JP5608907B2 - Surface coating method using molten metal and surface coating metal - Google Patents

Surface coating method using molten metal and surface coating metal Download PDF

Info

Publication number
JP5608907B2
JP5608907B2 JP2009139216A JP2009139216A JP5608907B2 JP 5608907 B2 JP5608907 B2 JP 5608907B2 JP 2009139216 A JP2009139216 A JP 2009139216A JP 2009139216 A JP2009139216 A JP 2009139216A JP 5608907 B2 JP5608907 B2 JP 5608907B2
Authority
JP
Japan
Prior art keywords
powder
mold
metal
coating method
surface coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009139216A
Other languages
Japanese (ja)
Other versions
JP2010284675A (en
Inventor
秀一 鴨田
秀一 鴨田
英徳 高橋
英徳 高橋
篤也 戸羽
篤也 戸羽
武裕 岡
武裕 岡
浦上 嘉信
嘉信 浦上
元史 有原
元史 有原
野口 学
学 野口
八鍬 浩
浩 八鍬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Environmental Plant Co Ltd
Hokkaido Research Organization
Original Assignee
Ebara Environmental Plant Co Ltd
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Environmental Plant Co Ltd, Hokkaido Research Organization filed Critical Ebara Environmental Plant Co Ltd
Priority to JP2009139216A priority Critical patent/JP5608907B2/en
Publication of JP2010284675A publication Critical patent/JP2010284675A/en
Application granted granted Critical
Publication of JP5608907B2 publication Critical patent/JP5608907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

本発明は、金属溶湯を鋳込む際の熱を利用して表面被覆層を形成する方法と、それによって得られる表面被覆に関するものである。   The present invention relates to a method for forming a surface coating layer using heat generated when a molten metal is cast, and a surface coating obtained thereby.

金属に耐食性、耐摩耗性等を付与するために、熱源を使って表面被覆する従来方法としては、肉盛溶接(粉体肉盛含む)、拡散被覆法、溶融めっき、溶射法などがある。溶射法は処理の簡便さ、適用材料の多さ、成膜の速さ、対象物の形状・面積に対する制限の少なさなどで、他の表面被覆法にない多くの利点がある。   Conventional methods for surface coating using a heat source to impart corrosion resistance, wear resistance, etc. to metals include overlay welding (including powder overlay), diffusion coating, hot dipping, and thermal spraying. The thermal spraying method has many advantages over other surface coating methods due to the simplicity of processing, the number of applied materials, the speed of film formation, and the limitation on the shape and area of the object.

この溶射法の一つに、自溶合金溶射法があり、多くの産業分野で利用されている。本法は、Ni、あるいはCoをベースにB、Siのフラックス成分等を含む合金粉末を溶射し、その後、皮膜の溶融温度まで加熱するものである。この溶融処理によって、皮膜は緻密な層となり、さらに、母材との境界部は強固な接合状態となる。通常、溶融処理には酸素−アセチレンガスによる還元炎を用いるが、その他ガス炎、加熱炉、高周波熱源などを用いる場合もある。この場合、皮膜が溶融する温度は合金組成や含有量で異なるが、Niベースでは1050℃前後である。   One of the spraying methods is a self-fluxing alloy spraying method, which is used in many industrial fields. In this method, an alloy powder containing a flux component of B or Si based on Ni or Co is sprayed, and then heated to the melting temperature of the coating. By this melting treatment, the film becomes a dense layer, and the boundary portion with the base material is in a strong bonded state. Normally, a reducing flame using oxygen-acetylene gas is used for the melting treatment, but other gas flames, heating furnaces, high-frequency heat sources, etc. may be used. In this case, the temperature at which the coating melts varies depending on the alloy composition and content, but is about 1050 ° C. for Ni.

上記の通り、溶射法は、対象物の形状・面積に対する制限が少ない特長を有し、自溶合金溶射も大物、太物、厚物への適用がなされているが、対象物が大きくなるほど、溶融処理は煩雑となり、長時間を要し、費やすエネルギーが増大し、またエネルギーロスも増大する。大物をガス炎で溶融処理する場合、対象物周辺が開放状態では皮膜の溶融までに長時間かかるため、周辺をレンガ等で囲み、複数のガスバーナで加熱するなど工夫がされている。しかし、この場合でも消費エネルギー、時間のロスは莫大である。また、溶融までの加熱時間が増加することは、金属では結晶粒の粗大化を誘発し、母材の強度、靱性を損なう結果となる。一方、高周波や電気炉での溶融処理においては、複雑形状、大物には適用し難く、この場合も、処理に長時間を要するし、酸素が多い加熱雰囲気では、溶融した皮膜が酸化し、所望の層とならないため、アルゴン、窒素ガスなどを用いた中性、還元雰囲気にする必要があるなど、高コストとなっている。   As described above, the thermal spraying method has the feature that there are few restrictions on the shape and area of the object, and self-fluxing alloy spraying has been applied to large, thick, and thick objects, but the larger the object, The melting process becomes complicated, requires a long time, increases energy consumption, and increases energy loss. When a large object is melted with a gas flame, it takes a long time for the film to melt when the periphery of the object is open. Therefore, the periphery is surrounded by bricks and heated by a plurality of gas burners. However, even in this case, the loss of energy consumption and time is enormous. In addition, an increase in the heating time until melting induces coarsening of crystal grains in the metal, resulting in a loss of strength and toughness of the base material. On the other hand, in high-frequency and electric furnace melting processes, it is difficult to apply to complex shapes and large objects. In this case as well, the process takes a long time, and in a heated atmosphere rich in oxygen, the melted film oxidizes and is desired. Therefore, it is necessary to use a neutral or reducing atmosphere using argon, nitrogen gas, etc., resulting in high costs.

