JP5602395B2 - Short-range radar apparatus and ranging method - Google Patents

Short-range radar apparatus and ranging method Download PDF

Info

Publication number
JP5602395B2
JP5602395B2 JP2009184766A JP2009184766A JP5602395B2 JP 5602395 B2 JP5602395 B2 JP 5602395B2 JP 2009184766 A JP2009184766 A JP 2009184766A JP 2009184766 A JP2009184766 A JP 2009184766A JP 5602395 B2 JP5602395 B2 JP 5602395B2
Authority
JP
Japan
Prior art keywords
frequency
target
intermediate frequency
frequency signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009184766A
Other languages
Japanese (ja)
Other versions
JP2011038836A (en
Inventor
和介 柳沢
房雄 関口
光広 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Original Assignee
Yokowo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd filed Critical Yokowo Co Ltd
Priority to JP2009184766A priority Critical patent/JP5602395B2/en
Priority to PCT/JP2010/063449 priority patent/WO2011016578A1/en
Publication of JP2011038836A publication Critical patent/JP2011038836A/en
Application granted granted Critical
Publication of JP5602395B2 publication Critical patent/JP5602395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、自動車レーダや道路監視レーダのほか、人間の目に触れない状態での人の検知、悪天候などにより超音波測定に影響を受けやすい場所での測距など、幅広い用途で使用される近距離レーダ装置に関する。
特に、2つの異なる周波数の送信波が、測距対象となる物体(ターゲット)から反射されて到達したときの、送信波と受信波の差周波数を持つ中間周波信号に基づいて、ターゲットまでの距離を高精度に測定する技術に関する。
INDUSTRIAL APPLICABILITY The present invention is used in a wide range of applications such as automobile radar and road monitoring radar, as well as distance detection in places that are susceptible to ultrasonic measurement due to bad weather, etc. The present invention relates to a short-range radar apparatus.
In particular, the distance to the target based on the intermediate frequency signal having the difference frequency between the transmitted wave and the received wave when the transmitted waves of two different frequencies are reflected from the object (target) to be measured. The present invention relates to a technology for measuring the accuracy of the measurement.

近距離に存在するターゲットまでの距離をマイクロ波信号で測定するレーダ装置として、パルスレーダ装置、CWレーダ装置、FM−CWレーダ装置、ドップラレーダ装置等が実用化されている。これらのレーダ装置において、2つの異なる周波数のマイクロ波信号を用いることにより、距離の検出精度を高めることができることが知られている。   Pulse radar devices, CW radar devices, FM-CW radar devices, Doppler radar devices, and the like have been put to practical use as radar devices that measure the distance to a target that exists at a short distance using a microwave signal. In these radar apparatuses, it is known that distance detection accuracy can be improved by using microwave signals of two different frequencies.

例えば、特許文献1に記載された2周波CWレーダ装置では、送信部が、基本周波数fに対してΔfの周波数差を有する一対の高周波信号(第1信号)と、fに対してΔf(<Δf)の周波数差を有する一対の高周波信号(第2信号)とを、それぞれ送信波としてターゲットに向けて同時に放射する。このときの送信波の周波数は、それぞれf±Δf/2、f±Δf/2となる。受信部は、第1信号に対応する受信波の位相差Δφと、第2信号に対応する受信波の位相差Δφとを検出するが、Δf<Δfであるため、第2信号に対応するターゲットの最大検出距離は、第1信号に対応する最大検出距離よりも遠くなる。
そこで、位相差Δφが閾値未満のとき、つまり、ターゲットまでの距離が大まかに検出されたときに、位相差φに基づいてターゲットまでの距離を演算することにより、本来の検出範囲外に強く電波を反射する物体が存在する場合においても、近距離に存在するターゲットまでの距離を高精度に測定できるようにしている。
For example, in the two-frequency CW radar device described in Patent Document 1, the transmission unit performs a pair of high-frequency signals (first signals) having a frequency difference of Δf 1 with respect to the fundamental frequency f c and f c . A pair of high-frequency signals (second signals) having a frequency difference of Δf 2 (<Δf 1 ) are simultaneously emitted toward the target as transmission waves. Frequency of the transmitted wave at this time is f c ± Δf 1/2, f c ± Δf 2/2 , respectively. The receiving unit detects the phase difference Δφ 1 of the received wave corresponding to the first signal and the phase difference Δφ 2 of the received wave corresponding to the second signal. However, since Δf 2 <Δf 1 , the second signal The maximum detection distance of the target corresponding to is longer than the maximum detection distance corresponding to the first signal.
Therefore, when the phase difference Δφ 2 is less than the threshold value, that is, when the distance to the target is roughly detected, the distance to the target is calculated based on the phase difference φ 1 so that it is outside the original detection range. Even when there is an object that strongly reflects radio waves, the distance to the target existing at a short distance can be measured with high accuracy.

また、特許文献2に記載された測距装置では、送受信アンテナからターゲットまでの距離Lに対してλ(波長)/2の整数倍が等しいか1だけ異なるような2以上の周波数のマイクロ波を発振させてそれぞれの反射波の位相を検出し、検出した位相と発振波長(λ)とに基づいて距離Lを測定するようにしている。
この測距装置では、ターゲットからの反射時間を検出する必要がなくなるため、30[cm]〜10[m]程度の非常に近距離に存在するターゲットを正確に測定することができる。
Further, in the distance measuring device described in Patent Document 2, microwaves having two or more frequencies such that an integral multiple of λ (wavelength) / 2 is equal to or different from the distance L from the transmitting / receiving antenna to the target are obtained. The phase of each reflected wave is detected by oscillation, and the distance L is measured based on the detected phase and the oscillation wavelength (λ).
In this distance measuring device, since it is not necessary to detect the reflection time from the target, it is possible to accurately measure a target existing at a very short distance of about 30 [cm] to 10 [m].

