JP5616271B2 - Induction heating device and magnetic pole - Google Patents

Induction heating device and magnetic pole Download PDF

Info

Publication number
JP5616271B2
JP5616271B2 JP2011080555A JP2011080555A JP5616271B2 JP 5616271 B2 JP5616271 B2 JP 5616271B2 JP 2011080555 A JP2011080555 A JP 2011080555A JP 2011080555 A JP2011080555 A JP 2011080555A JP 5616271 B2 JP5616271 B2 JP 5616271B2
Authority
JP
Japan
Prior art keywords
induction heating
magnetic pole
magnetic
coil
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011080555A
Other languages
Japanese (ja)
Other versions
JP2012216661A (en
Inventor
内田 直喜
直喜 内田
良弘 岡崎
良弘 岡崎
尾崎 一博
一博 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011080555A priority Critical patent/JP5616271B2/en
Publication of JP2012216661A publication Critical patent/JP2012216661A/en
Application granted granted Critical
Publication of JP5616271B2 publication Critical patent/JP5616271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

本発明は、誘導加熱装置に係り、特に大径の半導体基板を熱処理する場合に、被加熱物の温度制御を行う際に好適な誘導加熱装置および誘導加熱装置に用いる磁極に関する。   The present invention relates to an induction heating apparatus, and more particularly to an induction heating apparatus suitable for controlling the temperature of an object to be heated and a magnetic pole used in the induction heating apparatus when heat treating a large-diameter semiconductor substrate.

大径な半導体基板をバッチ処理する際、基板表面に金属膜等が形成されていた場合であっても、当該金属膜が直接加熱されることにより、基板面内の温度分布にバラツキが生ずることを抑制することのできる誘導加熱装置が知られている(例えば特許文献1参照)。   When batch processing a large-sized semiconductor substrate, even if a metal film or the like is formed on the substrate surface, the metal film is directly heated, resulting in variations in temperature distribution in the substrate surface. There is known an induction heating apparatus capable of suppressing the above (for example, see Patent Document 1).

特許文献1に開示されている技術は、プロセス室を構成するチャンバと、磁極を構成するコアに巻回された誘導加熱コイルを備えている。このような構成の誘導加熱装置によれば、磁極を介して生ずる磁束が、チャンバ内に配置された被加熱物である半導体基板の載置方向と平行に生ずることとなる。このため、半導体基板の表面に金属膜等が形成されていた場合であっても、この金属膜と交差する方向に磁束が投入されることが無く、誘導加熱によって基板が直接加熱される虞が無い。このため、基板面内の温度分布にバラツキを生じさせることが無い。   The technique disclosed in Patent Document 1 includes a chamber constituting a process chamber and an induction heating coil wound around a core constituting a magnetic pole. According to the induction heating apparatus having such a configuration, the magnetic flux generated through the magnetic pole is generated in parallel with the mounting direction of the semiconductor substrate that is the object to be heated disposed in the chamber. For this reason, even when a metal film or the like is formed on the surface of the semiconductor substrate, magnetic flux is not input in a direction intersecting with the metal film, and the substrate may be directly heated by induction heating. No. For this reason, the temperature distribution in the substrate surface does not vary.

特開2010−59490号公報JP 2010-59490 A

特許文献1に開示されているような構成の誘導加熱装置によれば、確かに、基板表面に金属膜が被覆された半導体基板等であっても、誘導加熱により金属膜が直接加熱されてしまう虞が無くなる。   According to the induction heating apparatus configured as disclosed in Patent Document 1, the metal film is certainly directly heated by induction heating even in a semiconductor substrate or the like whose surface is coated with the metal film. There is no fear.

しかし、上記のような構成の誘導加熱装置では、誘導加熱コイルからの交流磁束を半導体基板の載置方向と平行に生じさせるという特徴的な作用を奏するために、磁極端面を被誘導加熱部材であるサセプタの端面に対向させ、かつ近接させて配置する必要がある。このため、当該装置特有の問題として、磁極や誘導加熱コイルの対向端面に対する熱的問題、および誘導加熱コイルの対向端面に対する鎖交磁束の影響といった問題がある。   However, in the induction heating apparatus configured as described above, the magnetic pole end face is made of an induction heating member in order to produce a characteristic action of generating an alternating magnetic flux from the induction heating coil in parallel with the mounting direction of the semiconductor substrate. It is necessary to arrange the susceptor so as to face and be close to the end face. For this reason, problems specific to the device include a thermal problem with respect to the magnetic pole and the opposed end face of the induction heating coil, and an influence of interlinkage magnetic flux on the opposed end face of the induction heating coil.

例えば熱的問題として、磁極には、一般的にフェライトが用いられている。一般的なフェライトコアのキューリー点温度は、約100℃から460℃程度であるため、サセプタの加熱温度が1000℃程度にまで上昇すると、輻射熱の影響により、磁極がキューリー点を超えてしまう虞がある。そして、キューリー点を超えた場合には、磁石としての残留磁束密度が0となるため、磁極として使用することができなくなってしまうのである。また、誘導加熱コイルに関しても、温度が著しく上昇した場合には、その使用が不可能となってしまう虞がある。   For example, as a thermal problem, ferrite is generally used for the magnetic pole. Since the Curie point temperature of a general ferrite core is about 100 ° C. to about 460 ° C., if the heating temperature of the susceptor rises to about 1000 ° C., the magnetic pole may exceed the Curie point due to the influence of radiant heat. is there. When the Curie point is exceeded, the residual magnetic flux density as a magnet becomes 0, so that it cannot be used as a magnetic pole. Also, regarding the induction heating coil, when the temperature rises remarkably, there is a possibility that it cannot be used.

また、鎖交磁束の影響としては、磁極から漏れ出す磁束や、隣接された誘導加熱コイルからの到達磁束の影響により、誘導加熱コイル自体が誘導加熱されてしまうといった事象である。このような事象が生じた場合には、電力損失が大きくなるといった問題もある。   Further, the influence of the interlinkage magnetic flux is an event in which the induction heating coil itself is induction-heated due to the magnetic flux leaking from the magnetic pole or the influence of the reaching magnetic flux from the adjacent induction heating coil. When such an event occurs, there is a problem that power loss increases.

そこで本発明では、被誘導加熱部材における被加熱物載置面と平行な方向に交流磁束を形成する誘導加熱コイルと備えた誘導加熱装置において、磁極や誘導加熱コイルの発熱を抑制しつつ、電力損失を少なくすることのできる誘導加熱装置、および磁極を提供する。   Therefore, in the present invention, in the induction heating apparatus provided with the induction heating coil that forms an AC magnetic flux in a direction parallel to the surface of the object to be heated in the induction heating member, while suppressing the heat generation of the magnetic pole and the induction heating coil, An induction heating apparatus and a magnetic pole that can reduce loss are provided.