一方、鋳鉄や鋳鋼の鉄系鋳物に耐食性、耐摩耗性、耐高温腐食性等を付与させるには、Ni、Cr、Mo、W、Vなどの合金元素を添加する必要があるが、鋳造による一体成形では不必要な部分まで高価な合金化をせざるを得ない。また、この場合、合金元素を添加することにより、鋳造方案が複雑になる、不均質な組成(偏析)、歪み等の欠陥が生じ易くなる。   On the other hand, it is necessary to add alloy elements such as Ni, Cr, Mo, W, and V in order to impart corrosion resistance, wear resistance, high temperature corrosion resistance, etc. to cast iron and cast iron-based casts. In integral molding, it is necessary to form an expensive alloy up to an unnecessary part. In this case, addition of an alloy element makes the casting method complicated, and defects such as a heterogeneous composition (segregation) and distortion are likely to occur.

以上のことから、鋳物においても必要な部分にのみ必要な特性を付与させることが有効となるが、その一手法として鋳造時の溶湯を用いて表面被覆する方法が従来から提案され、取り組まれている。事例として、金属溶射を利用した鋳物表面合金化、耐火物および金属溶射の鋳造への利用などや、鋳鉄溶湯によるサーメット粒子の鋳ぐるみ、超硬合金粉末の鋳ぐるみによる鋳鋼の表面改質などがある。これらは、鋳型の壁、底表面に溶射を施したり、硬質のサーメット、超硬合金等の粉体を塗布、あるいは充填し、その後、鋳鉄や鋳鋼を直接鋳込み、鋳物表面に異種材の被覆層を形成させるものである。また、鋳型に主材となる金属粉末と主材より融点が高い複材を塗布し、溶融金属を充填する方法などが知られている(特許文献1)。   From the above, it is effective to give the necessary properties only to the necessary parts even in the casting, but as one of the methods, a method of covering the surface with the molten metal at the time of casting has been proposed and tackled. Yes. Examples include casting surface alloying using metal spraying, use of refractory and metal spraying for casting, casting of cermet particles with cast iron melt, and surface modification of cast steel with casting of cemented carbide powder. is there. These include spraying the mold wall and bottom surface, applying or filling hard cermet, cemented carbide powder, etc., then casting cast iron or cast steel directly, and covering the casting surface with different materials Is formed. Further, a method is known in which a metal powder as a main material and a composite material having a melting point higher than that of the main material are applied to a mold and filled with molten metal (Patent Document 1).

特開2004−74202JP 2004-74202 A

自溶合金溶射法は上記の通り、対象物の形状・面積が大きくなると、溶融処理が煩雑となり、長時間を要し、費やすエネルギーおよびエネルギーロスが増大する。したがって、溶射後のガス炎等による溶融処理を無くするか、または減らすことが出来れば、その効果は極めて大きい。また、溶射そのものを無くし、粉末を塗布して溶融処理も施せるなら、更なる利点となる。鋳造材、特に炭素含有量が多い鋳鉄に自溶合金溶射を施す場合、溶融処理後の冷却が速ければ焼入れされ、マルテンサイト組織となる場合もある。したがって、これを阻止するためには長時間かけて冷却(徐冷)する必要がある。   In the self-fluxing alloy spraying method, as described above, when the shape and area of the target object are increased, the melting process becomes complicated, takes a long time, and increases energy and energy loss. Therefore, if the melting treatment by the gas flame after spraying can be eliminated or reduced, the effect is extremely great. Further, if the thermal spray itself is eliminated and the powder can be applied to perform the melting process, there is a further advantage. In the case where a self-fluxing alloy spray is applied to a cast material, particularly cast iron having a high carbon content, if the cooling after the melting process is fast, it may be quenched and may have a martensite structure. Therefore, in order to prevent this, it is necessary to cool (slowly cool) over a long time.

以上の課題を解決する手法として、上記で示した金属溶湯を用いての表面被覆法が挙げられる。しかし、鋳型の壁、底表面に溶射被覆や粉体塗布、あるいは充填し、その後、鋳鉄や鋳鋼を直接鋳込み、鋳物表面に異種材の被覆層を形成させる従来方法では、皮膜や粉体が溶湯によって流されたり、剥がれたり、または、溶湯の温度に対して粉体、あるいは皮膜の溶融温度が低いために過熱や拡散が進み、被覆層が極端に薄くなったり、希釈されて消失してしまうなど、良質の表面被覆層とはなり難い。すなわち、溶湯が粉体、あるいは皮膜に直接当たる鋳込み法では良好な被覆層を得ることが極めて困難で、多くの条件に制約される。   As a technique for solving the above problems, a surface coating method using the above-described molten metal can be mentioned. However, in the conventional method in which the coating wall or bottom surface of the mold is spray-coated or powder-coated or filled, and then cast iron or cast steel is directly cast to form a coating layer of a different kind of material on the casting surface, the coating or powder is molten. The coating layer becomes extremely thin or diluted and disappears because the melting temperature of the powder or coating is low relative to the temperature of the molten metal. It is difficult to be a good surface coating layer. That is, it is extremely difficult to obtain a good coating layer by the casting method in which the molten metal directly hits the powder or the film, and it is restricted by many conditions.