特開平8−166443号公報JP-A-8-166443 特開2004−12367号公報JP 2004-12367 A

特許文献1に記載された2周波CWレーダ装置では、送信時に、基本周波数に対して2つの周波数差を有する2対の送信波を出力する。そのため、高周波発振器のほかに、高精度の低周波複数周波数発振器が必要となる。
特許文献2に記載された測距装置の場合も、電子同調が可能で少なくとも2つの周波数で発振するマイクロ波発振器(VCO)と、電子同調が可能な局部発振器(VCO)が必要となる。
一般に周波数可変型の発振器は高価である上に、出力する周波数を変化させるための制御手段も不可欠となる。
そのため、従来のこの種のレーダ装置では、コスト低減が困難であり、これが普及を阻害させる要因となっていた。
The two-frequency CW radar device described in Patent Document 1 outputs two pairs of transmission waves having two frequency differences with respect to the fundamental frequency during transmission. Therefore, in addition to the high-frequency oscillator, a highly accurate low-frequency multi-frequency oscillator is required.
The distance measuring device described in Patent Document 2 also requires a microwave oscillator (VCO) that can be electronically tuned and oscillates at at least two frequencies, and a local oscillator (VCO) that can be electronically tuned.
In general, a variable frequency oscillator is expensive, and control means for changing the output frequency is indispensable.
For this reason, it is difficult to reduce the cost of this type of conventional radar apparatus, and this has been a factor that hinders its spread.

本発明の近距離レーダ装置は、第1周波数の送信波をターゲットに向けて放射する第1送受信手段と、前記第1周波数と異なる第2周波数の送信波を前記第1周波数の送信波と同時に前記ターゲットに向けて放射する第2送受信手段と、記第1送受信手段又は前記第2送受信手段から前記ターゲットまでの距離を表すデータを出力する測距手段とを備えており、前記第1送受信手段は、前記第2送受信手段から放射されて前記ターゲットで反射した前記第2周波数の受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力し、前記第2送受信手段は、前記第2送受信手段から放射されて前記ターゲットで反射した前記第1周波数の受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力し、前記測距手段は、前記第1送受信手段から出力された前記第1中間周波信号と前記第2送受信手段から出力された前記第2中間周波信号との比較結果に基づいて、前記データを出力するように構成されている
第1中間周波信号及び第2中間周波信号は、第1送受信手段から第1周波数の送信波を送信し、第2送受信手段から第2周波数の送信波を放射するだけで得られるので、従来のこの種のレーダ装置のように、周波数可変型の高周波発振器や局部発振器、及び、これらの制御手段を用意する必要が無くなり、装置構成が簡略化される。
なお、測距手段は、アナログ回路/デジタル処理回路のいずれで実現しても良い。
Short-range radar apparatus of the present invention, a first receiving means that radiate towards the transmission wave of the first frequency to the target, the transmission wave of a transmission wave of a second frequency different from the first frequency the first frequency At the same time it comprises a second transceiver means that radiate towards the target, from the pre-Symbol first receiving means or said second transmitting and receiving means and the distance measurement means for outputting data representing the distance to the target, the first 1 receiving means outputs a first intermediate frequency signal having a difference frequency between the received wave and the first frequency of the second frequency reflected by the target are emitted from said second transmitting and receiving means, said second transceiver The means outputs a second intermediate frequency signal having a difference frequency between the received wave of the first frequency radiated from the second transmitting / receiving means and reflected by the target, and the distance measuring means, Above Based on the first comparison and the second intermediate frequency signal output the first intermediate frequency signal outputted from the transmitting and receiving means from said second transmitting and receiving means results are configured prior to output Kide over data Yes .
Since the first intermediate frequency signal and the second intermediate frequency signal can be obtained simply by transmitting the first frequency transmission wave from the first transmission / reception means and radiating the second frequency transmission wave from the second transmission / reception means, Unlike this type of radar apparatus, it is not necessary to prepare a variable-frequency high-frequency oscillator, a local oscillator, and control means thereof, and the apparatus configuration is simplified.
The distance measuring means may be realized by either an analog circuit or a digital processing circuit.

本発明の近距離レーダ装置は、第1周波数の送信波をターゲットに向けて放射するとともに、前記ターゲットで反射した受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力する第1送受信手段と、前記第1周波数と異なる第2周波数の送信波を前記第1周波数の送信波と同時に前記ターゲットに向けて放射するとともに、前記ターゲットで反射した受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力する第2送受信手段と、前記第1中間周波信号と前記第2中間周波信号との比較結果に基づいて、前記第1送受信手段又は前記第2送受信手段から前記ターゲットまでの距離を表すデータを出力する測距手段と、を備えて成る。
第1中間周波信号及び第2中間周波信号は、第1送受信手段から第1周波数の送信波を送信し、第2送受信手段から第2周波数の送信波を放射するだけで得られるので、従来のこの種のレーダ装置のように、周波数可変型の高周波発振器や局部発振器、及び、これらの制御手段を用意する必要が無くなり、装置構成が簡略化される。
なお、測距手段は、アナログ回路/デジタル処理回路のいずれで実現しても良い。
The short-range radar apparatus of the present invention radiates a transmission wave having a first frequency toward a target and outputs a first intermediate frequency signal having a difference frequency between the reception wave reflected by the target and the first frequency. A first transmission / reception means, a transmission wave having a second frequency different from the first frequency, radiated toward the target simultaneously with the transmission wave having the first frequency, and the reception wave reflected by the target and the second frequency; Based on the comparison result between the first intermediate frequency signal and the second intermediate frequency signal, the first transmission / reception means or the second transmission / reception means, based on the comparison result between the first intermediate frequency signal and the second intermediate frequency signal. And distance measuring means for outputting data representing the distance from the means to the target.
Since the first intermediate frequency signal and the second intermediate frequency signal can be obtained simply by transmitting the first frequency transmission wave from the first transmission / reception means and radiating the second frequency transmission wave from the second transmission / reception means, Unlike this type of radar apparatus, it is not necessary to prepare a variable-frequency high-frequency oscillator, a local oscillator, and control means thereof, and the apparatus configuration is simplified.
The distance measuring means may be realized by either an analog circuit or a digital processing circuit.