上記目的を達成するための本発明に係る誘導加熱装置は、被誘導加熱部材をチャンバ内に配置し、前記チャンバの外側には、前記チャンバに形成された開口部を介して前記被誘導加熱部材に端面を対向させて配置した磁極に巻回される誘導加熱コイルを有し、前記被誘導加熱部材の端面に向う交流磁束を発生させる誘導加熱装置であって、前記被誘導加熱部材と前記磁極の間に、前記チャンバの内部領域と外部領域とを隔離する磁気透過性遮蔽板と、前記磁気透過性遮蔽板に密接または近接するように積層配置されると共に、冷媒を挿通可能な冷却管に密接配置されて前記磁極の過加熱を防止する冷却板を備え、前記誘導加熱コイルは、前記磁極を冷却するための冷媒を挿通可能な導体と、前記冷媒を通さない導体であるリッツ線とを組み合わせることにより構成し、前記冷媒を挿通可能な導体を前記被誘導加熱部材近傍側に配置したことを特徴とする。 In order to achieve the above object, an induction heating apparatus according to the present invention includes an induction heating member disposed in a chamber, and the induction heating member is disposed outside the chamber via an opening formed in the chamber. An induction heating coil wound around a magnetic pole disposed with its end faces facing each other, and generating an alternating magnetic flux toward the end face of the induction heating member, the induction heating member and the magnetic pole A magnetically permeable shielding plate that separates the inner region and the outer region of the chamber, and a cooling pipe through which a refrigerant can be inserted while being stacked and disposed so as to be in close proximity to or close to the magnetically permeable shielding plate A cooling plate that is closely arranged to prevent overheating of the magnetic pole, and the induction heating coil includes a conductor through which a refrigerant for cooling the magnetic pole can be inserted , and a litz wire that is a conductor through which the refrigerant does not pass. Combination Constituted by causing, characterized in that the can be inserted conductor the refrigerant is arranged on the object induction heating member proximally.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルと前記磁極とを密着させるようにすると良い。このような構成とすることで、磁極の冷却効果を高めることができる。   In the induction heating apparatus having the above-described features, the induction heating coil and the magnetic pole are preferably brought into close contact with each other. By setting it as such a structure, the cooling effect of a magnetic pole can be improved.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルと前記磁極との間に、熱伝導の改善を図る部材を介在させるようにすると良い。このような構成とすることで、磁極の冷却を効率良く、かつ均等に行うことが可能となる。   In the induction heating apparatus having the above-described characteristics, a member for improving heat conduction may be interposed between the induction heating coil and the magnetic pole. With such a configuration, the magnetic pole can be cooled efficiently and evenly.

また、上記のような特徴を有する誘導加熱装置では、前記誘導加熱コイルと前記磁極とを構成要素として一体化する充填部材を備えるようにしても良い。このような構成とした場合でも、磁極の冷却を効率良く、かつ均等に行うことが可能となる。   The induction heating apparatus having the above-described characteristics may include a filling member that integrates the induction heating coil and the magnetic pole as components. Even in such a configuration, the magnetic pole can be cooled efficiently and evenly.

さらに、上記のような特徴を有する誘導加熱装置では、複数の前記磁極と、複数の前記磁極を連結するヨークとを備え、各磁極の端面を前記被誘導加熱部材に対向して配置し、前記磁極の端面近傍に前記誘導加熱コイルを設けるようにすることが望ましい。この様な構成とすることで、磁束の鎖交を減らすことができる。   Furthermore, the induction heating apparatus having the above-described features includes a plurality of the magnetic poles and a yoke connecting the plurality of magnetic poles, and the end surfaces of the magnetic poles are arranged to face the induction heating member, It is desirable to provide the induction heating coil in the vicinity of the end face of the magnetic pole. With such a configuration, the flux linkage can be reduced.

上記のような特徴を有する誘導加熱装置によれば、被誘導加熱部材における被加熱物載置面と平行な方向に交流磁束を形成する誘導加熱コイルと備えた誘導加熱装置において、誘導加熱コイルの発熱を抑制しつつ、電力損失を少なくすることが可能となる。   According to the induction heating device having the characteristics as described above, in the induction heating device including the induction heating coil that forms an alternating magnetic flux in a direction parallel to the surface of the object to be heated in the induction heating member, It is possible to reduce power loss while suppressing heat generation.

第1の実施形態に係る誘導加熱装置の構成を示す平面図である。It is a top view which shows the structure of the induction heating apparatus which concerns on 1st Embodiment. 図1におけるA−A断面の構成を示す図である。It is a figure which shows the structure of the AA cross section in FIG. 2つの磁極の角度と開口部の関係を示す平面図である。It is a top view which shows the relationship between the angle of two magnetic poles, and an opening part. ハウジングに設けた開口部の正面形態を示す図である。It is a figure which shows the front form of the opening part provided in the housing. 開口部に設けられた磁気透過性遮蔽部材と冷却板の組付け形態の詳細を示す図である。It is a figure which shows the detail of the assembly | attachment form of the magnetic-permeable shielding member and cooling plate provided in the opening part. 誘導加熱コイルを構成する管状部材とリッツ線の配置形態を示す側面断面図である。It is side surface sectional drawing which shows the tubular member which comprises an induction heating coil, and the arrangement | positioning form of a litz wire. 第2の実施形態に係る誘導加熱装置におけるハウジングに設けられた開口部の形態を説明するための平面図である。It is a top view for demonstrating the form of the opening part provided in the housing in the induction heating apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る誘導加熱装置におけるハウジングに設けられた開口部の正面形態を示す図である。It is a figure which shows the front form of the opening part provided in the housing in the induction heating apparatus which concerns on 2nd Embodiment.

以下、本発明の誘導加熱装置に係る実施の形態について、図面を参照して詳細に説明する。まず、図1、図2を参照して、第1の実施形態に係る誘導加熱装置の概要構成について説明する。なお、図1は誘導加熱装置の平面構成を示す部分断面ブロック図であり、図2は図1におけるA−A断面を示すブロック図である。   Hereinafter, embodiments of the induction heating apparatus of the present invention will be described in detail with reference to the drawings. First, a schematic configuration of the induction heating apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a partial cross-sectional block diagram illustrating a planar configuration of the induction heating apparatus, and FIG. 2 is a block diagram illustrating a cross-section taken along line AA in FIG.