本発明は、金属溶湯を鋳込む際の熱を利用して表面被覆層を形成する方法およびそれによって得られる表面被覆に関するものである。手法としては、砂型、金型などの鋳型内に、あらかじめ表面被覆すべき粉体を塗布、または溶射した金属の薄単板やプレス等にて加工したケースなど(以下「緩衝材」と称す場合がある。)を配置しておき、その後、所定の溶湯を鋳型に鋳込み、緩衝材を介した高温の熱によって粉体、あるいは溶射皮膜を溶融するものである。これによって、粉体、あるいは皮膜は溶湯と直接触れないため、流されたり、過熱状態となることを阻止でき、所定の厚さを維持した表面層を得ることができる。この場合、緩衝材の板厚、形状などを制御することによって、所望の温度で表面被覆層となる部分を加熱・溶融できる大きな特長がある。   The present invention relates to a method for forming a surface coating layer using heat at the time of casting a molten metal, and a surface coating obtained thereby. As a technique, a case in which a powder to be surface-coated in advance is applied to a mold such as a sand mold or a metal mold, or a metal sprayed metal single plate or press is used (hereinafter referred to as “buffer material”). And then, a predetermined molten metal is cast into a mold, and the powder or the sprayed coating is melted by high-temperature heat through a buffer material. Accordingly, since the powder or film does not come into direct contact with the molten metal, it can be prevented from flowing or overheating, and a surface layer having a predetermined thickness can be obtained. In this case, there is a great advantage that the portion that becomes the surface coating layer can be heated and melted at a desired temperature by controlling the thickness and shape of the buffer material.

また、緩衝材に粉体を塗布、または溶射した後に、コロイダルシリカ等のカバー材をその上に塗布しておく。これによって、砂型面の粗さや凹凸に起因する被覆層のバラツキや加熱・溶融における流動を防ぐことができる。   In addition, after a powder is applied or sprayed on the buffer material, a cover material such as colloidal silica is applied thereon. As a result, it is possible to prevent the coating layer from being uneven due to the roughness or unevenness of the sand mold surface, and the flow in heating and melting.

すなわち、本発明は、緩衝材の片方の面に表面被覆すべき粉体を塗布する工程、前記粉体を塗布した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、前記粉体の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、を含むことを特徴とする金属の表面被覆方法である。   That is, the present invention includes a step of applying a powder to be surface-coated on one side of a cushioning material, a step of placing the cushioning material on a mold with the surface coated with the powder facing the inside of the mold, and the powder A metal surface coating method comprising: pouring a molten metal having a temperature equal to or higher than a melting temperature of a body into the mold; and transferring heat to the powder through the buffer material to melt the powder. It is.

また、本発明は、緩衝材の片方の面に表面被覆すべき粉体を塗布する工程、前記粉体が塗布された面に、さらにカバー材を接触させる工程、前記粉体を塗布した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、前記粉体の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、を含むことを特徴とする金属の表面被覆方法である。   The present invention also includes a step of applying a powder to be coated on one surface of the cushioning material, a step of bringing a cover material into contact with the surface coated with the powder, and a surface coated with the powder. A step of placing the buffer material on the mold toward the inside of the mold, a step of pouring molten metal having a temperature equal to or higher than the melting temperature of the powder into the mold, and transferring heat to the powder via the buffer material, And a step of melting the body.

また、本発明は、緩衝材の片方の面に表面被覆すべき粉体を溶射する工程、前記粉体を溶射した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、前記粉体の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、を含むことを特徴とする金属の表面被覆方法である。   The present invention also includes a step of spraying a powder to be surface-coated on one surface of a cushioning material, a step of placing the cushioning material in a mold with the surface sprayed with the powder facing the inside of the mold, and the powder A metal surface coating method comprising: pouring a molten metal having a temperature equal to or higher than a melting temperature of a body into the mold; and transferring heat to the powder through the buffer material to melt the powder. It is.

また、本発明は、緩衝材の片方の面に表面被覆すべき粉体を溶射する工程、前記粉体が溶射された面に、さらにカバー材を接触させる工程、前記粉体を溶射した面を鋳型内側に向けて、前記緩衝材に鋳型に配置する工程、前記粉体の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、
を含むことを特徴とする金属の表面被覆方法である。
Further, the present invention includes a step of spraying a powder to be surface-coated on one surface of a cushioning material, a step of further bringing a cover material into contact with the surface sprayed with the powder, and a surface sprayed with the powder. A step of placing the buffer material on the mold toward the inside of the mold, a step of pouring molten metal having a temperature equal to or higher than the melting temperature of the powder into the mold, and transferring heat to the powder via the buffer material, Melting the body,
It is the metal surface coating method characterized by including.