前記第1送受信手段及び前記第2送受信手段は、具体的には、それぞれ、自ら放射しその振幅が減衰された送信波と、当該送信波並びに他方の送受信手段により放射された送信波が前記ターゲットで反射して到達した受信波とを混合することにより、自ら放射した送信波と他方の送受信手段により放射された送信波との差周波数を持つ信号を前記第1中間周波信号又は前記第2中間周波信号として取り出すミクサを備えて構成する。   Specifically, the first transmission / reception means and the second transmission / reception means respectively transmit the transmission wave radiated by itself and the amplitude thereof being attenuated, and the transmission wave and the transmission wave radiated by the other transmission / reception means. A signal having a difference frequency between the transmission wave radiated by itself and the transmission wave radiated by the other transmission / reception means is mixed with the received wave that has been reflected and arrived at the first intermediate frequency signal or the second intermediate frequency signal. A mixer is provided which is extracted as a frequency signal.

前記測距手段は、具体的には、前記第1中間周波信号及び前記第2中間周波信号の位相を比較することにより、前記ターゲットの変位後の距離を表すデータを出力する。これにより、ターゲットが移動する物体であっても、そのターゲットまでの距離を正確に測定することができる。   Specifically, the distance measuring means outputs data representing a distance after displacement of the target by comparing phases of the first intermediate frequency signal and the second intermediate frequency signal. Thereby, even if the target is an moving object, the distance to the target can be accurately measured.

本発明の測距方法は、レーダ装置の第1系続から第1周波数の送信波をターゲットに向けて放射し、同時に、前記レーダ装置の第2系続から前記第1周波数と異なる第2周波数の送信波を前記ターゲットに向けて放射する段階と、前記第1系統において前記ターゲットで反射した前記第2周波数の受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力するとともに、前記第2系統において前記ターゲットで反射した前記第1周波数の受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力する段階と、前記第1系続から出力された第1中間周波信号と前記第2系続から出力された第2中間周波信号との比較結果に基づいて、前記第1系統又は前記第2系統のレーダ装置から前記ターゲットまでの距離を表すデータを出力する段階とを有する、レーダ装置を用いた測距方法である。 The distance measuring method of the present invention radiates a transmission wave of a first frequency from a first series of radar devices toward a target, and at the same time, a second frequency different from the first frequency from the second series of radar devices. And radiating the transmitted wave toward the target, and outputting a first intermediate frequency signal having a difference frequency between the received wave of the second frequency reflected by the target and the first frequency in the first system And outputting a second intermediate frequency signal having a difference frequency between the received wave of the first frequency reflected by the target and the second frequency in the second system, and output from the first system based on the comparison result between the first intermediate frequency signal and the second intermediate frequency signal output the second system connection color data representing the distance to the target from the radar apparatus of the first system or the second system And a step of outputting a distance measuring method using a radar device.

本発明の測距方法は、レーダ装置の第1系統から第1周波数の送信波をターゲットに向けて放射し、同時に、前記レーダ装置の第2系統から前記第1周波数と異なる第2周波数の送信波を前記ターゲットに向けて放射する段階と、前記第1系統において前記ターゲットで反射した受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力するとともに、前記第2系統において前記ターゲットで反射した受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力する段階と、前記第1系統から出力された第1中間周波信号と前記第2系統から出力された第2中間周波信号との比較結果に基づいて、前記レーダ装置から前記ターゲットまでの距離を表すデータを出力する段階とを有する、レーダ装置を用いた測距方法である。   The distance measuring method of the present invention radiates a transmission wave having a first frequency from a first system of a radar device toward a target, and simultaneously transmits a second frequency different from the first frequency from the second system of the radar device. Radiating a wave toward the target, and outputting a first intermediate frequency signal having a difference frequency between the received wave reflected by the target in the first system and the first frequency, and in the second system Outputting a second intermediate frequency signal having a difference frequency between the received wave reflected by the target and the second frequency, and outputting the first intermediate frequency signal output from the first system and the second system. And a step of outputting data representing the distance from the radar device to the target based on the comparison result with the second intermediate frequency signal.

本発明では、第1周波数の送信波をターゲットに向けて放射し、同時に、第2周波数の送信波をターゲットに向けて放射するとともに、ターゲットで反射した受信波と第1周波数との差周波数を持つ第1中間周波信号と、ターゲットで反射した受信波と第2周波数との差周波数を持つ第2中間周波信号とを出力し、この第1中間周波信号と第2中間周波信号との比較結果に基づいて、ターゲットまでの距離を表すデータを出力するようにしたので、高い分解能での測距が可能になるとともに、周波数可変型の高周波発振器や局部発振器、及び、これらの制御手段を用意する必要が無くなり、測距のための装置構成が簡略化されるという特有の効果が得られる。   In the present invention, the transmission wave of the first frequency is radiated toward the target, and at the same time, the transmission wave of the second frequency is radiated toward the target, and the difference frequency between the reception wave reflected by the target and the first frequency is calculated. And a second intermediate frequency signal having a difference frequency between the received wave reflected by the target and the second frequency, and a comparison result between the first intermediate frequency signal and the second intermediate frequency signal. Based on the above, data representing the distance to the target is output, so that it is possible to perform distance measurement with high resolution, and a variable frequency type high frequency oscillator and local oscillator, and control means thereof are prepared. This eliminates the necessity, and provides a unique effect that the device configuration for distance measurement is simplified.