本実施形態に係る誘導加熱装置10は、被加熱物としてのウエハ60と被誘導加熱部材(発熱体)としてのサセプタ16を多段に重ねて熱処理を行うバッチ式のものとする。
誘導加熱装置10は、チャンバ12と、チャンバ12の外部に配置された励磁部28、および電源部40を基本として構成される。
The induction heating apparatus 10 according to the present embodiment is a batch-type apparatus in which a wafer 60 as a heated object and a susceptor 16 as an induction heating member (heating element) are stacked in multiple stages to perform heat treatment.
The induction heating apparatus 10 is configured based on a chamber 12, an excitation unit 28 disposed outside the chamber 12, and a power supply unit 40.

チャンバ12は、ボート14と回転テーブル18、およびハウジング26を基本として構成されるプロセス室である。ボート14は、被加熱物であるウエハ60を載置するサセプタ16を複数、垂直方向に積層配置することで構成される。各サセプタ16間には、図示しない支持部材が配置され、ウエハ60を配置するための所定の間隔を保つように構成される。図示しない支持部材は、磁束の影響を受けることが無く、耐熱性が高く、かつ熱膨張率の小さい部材により構成すると良く、具体的には石英などを用いて構成すると良い。   The chamber 12 is a process chamber configured based on the boat 14, the rotary table 18, and the housing 26. The boat 14 is configured by stacking a plurality of susceptors 16 on which wafers 60 to be heated are placed in a vertical direction. A support member (not shown) is disposed between the susceptors 16 and is configured to maintain a predetermined interval for disposing the wafer 60. The support member (not shown) is not affected by the magnetic flux, is preferably made of a member having high heat resistance and a low coefficient of thermal expansion, and specifically, made of quartz or the like.

サセプタ16は、導電性部材で構成されれば良く、例えばグラファイト、SiC、SiCコートグラファイト、および耐熱金属等により構成すれば良い。
回転テーブル18は、テーブル20と回転軸22、およびベース24を基本として構成される。テーブル20は、積層配置された複数のサセプタ16から成るボート14を支持するための台であり、図示しない支持部が設けられる。回転軸22は、テーブル20の回転中心に固定された軸であり、図示しない駆動源からの駆動力を受けて回転することで、テーブル20を回転させ、テーブル20に載置された複数のサセプタ16を回転させる。ベース24は、回転軸22を回転させるためのモータ等の駆動源を有する土台であり、テーブル20の安定状態を確保する。回転テーブル18によりボート14を回転させることにより、加熱源である励磁部28を誘導加熱装置10に対して偏らせて配置した場合であっても、サセプタ16の均一加熱が可能となる。また、励磁部28を偏らせて配置することによれば、誘導加熱装置10をボート14(チャンバ12)の外周に均等配置する場合に比べ、装置の小型化を図ることが可能となる。
The susceptor 16 may be made of a conductive member, and may be made of, for example, graphite, SiC, SiC-coated graphite, refractory metal, or the like.
The rotary table 18 is configured based on a table 20, a rotary shaft 22, and a base 24. The table 20 is a table for supporting the boat 14 composed of a plurality of susceptors 16 arranged in a stacked manner, and a support portion (not shown) is provided. The rotating shaft 22 is a shaft fixed to the rotation center of the table 20, and rotates by receiving a driving force from a driving source (not shown), thereby rotating the table 20, and a plurality of susceptors mounted on the table 20. 16 is rotated. The base 24 is a base having a drive source such as a motor for rotating the rotary shaft 22, and ensures a stable state of the table 20. By rotating the boat 14 by the rotary table 18, the susceptor 16 can be uniformly heated even when the excitation unit 28, which is a heating source, is arranged biased with respect to the induction heating device 10. Further, by arranging the excitation unit 28 in a biased manner, it is possible to reduce the size of the device as compared with the case where the induction heating device 10 is evenly arranged on the outer periphery of the boat 14 (chamber 12).

ハウジング26は、チャンバ12内部を真空に保つための隔壁である。実施形態におけるハウジング26は、平面形態を多角形(図1に示す例では六角形)とすることで、形状形成の容易化を図ることができる。ハウジング26の構成部材は、プロセス的な側面から、アルミニウムまたはステンレスが用いられる。ここで、アルミニウムは形状形成や、形状形成のための溶接面に不利があり、ステンレスに比べて耐熱性も低い。このため、ハウジング26の構成部材としては、ステンレスが用いられることが多い。ハウジング26の少なくとも一部には、図3から図5に示すように、開口部42が設けられ、開口部42には、磁気透過性遮蔽板46と、磁気透過性の冷却板48が密接または近接するように積層配置されている。磁気透過性遮蔽板46は、チャンバ12の内部領域と外部領域とを隔離するための部材であり、真空耐力、磁束透過性、耐熱性、低熱膨張性、低熱伝導性、および耐熱衝撃性を有する部材とすると良く、例えば石英などを挙げることができる。一方、冷却板48は、詳細を後述する冷却管50から伝達される冷媒の温度を伝導させることで磁気透過性遮蔽板46を冷却し、磁気透過性遮蔽板46の加熱に伴う磁極32(32a〜32c),34(34a〜34c)の過加熱を防止する役割を担う被冷却板である。冷却板48の構成部材としては、例えば窒化アルミやSiC、アルミナなどのセラミック部材を挙げることができる。   The housing 26 is a partition for keeping the inside of the chamber 12 in a vacuum. The housing 26 in the embodiment can be formed easily by forming the planar form into a polygon (hexagon in the example shown in FIG. 1). The component of the housing 26 is made of aluminum or stainless steel from the process side. Here, aluminum has a disadvantage in shape formation and a welding surface for shape formation, and has lower heat resistance than stainless steel. For this reason, stainless steel is often used as a constituent member of the housing 26. As shown in FIGS. 3 to 5, an opening 42 is provided in at least a part of the housing 26, and a magnetically permeable shielding plate 46 and a magnetically permeable cooling plate 48 are in close contact with or in the opening 42. Laminated and arranged so as to be close to each other. The magnetically permeable shielding plate 46 is a member for separating the inner region and the outer region of the chamber 12 and has vacuum strength, magnetic flux permeability, heat resistance, low thermal expansion, low thermal conductivity, and thermal shock resistance. For example, quartz may be used. On the other hand, the cooling plate 48 cools the magnetically permeable shielding plate 46 by conducting the temperature of the refrigerant transmitted from the cooling pipe 50, which will be described in detail later, and the magnetic pole 32 (32 a associated with the heating of the magnetically permeable shielding plate 46. 32c) and 34 (34a to 34c) to be cooled to play a role of preventing overheating. Examples of the constituent member of the cooling plate 48 include ceramic members such as aluminum nitride, SiC, and alumina.

