber. It is preferable to provide this pressure buffering device in a regenerative combustion exhaust gas treatment device which is an example of a treatment device. [Selection] Figure 3

Description

本発明は、流体供給源と該流体を処理する処理装置とを繋ぐ管路の間に設けられる圧力緩衝装置、該圧力緩衝装置を備えた蓄熱燃焼式排ガス処理装置に関する。   The present invention relates to a pressure buffering device provided between a fluid supply source and a pipe line connecting a processing device for processing the fluid, and a heat storage combustion exhaust gas processing device including the pressure buffering device.

塗装工場等から排出される揮発性有機化合物(VOC)含有の排ガスは、排出規制がなされている。それらの工場では、揮発性有機化合物含有の排ガスの分解処理に例えば、図6に示す蓄熱燃焼式排ガス処理装置1´が使用されている(例えば、特許文献1参照。)。   Exhaust gas containing volatile organic compounds (VOC) discharged from painting factories is regulated. In these factories, for example, a regenerative combustion exhaust gas treatment apparatus 1 ′ shown in FIG. 6 is used for the decomposition treatment of exhaust gas containing volatile organic compounds (see, for example, Patent Document 1).

この蓄熱燃焼式排ガス処理装置1´は、バーナ2を備えた燃焼室3と、この燃焼室3にそれぞれ連通すると共に蓄熱体4をそれぞれ内蔵した3つの蓄熱室(5A,5B,5C)と、ファン6と連通し、不図示の揮発性有機化合物含有の排ガス(以下、「被処理ガス」と称する。)供給源から供給される被処理ガスをいずれかの蓄熱室、例えば5Aに通して燃焼室3へ供給する被処理ガス供給管7(被処理ガス供給流路)と、燃焼室3で加熱分解(酸化分解)処理された処理ガスを他の蓄熱室、例えば5Bに通して排気する処理ガス排気管8(処理ガス排気流路)と、燃焼完了後の処理ガスの一部をパージガスとして前工程で被処理ガスが通過した蓄熱室、例えば5Cに通してファン6の上流側に還流させるパージガス抽出管9(パージガス流路)とからなる。   This heat storage combustion type exhaust gas treatment apparatus 1 'includes a combustion chamber 3 provided with a burner 2, three heat storage chambers (5A, 5B, 5C) each communicating with the combustion chamber 3 and incorporating a heat storage body 4, respectively. A gas to be treated supplied from an unillustrated volatile organic compound-containing exhaust gas (hereinafter referred to as “gas to be treated”) is communicated with the fan 6 and combusted through one of the heat storage chambers, for example, 5A. Processing gas supply pipe 7 (processing gas supply flow path) to be supplied to the chamber 3 and processing gas that has been subjected to thermal decomposition (oxidative decomposition) in the combustion chamber 3 is exhausted through another heat storage chamber, for example, 5B. The gas exhaust pipe 8 (process gas exhaust flow path) and a part of the process gas after the completion of combustion are used as a purge gas and are returned to the upstream side of the fan 6 through a heat storage chamber, for example, 5C, through which the gas to be processed has passed in the previous process. Purge gas extraction pipe 9 (purge gas flow ) Consisting of a.

図6に示すように、被処理ガス供給管7には第1開閉弁10A,10B,10Cが介設されている。処理ガス排気管8には第2開閉弁11A,11B,11Cが介設されている。パージガス抽出管9には第3開閉弁12A,12B,12Cが介設されている。なお、パージガス抽出管9には、パージガスの流量が一定になるように弁開度が調節された調節弁13が設けられている。また、ファン6の吸い込み側に接続されている被処理ガス導入流路14とパージガス抽出管9との合流点の上流側には被処理ガス供給弁15が設けられている。   As shown in FIG. 6, first on-off valves 10 </ b> A, 10 </ b> B, and 10 </ b> C are interposed in the gas supply pipe 7 to be processed. The processing gas exhaust pipe 8 is provided with second on-off valves 11A, 11B, and 11C. The purge gas extraction pipe 9 is provided with third on-off valves 12A, 12B, 12C. The purge gas extraction pipe 9 is provided with a control valve 13 whose valve opening is adjusted so that the flow rate of the purge gas is constant. Further, a gas supply valve 15 to be processed is provided on the upstream side of the merging point between the gas supply flow path 14 to be processed connected to the suction side of the fan 6 and the purge gas extraction pipe 9.

上述の蓄熱燃焼式排ガス処理装置1´による被処理ガスの処理は以下のように行われる。先ず、不図示の被処理ガス供給源から供給された被処理ガスは、被処理ガス供給弁15を介してファン6の吸い込み側に導入される。そして、ファン6から供給された被処理ガスは、被処理ガス供給管7から3つの蓄熱室5A,5B,5Cのうち前工程で蓄熱されている蓄熱室、例えば5Aに供給された後、当該蓄熱室5Aの蓄熱体4との熱交換により予熱されて燃焼室3に導入される(被処理ガス供給工程)。   The processing of the gas to be processed by the above-described heat storage combustion type exhaust gas processing apparatus 1 'is performed as follows. First, the gas to be processed supplied from the gas supply source to be processed (not shown) is introduced to the suction side of the fan 6 through the gas supply valve 15 to be processed. And the to-be-processed gas supplied from the fan 6 is supplied from the to-be-processed gas supply pipe 7 to the heat storage chamber, for example, 5A, in which heat is stored in the previous process among the three heat storage chambers 5A, 5B, 5C. Preheated by heat exchange with the heat storage body 4 of the heat storage chamber 5A and introduced into the combustion chamber 3 (processed gas supply step).

続いて、被処理ガスは、燃焼室3において有機成分が加熱分解処理されて例えば、800℃の処理ガスとなる。その後、高温の処理ガスは、前工程で被処理ガスとの熱交換により降温した蓄熱室、例えば5Bを通過し、当該蓄熱室5Bの蓄熱体4と熱交換して100℃〜150℃に降温した後、処理ガス排気管8から大気に放散される(処理ガス排気工程)。   Subsequently, the gas to be treated is subjected to a thermal decomposition treatment of the organic components in the combustion chamber 3 to become a treatment gas at 800 ° C., for example. Thereafter, the high-temperature processing gas passes through the heat storage chamber, for example, 5B, which has been cooled by heat exchange with the gas to be processed in the previous process, and is heat-exchanged with the heat storage body 4 of the heat storage chamber 5B to decrease the temperature to 100 ° C to 150 ° C. After that, the gas is discharged from the processing gas exhaust pipe 8 to the atmosphere (processing gas exhaust process).

また、燃焼室3で生成された処理ガスの一部は、パージガスとして前工程で被処理ガスが通過した蓄熱室、例えば5Cの蓄熱体4に供給され、当該蓄熱体4の内部に残留している有機化合物を含む被処理ガスを除去した後、パージガスはパージガス抽出管9を介して被処理ガス導入流路14に環流される(パージ工程)。なお、パージガスは、上述のように処理ガスの一部をパージガスとして用いるほか、別途設けられたファン等から供給される清浄な空気を用いる場合もある。   Further, part of the processing gas generated in the combustion chamber 3 is supplied as a purge gas to the heat storage chamber through which the gas to be processed has passed in the previous step, for example, the 5C heat storage body 4 and remains inside the heat storage body 4. After removing the processing gas containing the organic compound, the purge gas is circulated to the processing gas introduction flow path 14 via the purge gas extraction pipe 9 (purge process). As described above, the purge gas may use a part of the processing gas as the purge gas, or may use clean air supplied from a separately provided fan or the like.