本発明を適用した近距離レーダ装置の構成図。The block diagram of the short-range radar apparatus to which this invention is applied. 近距離レーダ装置の送受信部の構成図。The block diagram of the transmission / reception part of a short-range radar apparatus. 3種類の中間周波信号の波形図。The wave form diagram of three types of intermediate frequency signals. 中間周波信号と測距レンジとの関係を示した図。The figure which showed the relationship between an intermediate frequency signal and a ranging range.

以下、本発明の実施の形態例を具体的に説明する。
図1は、本発明の近距離レーダ装置の構成例を示す図である。
この近距離レーダ装置は、互いに近接して配備された2系統の送受信部10,20と、各送受信部10,20から送られる中間周波信号V,Vに基づいてターゲット100までの距離Lと、ターゲット100の変位ΔLとを出力する処理部30を備えている。各送受信部10,20と処理部30とは、有線又は無線の信号線で接続される。
Hereinafter, embodiments of the present invention will be specifically described.
FIG. 1 is a diagram illustrating a configuration example of a short-range radar apparatus according to the present invention.
This short-range radar apparatus includes two transmission / reception units 10 and 20 arranged close to each other, and a distance L to the target 100 based on intermediate frequency signals V 1 and V 2 transmitted from the transmission / reception units 10 and 20. And a processing unit 30 that outputs a displacement ΔL of the target 100. Each of the transmission / reception units 10 and 20 and the processing unit 30 are connected by a wired or wireless signal line.

図2を参照し、送受信部10は、発振器11、カプラ(方向性結合器)12、ミクサ13およびアンテナ14を備えている。送受信部20も同様に、発振器21、カプラ(方向性結合器)22、ミクサ23およびアンテナ24を備えている。   Referring to FIG. 2, the transmission / reception unit 10 includes an oscillator 11, a coupler (directional coupler) 12, a mixer 13, and an antenna 14. Similarly, the transmission / reception unit 20 includes an oscillator 21, a coupler (directional coupler) 22, a mixer 23, and an antenna 24.

発振器11は、周波数fのマイクロ波信号を送信波として出力する。発振器21は、周波数fのマイクロ波信号を送信波として出力する。
カプラ12,22は、伝送線路との結合によりその振幅が一定量減衰した送信波、すなわち自系統の送信波を取り出すとともに、アンテナ14,24で受信したマイクロ波信号である受信波、すなわち、自系統の送信波並びに他系統の送信波がターゲット100で反射して到達した受信波を取り出し(必要に応じて増幅し))、これらをミクサ13,23に出力する。
受信波の周波数は、周波数fの送信波がターゲット100で反射されたものであればfであり、周波数fの送信波がターゲット100で反射されたものであればfである。
Oscillator 11 outputs a microwave signal of frequency f 1 as a transmission wave. Oscillator 21 outputs a microwave signal of frequency f 2 as a transmission wave.
The couplers 12 and 22 take out a transmission wave whose amplitude is attenuated by a certain amount due to coupling with the transmission line, that is, a transmission wave of its own system, and at the same time, receive waves that are microwave signals received by the antennas 14 and 24, that is, its own wave. The received waves that have arrived after the transmission waves of the system and the transmission waves of other systems are reflected by the target 100 are extracted (amplified if necessary), and are output to the mixers 13 and 23.
Frequency of the received wave, as long as the transmission wave of a frequency f 1 is reflected by the target 100 is f 1, the transmission wave of frequency f 2 is f 2 as long as it is reflected by the target 100.

ミクサ13は、カプラ12から入力された送信波と受信波とを混合し、差周波数(Δf=|f−f|)の中間周波信号Vを出力する。他方、ミクサ23は、カプラ22から入力された送信波と受信波とを混合し、差周波数(Δf=|f−f|)の中間周波信号Vを出力する。 The mixer 13 mixes the transmission wave and the reception wave input from the coupler 12 and outputs an intermediate frequency signal V 1 having a difference frequency (Δf = | f 1 −f 2 |). On the other hand, the mixer 23 mixes the transmission wave and the reception wave input from the coupler 22 and outputs an intermediate frequency signal V 2 having a difference frequency (Δf = | f 1 −f 2 |).

送受信部10の送信アンテナ14から周波数fの送信波(=At1sin(ωt)=At1sin(2πft))、送受信部20のアンテナ24から周波数fの送信波(=At2sin(ωt)=At2sin(2πft))が、それぞれターゲット100に向けて同時に放射されたとすると、各送信波は、ターゲット100で反射され、アンテナ14及びアンテナ24の双方で受信される。
しかし、それぞれ自系統の受信波については送信波との周波数差が生じないので、中間周波信号は出力されない。そのため、ミクサ13から出力される中間周波信号V及びミクサ24から出力される中間周波信号Vは、それぞれ以下のようになる。
A transmission wave of frequency f 1 (= A t1 sin (ω 1 t) = A t1 sin (2πf 1 t)) from the transmission antenna 14 of the transmission / reception unit 10, and a transmission wave of frequency f 2 from the antenna 24 of the transmission / reception unit 20 (= Assuming that A t2 sin (ω 2 t) = A t2 sin (2πf 2 t)) is simultaneously radiated toward the target 100, each transmitted wave is reflected by the target 100, and both the antenna 14 and the antenna 24 are reflected. Received at.
However, since there is no frequency difference between the received wave of the own system and the transmitted wave, no intermediate frequency signal is output. Therefore, the intermediate frequency signal V 1 output from the mixer 13 and the intermediate frequency signal V 2 output from the mixer 24 are as follows.