また、本発明は、表面被覆すべき材料を圧縮形成により板状にする工程、前記板状の材料を緩衝材と接触させる工程、前記材料を接触した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、前記材料の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、を含むことを特徴とする金属の表面被覆方法である。   The present invention also includes a step of forming a material to be surface-coated by compression forming into a plate shape, a step of bringing the plate-shaped material into contact with a buffer material, and a surface contacting the material facing the inside of the mold, Placing the molten metal at a temperature equal to or higher than the melting temperature of the material into the mold, and transferring the heat to the powder through the buffer material to melt the powder. It is the metal surface coating method characterized.

また、本発明は、表面被覆すべき材料を圧縮形成により板状にする工程、前記板状の材料を緩衝材と接触させる工程、前記材料を接触させた面に、さらにカバー材を接触させる工程、前記材料を接触した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、前記材料の溶解温度以上の温度の溶湯を、前記鋳型に流し込む工程、前記緩衝材を介して前記粉体に熱を伝え、粉体を溶融する工程、を含むことを特徴とする金属の表面被覆方法である。   The present invention also includes a step of forming a plate-like material to be surface-coated by compression formation, a step of bringing the plate-like material into contact with a buffer material, and a step of bringing a cover material into contact with the surface in contact with the material A step of placing the buffer material on the mold with the surface in contact with the material facing the inside of the mold, a step of pouring a molten metal having a temperature equal to or higher than the melting temperature of the material into the mold, and the powder via the buffer material A method for coating a surface of a metal, comprising a step of transferring heat to a body and melting powder.

また、本発明は、前記カバー材が、コロイダルシリカであることを特徴とする、上記の表面被覆方法である。   Moreover, this invention is said surface coating method characterized by the said cover material being colloidal silica.

また、本発明は、前記緩衝材がプレス加工されたものであることを特徴とする、上記の表面被覆方法である。   Moreover, this invention is said surface covering method characterized by the said buffer material being press-processed.

また、本発明は、上記の方法によって得られる表面被覆金属である。   Moreover, this invention is the surface coating metal obtained by said method.

本発明によって、耐摩耗性、耐食性などに優れた緻密な表面(被覆層)を有した鋳造品が得られる。鋳造母材と被覆層とは金属学的な接合によって強固な結合状態を呈する。上記のように、従来の溶射・溶融処理では膨大なエネルギーと処理時間を要するが、本法では、通常の鋳造工程で成形と表面被覆層の形成ができるため、エネルギーの無駄が少なく、処理に費やす時間も短い。さらに、通常の鋳造品を得た後、自溶合金溶射や肉盛溶接を施す場合のような局部加熱・冷却がないため、母材の高硬度化や割れなどの危険性が無く、また、長時間加熱が無いため母材の劣化も起こらない。   According to the present invention, a cast product having a dense surface (coating layer) excellent in wear resistance, corrosion resistance and the like can be obtained. The casting base material and the coating layer exhibit a strong bonded state by metallurgical bonding. As described above, the conventional thermal spraying / melting process requires enormous energy and processing time, but in this method, the molding and surface coating layer can be formed in the normal casting process. Spend less time. Furthermore, after obtaining a normal casting product, there is no local heating / cooling as in the case of self-fluxing alloy spraying or overlay welding, so there is no danger of high hardness or cracking of the base material, Since there is no heating for a long time, the base material does not deteriorate.

この場合、鋳造母材と緩衝材とは拡散接合、あるいは表層溶融による接合が望ましいが、接合がなされず機械的な結合となっていても、使用条件によっては問題ない。この場合、緩衝材に所望の穴を形成しておき、鋳造母材と接触する側にその穴のバリが張り出すようにすれば、結合の向上が更に図られる。また、接合性を向上させる手法として、鋳造母材と接触する側の緩衝材にろう材と成りうる材料を塗布、溶射、めっき等を施しておくことも考えられる。   In this case, the casting base material and the buffer material are preferably joined by diffusion bonding or surface melting, but there is no problem depending on the use conditions even if the bonding is not performed and mechanical bonding is performed. In this case, if a desired hole is formed in the cushioning material and the burr of the hole protrudes to the side in contact with the casting base material, the coupling can be further improved. Further, as a technique for improving the bondability, it is also conceivable to apply a material that can be a brazing material to the buffer material on the side in contact with the casting base material, spraying, plating, or the like.

また、コロイダルシリカ等のカバー材を用いることにより、砂型面の粗さや、凹凸に起因する被覆層のバラツキや、加熱、溶融における流動を防ぐことができる。   Further, by using a cover material such as colloidal silica, it is possible to prevent roughness of the sand mold surface, variation of the coating layer due to unevenness, and flow during heating and melting.

緩衝材に溶射粉末を塗布したものを鋳型内に設置した図である。It is the figure which installed what applied the thermal spraying powder to the buffer material in the casting_mold | template. 上下鋳型を設置して鋳造するときの図である。It is a figure when installing an upper and lower mold and casting. 鋳造によって複合化した製品の模式図である。It is a schematic diagram of the product compounded by casting.

本発明は、鋳造品の表面に耐摩耗性、耐食性、耐高温腐食性などに優れた被覆層を付与することを目的としている。   An object of the present invention is to provide a coating layer having excellent wear resistance, corrosion resistance, high temperature corrosion resistance, and the like on the surface of a cast product.