そして、第1開閉弁10A,10B,10C、第2開閉弁11A,11B,11C、第3開閉弁12A,12B,12Cは、所定時間毎に切り換わる。即ち、所定時間(例えば1分)が経過すると、第1開閉弁10A、第2開閉弁11B、及び第3開閉弁12Cは開から閉、第1開閉弁10B、第2開閉弁11C、及び第3開閉弁12Aが閉から開となり、前工程で処理ガスにより加熱された蓄熱室5Bの蓄熱体4に被処理ガスが被処理ガス供給管7から供給され、蓄熱体4との熱交換により予熱された後、燃焼室3内で加熱分解(酸化分解)処理され、その処理ガスは前工程でパージされた蓄熱室5Cから第2開閉弁11C及び処理ガス排気管8を介して大気に放散される。   Then, the first on-off valves 10A, 10B, 10C, the second on-off valves 11A, 11B, 11C, and the third on-off valves 12A, 12B, 12C are switched every predetermined time. That is, when a predetermined time (for example, 1 minute) elapses, the first on-off valve 10A, the second on-off valve 11B, and the third on-off valve 12C are closed from the open, the first on-off valve 10B, the second on-off valve 11C, The on-off valve 12A is opened from the closed state, and the gas to be processed is supplied from the gas to be processed supply pipe 7 to the heat storage body 4 of the heat storage chamber 5B heated by the processing gas in the previous process, and preheated by heat exchange with the heat storage body 4 Then, it is subjected to thermal decomposition (oxidative decomposition) in the combustion chamber 3, and the processing gas is diffused from the heat storage chamber 5C purged in the previous step to the atmosphere through the second on-off valve 11C and the processing gas exhaust pipe 8. The

一方、蓄熱室5Aには、燃焼室3で生成された処理ガスの一部がパージガスとして供給される。パージガスは、蓄熱体4内に残留する有機化合物を含む被処理ガスを除去した後、第3開閉弁12A及びパージガス抽出管9を介して被処理ガス導入流路14に環流される。以後、所定時間経過後に各開閉弁を切り換えて蓄熱室5Cで被処理ガス供給工程、蓄熱室5Aで処理ガス排気工程、第2蓄熱室5Bでパージ工程をそれぞれ行う。このように蓄熱燃焼式排ガス処理装置1´の操業中は、各蓄熱室5A,5B,5C間で被処理ガス供給工程、処理ガス排気工程、及びパージ工程が所定時間毎に順次切り換わる動作が所定時間継続する。   On the other hand, a part of the processing gas generated in the combustion chamber 3 is supplied to the heat storage chamber 5A as a purge gas. The purge gas is circulated through the third open / close valve 12A and the purge gas extraction pipe 9 to the process gas introduction flow path 14 after removing the process gas containing the organic compound remaining in the heat storage body 4. Thereafter, after the predetermined time has elapsed, the respective on-off valves are switched to perform the process gas supply process in the heat storage chamber 5C, the process gas exhaust process in the heat storage chamber 5A, and the purge process in the second heat storage chamber 5B. In this way, during operation of the heat storage combustion exhaust gas treatment apparatus 1 ′, the operation of sequentially switching the process gas supply process, the process gas exhaust process, and the purge process between the heat storage chambers 5A, 5B, and 5C every predetermined time. Continue for a predetermined time.

特開2011−102664号公報JP 2011-102664 A

上述した蓄熱燃焼式排ガス処理装置1´の被処理ガス供給工程において、各蓄熱室5A,5B,5Cのうちのいずれかの蓄熱室と被処理ガス供給管7との接続(即ち、被処理ガスの流路の切り換え)は、第1開閉弁10A,10B,10Cの開閉動作により行われる。   In the process gas supply step of the heat storage combustion exhaust gas treatment apparatus 1 ′ described above, the connection between the heat storage chamber of any one of the heat storage chambers 5A, 5B, and 5C and the process gas supply pipe 7 (that is, the process gas) The switching of the flow path) is performed by opening and closing the first on-off valves 10A, 10B, and 10C.

しかしながら、第1開閉弁10A,10B,10Cの開閉動作に伴う圧力変動が蓄熱燃焼式排ガス処理装置1´と被処理ガス供給源とを繋ぐ管路に伝播する。管路内の圧力変動が大きくなると、被処理ガスの発生源(生産ライン)が例えば、帯状の基材フィルム上に樹脂溶液を塗工する塗工機である場合、基材フィルムをばたつかせて安定な状態を保持できなくなるなど、生産ラインに悪影響を及ぼすという問題があった。   However, the pressure fluctuation accompanying the opening / closing operation of the first on-off valves 10A, 10B, 10C propagates to the pipe line connecting the regenerative combustion exhaust gas treatment apparatus 1 ′ and the gas supply source to be treated. When the pressure fluctuation in the pipe line becomes large, for example, when the gas generation source (production line) is a coating machine that applies a resin solution onto a belt-like base film, the base film is fluttered. In other words, the production line cannot be maintained stably.

上述の問題を解決するには、例えば、管路内に邪魔板を千鳥状に配置して被処理ガスの流れを蛇行させ、管路に大きな圧力損失を付与して圧力変動を緩和させる方法や、管路の道中に大気を吸引する吸引口を設け、圧力変動で管路内が負圧になった時に大気を吸引させて圧力変動を緩和させる方法が考えられる。   In order to solve the above-mentioned problem, for example, a baffle plate is arranged in a staggered manner in the pipe, the flow of the gas to be treated is meandered, a large pressure loss is given to the pipe, and the pressure fluctuation is alleviated. A method of reducing the pressure fluctuation by providing a suction port for sucking the atmosphere in the passage of the pipe and sucking the atmosphere when the pressure in the pipe becomes negative due to pressure fluctuation.

しかし、前者の方法は、管路に大きな圧力損失を付与するので動力の大きいファンが必要になり、それに伴って消費電力が増大するという問題がある。また、後者の方法は、被処理ガスを大気で希釈するので、被処理ガスの処理量が増加することになり、それに伴って燃焼室3、蓄熱室5A,5B,5C等の付帯設備の規模が大型化する結果、設備全体が大型化するという問題がある。   However, since the former method gives a large pressure loss to the pipe line, a fan with high power is required, and power consumption increases accordingly. In the latter method, since the gas to be processed is diluted with the atmosphere, the amount of the gas to be processed increases, and accordingly, the scale of the incidental facilities such as the combustion chamber 3 and the heat storage chambers 5A, 5B, and 5C is increased. As a result, the overall size of the equipment increases.

そこで、本発明は、流体供給源と該流体を処理する処理装置とを繋ぐ管路の圧力損失が高くならず、処理装置の作動により管路内に生じる流体圧力変動を効果的に吸収する圧力緩衝装置を提供することを目的とする。   Therefore, the present invention does not increase the pressure loss of the pipe connecting the fluid supply source and the processing apparatus for processing the fluid, and effectively absorbs the fluid pressure fluctuation generated in the pipe by the operation of the processing apparatus. An object is to provide a shock absorber.

また、本発明の他の目的は、上述の圧力緩衝装置を備えることにより、ランニングコストの増大、及び設備全体の大型化を抑制できる蓄熱燃焼式排ガス処理装置を提供することである。   Another object of the present invention is to provide a regenerative combustion exhaust gas treatment device that can suppress an increase in running cost and an increase in the size of the entire facility by including the above-described pressure buffering device.

本発明の圧力緩衝装置は、流体供給源と該流体を処理する処理装置とを繋ぐ管路の間に設けられ、前記処理装置の作動により前記管路内に生じる流体圧力変動を吸収する圧力緩衝装置である。この圧力緩衝装置は、前記流体を流入させる入口管と、該流体を排出させる出口管とがそれぞれ両端部に設けられた一定の容積を有するチャンバと、前記チャンバ内を複数の空間に分割する多数のパンチ孔又はメッシュ孔が形成された多孔板を有し、前記多孔板を前記流体の流れ方向に対向させて所定の間隔で配置することにより、前記チャンバ内を複数の圧力緩衝室として構成し、前記複数の圧力緩衝室のうち、前記流体の流れ方向の最上流側と最下流側の圧力緩衝室を除いた中央部の圧力緩衝室に、当該圧力緩衝室の内圧を検出する圧力検出手段を設け、前記流体の流れ方向の最下流側の圧力緩衝室に、前記処理装置の駆動で当該圧力緩衝室内に負圧が発生した際に大気を吸引する大気導入手段を設けたものである。 The pressure buffering device of the present invention is provided between a pipe line connecting a fluid supply source and a processing apparatus for processing the fluid, and absorbs a fluid pressure fluctuation generated in the pipe line by the operation of the processing apparatus. Device. This pressure buffering device includes a chamber having a constant volume in which an inlet pipe for allowing the fluid to flow in and an outlet pipe for discharging the fluid are respectively provided at both ends, and a plurality of spaces for dividing the inside of the chamber into a plurality of spaces. A plurality of pressure buffering chambers are formed by disposing the perforated plate at predetermined intervals so as to face the fluid flow direction. The pressure detection means for detecting the internal pressure of the pressure buffer chamber in the central pressure buffer chamber excluding the pressure buffer chamber on the most upstream side and the most downstream side in the fluid flow direction among the plurality of pressure buffer chambers And an air introduction means for sucking air when a negative pressure is generated in the pressure buffer chamber by driving of the processing device, in the pressure buffer chamber on the most downstream side in the fluid flow direction .