=Ar1sin(ωt−2βL) ・・・(1)
=Ar2sin(ωt+2βL) ・・・(2)
(1),(2)式において、Ar1,Ar2は受信波の振幅、ωは角周波数差(=|2πf−2πf|)、βは2π/λ、βは2π/λ、λはc(光速)/f、λはc(光速)/fである。
V 1 = A r1 sin (ω o t-2β 2 L) (1)
V 2 = A r2 sin (ω o t + 2β 1 L) (2)
In equations (1) and (2), A r1 and A r2 are amplitudes of received waves, ω 0 is an angular frequency difference (= | 2πf 1 -2πf 2 |), β 1 is 2π / λ 1 , and β 2 is 2π. / Λ 2 and λ 1 are c (speed of light) / f 1 , and λ 2 is c (speed of light) / f 2 .

中間周波信号V,Vは、角周波数差ωが互いに等しいので、送受信部10と送受信部20の送信波の出力タイミングの同期がとれている間は、位相の比較が可能である。
便宜上、振幅Ar1,Ar2の差を無視できるとすると、中間周波信号VとVとの位相差は、下記式により求めることができる。
Since the intermediate frequency signals V 1 and V 2 have the same angular frequency difference ω o , the phases can be compared while the output timings of the transmission waves of the transmission / reception unit 10 and the transmission / reception unit 20 are synchronized.
For convenience, assuming that the difference between the amplitudes A r1 and A r2 can be ignored, the phase difference between the intermediate frequency signals V 1 and V 2 can be obtained by the following equation.

2βL−2β
=2L(β1−β
=4π|f−f|・L/c
=4πL/λ ・・・(3)
但し、λは、マイクロ波信号の周波数fとfの差周波数の波長である。
(3)式は、ターゲット100までの距離Lの変位に対して、差周波数(Δf)の波長λが1/2動く毎に、2πだけシフトすることを表している。
1 L-2β 2 L
= 2L (β1-β 2 )
= 4π | f 1 −f 2 | · L / c
= 4πL / λ 0 (3)
However, λ 0 is the wavelength of the difference frequency between the frequencies f 1 and f 2 of the microwave signal.
The expression (3) represents that the displacement of the distance L to the target 100 is shifted by 2π every time the wavelength λ 0 of the difference frequency (Δf) moves 1/2.

距離Lは、中間周波信号Vの位相φ(=−β・ΔL/π)と中間周波信号Vの位相(=β・ΔL/π)の符号を反転した位相φ1’(=−β・ΔL/π)とに基づき、下記式により算出することができる。
L=(|φ−φ1’|)/2|β−β| ・・・(4)
すなわち、中間周波信号V,Vの波長の1/2が測定可能な最大距離(フルスケール)となる。
Distance L, the phase phi 2 of the intermediate frequency signal V 2 (= -β 1 · ΔL / π) and the phase phi 1 obtained by inverting the sign of the intermediate frequency signal V 1 of the phase (= β 2 · ΔL / π ) '( = −β 2 · ΔL / π) and can be calculated by the following formula.
L = (| φ 2 −φ 1 ′ |) / 2 | β 2 −β 1 | (4)
That is, 1/2 of the wavelength of the intermediate frequency signals V 1 and V 2 is the maximum measurable distance (full scale).

ターゲット100の変位ΔLは、中間周波信号VとVの位相差Δφ(=|φ−φ|)より、下記式で求めることができる。
ΔL=Δφ/4β ・・・(5)
但し、βは、(β+β)/2である。
すなわち、送信波の半波長合計値の1/4(λ+λの合計値の1/8)が測定可能な最大変位量(フルスケール)となる。
The displacement ΔL of the target 100 can be obtained from the phase difference Δφ (= | φ 2 −φ 1 |) between the intermediate frequency signals V 1 and V 2 by the following equation.
ΔL = Δφ / 4β (5)
However, β is (β 1 + β 2 ) / 2.
That is, 1/4 of the total half-wave value of the transmission wave (1/8 of the total value of λ 1 + λ 2 ) is the maximum measurable displacement (full scale).

そこで、本実施形態の近距離レーダ装置では、図1に示されるように、処理部30の位相演算処理部31において中間周波信号Vの位相(=β・ΔL/π)を反転させた中間周波信号V1’を求め、その結果を位相比較部32に出力する。 Therefore, in the short-range radar apparatus of the present embodiment, as shown in FIG. 1, the phase (= β 2 · ΔL / π) of the intermediate frequency signal V 1 is inverted in the phase calculation processing unit 31 of the processing unit 30. The intermediate frequency signal V 1 ′ is obtained and the result is output to the phase comparison unit 32.

位相比較部32には、中間周波信号V、Vが直接入力される。そのため、位相比較部32には、図3に示される3つの中間周波信号V、V、V1’が入力されることになる。ターゲット100が移動により変位したときは、中間周波信号V、V、V1’がそれぞれ破線の方向に変位するので、ターゲットの変位方向と変位量φ、φ、φ1’とを検出することができる。変位方向を表す情報と変位量φ、φ、φ1’は、距離/変位変換部33に出力される。
なお、位相の比較自体は、アナログ回路、デジタル処理回路のいずれによっても、公知技術を用いて容易に実現することができる。
The intermediate frequency signals V 1 and V 2 are directly input to the phase comparison unit 32. Therefore, three intermediate frequency signals V 1 , V 2 , and V 1 ′ shown in FIG. 3 are input to the phase comparison unit 32. When the target 100 is displaced by movement, the intermediate frequency signals V 1 , V 2 , and V 1 ′ are displaced in the directions of the broken lines, respectively, so that the displacement direction of the target and the displacement amounts φ 1 , φ 2 , and φ 1 ′ are determined. Can be detected. Information representing the displacement direction and the displacement amounts φ 1 , φ 2 , φ 1 ′ are output to the distance / displacement conversion unit 33.
Note that the phase comparison itself can be easily realized by using a known technique by either an analog circuit or a digital processing circuit.