実施形態に係るハウジング26では、平面形状六角形の体を成す2辺に開口部42が設けられている。また、実施形態に係る例の場合、六角形の頂点部分に、開口部42の開口面積を一部絞り込む絞り部44を構成する角片26aが設けられている。これにより、開口部42は、隣接する2辺に亙って絞り部44を介して連通された2つの分割開口部42aにより構成されることとなる。   In the housing 26 according to the embodiment, openings 42 are provided on two sides forming a planar hexagonal body. Further, in the case of the example according to the embodiment, a square piece 26a constituting the diaphragm portion 44 that partially narrows the opening area of the opening portion 42 is provided at the apex portion of the hexagon. As a result, the opening 42 is constituted by two divided openings 42 a that are communicated with each other via the diaphragm 44 over two adjacent sides.

実施形態に係る磁気透過性遮蔽板46は、アルミニウム等により構成されたハウジング26の開口部42の外縁に設けられた段差部26bに押圧保持される。磁気透過性遮蔽板46の外側(磁気透過性遮蔽板46と磁極32,34との間)には、冷却板48が密接配置され、冷却板48の外縁部には、冷媒を挿通可能な冷却管50が密接配置される。このような配置構成とすることで、冷却管50に挿通された冷媒と冷却板48との間で熱交換が行われて冷却板48が冷却される。冷却板48は磁気透過性遮蔽板46に比べて熱伝導率が高いため、磁気透過性遮蔽板46と冷却板48との間での熱交換(熱伝達)が成される前あるいは熱交換が成されている最中に冷却板48全体が冷却されることとなる。その後、冷却された冷却板48と磁気透過性遮蔽板46との間での熱交換が成され、磁気透過性遮蔽板46が冷却される。これにより輻射熱の影響により磁極が過加熱されることを避けることができる。   The magnetically permeable shielding plate 46 according to the embodiment is pressed and held by a step portion 26b provided on the outer edge of the opening 42 of the housing 26 made of aluminum or the like. A cooling plate 48 is closely arranged outside the magnetically permeable shielding plate 46 (between the magnetically permeable shielding plate 46 and the magnetic poles 32 and 34), and cooling that allows a refrigerant to be inserted into the outer edge portion of the cooling plate 48. The tube 50 is closely placed. With such an arrangement configuration, heat exchange is performed between the refrigerant inserted into the cooling pipe 50 and the cooling plate 48 to cool the cooling plate 48. Since the cooling plate 48 has higher thermal conductivity than the magnetically permeable shielding plate 46, the heat exchange (heat transfer) between the magnetically permeable shielding plate 46 and the cooling plate 48 is performed before or after the heat exchange. During the process, the entire cooling plate 48 is cooled. Thereafter, heat exchange is performed between the cooled cooling plate 48 and the magnetically permeable shielding plate 46, and the magnetically permeable shielding plate 46 is cooled. Thereby, it can avoid that a magnetic pole is overheated by the influence of radiant heat.

このような開口部42に対して磁気透過性遮蔽板46は、図5に示すように、Oリング52を介して段差部26bに押し付けられる。そして、冷却板48と冷却管50が配置される。このような構成とすることで、チャンバ12の内部領域と外部領域とを隔離することができ、チャンバ12内を真空引きすることが可能となる。   The magnetically permeable shielding plate 46 is pressed against the stepped portion 26b through the O-ring 52 as shown in FIG. And the cooling plate 48 and the cooling pipe 50 are arrange | positioned. With such a configuration, the inner region and the outer region of the chamber 12 can be isolated, and the inside of the chamber 12 can be evacuated.

励磁部28は、コア30(30a〜30c)と、誘導加熱コイル36(36a〜36c),38(38a〜38c)とより成る。コア30は、鍬型に形成された鉄芯である。コア30は、その両端に、詳細を後述する誘導加熱コイル36,38を巻回させることで構成される磁極32(32a〜32c),34(34a〜34c)を有すると共に、両磁極間を接続するヨーク35(35a〜35c)を有する。磁極32,34の端面は、円形サセプタ16の接線と平行、すなわちサセプタ16の半径方向延長線に対して直交する面を備えるように構成する。このような構成とすることで、サセプタ16の側面に磁極32,34の端面を対向させ、かつ磁極32,34の端面近くに誘導加熱コイル36,38を巻回させることができ、磁極先端以外からの磁束の漏洩を抑制することができる。よって、サセプタ16へ投入される磁束に無駄が無く、加熱効率を向上させることができる。コア30は、フェライトなどにより構成すると良い。このような構成によれば、粘土状の原料を形状形成した上で焼成することで所望形状の磁極32,34、およびヨーク35を得ることができる。このため、形状形成を自由に行うことが可能となる。   The exciting unit 28 includes a core 30 (30a to 30c) and induction heating coils 36 (36a to 36c) and 38 (38a to 38c). The core 30 is an iron core formed in a bowl shape. The core 30 has magnetic poles 32 (32a to 32c) and 34 (34a to 34c) formed by winding induction heating coils 36 and 38, which will be described in detail later, at both ends, and connects between the two magnetic poles. Yoke 35 (35a to 35c) is provided. The end faces of the magnetic poles 32 and 34 are configured to have a plane parallel to the tangent line of the circular susceptor 16, that is, a plane orthogonal to the radial extension line of the susceptor 16. With this configuration, the end surfaces of the magnetic poles 32 and 34 can be opposed to the side surfaces of the susceptor 16, and the induction heating coils 36 and 38 can be wound near the end surfaces of the magnetic poles 32 and 34. The leakage of magnetic flux from can be suppressed. Therefore, there is no waste in the magnetic flux input to the susceptor 16, and the heating efficiency can be improved. The core 30 is preferably composed of ferrite or the like. According to such a configuration, the magnetic poles 32 and 34 and the yoke 35 having desired shapes can be obtained by firing after forming a clay-like raw material. For this reason, shape formation can be performed freely.