本発明に用いる鋳造材としては、特に制限はないが、鋳鉄、あるいは鋳鋼を好ましい例として挙げることができる。   The cast material used in the present invention is not particularly limited, but cast iron or cast steel can be cited as a preferred example.

本発明に用いる緩衝材の材質としては、粉体を塗布または溶射でき、あるいは、圧縮成型により板状にされた材料と接触することができるものであれば、特に制限はないが、たとえば、鋼材等を用いることができる。また、鋳鉄を母材とする場合は、溶湯との親和性や接合性から共ガネとなる鋳鉄を用いるのも良い。   The material of the cushioning material used in the present invention is not particularly limited as long as it can be applied or sprayed with powder, or can be brought into contact with a material formed into a plate by compression molding. Etc. can be used. Moreover, when using cast iron as a base material, it is good to use the cast iron which becomes a cohesive from the affinity with a molten metal and joining property.

また、本発明に用いる緩衝材の形状としては、粉体を塗布または溶射でき、あるいは、圧縮成型により板状にされた材料と接触することができるものであれば、特に制限はないが、例えば薄単板やプレス等により加工したものをあげることができる。プレス加工した場合には、特にケース状にすることが好ましい。   Further, the shape of the cushioning material used in the present invention is not particularly limited as long as it can be applied or sprayed with powder, or can be brought into contact with a material formed into a plate by compression molding. The thing processed by the thin single plate, the press, etc. can be mention | raise | lifted. In the case of press working, it is particularly preferable to form a case.

本発明に用いる緩衝材の厚さとしては、注湯温度および被覆層の最適形成温度に応じて変化させる必要があるが、たとえば、0.1〜3.0mm程度のものをあげることができる。   The thickness of the buffer material used in the present invention needs to be changed according to the pouring temperature and the optimum forming temperature of the coating layer, and examples thereof include a thickness of about 0.1 to 3.0 mm.

本発明に用いる粉体あるいは表面被覆すべき材料としては、所望する性質を付与することができるものであれば特に制限はないが、たとえば、鋳鉄や鋳鋼の鉄系鋳物に耐食性、耐摩耗性、耐高温腐食性等を付与させるには、Ni、Co、Cr、Fe、Mo、W、V、B、Siなどによる合金を挙げることができる。   The powder or material to be surface-coated for use in the present invention is not particularly limited as long as it can impart desired properties. For example, corrosion resistance, wear resistance, cast iron or cast steel iron-based castings, In order to impart high-temperature corrosion resistance and the like, alloys such as Ni, Co, Cr, Fe, Mo, W, V, B, and Si can be cited.

本発明に用いる粉体の粒径は、特に制限はないが、例えば、10〜100μm程度のものを挙げることができる。   The particle size of the powder used in the present invention is not particularly limited, and examples thereof include those having a particle size of about 10 to 100 μm.

また、本発明に用いるカバー材としては、砂型面の粗さや、凹凸に起因する被覆層のバラツキまたは、加熱、溶融における流動を防ぐものであれば特に制限はないが、たとえばコロイダルシリカを挙げることができる。   The cover material used in the present invention is not particularly limited as long as it prevents the roughness of the sand mold surface, unevenness of the coating layer due to unevenness, or flow during heating and melting. For example, colloidal silica may be mentioned. Can do.

本発明に用いる緩衝材に粉体を塗布する場合には、粉体のみでは塗布し難い場合は、バインダを用いることができ、粉体とバインダを混ぜてスラリー状とするのが有効である。   When applying powder to the buffer material used in the present invention, if it is difficult to apply powder alone, a binder can be used, and it is effective to mix powder and binder into a slurry.

ここで用いるバインダとしては、特に制限はないが、たとえば、PVA(ポリビニルアルコール)、水ガラス等を挙げることができる。   The binder used here is not particularly limited, and examples thereof include PVA (polyvinyl alcohol) and water glass.

また本発明において、場合によっては、バインダを用いずに、粉体や表面被覆すべき材料をあらかじめ所望の形状、厚さに圧縮成形しておき、これらを緩衝材に接触させること、特に緩衝材に重ねる、あるいは接着させておくことが好ましい。この場合の圧縮成形された材料の厚さとしては、特に制限はないが、例えば、0.5〜3.0mm程度のものをあげることができる。   In the present invention, in some cases, without using a binder, the powder and the material to be surface-coated are compression-molded in a desired shape and thickness in advance, and these are brought into contact with the cushioning material. It is preferable to overlap or adhere to each other. The thickness of the compression-molded material in this case is not particularly limited, and examples thereof include a thickness of about 0.5 to 3.0 mm.

本発明に用いる鋳型としては、金属を所望の形状に製造することができるものであれば特に制限はないが、たとえば、金型、砂型等を挙げることができる。   The mold used in the present invention is not particularly limited as long as it can produce a metal in a desired shape, and examples thereof include a mold and a sand mold.