距離/変位変換部33は、位相比較部32から入力された情報に基づいて、距離Lと変位ΔLとを出力する。
例えば、各送受信部10,20の送信波のうち、fが24.15[GHz]、fが24.13[GHz]であり、これらが同時に放射されたとすると、送受信部10,20から出力される中間周波信号V、Vの周波数Δf(=|f−f|)は、20[MHz]となる。
Δfの波長λは15[m]であり、測定可能な距離Lの最大値は、λの1/2(2π=360度位相がシフトする最短長)であるから、距離/変位変換部33は、最大で7.5[m]の測距レンジで距離Lを出力する。
換言すれば、本実施形態の近距離レーダ装置で測定可能な距離Lの最大値を7.5[m]とする場合は、20[MHz]だけ2つのマイクロ波信号の周波数f,fを離しておけば良いということになる。Δfは、測距レンジをどこまでとするかにより、任意に定めることができる。
The distance / displacement conversion unit 33 outputs the distance L and the displacement ΔL based on the information input from the phase comparison unit 32.
For example, of the transmission waves of the transmission / reception units 10 and 20, if f 1 is 24.15 [GHz] and f 2 is 24.13 [GHz], and these are radiated simultaneously, the transmission / reception units 10 and 20 The frequency Δf (= | f 1 −f 2 |) of the output intermediate frequency signals V 1 and V 2 is 20 [MHz].
The wavelength λ 0 of Δf is 15 [m], and the maximum value of the distance L that can be measured is ½ of λ 0 (2π = the shortest length that the phase shifts by 360 degrees), so the distance / displacement conversion unit 33 outputs the distance L in a distance measuring range of 7.5 [m] at the maximum.
In other words, when the maximum value of the distance L that can be measured by the short-range radar apparatus of this embodiment is 7.5 [m], the frequencies f 1 and f 2 of two microwave signals by 20 [MHz]. It means that it is better to keep away. Δf can be arbitrarily determined depending on how far the range is set.

変位ΔLについては、送信波(周波数:f.f)の波長合計値の1/8が、測定可能な変位ΔLの最大値となることは、上述したとおりである。従って、上記の周波数条件の場合、測定可能な変位ΔLの最大値は3.1[mm]となる。ターゲット100の移動に伴い、検出した位相φ、φ1’も同じ方向に変位するので、位相差は相対的なものとなり、図4に示すように、7.5[m]で1周期となるような、ロングスパンで位相差を検出することができる。
その結果、簡易な装置構成でありながら、移動するターゲット100の距離(L+ΔL)を、1[mm]以下の分解能で、精度良く測定することができる。
As described above, as for the displacement ΔL, 1/8 of the total wavelength value of the transmission wave (frequency: f 1 .f 2 ) is the maximum measurable displacement ΔL. Therefore, in the case of the above frequency condition, the maximum value of the displacement ΔL that can be measured is 3.1 [mm]. As the target 100 moves, the detected phases φ 2 and φ 1 ′ are also displaced in the same direction, so that the phase difference becomes relative, and as shown in FIG. Thus, the phase difference can be detected with a long span.
As a result, the distance (L + ΔL) of the moving target 100 can be accurately measured with a resolution of 1 [mm] or less, with a simple apparatus configuration.

このように、本実施形態の近距離レーダ装置では、2系統の送受信部10,20を設け、一方の送受信部10からは、周波数fの送信波をターゲット100に向けて放射するとともに、ターゲット100で反射した受信波と送信波(周波数f)との差周波数を持つ中間周波信号Vを出力するようにし、他方の送受信部20は、周波数fの送信波を送受信部10の送信波と同時にターゲット100に向けて放射するとともに、ターゲット100で反射した受信波と送信波(周波数f)との差周波数を持つ中間周波信号Vを出力するようにしたので、従来のこの種の近距離レーダ装置が備えていた、高価な周波数可変型の発振器や、周波数可変のための制御手段を備える必要が無くなる。
また、中間周波信号V,Vは、2つの送信波の周波数(f,f)の差周波数の信号であり、これらは、各送受信部10,20から固有の周波数の送信波を出力するだけで、ミクサ13,23から出力されるので、マイクロ波信号を中間周波数の信号に変換するための局部発振器やフィルタも不要となる。
これにより、装置構成を著しく簡略化することができる。
As described above, the short-range radar apparatus according to the present embodiment includes the two systems of the transmission / reception units 10 and 20, and radiates the transmission wave of the frequency f 1 from the one transmission / reception unit 10 toward the target 100. The intermediate frequency signal V 1 having a difference frequency between the reception wave reflected by 100 and the transmission wave (frequency f 1 ) is output, and the other transmission / reception unit 20 transmits the transmission wave of the frequency f 2 to the transmission / reception unit 10. This is the conventional type because the intermediate frequency signal V 2 having the difference frequency between the reception wave and the transmission wave (frequency f 2 ) reflected by the target 100 is output while radiating toward the target 100 simultaneously with the wave. It is no longer necessary to provide an expensive frequency variable oscillator and a control means for variable frequency, which are included in the short range radar apparatus.
The intermediate frequency signals V 1 and V 2 are signals having a difference frequency between the frequencies (f 1 and f 2 ) of the two transmission waves, and these signals are transmitted from the transmission / reception units 10 and 20 with a transmission wave having a specific frequency. Since only the output is output from the mixers 13 and 23, a local oscillator and a filter for converting the microwave signal into an intermediate frequency signal become unnecessary.
Thereby, the apparatus configuration can be remarkably simplified.

また、このようにして得られた中間周波信号V,Vのうち、位相を表す成分は、送受信部10,20からターゲット100までの距離Lやその変位ΔLを表す情報を含んでいるので、中間周波信号V,V、例えば位相を比較することにより、ターゲット100が移動する場合であっても、移動によるターゲット100の変位を加味した高精度の測距が可能となる。 Further, among the intermediate frequency signals V 1 and V 2 obtained in this way, the component representing the phase includes information representing the distance L from the transmission / reception units 10 and 20 to the target 100 and the displacement ΔL thereof. By comparing the intermediate frequency signals V 1 and V 2 , for example, the phases, for example, even when the target 100 moves, high-precision distance measurement that takes into account the displacement of the target 100 due to the movement is possible.