誘導加熱コイル36,38は、磁極32,34を構成するコア30の両端部に巻回される導電線である。誘導加熱コイル36,38に電流を投入することで、コイルの巻回方向と交差する方向に位置する磁極先端から磁束が生ずることとなる。本実施形態では、磁極端面(磁極先端)がサセプタ16におけるウエハ載置面と直交する方向を向いているため、磁極端面からは、サセプタ16のウエハ載置面に平行な方向に交流磁束が発生することとなる。実施形態に係る誘導加熱コイル36,38は図6に示すように、冷媒を挿通可能な導体(管状部材:例えば、冷媒として水を使用する場合には銅管など)36a1(36b1,36c1)と、冷媒を通さない導体であるリッツ線36a2(36b2,36c2)とを組み合わせることにより構成している。具体的には、磁極32a(32b,32c)の先端部や、磁極32aの先端に近い部分(例えば、磁極先端側からのコイル1ターン、あるいはコイル2ターン程度)には管状部材を用い、それよりも後端側にはリッツ線を用いるという構成である。ここで、管状部材36a1とリッツ線36a2の巻回形態は、図6に示すように、管状部材36a1とリッツ線36a2のそれぞれに端子を設けるようにすれば良い。この際、電源部40に対しては、管状部材36a1とリッツ線36a2とが直列または並列に接続されるようにすれば良い。   The induction heating coils 36 and 38 are conductive wires wound around both ends of the core 30 constituting the magnetic poles 32 and 34. By supplying current to the induction heating coils 36 and 38, magnetic flux is generated from the tip of the magnetic pole located in the direction intersecting with the winding direction of the coil. In the present embodiment, the magnetic pole end face (magnetic pole tip) faces in the direction orthogonal to the wafer placement surface of the susceptor 16, so that an alternating magnetic flux is generated from the magnetic pole end face in a direction parallel to the wafer placement face of the susceptor 16. Will be. As shown in FIG. 6, the induction heating coils 36 and 38 according to the embodiment include a conductor (tubular member: for example, a copper tube when water is used as the coolant) 36 a 1 (36 b 1, 36 c 1) that can be inserted with a coolant. It is configured by combining the litz wire 36a2 (36b2, 36c2) which is a conductor that does not allow the refrigerant to pass. Specifically, a tubular member is used for the tip of the magnetic pole 32a (32b, 32c) and the portion close to the tip of the magnetic pole 32a (for example, about one turn of the coil or two turns of the coil from the tip of the magnetic pole). In addition, a litz wire is used on the rear end side. Here, as for the winding form of the tubular member 36a1 and the litz wire 36a2, as shown in FIG. 6, a terminal may be provided on each of the tubular member 36a1 and the litz wire 36a2. At this time, the tubular member 36a1 and the litz wire 36a2 may be connected to the power supply unit 40 in series or in parallel.

なお、図6においては、管状部材36a1とリッツ線36a2とは別部材として示しているが、管状部材36a1とリッツ線36a2をエポキシ系樹脂などの絶縁性充填部材により一体化し、単一の構成要素としても良い。また、冷媒を通さない導体としてリッツ線を例に挙げたが、中実部材であっても良い。   In FIG. 6, the tubular member 36a1 and the litz wire 36a2 are shown as separate members. However, the tubular member 36a1 and the litz wire 36a2 are integrated with an insulating filling member such as an epoxy resin to form a single component. It is also good. Moreover, although the litz wire was mentioned as an example as a conductor which does not let a refrigerant | coolant pass, a solid member may be sufficient.

サセプタ16のウエハ載置面に対して水平な方向に磁束を生じさせる加熱方法では、誘導加熱コイル36,38へ投入される電流の周波数は数十kHzである。管状部材に銅を使用した場合、肉厚を1mm程度とする銅管(管状部材36a1)は誘導加熱されることとなり、サセプタ16の加熱効率が低下すると共に、電力損失が大きくなってしまう。一方、0.18φ程度の複数の素線(線条材)を縒り合わせて構成されるリッツ線36a2であれば、磁束は透過することが考えられるが、磁極32,34の先端部分には鎖交磁束が多いため、誘導加熱されてしまう。冷却作用を持たないリッツ線36a2は、誘導加熱によって発熱した場合には温度上昇し、使用温度限界を超えてしまうことがある。このため、磁極先端側に冷却作用を有する管状部材36a1を配置し、後端側にリッツ線36a2を配置することで、電力損失を抑制し、かつコイルの過加熱も防止することが可能となる。   In the heating method in which the magnetic flux is generated in the horizontal direction with respect to the wafer mounting surface of the susceptor 16, the frequency of the current applied to the induction heating coils 36 and 38 is several tens of kHz. When copper is used for the tubular member, the copper tube (tubular member 36a1) having a thickness of about 1 mm is induction-heated, so that the heating efficiency of the susceptor 16 is reduced and the power loss is increased. On the other hand, if the litz wire 36a2 is formed by twisting together a plurality of strands (strips) of about 0.18φ, it is considered that the magnetic flux is transmitted. Due to the large amount of magnetic flux, induction heating occurs. When the Litz wire 36a2 that does not have a cooling action generates heat due to induction heating, the temperature rises and may exceed the operating temperature limit. For this reason, by arranging the tubular member 36a1 having a cooling action on the magnetic pole front end side and the litz wire 36a2 on the rear end side, it becomes possible to suppress power loss and prevent overheating of the coil. .

また、実施形態に係る誘導加熱コイル36,38は、磁極32,34に対して密着するように巻回されている。このような構成とすることにより、管状部材の冷却効果による磁極先端の加熱防止効果を高めることができるからである。   The induction heating coils 36 and 38 according to the embodiment are wound so as to be in close contact with the magnetic poles 32 and 34. This is because by adopting such a configuration, the effect of preventing the heating of the magnetic pole tip by the cooling effect of the tubular member can be enhanced.

なお、磁極32,34と誘導加熱コイル36,38との間に、エポキシ系樹脂等の比較的熱伝導率が高い絶縁性均熱部材を介在させるようにしても良い。このような構成とすることによれば、磁極の冷却を効率良く、かつ均等に行うことが可能となる。また、誘導加熱コイル36,38と、磁極32,34との間にエポキシ系樹脂等のように比較的熱伝導率が高い充填部材を充填し、両者を構成要素的に一体化させても良い。   An insulating heat equalizing member having a relatively high thermal conductivity such as an epoxy resin may be interposed between the magnetic poles 32 and 34 and the induction heating coils 36 and 38. With this configuration, the magnetic pole can be cooled efficiently and evenly. Further, a filling member having a relatively high thermal conductivity such as an epoxy resin may be filled between the induction heating coils 36 and 38 and the magnetic poles 32 and 34, and both may be integrated as components. .