また、本発明の蓄熱燃焼式排ガス処理装置は、バーナを備えた燃焼室と、前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ備えた少なくとも2つ以上の蓄熱室と、ファンを有し、流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、前記燃焼室で加熱分解処理された処理ガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理ガス排気流路と、前工程で前記被処理ガスが通過した蓄熱室の蓄熱体にパージガスを供給するパージガス流路と、前記各蓄熱室間で前記被処理ガスの供給、前記処理ガスの排気、前記パージガスの供給を順次切り換える流路切り換え機構と、上述の圧力緩衝装置とを備えている。   In addition, the heat storage combustion exhaust gas treatment apparatus of the present invention has a combustion chamber provided with a burner, at least two heat storage chambers each provided with a heat storage body, and a fan in communication with the combustion chamber, and a fan, A gas to be treated supplied from a fluid supply source is passed through the heat storage chamber of the heat storage chamber where heat is stored in the previous step, preheated by heat exchange with the heat storage body of the heat storage chamber, and supplied to the combustion chamber. The processing gas supply flow path and the processing gas thermally decomposed in the combustion chamber are passed through the heat storage chamber of the heat storage chamber which has been cooled down by heat exchange with the gas to be processed in the previous step to store the heat storage body in the heat storage chamber. Between the heat storage chambers, a purge gas flow channel for supplying purge gas to the heat storage body of the heat storage chamber through which the gas to be processed has passed in the previous process, and a heat treatment chamber between the heat storage chambers. Supply of processing gas, Exhaust gas, supply and sequentially switching the flow path switching mechanism of the purge gas, and a above the pressure damper.

前記圧力検出手段の圧力値に基づき、前記中央部の圧力緩衝室の内圧が予め定められた圧力範囲内に保たれるように前記ファンの回転数を制御することが好ましい。   It is preferable to control the rotation speed of the fan based on the pressure value of the pressure detecting means so that the internal pressure of the central pressure buffer chamber is maintained within a predetermined pressure range.

本発明によれば、流体供給源と該流体を処理する処理装置とを繋ぐ管路の圧力損失が高くならず、処理装置の作動により管路内に生じる流体圧力変動を効果的に吸収する圧力緩衝装置を提供できる。   According to the present invention, the pressure loss of the pipe line connecting the fluid supply source and the processing apparatus for processing the fluid does not increase, and the pressure that effectively absorbs the fluid pressure fluctuation generated in the pipe line due to the operation of the processing apparatus. A shock absorber can be provided.

また、上述の圧力緩衝装置を備えることにより、ランニングコストの増大、及び設備全体の大型化を抑制できる蓄熱燃焼式排ガス処理装置を提供できる。   Moreover, by providing the above-mentioned pressure buffer device, it is possible to provide a regenerative combustion exhaust gas treatment device that can suppress an increase in running cost and an increase in the size of the entire facility.

(a)は本発明の実施の形態に係る圧力緩衝装置の側断面図、(b)は多孔板の一例を示す(a)のA−A断面図、(c)は多孔板の変形例を示す(a)のA−A断面図である。(A) is a sectional side view of the pressure damper according to the embodiment of the present invention, (b) is an AA sectional view of (a) showing an example of a porous plate, and (c) is a modified example of the porous plate. It is AA sectional drawing of (a) shown. 図1の圧力緩衝装置による圧力変動低減状態を説明する波形図である。It is a wave form diagram explaining the pressure fluctuation reduction state by the pressure buffer apparatus of FIG. 本発明の実施の形態に係る蓄熱燃焼式排ガス処理装置の概略構成図である。1 is a schematic configuration diagram of a regenerative combustion exhaust gas treatment apparatus according to an embodiment of the present invention. 図3に示した蓄熱燃焼式排ガス処理装置に備えられる圧力緩衝装置の側断面図、及び当該圧力緩衝装置内を被処理ガスが流動する状態を説明する図である。FIG. 4 is a side cross-sectional view of a pressure buffer device provided in the heat storage combustion exhaust gas processing device shown in FIG. 3 and a diagram illustrating a state in which a gas to be processed flows in the pressure buffer device. 回転式の切り換え弁(分配弁)により各蓄熱室との接続を切り換える構成の蓄熱燃焼式排ガス処理装置の概略構成図である。It is a schematic block diagram of the thermal storage combustion type | mold exhaust gas processing apparatus of the structure which switches a connection with each thermal storage chamber by a rotary switching valve (distribution valve). 従来の蓄熱燃焼式排ガス処理装置の概略構成図である。It is a schematic block diagram of the conventional heat storage combustion type exhaust gas processing apparatus.

以下、本発明の実施の形態に係る圧力緩衝装置について、添付図面に従って説明する。なお、以下の説明では、方向や位置を表す用語(例えば、「上流」や「下流」等)を便宜上用いるが、これらは発明の理解を容易にするためであり、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、以下の説明は、本発明の一形態の例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, a pressure buffer device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, terms and directions (for example, “upstream” and “downstream”) are used for convenience, but these are for ease of understanding of the present invention. The technical scope of the invention is not limited. Further, the following description is merely an example of one embodiment of the present invention, and is not intended to limit the present invention, its application, or its use.

本発明の実施の形態に係る圧力緩衝装置は、流体供給源と該流体を処理する処理装置とを繋ぐ管路(共に図示せず。)の間に設けられ、処理装置の作動により管路内に生じる流体圧力変動を吸収するものである。   A pressure buffering apparatus according to an embodiment of the present invention is provided between a pipe line (both not shown) connecting a fluid supply source and a processing apparatus for processing the fluid, and the inside of the pipe line is operated by the operation of the processing apparatus. It absorbs fluid pressure fluctuations that occur in

図1(a)に示すように、圧力緩衝装置20は、一定の容積を有する圧力緩衝室としての円筒状のチャンバ21(流体室)と、チャンバ21の入口側端部25に設けられた入口管22と、該チャンバ21の出口側端部27に設けられた出口管23とを有する。ここで、上流側とは被処理ガス24の供給源側を意味し、下流側とは処理装置(例えば、蓄熱燃焼式排ガス処理装置)の側、即ち、圧力変動発生源側を意味する。   As shown in FIG. 1A, the pressure buffer device 20 includes a cylindrical chamber 21 (fluid chamber) as a pressure buffer chamber having a constant volume, and an inlet provided at an inlet side end 25 of the chamber 21. It has a pipe 22 and an outlet pipe 23 provided at the outlet side end 27 of the chamber 21. Here, the upstream side means the supply source side of the gas to be processed 24, and the downstream side means the side of the processing apparatus (for example, the heat storage combustion exhaust gas processing apparatus), that is, the pressure fluctuation generation source side.

チャンバ21の入口側端部25は、入口管22が装着されているフランジ26により閉塞している。チャンバ21の出口側端部27も同様に、出口管23が装着されているフランジ28により閉塞している。図示するように、チャンバ21の横断面積は、入口管22及び出口管23の横断面積よりも大きく形成されている。具体的にチャンバ21の横断面積は、入口管22及び出口管23の横断面積の約10倍以上が好ましい。   The inlet side end 25 of the chamber 21 is closed by a flange 26 to which the inlet pipe 22 is attached. Similarly, the outlet side end portion 27 of the chamber 21 is closed by a flange 28 to which the outlet pipe 23 is attached. As illustrated, the cross-sectional area of the chamber 21 is formed larger than the cross-sectional areas of the inlet pipe 22 and the outlet pipe 23. Specifically, the cross-sectional area of the chamber 21 is preferably about 10 times or more the cross-sectional area of the inlet pipe 22 and the outlet pipe 23.

チャンバ21の内部には、多孔板29が被処理ガス24の流れ方向に対向して所定の間隔で配置されている。   Inside the chamber 21, perforated plates 29 are arranged at predetermined intervals so as to face the flow direction of the gas to be processed 24.

図示するように、本実施の形態では、2つの多孔板29によりチャンバ21内部を上流側から順に、第1圧力緩衝室210、第2圧力緩衝室211、及び第3圧力緩衝室212の3つの圧力緩衝室に分割している。   As shown in the figure, in the present embodiment, three porous plates 29, the first pressure buffering chamber 210, the second pressure buffering chamber 211, and the third pressure buffering chamber 212, in the chamber 21 in order from the upstream side. Divided into pressure buffer chambers.

多孔板29は、全体が円板状に形成されている。この多孔板29は、外径がチャンバ21の内径と略等しい寸法に形成され、当該多孔板29の外周がチャンバ21の内周に接して取り付けられている。   The entire porous plate 29 is formed in a disk shape. The perforated plate 29 is formed so that the outer diameter is substantially equal to the inner diameter of the chamber 21, and the outer periphery of the perforated plate 29 is attached in contact with the inner periphery of the chamber 21.

多孔板29は、図1(b)に示した多数のパンチ孔(小孔)290を有するパンチングプレートや、図1(c)に示した網目状の開口(メッシュ部)291を有するメッシュ板が用いられる。多孔板29の開口率(パンチングプレート又はメッシュ全体に対する開口部の面積の割合)は、圧力変動の度合に応じて定めるが、圧力損失の増大を回避するため、一般的には50%〜60%のものが好ましい。本実施の形態の圧力緩衝装置20では、開口率が51%のパンチングプレートを用いている。   The perforated plate 29 may be a punching plate having a large number of punch holes (small holes) 290 shown in FIG. 1B or a mesh plate having a mesh-like opening (mesh portion) 291 shown in FIG. Used. The aperture ratio of the perforated plate 29 (ratio of the area of the opening to the entire punching plate or mesh) is determined according to the degree of pressure fluctuation, but is generally 50% to 60% in order to avoid an increase in pressure loss. Are preferred. In the pressure buffer device 20 of the present embodiment, a punching plate having an aperture ratio of 51% is used.

チャンバ21、入口管22、出口管23、及び多孔板29を構成する材料は、鉄、ステンレス、アルミ、銅等の金属製の材料が用いられる。また、耐腐食性を考慮し、それらを例えば、SUS316等のステンレス材料で構成してもよい。なお、本実施の形態では、円筒状のチャンバ21を例示しているが、例えば、直方体状のチャンバ21であってもよく、その形状は限定されない。多孔板29の形状もチャンバ21の形状に応じて変更可能であることはいうまでもない。   As a material constituting the chamber 21, the inlet pipe 22, the outlet pipe 23, and the porous plate 29, a metal material such as iron, stainless steel, aluminum, or copper is used. In consideration of corrosion resistance, they may be made of a stainless material such as SUS316. In addition, in this Embodiment, although the cylindrical chamber 21 is illustrated, for example, the rectangular parallelepiped chamber 21 may be sufficient and the shape is not limited. It goes without saying that the shape of the perforated plate 29 can also be changed according to the shape of the chamber 21.

次に、上述の構成からなる圧力緩衝装置20の作用を説明する。図2(a)に示すように圧力変動発生源から伝播してくる脈動的な圧力変動は、出口管23から第3圧力緩衝室212への流路断面積の拡大、第3圧力緩衝室212から第2圧力緩衝室211へ移動するときの多孔板29の抵抗、第2圧力緩衝室211から第1圧力緩衝室210へ移動するときの多孔板29の抵抗、第1圧力緩衝室210から入口管22への流路断面積の縮小により緩和され、流体供給源側への伝播が減少する。このように、圧力変動は、第1〜第3圧力緩衝室210、211、212の容量と、多孔板29による抵抗の組み合わせにより効果的に吸収され、図2(b)に示すように脈動振幅を緩和させることができる。   Next, the operation of the pressure buffer device 20 having the above-described configuration will be described. As shown in FIG. 2A, the pulsating pressure fluctuation propagating from the pressure fluctuation generating source is caused by an increase in the cross-sectional area of the flow path from the outlet pipe 23 to the third pressure buffer chamber 212, and the third pressure buffer chamber 212. Resistance of the porous plate 29 when moving from the second pressure buffer chamber 211 to the second pressure buffer chamber 211, resistance of the porous plate 29 when moving from the second pressure buffer chamber 211 to the first pressure buffer chamber 210, inlet from the first pressure buffer chamber 210 The propagation to the fluid supply source side is reduced by reducing the cross-sectional area of the flow path to the pipe 22. Thus, the pressure fluctuation is effectively absorbed by the combination of the capacity of the first to third pressure buffer chambers 210, 211, 212 and the resistance by the perforated plate 29, and the pulsation amplitude as shown in FIG. Can be relaxed.

次に、本発明に係る圧力緩衝装置を備えた蓄熱燃焼式排ガス処理装置について、添付図面に従って説明する。図3は、本実施の形態の蓄熱燃焼式排ガス処理装置1の概略構成を示す。この蓄熱燃焼式排ガス処理装置1は、被処理ガスをバーナ2で加熱して該被処理ガス中に含有するVOC等の有機化合物を加熱分解(酸化分解)処理する燃焼室3と、該燃焼室3によって加熱された被処理ガスとの熱の授受を行う蓄熱体4が収容されてなる3つの蓄熱室5A,5B,5Cとを備えており、所謂、3塔式の蓄熱燃焼式排ガス処理装置として構成されている。   Next, a regenerative combustion exhaust gas treatment apparatus equipped with a pressure buffering apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 3 shows a schematic configuration of the regenerative combustion exhaust gas treatment apparatus 1 of the present embodiment. This heat storage combustion type exhaust gas treatment apparatus 1 includes a combustion chamber 3 that heats a gas to be treated by a burner 2 and thermally decomposes (oxidizes and decomposes) an organic compound such as VOC contained in the gas to be treated, and the combustion chamber. 3 heat storage chambers 5A, 5B, and 5C in which a heat storage body 4 for transferring heat to and from the gas heated by 3 is housed, so-called three-column heat storage combustion exhaust gas treatment apparatus It is configured as.

図示するように、本実施の形態の蓄熱燃焼式排ガス処理装置1の基本構造は、図6で説明した蓄熱燃焼式排ガス処理装置1´と同じであるので、同一構成部分には同一符号を付して説明を省略する。   As shown in the figure, the basic structure of the regenerative combustion exhaust gas treatment apparatus 1 of the present embodiment is the same as that of the regenerative combustion exhaust gas treatment apparatus 1 ′ described in FIG. Therefore, the description is omitted.

図3に示すように、蓄熱燃焼式排ガス処理装置1の燃焼室3には、該燃焼室3内の温度を計測する温度計30が備えられている。温度計30は温度調節計31と電気的に接続され、温度調節計31はバーナ2と電気的に接続されている。温度調節計31は、燃焼室3内の温度を所定温度(例えば、820℃)に制御するための上限、下限設定値が予め設定されており、当該設定値と温度計30により検出された温度信号とを比較してその偏差に応じて制御信号をPID演算し、バーナ2の燃焼容量を制御する。具体的には、燃焼室3内の温度が制御温度から800℃に低下するとバーナ2の燃焼を開始し、燃焼室3内の温度が制御温度から840℃まで上昇するとバーナ2の燃焼を停止するON−OFF制御を実行する。   As shown in FIG. 3, the combustion chamber 3 of the regenerative combustion exhaust gas treatment apparatus 1 is provided with a thermometer 30 that measures the temperature in the combustion chamber 3. The thermometer 30 is electrically connected to the temperature controller 31, and the temperature controller 31 is electrically connected to the burner 2. In the temperature controller 31, an upper limit and a lower limit set value for controlling the temperature in the combustion chamber 3 to a predetermined temperature (for example, 820 ° C.) are set in advance, and the set value and the temperature detected by the thermometer 30. The control signal is compared with the signal, and the control signal is subjected to PID calculation according to the deviation to control the combustion capacity of the burner 2. Specifically, combustion of the burner 2 starts when the temperature in the combustion chamber 3 decreases from the control temperature to 800 ° C., and combustion of the burner 2 stops when the temperature in the combustion chamber 3 increases from the control temperature to 840 ° C. Execute ON-OFF control.

蓄熱燃焼式排ガス処理装置1に供給される被処理ガスのVOC濃度が高濃度(例えば、3000〜5000ppm)となった場合、燃焼室3の温度が被処理ガスに含有する溶剤熱量によって次第に上昇する。この状態が続くと、燃焼室3の温度が更に上昇し、燃焼室3の温度制御が困難になる。このため、燃焼室3には、高温の燃焼ガスの一部を放出口32からホットバイパス流路33を介して放出させるホットバイパス弁34が設けられており、ファン6と被処理ガス供給弁15との間の被処理ガス導入流路14には希釈弁35が接続されている。   When the VOC concentration of the gas to be treated supplied to the heat storage combustion exhaust gas treatment device 1 becomes a high concentration (for example, 3000 to 5000 ppm), the temperature of the combustion chamber 3 gradually increases depending on the amount of solvent heat contained in the gas to be treated. . If this state continues, the temperature of the combustion chamber 3 further rises, making it difficult to control the temperature of the combustion chamber 3. Therefore, the combustion chamber 3 is provided with a hot bypass valve 34 that discharges a part of the high-temperature combustion gas from the discharge port 32 through the hot bypass flow path 33, and the fan 6 and the gas to be treated supply valve 15. A dilution valve 35 is connected to the gas-to-be-treated flow path 14 therebetween.

図示するように、ホットバイパス弁34と希釈弁35は、温度調節計31と電気的に接続されており、燃焼室3の温度が被処理ガスに含有する溶剤熱量によって燃焼室3の温度が例えば、880℃以上に上昇した場合、ホットバイパス弁34を開いて高温の燃焼ガスの一部を放出口32からホットバイパス流路33を介して放出させ、燃焼室3の温度が過上昇するのを防止する。   As shown in the figure, the hot bypass valve 34 and the dilution valve 35 are electrically connected to the temperature controller 31, and the temperature of the combustion chamber 3 is, for example, the temperature of the combustion chamber 3 depending on the amount of solvent heat contained in the gas to be treated. When the temperature rises to 880 ° C. or higher, the hot bypass valve 34 is opened to release a part of the high-temperature combustion gas from the discharge port 32 through the hot bypass flow path 33, and the temperature of the combustion chamber 3 is excessively increased. To prevent.

それでもなお、燃焼室3の温度が上昇する場合は、希釈弁35を開いて外気を取り入れることにより、被処理ガスの濃度を希釈した後、蓄熱燃焼式排ガス処理装置1に供給することで燃焼室3の温度が過上昇するのを防止する。   Nevertheless, when the temperature of the combustion chamber 3 rises, the dilution chamber 35 is opened and the outside air is taken in to dilute the concentration of the gas to be treated and then supplied to the regenerative combustion exhaust gas treatment device 1 to thereby provide the combustion chamber 3 3 is prevented from excessively rising.

次に、本実施の形態の蓄熱燃焼式排ガス処理装置1の特徴を説明する。図3に示すように、被処理ガス供給源50に連通する被処理ガス供給ファン52と、被処理ガス供給弁15とを繋ぐ被処理ガス導入流路14には、圧力緩衝装置20が設けられている。   Next, the features of the regenerative combustion exhaust gas treatment apparatus 1 of the present embodiment will be described. As shown in FIG. 3, a pressure buffer 20 is provided in the gas introduction flow path 14 that connects the gas supply fan 52 that communicates with the gas supply source 50 and the gas supply valve 15. ing.

本実施の形態の蓄熱燃焼式排ガス処理装置1に備えられる圧力緩衝装置20は、第1、第2、第3圧力緩衝室210、211、212のうち、被処理ガスの流れ方向の最上流側の第1圧力緩衝室210と最下流側の第3圧力緩衝室212を除いた中央部の第2圧力緩衝室211に、当該第2圧力緩衝室211の内圧を検出する圧力計40(圧力検出手段)を設けている。   The pressure buffer device 20 provided in the regenerative combustion exhaust gas treatment apparatus 1 of the present embodiment is the most upstream side in the flow direction of the gas to be treated among the first, second, and third pressure buffer chambers 210, 211, and 212. Pressure gauge 40 (pressure detection) for detecting the internal pressure of the second pressure buffer chamber 211 in the central second pressure buffer chamber 211 excluding the first pressure buffer chamber 210 and the third pressure buffer chamber 212 on the most downstream side. Means).

上述の「圧力計40が設けられる中央部の圧力緩衝室」とは、最上流側の圧力緩衝室と最下流側の圧力緩衝室を除いた文字どおり中央に位置する圧力緩衝室に圧力計40を設けるほか、最上流側の圧力緩衝室、又は最下流側の圧力緩衝室のいずれかに隣接する圧力緩衝室に圧力計40を設けることも含む。また、圧力緩衝室の数が例えば4つに分割されている場合、第2圧力緩衝室と第3圧力緩衝室の両方に圧力計40を設けてそれらの平均値を得ることも含む。   The above-described “central pressure buffer chamber in which the pressure gauge 40 is provided” means that the pressure gauge 40 is literally located in the center of the pressure buffer chamber excluding the most upstream pressure buffer chamber and the most downstream pressure buffer chamber. In addition to the provision, the pressure gauge 40 may be provided in a pressure buffer chamber adjacent to either the most upstream pressure buffer chamber or the most downstream pressure buffer chamber. Moreover, when the number of the pressure buffer chambers is divided into four, for example, the pressure gauges 40 are provided in both the second pressure buffer chamber and the third pressure buffer chamber to obtain an average value thereof.

本実施の形態において、圧力緩衝装置20は、図4に示すように、第2圧力緩衝室211の内圧を検出する圧力計40と、第3圧力緩衝室212に接続された調節弁42(大気導入手段)を有する。   In the present embodiment, as shown in FIG. 4, the pressure buffer device 20 includes a pressure gauge 40 that detects the internal pressure of the second pressure buffer chamber 211 and a control valve 42 (atmosphere) connected to the third pressure buffer chamber 212. Introduction means).

圧力計40は周知のディジタル式圧力計であり、内部に不図示の圧力センサ、電池、回路要素を有し、圧力センサにより検出された圧力信号が数値データに変換されて表示部43に表示されると共に、当該圧力信号が不図示の信号線を介して外部出力される。   The pressure gauge 40 is a well-known digital pressure gauge, and has a pressure sensor, a battery, and circuit elements (not shown) inside. The pressure signal detected by the pressure sensor is converted into numerical data and displayed on the display unit 43. In addition, the pressure signal is output to the outside via a signal line (not shown).

調節弁42は、バタフライバルブからなる弁本体44と、弁本体44の開度を調節するコントロール機器45から構成されている。また、弁本体44は予め定められた弁開度に設定されている。これは、蓄熱燃焼式排ガス処理装置1の駆動で瞬間的な圧力変動が発生し、第3圧力緩衝室212内に高い負圧が発生した際、第3圧力緩衝室212内にその高い負圧値に応じた外気を導入して第3圧力緩衝室212の内圧を適正値に復帰させるためである。調節弁42の位置としては、圧力変動を早期に抑制するうえで、圧力変動の発生源側(処理装置)に最も近い側、即ち、第3圧力緩衝室212に設けることが好ましい。これらについては、後述の動作説明で詳しく説明する。   The adjustment valve 42 includes a valve main body 44 formed of a butterfly valve and a control device 45 that adjusts the opening degree of the valve main body 44. The valve body 44 is set to a predetermined valve opening. This is because when the heat storage combustion type exhaust gas treatment device 1 is driven, an instantaneous pressure fluctuation occurs, and when a high negative pressure is generated in the third pressure buffer chamber 212, the high negative pressure is generated in the third pressure buffer chamber 212. This is because the outside air corresponding to the value is introduced to return the internal pressure of the third pressure buffer chamber 212 to an appropriate value. The position of the control valve 42 is preferably provided on the side closest to the pressure fluctuation generation source side (processing device), that is, in the third pressure buffer chamber 212 in order to suppress the pressure fluctuation at an early stage. These will be described in detail in the description of operations described later.

図3に戻り、圧力計40は圧力調節計60と電気的に接続されており、圧力計40により検出された第2圧力緩衝室211の内圧を示す圧力信号が圧力調節計60に出力されるようにしてある。圧力調節計60には、定常時において、第2圧力緩衝室211の内圧を例えば大気圧より僅かに低い−5Pa〜−1Paの範囲内に制御するための上限、下限設定値が予め設定されており、当該設定値と圧力計40により検出された圧力信号とを比較して、その偏差に応じて制御信号をPID演算する。ファン6の駆動モータ及び電源(共に図示せず)間には、インバータ62が設けられている。インバータ62は、圧力調節計60から入力された制御信号に対応する回転数になるようにファン6の駆動を制御する。   Returning to FIG. 3, the pressure gauge 40 is electrically connected to the pressure regulator 60, and a pressure signal indicating the internal pressure of the second pressure buffer chamber 211 detected by the pressure gauge 40 is output to the pressure regulator 60. It is like that. The pressure controller 60 is preset with an upper limit and a lower limit set value for controlling the internal pressure of the second pressure buffer chamber 211 within a range of −5 Pa to −1 Pa, which is slightly lower than the atmospheric pressure, for example. Then, the set value is compared with the pressure signal detected by the pressure gauge 40, and the control signal is subjected to PID calculation according to the deviation. An inverter 62 is provided between the drive motor of the fan 6 and a power source (both not shown). The inverter 62 controls the driving of the fan 6 so that the rotation speed corresponds to the control signal input from the pressure controller 60.

ここで、第2圧力緩衝室211の内圧を制御対象とする理由を以下に説明する。図4に示すように、第1圧力緩衝室210内は、入口管22から第1圧力緩衝室210内に流入した被処理ガスの速度分布は中心付近が大きくなる。また、被処理ガスが多孔板29と衝突することで発生する渦流の影響で安定した静圧が得られない。   Here, the reason why the internal pressure of the second pressure buffer chamber 211 is controlled is described below. As shown in FIG. 4, in the first pressure buffer chamber 210, the velocity distribution of the gas to be processed that flows into the first pressure buffer chamber 210 from the inlet pipe 22 increases near the center. In addition, a stable static pressure cannot be obtained due to the influence of the vortex generated when the gas to be treated collides with the perforated plate 29.

また、第3圧力緩衝室212内は、多孔板29のパンチ孔290を通過することで被処理ガスはいったん整流されるが、蓄熱燃焼式排ガス処理装置1の駆動で瞬間的な圧力変動が発生し、第3圧力緩衝室212内が例えば正圧になった場合は、整流後の被処理ガスの流れが乱されてしまい、安定した静圧が得られない。また、第3圧力緩衝室212内が例えば高い負圧になった場合は、その高い負圧値に応じた外気が第3圧力緩衝室212内に流入するため、整流後の被処理ガスの流れに乱れが生じ、安定した静圧が得られない。   Further, in the third pressure buffer chamber 212, the gas to be treated is once rectified by passing through the punch holes 290 of the perforated plate 29, but instantaneous pressure fluctuations are generated by driving the regenerative combustion exhaust gas treatment apparatus 1. However, when the inside of the third pressure buffer chamber 212 becomes a positive pressure, for example, the flow of the gas to be processed after rectification is disturbed, and a stable static pressure cannot be obtained. Further, when the inside of the third pressure buffer chamber 212 becomes, for example, a high negative pressure, the outside air corresponding to the high negative pressure value flows into the third pressure buffer chamber 212, and thus the flow of the gas to be processed after rectification Disturbance occurs and stable static pressure cannot be obtained.

このように、安定した静圧が得られない第1、第3圧力緩衝室210、212では、それらの内圧を制御対象とすると、精度の高い制御が困難になる。   As described above, in the first and third pressure buffer chambers 210 and 212 in which a stable static pressure cannot be obtained, if those internal pressures are controlled, it is difficult to control with high accuracy.

これに対して、第2圧力緩衝室211内は、上流側と下流側に配置された多孔板29で仕切られているため、第1、第3圧力緩衝室210、212内部で生じる静圧に乱れの影響を受けにくい。しかも、被処理ガスは多孔板29のパンチ孔290を通過することで整流され、第2圧力緩衝室211内部の被処理ガスの速度分布は図示のとおり略均一になり、安定した静圧が得られる。   On the other hand, the second pressure buffer chamber 211 is partitioned by the perforated plates 29 arranged on the upstream side and the downstream side, so that the static pressure generated in the first and third pressure buffer chambers 210 and 212 is reduced. Less susceptible to disturbances. In addition, the gas to be processed is rectified by passing through the punch holes 290 of the perforated plate 29, and the velocity distribution of the gas to be processed inside the second pressure buffer chamber 211 becomes substantially uniform as shown in the figure, and a stable static pressure is obtained. It is done.

このように、第1、第3圧力緩衝室210、212からの影響を受けにくく、安定した静圧が得られる第2圧力緩衝室211の内圧を制御対象とすることで、精度の高い制御が可能になる。   Thus, highly accurate control can be achieved by using the internal pressure of the second pressure buffer chamber 211 that is less affected by the first and third pressure buffer chambers 210 and 212 and that can obtain a stable static pressure as a control target. It becomes possible.

なお、本実施の形態の蓄熱燃焼式排ガス処理装置1に備えられる圧力緩衝装置は、図1で説明した形態の圧力緩衝装置であってもよい。   Note that the pressure buffering device provided in the regenerative combustion exhaust gas treatment device 1 of the present embodiment may be the pressure buffering device of the form described in FIG.

続いて、本実施の形態の蓄熱燃焼式排ガス処理装置1において、当該蓄熱燃焼式排ガス処理装置1から発生した圧力変動を抑制する動作について図3、図4を参照して説明する。なお、蓄熱燃焼式排ガス処理装置1における被処理ガスの定常処理(被処理ガス供給工程、処理ガス排気工程、及びパージ工程)は、図6で説明した蓄熱燃焼式排ガス処理装置1´における定常処理と同じであるので、ここでの再度の説明は省略する。   Subsequently, in the regenerative combustion exhaust gas treatment apparatus 1 of the present embodiment, an operation for suppressing pressure fluctuation generated from the regenerative combustion exhaust gas treatment apparatus 1 will be described with reference to FIGS. 3 and 4. In addition, the steady process (processed gas supply process, process gas exhaust process, and purge process) of the to-be-processed gas in the heat storage combustion type exhaust gas treatment apparatus 1 is a steady process in the heat storage combustion type exhaust gas treatment apparatus 1 'described in FIG. Therefore, the re-explanation here is omitted.

先ず、蓄熱燃焼式排ガス処理装置1の燃焼室3がバーナ2により所定温度に昇温されており、しかも、処理すべき被処理ガス量が蓄熱燃焼式排ガス処理装置1の定格処理量であるとする。   First, the combustion chamber 3 of the regenerative combustion exhaust gas treatment device 1 is heated to a predetermined temperature by the burner 2, and the amount of gas to be treated is the rated treatment amount of the regenerative combustion exhaust gas treatment device 1. To do.

圧力緩衝装置20の第2圧力緩衝室211の内圧が圧力計40により検出され、検出された圧力信号が圧力調節計60に出力される。定常時において、圧力調節計60は、第2圧力緩衝室211の内圧が大気圧より僅かに低い−5Pa〜−1Paの範囲内に保たれるようにインバータ62を介してファン6の回転数を制御している。この時、第3圧力緩衝室212の内圧も第2圧力緩衝室211と略等しい圧力に保たれているため第3圧力緩衝室212には、その圧力に応じた少量の外気が調節弁42を介して流入し続ける。   The internal pressure of the second pressure buffer chamber 211 of the pressure buffer device 20 is detected by the pressure gauge 40, and the detected pressure signal is output to the pressure regulator 60. At regular time, the pressure controller 60 adjusts the rotational speed of the fan 6 via the inverter 62 so that the internal pressure of the second pressure buffer chamber 211 is maintained within the range of −5 Pa to −1 Pa, which is slightly lower than the atmospheric pressure. I have control. At this time, since the internal pressure of the third pressure buffer chamber 212 is also maintained at substantially the same pressure as that of the second pressure buffer chamber 211, a small amount of outside air corresponding to the pressure enters the third pressure buffer chamber 212. Continue to flow in through.

ここで、第3圧力緩衝室212の内圧が例えば、−5Pa以下の高い負圧値となって第2圧力緩衝室211内の検出圧力が下限設定値(−5Pa)を下回る圧力変動が発生した場合、その高い負圧値に応じた量の外気が調節弁42を介して第3圧力緩衝室212に吸引される。この第3圧力緩衝室212に吸引される外気によって第2圧力緩衝室211の内圧は、適正値に復帰し始める。続いて、圧力調節計60からインバータ62にファン6の回転数を低下させる制御信号が出力される。インバータ62は、圧力調節計60から入力された当該制御信号に対応する回転数になるようにファン6の回転数を制御する。これにより、第2圧力緩衝室212の内圧が適正圧力範囲(−5Pa〜−1Pa)に速やかに復帰する。   Here, the internal pressure of the third pressure buffer chamber 212 becomes a high negative pressure value of, for example, −5 Pa or less, and a pressure fluctuation occurs in which the detected pressure in the second pressure buffer chamber 211 falls below the lower limit set value (−5 Pa). In this case, an amount of outside air corresponding to the high negative pressure value is sucked into the third pressure buffer chamber 212 via the control valve 42. Due to the outside air sucked into the third pressure buffer chamber 212, the internal pressure of the second pressure buffer chamber 211 starts to return to an appropriate value. Subsequently, a control signal for reducing the rotational speed of the fan 6 is output from the pressure controller 60 to the inverter 62. The inverter 62 controls the rotational speed of the fan 6 so that the rotational speed corresponds to the control signal input from the pressure controller 60. As a result, the internal pressure of the second pressure buffer chamber 212 quickly returns to the appropriate pressure range (−5 Pa to −1 Pa).

また、第3圧力緩衝室212の内圧が例えば、−1Pa以上)に高まって第2圧力緩衝室211内の検出圧力が上限設定値(−1Pa)を上回る圧力変動が発生した場合(この場合、外気は第3圧力緩衝室212に殆ど流入しない。)には、圧力調節計60からインバータ62にファン6の回転数を増速させる制御信号が出力され、当該インバータ62が圧力調節計60から入力された当該制御信号に対応する回転数になるようにファン6の回転数を制御する。これにより、第2圧力緩衝室211の内圧が適正圧力範囲(−5Pa〜−1Pa)に速やかに復帰する。   In addition, when the internal pressure of the third pressure buffer chamber 212 increases to, for example, −1 Pa or more and a pressure fluctuation occurs in which the detected pressure in the second pressure buffer chamber 211 exceeds the upper limit set value (−1 Pa) (in this case, The outside air hardly flows into the third pressure buffer chamber 212.), a control signal for increasing the rotational speed of the fan 6 is output from the pressure regulator 60 to the inverter 62, and the inverter 62 is input from the pressure regulator 60. The rotational speed of the fan 6 is controlled so as to be the rotational speed corresponding to the control signal. As a result, the internal pressure of the second pressure buffer chamber 211 quickly returns to the appropriate pressure range (−5 Pa to −1 Pa).

このように、本実施の形態の蓄熱燃焼式排ガス処理装置1は、圧力緩衝装置20の流路断面積の拡大、多孔板29の抵抗、流路断面積の縮小による圧力変動の緩衝効果に加えて、第1、第3圧力緩衝室210、212からの影響を受けにくい安定した静圧が得られる第2圧力緩衝室211の内圧を大気圧より僅かに低い−5Pa〜−1Paの範囲内に制御すること、また、調節弁42を介して第3圧力緩衝室212に流入する少量の外気との相乗効果で、被処理ガス導入流路14に伝播する圧力変動の脈動を効果的に抑制できる。その結果、被処理ガスの発生源(生産ライン)50に伝播する圧力変動を効果的に抑制できる。   As described above, the regenerative combustion exhaust gas treatment apparatus 1 according to the present embodiment has an effect of buffering the pressure fluctuation due to the expansion of the cross-sectional area of the pressure buffer device 20, the resistance of the perforated plate 29, and the reduction of the cross-sectional area of the flow path. Thus, the internal pressure of the second pressure buffer chamber 211 that provides a stable static pressure that is not easily affected by the first and third pressure buffer chambers 210 and 212 is in the range of −5 Pa to −1 Pa, which is slightly lower than the atmospheric pressure. It is possible to effectively suppress the pulsation of the pressure fluctuation propagating to the processing target gas introduction flow path 14 by the control and the synergistic effect with a small amount of outside air flowing into the third pressure buffer chamber 212 via the control valve 42. . As a result, the pressure fluctuation propagating to the generation source (production line) 50 of the gas to be processed can be effectively suppressed.

また、第2圧力緩衝室211の内圧の制御中は第3圧力緩衝室212にその圧力に応じた外気が流入し続けるが、その量は少量であるため、被処理ガスの処理量は増加することはない。これにより、ランニングコストの増大、及び設備全体の大型化を抑制できる。   Further, while the internal pressure of the second pressure buffer chamber 211 is being controlled, outside air corresponding to the pressure continues to flow into the third pressure buffer chamber 212, but the amount thereof is small, so the processing amount of the gas to be processed increases. There is nothing. Thereby, the increase in running cost and the enlargement of the whole installation can be suppressed.

なお、本実施の形態においては、3塔式の蓄熱燃焼式排ガス処理装置を例示して説明したが、本発明はこれに限定されるものではなく、2つ以上の蓄熱室を有する蓄熱燃焼式排ガス処理装置にも適用可能である。また、本実施の形態のように、必ずしも各蓄熱室毎に複数の開閉弁を設ける必要はなく、図5に示すように、1つの回転式の切り換え弁(分配弁)70で各蓄熱室5A,5B,5C,5Dとの接続を切り換える回転切り換え弁タイプの蓄熱燃焼式排ガス処理装置100にも適用可能である。   In the present embodiment, a three-column heat storage combustion type exhaust gas treatment apparatus has been described as an example, but the present invention is not limited to this, and the heat storage combustion type having two or more heat storage chambers. It can also be applied to an exhaust gas treatment apparatus. Further, as in the present embodiment, it is not always necessary to provide a plurality of on-off valves for each heat storage chamber. As shown in FIG. 5, each heat storage chamber 5 </ b> A is constituted by one rotary switching valve (distribution valve) 70. , 5B, 5C, 5D can be applied to a regenerative combustion type exhaust gas treatment apparatus 100 of a rotation switching valve type.

1 蓄熱燃焼式排ガス処理装置、2 バーナ、3 燃焼室、4 蓄熱体、5A〜5C 蓄熱室、6 ファン、7 被処理ガス供給管、8 処理ガス排気管、9 パージガス抽出管、14 被処理ガス導入流路、20 圧力緩衝装置、21 チャンバ、22 入口管、23 出口管、29 多孔板、40 圧力計、42 調節弁、60 圧力調節計、62 インバータ、210 第1圧力緩衝室、211 第2圧力緩衝室、212 第3圧力緩衝室   DESCRIPTION OF SYMBOLS 1 Thermal storage combustion type exhaust gas processing apparatus, 2 burner, 3 combustion chamber, 4 thermal storage body, 5A-5C thermal storage chamber, 6 fan, 7 processed gas supply pipe, 8 processing gas exhaust pipe, 9 purge gas extraction pipe, 14 processed gas Introduction flow path, 20 pressure buffer, 21 chamber, 22 inlet pipe, 23 outlet pipe, 29 perforated plate, 40 pressure gauge, 42 control valve, 60 pressure regulator, 62 inverter, 210 first pressure buffer chamber, 211 second Pressure buffer chamber, 212 3rd pressure buffer chamber

Claims (3)

流体供給源と該流体を処理する処理装置とを繋ぐ管路の間に設けられ、
前記処理装置の作動により前記管路内に生じる流体圧力変動を吸収する圧力緩衝装置であって、
前記流体を流入させる入口管と、該流体を排出させる出口管とがそれぞれ両端部に設けられた一定の容積を有するチャンバと、
前記チャンバ内を複数の空間に分割する多数のパンチ孔又はメッシュ孔が形成された多孔板を有し、
前記多孔板を前記流体の流れ方向に対向させて所定の間隔で配置することにより、前記チャンバ内を複数の圧力緩衝室として構成し
前記複数の圧力緩衝室のうち、前記流体の流れ方向の最上流側と最下流側の圧力緩衝室を除いた中央部の圧力緩衝室に、当該圧力緩衝室の内圧を検出する圧力検出手段を設け、
前記流体の流れ方向の最下流側の圧力緩衝室に、前記処理装置の駆動で当該圧力緩衝室
内に負圧が発生した際に大気を吸引する大気導入手段を設けたことを特徴とする圧力緩衝装置。
Provided between a pipeline connecting a fluid supply source and a processing device for processing the fluid;
A pressure buffering device that absorbs fluid pressure fluctuations generated in the pipeline by the operation of the processing device;
A chamber having a constant volume provided at both ends, respectively, an inlet pipe through which the fluid flows and an outlet pipe through which the fluid is discharged;
It has a perforated plate in which a number of punch holes or mesh holes that divide the chamber into a plurality of spaces are formed,
By arranging the perforated plate at a predetermined interval facing the flow direction of the fluid, the inside of the chamber is configured as a plurality of pressure buffering chambers ,
Among the plurality of pressure buffering chambers, a pressure detecting means for detecting an internal pressure of the pressure buffering chamber is provided in a central pressure buffering chamber excluding the pressure buffering chamber on the most upstream side and the most downstream side in the fluid flow direction. Provided,
In the pressure buffer chamber on the most downstream side in the fluid flow direction, the pressure buffer chamber is driven by the processing device.
A pressure buffering device comprising an air introduction means for sucking air when a negative pressure is generated therein .
バーナを備えた燃焼室と、
前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ備えた少なくとも2つ以上の蓄熱室と、
ファンを有し、流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、
前記燃焼室で加熱分解処理された処理ガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理ガス排気流路と、
前工程で前記被処理ガスが通過した蓄熱室の蓄熱体にパージガスを供給するパージガス流路と、
前記各蓄熱室間で前記被処理ガスの供給、前記処理ガスの排気、前記パージガスの供給を順次切り換える流路切り換え機構と、
請求項1に記載の圧力緩衝装置とを備えたことを特徴とする蓄熱燃焼式排ガス処理装置。
A combustion chamber with a burner;
At least two heat storage chambers each communicating with the combustion chamber and each having a heat storage body;
The combustion gas that has a fan and is supplied from a fluid supply source is passed through the heat storage chamber that is stored in the previous step among the heat storage chambers, and is preheated by heat exchange with the heat storage body of the heat storage chamber, and the combustion A gas supply passage to be processed to be supplied to the chamber;
The processing gas thermally decomposed in the combustion chamber is passed through the heat storage chamber that has been cooled by heat exchange with the gas to be processed in the previous step in the heat storage chamber, and is cooled by heat exchange with the heat storage body of the heat storage chamber. A processing gas exhaust passage for exhausting
A purge gas flow path for supplying purge gas to the heat storage body of the heat storage chamber through which the gas to be treated has passed in the previous step;
A flow path switching mechanism for sequentially switching supply of the gas to be processed, exhaust of the process gas, and supply of the purge gas between the heat storage chambers;
A heat storage combustion exhaust gas treatment device comprising the pressure buffering device according to claim 1 .
前記圧力検出手段の圧力値に基づき、前記中央部の圧力緩衝室の内圧が予め定められた圧力範囲内に保たれるように前記ファンの回転数を制御する請求項に記載の蓄熱燃焼式排ガス処理装置。 The regenerative combustion system according to claim 2 , wherein the rotational speed of the fan is controlled based on the pressure value of the pressure detecting means so that the internal pressure of the pressure buffering chamber in the central portion is maintained within a predetermined pressure range. Exhaust gas treatment equipment.
JP2013101555A 2013-05-13 2013-05-13 Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device Active JP5616481B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013101555A JP5616481B1 (en) 2013-05-13 2013-05-13 Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device
CN201410196521.9A CN104154377B (en) 2013-05-13 2014-05-09 Pressure buffer device and the regenerative combustion type emission-control equipment including the pressure buffer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101555A JP5616481B1 (en) 2013-05-13 2013-05-13 Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device

Publications (2)

Publication Number Publication Date
JP5616481B1 true JP5616481B1 (en) 2014-10-29
JP2014222086A JP2014222086A (en) 2014-11-27

Family

ID=51879950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101555A Active JP5616481B1 (en) 2013-05-13 2013-05-13 Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device

Country Status (2)

Country Link
JP (1) JP5616481B1 (en)
CN (1) CN104154377B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150372B1 (en) * 2019-03-21 2020-09-01 (주)대주기계 Pressure stabilization device using double porous plates
CN114439551A (en) * 2020-10-30 2022-05-06 中国航发商用航空发动机有限责任公司 Aircraft engine
CN117570455A (en) * 2023-12-23 2024-02-20 山东瀚圣新能源科技股份有限公司 Evaporation tail gas heat recovery device for formaldehyde production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081431B2 (en) * 2014-11-05 2017-02-15 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP6295385B1 (en) * 2017-04-07 2018-03-14 清 高浦 Compressed air pressure stabilizer in air cylinder exhaust chamber
CN111102424A (en) * 2018-10-29 2020-05-05 宁波方太厨具有限公司 Vibration damper and booster pump with same
CN117433025B (en) * 2023-12-18 2024-02-23 昆山千友工业环保设备有限公司 Waste heat recovery device for RTO waste gas treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130173A (en) * 1971-10-01 1978-12-19 Vought Corporation Apparatus and method for reducing flow disturbances in a flowing stream of compressible fluid
EP0702195A3 (en) * 1994-08-17 1997-05-14 Grace W R & Co Annular air distributor for regenerative thermal oxidizers
US6170528B1 (en) * 1999-07-26 2001-01-09 Tapco International, Inc. Assembly of orifice chambers progressively reducing operating pressure for large gas flows
JP3917403B2 (en) * 2001-10-25 2007-05-23 バブコック日立株式会社 Rotary distribution type heat storage combustion equipment
CN100410110C (en) * 2005-07-11 2008-08-13 北京理工大学 High temperature gas rapid cooling device and cooling method
JP5468359B2 (en) * 2009-11-10 2014-04-09 中外炉工業株式会社 Thermal storage combustion deodorizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150372B1 (en) * 2019-03-21 2020-09-01 (주)대주기계 Pressure stabilization device using double porous plates
CN114439551A (en) * 2020-10-30 2022-05-06 中国航发商用航空发动机有限责任公司 Aircraft engine
CN114439551B (en) * 2020-10-30 2024-05-10 中国航发商用航空发动机有限责任公司 Aero-engine
CN117570455A (en) * 2023-12-23 2024-02-20 山东瀚圣新能源科技股份有限公司 Evaporation tail gas heat recovery device for formaldehyde production

Also Published As

Publication number Publication date
CN104154377B (en) 2017-08-25
CN104154377A (en) 2014-11-19
JP2014222086A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5616481B1 (en) Pressure buffer device, heat storage combustion exhaust gas treatment device equipped with the pressure buffer device
GB2502757A (en) Improved heat storage apparatus
JP5562712B2 (en) Gas supply equipment for semiconductor manufacturing equipment
JP5504353B2 (en) Vacuum exhaust apparatus, vacuum processing apparatus, and vacuum exhaust method
TWI599747B (en) Regenerative exhaust gas purifying apparatus
US20160379723A1 (en) System for purifying a gaseous medium of hydrogen and method for the use thereof
JP6356589B2 (en) Carbon dioxide recovery system and operation method thereof
JP6061400B2 (en) Method for controlling the protective gas atmosphere in a protective gas chamber for the treatment of metal strips
JP2008014523A (en) Air conditioning system
KR101715069B1 (en) Exhaust system for semiconductor device manufaccturing equipment
JP2010201358A (en) Exhaust gas treatment system and operation method thereof
JP2015500944A (en) Apparatus and method for emptying a chamber and purifying gases taken from the chamber
JP2010207771A (en) Apparatus and method of exhaust gas treatment
WO2001003168A1 (en) Semiconductor manufacture equipment
JP6148522B2 (en) Carbon dioxide recovery system and operation method thereof
JP2019100626A (en) Exhaust gas treatment system
TW202043531A (en) Vacuum pumps for single and multi-process chamber flow stream sharing
JP4340673B2 (en) Air conditioner
TW201424839A (en) Method for adjusting temperature with gas density increased
JP6347007B1 (en) Organic solvent-containing gas treatment system
GB0914631D0 (en) Heat exchanger
JP2019505713A (en) Apparatus and system for processing gaseous streams
JP2021027069A (en) Fluid supply unit
JP5582978B2 (en) Gas discharge device for reaction chamber
JP4584238B2 (en) Exhaust gas cooling method and apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250