特に、処理部30では、中間周波信号Vの位相(=β・ΔL/π)を極性反転し、これにより得られた位相φ1’(=−β・ΔL/π)と中間周波信号Vの位相φ(=−β・ΔL/π)との差分を求め、この差分に基づいて距離を表すデータを導出するようにしたので、1つの近距離レーダ装置でありながら、位相変化のスパンを長くすることができ、高い分解能での測距が可能となる。 In particular, the processing unit 30 reverses the polarity of the phase (= β 2 · ΔL / π) of the intermediate frequency signal V 1 , and the phase φ 1 ′ (= −β 2 · ΔL / π) obtained thereby and the intermediate frequency Since the difference between the signal V 2 and the phase φ 2 (= −β 1 · ΔL / π) is obtained, and the data representing the distance is derived based on this difference, The phase change span can be lengthened, and distance measurement with high resolution becomes possible.

なお、本実施形態では、中間周波信号V1,V2の周波数を20[MHz]とするために、送信波の周波数として、f1を24.15[GHz]、f2を24.13[GHz]とした場合の例を示したが、f1とf2は、逆であっても良い。また、f1を10.535[GHz]、f2を10.515[GHz]としても良く、あるいは、他のバンド帯の周波数を使用するようにしても良い。 In this embodiment, in order to set the frequency of the intermediate frequency signals V1 and V2 to 20 [MHz], f1 is set to 24.15 [GHz] and f2 is set to 24.13 [GHz] as the frequency of the transmission wave. Although an example of the case has been shown, f1 and f2 may be reversed. Further, f1 may be 10.535 [GHz] and f2 may be 10.515 [GHz], or a frequency in another band may be used.

また、本実施形態では、送受信部10,20がそれぞれ独自のアンテナ14,24を有するものとして説明したが、広帯域のアンテナを用いることにより、一つのアンテナを共用することができる。   Further, in the present embodiment, the transmission / reception units 10 and 20 have been described as having their own antennas 14 and 24. However, by using a broadband antenna, one antenna can be shared.

10,20・・・送受信部
11,21・・・発振器
12,22・・・カプラ
13,23・・・ミクサ
14,24・・・アンテナ
30・・・処理部
31・・・位相演算処理部
32・・・位相比較部
33・・・距離/変位変換部
100・・・ターゲット(ターゲット)
DESCRIPTION OF SYMBOLS 10,20 ... Transmission / reception part 11,21 ... Oscillator 12,22 ... Coupler 13,23 ... Mixer 14,24 ... Antenna 30 ... Processing part 31 ... Phase calculation processing part 32 ... Phase comparison unit 33 ... Distance / displacement conversion unit 100 ... Target (target)

Claims (5)

第1周波数の送信波をターゲットに向けて放射する第1送受信手段と、
前記第1周波数と異なる第2周波数の送信波を前記第1周波数の送信波と同時に前記ターゲットに向けて放射する第2送受信手段と、
記第1送受信手段又は前記第2送受信手段から前記ターゲットまでの距離を表すデータを出力する測距手段とを備えており、
前記第1送受信手段は、前記第2送受信手段から放射されて前記ターゲットで反射した前記第2周波数の受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力し、
前記第2送受信手段は、前記第2送受信手段から放射されて前記ターゲットで反射した前記第1周波数の受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力し、
前記測距手段は、前記第1送受信手段から出力された前記第1中間周波信号と前記第2送受信手段から出力された前記第2中間周波信号との比較結果に基づいて、前記データを出力するように構成されている
近距離レーダ装置。
A first receiving means that radiate towards the transmission wave of the first frequency to the target,
A second receiving means that radiate a transmission wave of a second frequency different from the first frequency toward simultaneously the target transmission wave of the first frequency,
Before Symbol first receiving means or said second transmitting and receiving means provided with a distance measuring means for outputting data representing the distance to the target,
The first transmitting / receiving means outputs a first intermediate frequency signal having a difference frequency between the received wave of the second frequency radiated from the second transmitting / receiving means and reflected by the target, and the first frequency ,
The second transmitting / receiving means outputs a second intermediate frequency signal having a difference frequency between the received wave of the first frequency and the second frequency radiated from the second transmitting / receiving means and reflected by the target ;
The distance measuring means, the first said output from the transceiver unit first intermediate frequency signal and output from the second transmitting and receiving means on the basis of the second intermediate frequency signal and the comparison result of the previous Kide over data Is configured to output,
Short-range radar device.
前記第1送受信手段及び前記第2送受信手段は、それぞれ、自ら放射しその振幅が減衰された送信波と、当該送信波並びに他方の送受信手段により放射された送信波が前記ターゲットで反射して到達した受信波とを混合することにより、自ら放射した送信波と他方の送受慣手段により放射された送信波との差周波数を持つ信号を前記第1中間周波信号又は前記第2中間周波信号として取り出すミクサを備える、
請求項1記載の近距離レーダ装置。
The first transmission / reception means and the second transmission / reception means each receive a transmission wave that is radiated by itself and whose amplitude is attenuated, and the transmission wave and a transmission wave radiated by the other transmission / reception means are reflected by the target. By mixing the received wave, a signal having a difference frequency between the transmission wave radiated by itself and the transmission wave radiated by the other transmission / reception conventional means is extracted as the first intermediate frequency signal or the second intermediate frequency signal. With a mixer,
The short-range radar apparatus according to claim 1.
前記ターゲットは移動する物体であり、前記測距手段は、前記第1中間周波信号及び前記第2中間周波信号の位相を比較することにより、前記ターゲットの変位後の距離を表すデータを出力する、
請求項1又は2記載の近距離レーダ装置。
The target is a moving object, and the ranging means outputs data representing a distance after displacement of the target by comparing phases of the first intermediate frequency signal and the second intermediate frequency signal.
The short-range radar apparatus according to claim 1 or 2.
前記測距手段は、前記第1中間周波信号の位相を前記第2中間周波信号の位相の変位方向と同じになるように変換した上で、前記第1中間周波信号の位相及び前記第2中間周波信号の位相の差分を求め、この差分に基づいて前記データを出力する、
請求項3記載の近距離レーダ装置。
The distance measuring means converts the phase of the first intermediate frequency signal to be the same as the direction of displacement of the phase of the second intermediate frequency signal, and then converts the phase of the first intermediate frequency signal and the second intermediate frequency signal. Find the phase difference of the frequency signal, and output the data based on this difference,
The short-range radar apparatus according to claim 3.
レーダ装置の第1系続から第1周波数の送信波をターゲットに向けて放射し、同時に、前記レーダ装置の第2系続から前記第1周波数と異なる第2周波数の送信波を前記ターゲットに向けて放射する段階と、
前記第1系統において前記ターゲットで反射した前記第2周波数の受信波と前記第1周波数との差周波数を持つ第1中間周波信号を出力するとともに、前記第2系統において前記ターゲットで反射した前記第1周波数の受信波と前記第2周波数との差周波数を持つ第2中間周波信号を出力する段階と、
前記第1系続から出力された第1中間周波信号と前記第2系続から出力された第2中間周波信号との比較結果に基づいて、前記第1系統又は前記第2系統のレーダ装置から前記ターゲットまでの距離を表すデータを出力する段階とを有する、レーダ装置を用いた測距方法。
A transmission wave having a first frequency is radiated from the first series of radar devices toward the target, and simultaneously, a transmission wave having a second frequency different from the first frequency is directed to the target from the second series of radar devices. And radiating
The first system outputs a first intermediate frequency signal having a difference frequency between the received wave of the second frequency reflected by the target in the first system and the first frequency, and the first signal reflected by the target in the second system . Outputting a second intermediate frequency signal having a difference frequency between the received wave of one frequency and the second frequency;
Based on the comparison result between the first intermediate frequency signal output from the first series connection and the second intermediate frequency signal output from the second series connection, from the radar device of the first system or the second system A method of measuring a distance using a radar apparatus, comprising: outputting data representing a distance to the target.
JP2009184766A 2009-08-07 2009-08-07 Short-range radar apparatus and ranging method Expired - Fee Related JP5602395B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009184766A JP5602395B2 (en) 2009-08-07 2009-08-07 Short-range radar apparatus and ranging method
PCT/JP2010/063449 WO2011016578A1 (en) 2009-08-07 2010-08-03 Short range radar device and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184766A JP5602395B2 (en) 2009-08-07 2009-08-07 Short-range radar apparatus and ranging method