励磁部28は、上記のような構成のコア30と誘導加熱コイル36,38を、サセプタ16の積層方向に沿って複数(図2に示す例では3つ)配置することで構成されている。
また、上記のような励磁部28において、実施形態のコア30は、図3に示すように、サセプタ16の中心点Oから各磁極端面の中心に向けて伸ばした線の成す角θが所定の角度(ハウジング26の成す角に依存)となるように構成されている。磁極32,34間に角度付けをした上で、一方の磁極32と他方の磁極34の極性を逆にすることで、発生磁束が磁極32,34間を行き来することとなる。これにより、単一の磁極32(34)によって生ずる磁束よりもサセプタ16の中心側を通る磁束を生じさせることが可能となる。
The exciting unit 28 is configured by arranging a plurality (three in the example shown in FIG. 2) of the core 30 and the induction heating coils 36 and 38 configured as described above along the stacking direction of the susceptor 16.
Further, in the exciting unit 28 as described above, the core 30 of the embodiment has a predetermined angle θ formed by a line extending from the center point O of the susceptor 16 toward the center of each magnetic pole end face as shown in FIG. It is configured to have an angle (depending on the angle formed by the housing 26). By making the angle between the magnetic poles 32 and 34 and reversing the polarities of one magnetic pole 32 and the other magnetic pole 34, the generated magnetic flux travels between the magnetic poles 32 and 34. Thereby, it is possible to generate a magnetic flux passing through the center side of the susceptor 16 rather than a magnetic flux generated by the single magnetic pole 32 (34).

電源部40には、コア30単位で、各コア30の磁極32,34に巻回された誘導加熱コイル36,38に対応したインバータ(不図示)と、図示しない交流電源、および図示しない電力制御部等が設けられており、各コア30に設けられた誘導加熱コイル36,38単位で、供給する電流や電圧、および周波数等を調整することができるように構成されている。実施形態に係る誘導加熱装置10では、単一のコア30に巻回された誘導加熱コイル36,38(例えば磁極32aに巻回される誘導加熱コイル36aと磁極34aに巻回される誘導加熱コイル38a)は回路上並列あるいは直列な関係とし、巻回方向を同一とした上で、電流の投入方向を逆にする。これにより、各コア30における2つの磁極(例えば磁極32aと磁極34a)の極性を逆向きとすることができる。ここでインバータとして共振型のものを採用する場合には、周波数の切り替えを簡易に行うことができるように、各制御周波数に合わせた共振コンデンサを並列接続し、これを電力制御部からの信号に応じて切り替えることができるように構成することが望ましい。   The power supply unit 40 includes an inverter (not shown) corresponding to the induction heating coils 36 and 38 wound around the magnetic poles 32 and 34 of each core 30, an AC power supply (not shown), and a power control (not shown). The current and voltage to be supplied, the frequency, the frequency, and the like can be adjusted in units of induction heating coils 36 and 38 provided in each core 30. In the induction heating device 10 according to the embodiment, the induction heating coils 36 and 38 wound around the single core 30 (for example, the induction heating coil 36a wound around the magnetic pole 32a and the induction heating coil wound around the magnetic pole 34a). 38a) is a parallel or serial relationship on the circuit, and the winding direction is the same, and the current input direction is reversed. Thereby, the polarities of the two magnetic poles (for example, the magnetic pole 32a and the magnetic pole 34a) in each core 30 can be reversed. Here, when a resonant type inverter is adopted, a resonant capacitor matched to each control frequency is connected in parallel so that the frequency can be easily switched, and this is used as a signal from the power control unit. It is desirable to configure so that it can be switched accordingly.

実施形態に係る電力制御部は、図示しないゾーンコントロール手段を有する。ゾーンコントロール手段は、隣接配置されたコア30に巻回された誘導加熱コイル36,38間に生ずる相互誘導の影響を回避しつつ、各誘導加熱コイル36,38に対する投入電力の制御を行う役割を担う。   The power control unit according to the embodiment includes zone control means (not shown). The zone control means plays a role of controlling the input power to each induction heating coil 36, 38 while avoiding the influence of mutual induction occurring between the induction heating coils 36, 38 wound around the adjacent core 30. Bear.

上記のように近接して積層配置されるコア30に巻回された誘導加熱コイル36,38は、各々が個別の誘導加熱コイルとして稼動されるため、上下に隣接する誘導加熱コイル間(例えば誘導加熱コイル38aと誘導加熱コイル38b)において相互誘導が生じ、個別の電力制御に悪影響を与える事がある。このためゾーンコントロール手段は、検出された電流の周波数や波形(電流波形)に基づいて、隣接配置された誘導加熱コイルに投入する電流の周波数を一致させ、かつ電流波形の位相を同期(位相差を0または位相差を0に近似させる事)、あるいは所定の位相差を保つように制御することで、隣接配置した誘導加熱コイル間における相互誘導の影響を回避した電力制御(ゾーンコントロール制御)を可能としている。   Since each of the induction heating coils 36 and 38 wound around the core 30 stacked in close proximity as described above is operated as an individual induction heating coil, the induction heating coils adjacent to each other vertically (for example, induction Mutual induction occurs in the heating coil 38a and the induction heating coil 38b), which may adversely affect individual power control. For this reason, the zone control means matches the frequency of the current applied to the adjacent induction heating coil based on the detected current frequency and waveform (current waveform) and synchronizes the phase of the current waveform (phase difference). Power control (zone control control) that avoids the influence of mutual induction between adjacently arranged induction heating coils by controlling so that the phase difference is approximated to 0 or a phase difference of 0) It is possible.

このような制御は、各誘導加熱コイル36,38に投入されている電流値や電流の周波数、および電圧値等を検出し、これをゾーンコントロール手段に入力する。ゾーンコントロール手段では、例えばコア30aに巻回された誘導加熱コイル36a,38aとコア30bに巻回された誘導加熱コイル36b,38b間の電流波形の位相をそれぞれ検出し、これを同期、あるいは所定の位相差を保つように制御する。このような制御は、電力制御部に対して各誘導加熱コイルに投入する電流の周波数を瞬時的に変化させる信号を出力することで成される。   Such control detects a current value, a current frequency, a voltage value, and the like supplied to the induction heating coils 36 and 38, and inputs them to the zone control means. In the zone control means, for example, the phase of the current waveform between the induction heating coils 36a, 38a wound around the core 30a and the induction heating coils 36b, 38b wound around the core 30b is detected, respectively, and this is synchronized or predetermined. Control to maintain the phase difference of. Such control is performed by outputting a signal that instantaneously changes the frequency of the current supplied to each induction heating coil to the power control unit.

本実施形態に係る誘導加熱装置10のような構成の場合、電力制御に関しては、電力制御部に設けられた図示しない記憶手段(メモリ)に記憶された制御マップ(垂直温度分布制御マップ)に基づいて、熱処理開始からの経過時間単位に変化させる投入電力を出力するための信号を出力すれば良い。なお、制御マップは、熱処理開始から熱処理終了に至るまでの積層配置されたサセプタ間の温度変化を補正し、任意の温度分布(例えば均一な温度分布)を得るために各誘導加熱コイルに与える電力値を、熱処理開始からの経過時間と共に記録したものであれば良い。また、サセプタ16の温度を計測する計測手段(不図示)を備えている場合には、各ゾーンにおけるサセプタ温度をフィードバックして温度制御(電力制御)を行うようにすると良い。   In the case of a configuration such as the induction heating apparatus 10 according to the present embodiment, the power control is based on a control map (vertical temperature distribution control map) stored in a storage unit (memory) (not shown) provided in the power control unit. Thus, it suffices to output a signal for outputting input power to be changed in units of elapsed time from the start of heat treatment. The control map corrects the temperature change between the stacked susceptors from the start of heat treatment to the end of heat treatment, and gives power to each induction heating coil to obtain an arbitrary temperature distribution (for example, uniform temperature distribution). Any value may be recorded as long as the elapsed time from the start of the heat treatment is recorded. Further, in the case where measurement means (not shown) for measuring the temperature of the susceptor 16 is provided, it is preferable to perform temperature control (power control) by feeding back the susceptor temperature in each zone.

このような構成の電源部40では、電力制御部からの信号に基づいて、各誘導加熱コイル36,38に投入する電流の周波数を瞬時的に調整し、電流波形の位相制御を実施すると共に、各誘導加熱コイル36,38単位の電力制御を実施することで、ボート14内における垂直方向の温度分布を制御することができる。   In the power supply unit 40 having such a configuration, the frequency of the current input to each induction heating coil 36 and 38 is instantaneously adjusted based on the signal from the power control unit, and the phase control of the current waveform is performed. By performing power control for each induction heating coil 36, 38, the temperature distribution in the vertical direction in the boat 14 can be controlled.

また、このような構成の誘導加熱装置10によれば、磁束がウエハ60に対して水平に働くため、ウエハ60の表面に金属膜等の導電性部材が形成されていた場合であっても、ウエハ60の温度分布が乱れる虞が無い。   Moreover, according to the induction heating apparatus 10 having such a configuration, since the magnetic flux works horizontally with respect to the wafer 60, even when a conductive member such as a metal film is formed on the surface of the wafer 60, There is no possibility that the temperature distribution of the wafer 60 is disturbed.

このような構成の誘導加熱装置によれば、チャンバ12の外部に配置した磁極32,34の加熱防止を実現しつつ、被誘導加熱部材であるサセプタ16を効率良く加熱することが可能となる。   According to the induction heating device having such a configuration, it is possible to efficiently heat the susceptor 16 that is an induction heating member while preventing the magnetic poles 32 and 34 disposed outside the chamber 12 from being heated.

次に、本発明の誘導加熱装置に係る第2の実施形態について、図面を参照して詳細に説明する。本実施形態に係る誘導加熱装置の殆どの構成は、上述した第1の実施形態に係る誘導加熱装置10と同様である。よって、本実施形態においては、上記第1の実施形態に係る誘導加熱装置10と構成を異ならせる要部のみを図示して説明するものとし、その構成を同一とする箇所には、図面に同一符号を付して詳細な説明は省略する。なお、第1の実施形態に係る誘導加熱装置10との相違点としては、ハウジング26に設けた開口部142の形態である。具体的には、第1の実施形態における開口部42は、平面形態を多角形(図1に示す例では六角形)とするハウジング26の2辺それぞれに開口部42を設け、開口部42のそれぞれに磁気透過性遮蔽板46と、冷却板48を個別に配置する構成としていた。これに対し本実施形態に係る誘導加熱装置では図7、図8に示すように、開口部142にハウジング26を介在させず、単一の磁気透過性遮蔽板46と、単一の冷却板48で開口部42を遮蔽する構成としている。   Next, a second embodiment according to the induction heating device of the present invention will be described in detail with reference to the drawings. Most configurations of the induction heating apparatus according to the present embodiment are the same as those of the induction heating apparatus 10 according to the first embodiment described above. Therefore, in the present embodiment, only the main parts that are different in configuration from the induction heating apparatus 10 according to the first embodiment are illustrated and described, and the same configuration is the same in the drawings. A detailed description is omitted with reference numerals. The difference from the induction heating apparatus 10 according to the first embodiment is the form of the opening 142 provided in the housing 26. Specifically, the opening 42 in the first embodiment is provided with an opening 42 on each of two sides of the housing 26 having a polygonal shape (hexagonal in the example shown in FIG. 1). The magnetically permeable shielding plate 46 and the cooling plate 48 are individually arranged for each. On the other hand, in the induction heating apparatus according to this embodiment, as shown in FIGS. 7 and 8, the housing 26 is not interposed in the opening 142, and a single magnetically permeable shielding plate 46 and a single cooling plate 48 are used. Thus, the opening 42 is shielded.

このような構成とした場合であっても、誘導加熱コイルを管状部材とリッツ線とにより構成することで、誘導加熱コイルが過加熱されてしまう事を抑制し、加熱効率の良い昇温制御を行うことができる。   Even in such a configuration, the induction heating coil is composed of a tubular member and a litz wire, so that the induction heating coil is prevented from being overheated, and the heating control with good heating efficiency is performed. It can be carried out.

また、上記実施形態では、誘導加熱コイル36を構成する管状部材36a1とリッツ線36a2とのそれぞれに、電源部40に接続される端子を設ける旨示したが、管状部材36a1に対する冷媒の挿通が可能であれば、管状部材36a1とリッツ線36a2を直接接続し、管状部材36a1とリッツ線36a2のそれぞれに1つづつ端子を設けるようにしても良い。   Moreover, in the said embodiment, although it showed that the terminal connected to the power supply part 40 was provided in each of the tubular member 36a1 and the litz wire 36a2 which comprise the induction heating coil 36, insertion of the refrigerant | coolant with respect to the tubular member 36a1 is possible. If so, the tubular member 36a1 and the litz wire 36a2 may be directly connected, and one terminal may be provided for each of the tubular member 36a1 and the litz wire 36a2.

10………誘導加熱装置、12………チャンバ、14………ボート、16………サセプタ、18………回転テーブル、20………テーブル、22………回転軸、24………ベース、26………ハウジング、28………励磁部、30(30a〜30c)………コア、32(32a〜32c)………磁極、34(34a〜34c)………磁極、35(35a〜35c)………ヨーク、36(36a〜36c)………誘導加熱コイル、38(38a〜38c)………誘導加熱コイル、40………電源部、42………開口部、46………磁気透過性遮蔽板、48………冷却板、50………冷却管、60………ウエハ。 DESCRIPTION OF SYMBOLS 10 ......... Induction heating apparatus, 12 ......... Chamber, 14 ......... Boat, 16 ......... Susceptor, 18 ......... Rotary table, 20 ......... Table, 22 ......... Rotating shaft, 24 ......... Base, 26 ......... Housing, 28 ......... Excitation part, 30 (30a-30c) ......... Core, 32 (32a-32c) ......... Magnetic pole, 34 (34a-34c) ......... Magnetic pole, 35 ( 35a-35c) ......... Yoke, 36 (36a-36c) ......... Induction heating coil, 38 (38a-38c) ......... Induction heating coil, 40 ......... Power supply, 42 ......... Opening, 46 ..... Magnetically permeable shielding plate, 48 .... Cooling plate, 50 .... Cooling tube, 60 ..... Wafer.

Claims (5)

被誘導加熱部材をチャンバ内に配置し、前記チャンバの外側には、前記チャンバに形成された開口部を介して前記被誘導加熱部材に端面を対向させて配置した磁極に巻回される誘導加熱コイルを有し、前記被誘導加熱部材の端面に向う交流磁束を発生させる誘導加熱装置であって、
前記被誘導加熱部材と前記磁極の間に、前記チャンバの内部領域と外部領域とを隔離する磁気透過性遮蔽板と、前記磁気透過性遮蔽板に密接または近接するように積層配置されると共に、冷媒を挿通可能な冷却管に密接配置されて前記磁極の過加熱を防止する冷却板を備え、
前記誘導加熱コイルは、前記磁極を冷却するための冷媒を挿通可能な導体と、前記冷媒を通さない導体であるリッツ線とを組み合わせることにより構成し、前記冷媒を挿通可能な導体を前記被誘導加熱部材近傍側に配置したことを特徴とする誘導加熱装置。
An induction heating member is disposed in the chamber, and induction heating is performed on the outside of the chamber around a magnetic pole disposed with an end face facing the induction heating member through an opening formed in the chamber. An induction heating device having a coil and generating an alternating magnetic flux directed to an end face of the induction heating member,
Between the induction heating member and the magnetic pole, a magnetically permeable shielding plate that separates an inner region and an outer region of the chamber, and a laminated arrangement so as to be in close proximity to or close to the magnetically permeable shielding plate, A cooling plate disposed in close contact with a cooling pipe through which a refrigerant can be inserted to prevent overheating of the magnetic pole;
The induction heating coil is configured by combining a conductor through which a refrigerant for cooling the magnetic pole can be inserted and a litz wire that is a conductor through which the refrigerant does not pass, and the conductor through which the refrigerant can be inserted is guided. An induction heating apparatus, which is disposed near the heating member .
前記誘導加熱コイルと前記磁極とを密着させたことを特徴とする請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein the induction heating coil and the magnetic pole are brought into close contact with each other. 前記誘導加熱コイルと前記磁極との間に、熱伝導の改善を図る部材を介在させたことを特徴とする請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein a member for improving heat conduction is interposed between the induction heating coil and the magnetic pole. 前記誘導加熱コイルと前記磁極とを構成要素として一体化する充填部材を備えたことを特徴とする請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, further comprising a filling member that integrates the induction heating coil and the magnetic pole as components. 複数の前記磁極と、複数の前記磁極を連結するヨークとを備え、
各磁極の端面を前記被誘導加熱部材に対向して配置し、前記磁極の端面近傍に前記誘導加熱コイルを設けたことを特徴とする請求項1乃至4のいずれか1項に記載の誘導加熱装置。
A plurality of the magnetic poles, and a yoke connecting the magnetic poles,
The induction heating according to any one of claims 1 to 4, wherein an end face of each magnetic pole is arranged to face the induction heating member, and the induction heating coil is provided in the vicinity of the end face of the magnetic pole. apparatus.
JP2011080555A 2011-03-31 2011-03-31 Induction heating device and magnetic pole Active JP5616271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080555A JP5616271B2 (en) 2011-03-31 2011-03-31 Induction heating device and magnetic pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080555A JP5616271B2 (en) 2011-03-31 2011-03-31 Induction heating device and magnetic pole

Publications (2)

Publication Number Publication Date
JP2012216661A JP2012216661A (en) 2012-11-08
JP5616271B2 true JP5616271B2 (en) 2014-10-29

Family

ID=47269178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080555A Active JP5616271B2 (en) 2011-03-31 2011-03-31 Induction heating device and magnetic pole

Country Status (1)

Country Link
JP (1) JP5616271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2571077B1 (en) * 2014-11-20 2017-02-13 Gh Electrotermia, S.A. Magnetic inductor and manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321118Y2 (en) * 1981-03-17 1988-06-10
JPS59159856U (en) * 1983-04-13 1984-10-26 ソニー株式会社 High frequency heating device for getter flash
JPH10229078A (en) * 1997-02-18 1998-08-25 Mitsubishi Electric Corp Semiconductor device and manufacturing apparatus thereof
JP2002075628A (en) * 2000-08-31 2002-03-15 Nippon Steel Corp Single turn type induction heating coil
JP3914760B2 (en) * 2001-12-14 2007-05-16 新日本製鐵株式会社 Single-turn induction heating coil
JP4921154B2 (en) * 2006-05-16 2012-04-25 株式会社デンソー Reactor and power conversion device incorporating the same
JP5213594B2 (en) * 2008-09-04 2013-06-19 東京エレクトロン株式会社 Heat treatment equipment
JP5297306B2 (en) * 2009-08-31 2013-09-25 三井造船株式会社 Induction heating method and induction heating apparatus
JP2011129593A (en) * 2009-12-15 2011-06-30 Sumitomo Electric Ind Ltd Reactor

Also Published As

Publication number Publication date
JP2012216661A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5063755B2 (en) Induction heating apparatus and induction heating method
JP4676567B1 (en) Semiconductor substrate heat treatment equipment
US9287146B2 (en) Induction heating apparatus and induction heating method
JP5297306B2 (en) Induction heating method and induction heating apparatus
JP5616271B2 (en) Induction heating device and magnetic pole
JP4918168B1 (en) Induction heating device
JP4980475B1 (en) Induction heating device
JP5628731B2 (en) Induction heating device
JP5005120B1 (en) Induction heating method
JP5443228B2 (en) Semiconductor heat treatment equipment
JP5596998B2 (en) Semiconductor substrate heat treatment apparatus and temperature estimation method using semiconductor substrate heat treatment apparatus
JP2011054318A (en) Induction heating method and induction heating device
JP5461256B2 (en) Semiconductor substrate heat treatment apparatus and temperature measurement method using semiconductor substrate heat treatment apparatus
JP5084069B2 (en) Induction heating apparatus and induction heating method
JP5453072B2 (en) Semiconductor substrate heat treatment equipment
JP5297307B2 (en) Induction heating method and induction heating apparatus
JP2012089775A (en) Susceptor and semiconductor substrate heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250