以下、図面を参照して、本発明をさらに詳しく説明する。図1は、砂型、金型などの鋳型(下型)の模式図である。図1の1に示す金属の薄単板やプレス等にて加工したケースなどにあらかじめ表面被覆すべき粉体を塗布、または溶射したものを用意しこれを下型3A内の所定の箇所に設置する。(図1中2は、粉体を塗布、溶出した緩衝材1の面、または表面被覆すべき材料を圧縮成型したのち、緩衝材1に接触させた面を示す。)   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic diagram of a mold (lower mold) such as a sand mold or a mold. Prepare a pre-coated or sprayed powder to be coated on a thin metal plate shown in 1 of Fig. 1 or a case processed with a press, etc., and place it at a predetermined location in the lower die 3A. To do. (2 in FIG. 1 indicates the surface of the buffer material 1 on which the powder has been applied and eluted, or the surface brought into contact with the buffer material 1 after compression molding the material to be surface-coated.)

図2は、図1に示した下型に上型3Bを重ねた様子を示す。上型3Bには湯口2Cが設置され、ここから所定温度の溶湯を注ぐことができる。その後、溶湯を徐冷する。   FIG. 2 shows a state where the upper mold 3B is superimposed on the lower mold shown in FIG. The upper mold 3B is provided with a gate 2C from which molten metal at a predetermined temperature can be poured. Thereafter, the molten metal is gradually cooled.

図3に示すように、緩衝材は溶湯と接触して溶湯と一体化し、皮膜2Aが形成された鋳物4が得られる。緩衝材表面に塗布あるいは溶射された粉体または溶射合金粉末は、高温の溶湯によって緩衝材を介して加熱され、融点に達して溶融される。このとき、粉体あるいは溶射皮膜は溶湯と直接触れておらず、粉体あるいは溶射皮膜が融解して流されたり、過熱状態とならないので、所定の厚さを維持した表面層を得ることができる。   As shown in FIG. 3, the buffer material comes into contact with the molten metal and is integrated with the molten metal, so that a casting 4 having a coating 2A is obtained. The powder or sprayed alloy powder coated or sprayed on the surface of the buffer material is heated through the buffer material by a high-temperature molten metal, and reaches the melting point to be melted. At this time, the powder or the sprayed coating is not in direct contact with the molten metal, and the powder or the sprayed coating is not melted and flowed or overheated, so that a surface layer having a predetermined thickness can be obtained. .

本発明において、溶湯の温度は、特に制限はないが、粉体あるいは表面被覆すべき材料の融点より高い温度であることが必要である。溶湯の温度は用いる粉体あるいは表面被覆すべき材料の性質および用いる鋳造材の融点等により適宜選択されるが、たとえば、1300〜1600℃を挙げることができる。   In the present invention, the temperature of the molten metal is not particularly limited, but needs to be higher than the melting point of the powder or the material to be surface-coated. The temperature of the molten metal is appropriately selected depending on the properties of the powder to be used or the material to be surface-coated and the melting point of the cast material to be used, and examples thereof include 1300 to 1600 ° C.

また、本発明は、溶湯温度、緩衝材の板厚および形状などを適切に設定することにより、表面被覆層となる部分を所望の温度で加熱・溶融できるという大きな特長がある。   In addition, the present invention has a great feature that a portion to be a surface coating layer can be heated and melted at a desired temperature by appropriately setting the molten metal temperature, the thickness and shape of the buffer material, and the like.

以下、実施例により本発明をさらに詳しく説明するが、本発明は、この実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this Example.

鋳造材として、ねずみ鋳鉄(FC)を用いた。鋳型は外寸280mm×380mm、板厚4.5mmの鋼板で金枠を製作し、上型の高さを125mm、下型の高さを60mmとして、この金枠内に生型で造型した。緩衝材としては、図1に示すようなプレス加工によってケース状に加工した鋼板を用いた。この緩衝材は、図1の1に示すように、下型の長軸方向に対し、約1/3の長さを有するものを用いた。そして、緩衝材に粉体として自溶合金粉末(住友金属鉱山株式会社製S−6M)を溶射し、粉体が溶射された面を鋳型の内側に向けて配置し、湯口を成型した上型をかぶせ、ねずみ鋳鉄の溶湯(約1,350℃)を注いだ。約120分後に、鋳鉄を型から外し、自溶合金の溶融被覆層により表面被覆されたねずみ鋳鉄を得ることができた。   Gray cast iron (FC) was used as a casting material. A metal frame was manufactured by using a steel plate having an outer dimension of 280 mm × 380 mm and a plate thickness of 4.5 mm. The upper mold had a height of 125 mm and the lower mold had a height of 60 mm. As the buffer material, a steel plate processed into a case shape by pressing as shown in FIG. 1 was used. As this buffer material, as shown in 1 of FIG. 1, a material having a length of about 1/3 with respect to the major axis direction of the lower mold was used. Then, a self-fluxing alloy powder (S-6M, manufactured by Sumitomo Metal Mining Co., Ltd.) is sprayed as a powder on the buffer material, and the surface on which the powder is sprayed is arranged toward the inside of the mold, and the upper mold is formed with a gate The molten cast iron (about 1,350 ℃) was poured. After about 120 minutes, the cast iron was removed from the mold, and gray cast iron surface-coated with a self-fluxing molten coating layer could be obtained.

本発明によって、耐摩耗性、耐食性などに優れた緻密な表面(被覆層)を有した鋳造品が得られる。鋳造母材と被覆層とは金属学的な接合によって強固な結合状態を呈する。上記のように、従来の溶射・溶融処理では膨大なエネルギーと処理時間を要するが、本法では、通常の鋳造工程で成形と表面被覆層の形成ができるため、エネルギーの無駄が少なく、処理に費やす時間も短い。さらに、鋳造品に対する局部加熱・冷却がないため、母材の高硬度化や割れなどの危険性が無く、ガス炎によるような長時間加熱が無いため母材の劣化も起こらない。   According to the present invention, a cast product having a dense surface (coating layer) excellent in wear resistance, corrosion resistance and the like can be obtained. The casting base material and the coating layer exhibit a strong bonded state by metallurgical bonding. As described above, the conventional thermal spraying / melting process requires enormous energy and processing time, but in this method, the molding and surface coating layer can be formed in the normal casting process. Spend less time. Furthermore, since there is no local heating / cooling of the cast product, there is no danger of high hardness or cracking of the base material, and no deterioration of the base material occurs because there is no heating for a long time due to a gas flame.

1 緩衝材基板(鋼板など)
2 溶射粉末塗布面
2A 溶射粉末の再溶融による機能性皮膜形成面
3 鋳型
3A 下型
3B 上型
3C 湯口
4 鋳物
1 Buffer material substrate (steel plate, etc.)
2 Sprayed powder coating surface 2A Functional film forming surface by remelting sprayed powder 3 Mold 3A Lower mold 3B Upper mold 3C Cup 4 Casting

Claims (14)

緩衝材の片方の面に表面被覆すべき自溶合金の粉体を塗布する工程、
前記粉体を塗布した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
前記粉体の溶解温度以上の温度の溶湯を、前記粉体を塗布した面に直接接触しないように前記鋳型に流し込む工程、
前記緩衝材を介して前記粉体に熱を伝え、前記粉体を溶融して表面に被覆層を形成する工程、
を含むことを特徴とする金属の表面被覆方法。
Applying a self-fluxing alloy powder to be coated on one side of the cushioning material;
Placing the cushioning material on the mold with the surface coated with the powder facing the inside of the mold,
Pouring molten metal having a temperature equal to or higher than the melting temperature of the powder into the mold so as not to directly contact the surface to which the powder is applied
Transferring heat to the powder through the buffer material, and melting the powder to form a coating layer on the surface;
A metal surface coating method comprising:
前記粉体が塗布された面に、さらにカバー材を接触させる工程、
前記粉体を塗布した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
を含むことを特徴とする請求項1に記載の金属の表面被覆方法。
A step of bringing a cover material into contact with the surface coated with the powder;
Placing the cushioning material on the mold with the surface coated with the powder facing the inside of the mold,
The metal surface coating method according to claim 1, comprising:
緩衝材の片方の面に表面被覆すべき自溶合金の粉体を溶射する工程、
前記粉体を溶射した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
前記粉体の溶解温度以上の温度の溶湯を、前記粉体を溶射した面に直接接触しないように前記鋳型に流し込む工程、
前記緩衝材を介して前記粉体に熱を伝え、前記粉体を溶融して表面に被覆層を形成する工程、
を含むことを特徴とする金属の表面被覆方法。
Spraying a self-fluxing alloy powder to be surface-coated on one side of the cushioning material,
Placing the cushioning material on the mold with the powder-sprayed surface facing the mold,
Pouring a molten metal having a temperature equal to or higher than the melting temperature of the powder into the mold so as not to directly contact the surface sprayed with the powder;
Transferring heat to the powder through the buffer material, and melting the powder to form a coating layer on the surface;
A metal surface coating method comprising:
前記粉体が溶射された面に、さらにカバー材を接触させる工程、
前記粉体を溶射した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
を含むことを特徴とする請求項3に記載の金属の表面被覆方法。
A step of bringing a cover material into contact with the surface on which the powder is sprayed;
Placing the cushioning material on the mold with the powder-sprayed surface facing the mold,
The metal surface coating method according to claim 3, comprising:
表面被覆すべき自溶合金の粉体を圧縮形成により板状にする工程、
前記板状の粉体を緩衝材と接触させる工程、
前記粉体を接触した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
前記粉体の溶解温度以上の温度の溶湯を、前記粉体に直接接触しないように前記鋳型に流し込む工程、
前記緩衝材を介して前記粉体に熱を伝え、前記粉体を溶融して表面に被覆層を形成する工程、
を含むことを特徴とする金属の表面被覆方法。
A process for forming a self-fluxing alloy powder to be surface-coated by compression forming into a plate,
Contacting the plate-like powder with a cushioning material;
Placing the cushioning material in the mold with the surface in contact with the powder facing the inside of the mold,
Pouring molten metal at a temperature equal to or higher than the melting temperature of the powder into the mold so as not to directly contact the powder;
Transferring heat to the powder through the buffer material, and melting the powder to form a coating layer on the surface;
A metal surface coating method comprising:
前記粉体を接触させた面に、さらにカバー材を接触させる工程、
前記粉体を接触した面を鋳型内側に向けて、前記緩衝材を鋳型に配置する工程、
を含むことを特徴とする請求項5に記載の金属の表面被覆方法。
A step of bringing a cover material into contact with the surface contacted with the powder;
Placing the cushioning material in the mold with the surface in contact with the powder facing the inside of the mold,
The metal surface coating method according to claim 5, comprising:
前記カバー材が、コロイダルシリカであることを特徴とする、請求項2、4、6、のいずれか1項に記載の金属の表面被覆方法。 The metal surface coating method according to claim 2, wherein the cover material is colloidal silica. 前記緩衝材がケース状である、請求項1〜7のいずれか1項に記載の金属の表面被覆方法。 The metal surface coating method according to claim 1, wherein the cushioning material has a case shape. 前記緩衝材に穴が設けられた請求項1〜8のいずれか1項に記載の金属の表面被覆方法。 The metal surface coating method according to claim 1, wherein a hole is provided in the cushioning material. 前記粉体を溶融させるとともに、前記緩衝材と溶湯とが接触して一体化する工程、
を含むことを特徴とする請求項1〜9のいずれか1項に記載の金属の表面被覆方法。
A step of melting the powder and integrating the buffer material and the molten metal in contact with each other;
The metal surface coating method according to claim 1, comprising:
前記緩衝材は鋼材である請求項1〜10のいずれか1項に記載の表面被覆方法。 The surface covering method according to claim 1, wherein the buffer material is a steel material. 前記溶湯が鋳鉄であるときは、前記緩衝材は鋳鉄である請求項1〜10のいずれか1項に記載の表面被覆方法。 The surface covering method according to claim 1 , wherein the buffer material is cast iron when the molten metal is cast iron. 前記緩衝材がプレス加工されているものであることを特徴とする、請求項1〜11のいずれか1項に記載の金属の表面被覆方法。 The metal surface coating method according to claim 1, wherein the buffer material is press- worked . 請求項1〜13のいずれか1項に記載の方法によって得られる表面被覆金属。 A surface-coated metal obtained by the method according to claim 1.
JP2009139216A 2009-06-10 2009-06-10 Surface coating method using molten metal and surface coating metal Active JP5608907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139216A JP5608907B2 (en) 2009-06-10 2009-06-10 Surface coating method using molten metal and surface coating metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139216A JP5608907B2 (en) 2009-06-10 2009-06-10 Surface coating method using molten metal and surface coating metal

Publications (2)

Publication Number Publication Date
JP2010284675A JP2010284675A (en) 2010-12-24
JP5608907B2 true JP5608907B2 (en) 2014-10-22

Family

ID=43540794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139216A Active JP5608907B2 (en) 2009-06-10 2009-06-10 Surface coating method using molten metal and surface coating metal

Country Status (1)

Country Link
JP (1) JP5608907B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946685B1 (en) * 1970-12-29 1974-12-11
JPS60203354A (en) * 1984-03-27 1985-10-14 Toshiba Mach Co Ltd Production of corrosion- and wear-resistant member for plastic or ceramic molding machine
JPS62187560A (en) * 1986-02-13 1987-08-15 Sumitomo Metal Mining Co Ltd Metal cladding and casting method
JP2004074202A (en) * 2002-08-14 2004-03-11 Mitsubishi Heavy Ind Ltd Surface-coated casting process
JP3857996B2 (en) * 2003-03-26 2006-12-13 地方独立行政法人 岩手県工業技術センター Method for producing metal composite

Also Published As

Publication number Publication date
JP2010284675A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
CN103143699B (en) Composite reinforced wear-resistant part of metal-ceramic prefabricated member and manufacturing method of composite reinforced wear-resistant part
EP0130626B1 (en) Composite metal articles
CN104439192A (en) Method for manufacturing cellular ceramic-metal composite vertical mill roller
JPH11170034A (en) Joining metallic members and method for joining its member
CN105195265A (en) Dual-compound wear-resisting hammer and manufacturing method thereof
CN106086544A (en) A kind of alloying element strengthens high aluminium silicon composite material and preparation method thereof
Mohammed et al. Trend and development of semisolid metal joining processing
JP2022501198A (en) Bearing body anti-friction layer copper alloy filling device and bearing body Bimetal composite material manufacturing method
CN102310183B (en) High wear resisting iron-based composite material and preparation method thereof
CN111020360A (en) Non-infiltration type ceramic particle reinforced steel-based composite material and preparation method thereof
CN104084562B (en) A kind of preparation method of SiC reinforcement cast copper cooling component
CN109267064A (en) A kind of preparation method of ferrous alloy bearing shell wearing layer
JP5608907B2 (en) Surface coating method using molten metal and surface coating metal
CN105441937A (en) Repairing technique and device for cast cladding layer of waste roller
CN101422814A (en) Preparation method of local composite abrasion resistance material
CN107034460B (en) A method of preparing titanium carbide base hard alloy coating
CN104525681A (en) A cold punching die and a manufacturing method thereof
JP4701035B2 (en) Casting method
CN105834353A (en) Casting method of cement mortar ball valve body with high wear resistance
CN105861923A (en) Casting method for seawater-corrosion-resistant composite ball valve body
CN101239396B (en) Preparation technique for alloy powder core tube thread in situ generating of abrasion-proof composite material
CN113814377B (en) Production method of high-strength guide plate
CN104264063A (en) Processing method of mine bucket teeth
CN113927019A (en) Method for forming bimetal by secondary composite casting
JP4020277B2 (en) Cast iron composite manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5608907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250