Publications (2)

Publication Number Publication Date
JP2011038836A JP2011038836A (en) 2011-02-24
JP5602395B2 true JP5602395B2 (en) 2014-10-08

Family

ID=43544471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184766A Expired - Fee Related JP5602395B2 (en) 2009-08-07 2009-08-07 Short-range radar apparatus and ranging method

Country Status (2)

Country Link
JP (1) JP5602395B2 (en)
WO (1) WO2011016578A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101818536B1 (en) * 2011-07-19 2018-01-15 현대모비스 주식회사 Apparatus Recognizing Object Using Side Signal And Method Thereof
JP6030328B2 (en) * 2012-04-20 2016-11-24 アストロデザイン株式会社 Distance measuring system
JP6111975B2 (en) * 2013-10-23 2017-04-12 トヨタ自動車株式会社 Dual frequency CW radar equipment
JP2015184200A (en) * 2014-03-25 2015-10-22 横河電子機器株式会社 Radar apparatus
DE102014104273A1 (en) * 2014-03-26 2015-10-01 Friedrich-Alexander-Universität Erlangen-Nürnberg Method in a radar system, radar system or apparatus of a radar system
CN114174082A (en) * 2019-07-15 2022-03-11 火石工业产品有限责任公司 Vehicle tire assembly including internal inflation height and footprint sensor using millimeter wavelength radar

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178839A (en) * 1995-12-27 1997-07-11 Toyota Motor Corp Distance detecting device

Also Published As

Publication number Publication date
JP2011038836A (en) 2011-02-24
WO2011016578A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP3735721B2 (en) Proximity sensor
JP5602395B2 (en) Short-range radar apparatus and ranging method
EP2902799B1 (en) Doppler radar test system
CN109407056B (en) Radar front-end with HF oscillator monitoring
JP2688289B2 (en) Radar distance measuring device
US20080088500A1 (en) Radar apparatus
JP2008111743A (en) Radar apparatus, high frequency sensor and radar detection method
JPH11512180A (en) Distance measuring device
JP6019795B2 (en) Radar apparatus, target data acquisition method, and target tracking system
JP4705532B2 (en) Distance measurement method using continuous wave type microwave sensor
WO2020031639A1 (en) Radar device
JP2002168946A (en) Range-finding radar system
JP3473577B2 (en) Radar equipment
RU2620774C1 (en) Method for measuring mass liquid medium flow rate
JP2018165664A (en) Radar device
JP7396630B2 (en) Distance measuring device and method
WO2019216214A1 (en) Object position detection system
JP3930376B2 (en) FMCW radar equipment
JP6425863B1 (en) Radar equipment
JP2004198306A (en) Ranging device
JP2004264067A (en) Pulse radar apparatus and its distance detection method
CN215491512U (en) Single antenna displacement measuring device
JP4068113B2 (en) Pulse radar apparatus and distance detection method thereof
JP5781346B2 (en) Radar equipment
JP6779412B2 (en) Radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees