JP5602321B1 - Waste disposal method, treatment method and treatment apparatus - Google Patents

Waste disposal method, treatment method and treatment apparatus Download PDF

Info

Publication number
JP5602321B1
JP5602321B1 JP2014026914A JP2014026914A JP5602321B1 JP 5602321 B1 JP5602321 B1 JP 5602321B1 JP 2014026914 A JP2014026914 A JP 2014026914A JP 2014026914 A JP2014026914 A JP 2014026914A JP 5602321 B1 JP5602321 B1 JP 5602321B1
Authority
JP
Japan
Prior art keywords
particle size
particles
waste
coarse
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014026914A
Other languages
Japanese (ja)
Other versions
JP2015150508A (en
Inventor
公信 山▲崎▼
Original Assignee
株式会社山▲崎▼砂利商店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山▲崎▼砂利商店 filed Critical 株式会社山▲崎▼砂利商店
Priority to JP2014026914A priority Critical patent/JP5602321B1/en
Application granted granted Critical
Publication of JP5602321B1 publication Critical patent/JP5602321B1/en
Publication of JP2015150508A publication Critical patent/JP2015150508A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

【課題】廃棄物の密度を高めつつ、廃棄物全体を処分場でコンクリート等の被覆材料で被覆し、廃棄物中の成分が漏出するのを防止する廃棄物の処分手段を提供する。
【解決手段】本発明に係る廃棄物の処分方法において、内張り工程では廃棄物処分場2の内周面2a、2bを内張り材料で内張りする。篩分工程では、第1基準粒径を基準にして廃棄物を大径粒子と中径粒子とに分離する。破砕工程では、中径粒子を第2基準粒径以下の小径粒子となるように破砕する。混合工程では、大径粒子と小径粒子とを混合して混合粒子を生成する。充填工程では、混合粒子を廃棄物処分場内に充填する。被覆工程では、混合粒子の上面を被覆材料で被覆する。第1基準粒径は、大径粒子の総体積が全粒子の総体積の60〜80%となるように設定する。第2基準粒径は第1基準粒径の5分の1以下に設定する。
【選択図】図1
The present invention provides a waste disposal means for covering the entire waste with a coating material such as concrete at a disposal site while preventing the leakage of components in the waste while increasing the density of the waste.
In the waste disposal method according to the present invention, the inner peripheral surfaces 2a and 2b of the waste disposal site 2 are lined with a lining material in the lining process. In the sieving step, the waste is separated into large particles and medium particles based on the first reference particle size. In the crushing step, the medium-sized particles are crushed so as to be small-sized particles having a diameter equal to or smaller than the second reference particle size. In the mixing step, large particles and small particles are mixed to produce mixed particles. In the filling step, the mixed particles are filled into the waste disposal site. In the coating step, the upper surface of the mixed particles is coated with a coating material. The first reference particle size is set so that the total volume of large particles is 60 to 80% of the total volume of all particles. The second reference particle size is set to 1/5 or less of the first reference particle size.
[Selection] Figure 1

Description

本発明は、廃棄物処分場において廃棄物を、該廃棄物に含まれる物質が廃棄物処分場外に漏出しないように被覆して処分する廃棄物の処分方法、並びに、該廃棄物の処分方法で用いられる廃棄物の処理方法及び処理装置に関するものである。   The present invention relates to a waste disposal method in which waste is covered and disposed in a waste disposal site so that substances contained in the waste do not leak out of the waste disposal site, and the waste disposal method. The present invention relates to a waste processing method and a processing apparatus used.

一般に、家庭又は事業所で発生する種々の一般廃棄物のうち可燃性のごみ(以下「可燃性ごみ」という。)は、多数の家庭又は事業所で収集された後、ごみ焼却施設で焼却される。その結果、ごみ焼却施設では大量の焼却灰が発生するが、このような焼却灰は、最終的には投棄、埋め立て等により処分する必要がある。また、一般廃棄物のうち不燃性のごみ(以下「不燃性ごみ」という。)は、一般にごみ破砕施設で破砕される。その結果、ごみ破砕施設では大量の破砕物が発生するが、このような破砕物もまた、最終的には投棄、埋め立て等により処分する必要がある。なお、可燃性ごみ又は不燃性ごみ以外の廃棄物を廃棄物処分場において処分する場合も同様である。   In general, combustible waste (hereinafter referred to as "combustible waste") among various general wastes generated at homes or offices is collected at many homes or offices and then incinerated at waste incineration facilities. The As a result, a large amount of incineration ash is generated in the waste incineration facility, but such incineration ash must be finally disposed of by dumping, landfilling, or the like. In addition, non-combustible waste (hereinafter referred to as “non-combustible waste”) of general waste is generally crushed in a waste crushing facility. As a result, a large amount of crushed material is generated in the waste crushing facility, but such crushed material also needs to be finally disposed of by dumping or landfill. The same applies when disposing of waste other than combustible or noncombustible waste at the waste disposal site.

しかしながら、ごみ焼却施設で発生する焼却灰、ごみ破砕施設で発生する破砕物又は廃棄物処分場において処分すべきその他の廃棄物(以下「要処分廃棄物」という。)は、重金属(例えば、クロム、水銀、カドミウム)もしくはその化合物等の無機性の有害物、又は、PCBもしくはダイオキシン等の有機性の有害物を含むことがある。したがって、このような要処分廃棄物は、そのままの状態で単純に投棄、埋め立て等により処分することは好ましくない。   However, incineration ash generated at the waste incineration facility, crushed material generated at the waste crushing facility, or other waste to be disposed of at the waste disposal site (hereinafter referred to as “disposable waste”) is heavy metal (for example, chromium). , Mercury, cadmium) or a compound thereof, or organic harmful substances such as PCB or dioxin. Therefore, it is not preferable to dispose of such disposal waste simply by dumping, landfilling or the like in the state as it is.

そこで、このような有害物を含む要処分廃棄物を、コンクリート又はアスファルトと混合ないしは混練して固化させ、要処分廃棄物に含まれる有害物又は該有害物を含む液体が要処分廃棄物外に漏出しないように加工して処分ないしは投棄し、又は、土木・建築用資材として利用するようにした廃棄物の処分方法が種々提案されている(例えば、特許文献1、2参照。)。しかし、大量の要処分廃棄物をコンクリート又はアスファルトと混合ないしは混練して固化させるには、大規模な設備と、多大な費用と、多大な労力とを必要とする。   Therefore, the disposal waste containing such harmful substances is solidified by mixing or kneading with concrete or asphalt, and the hazardous substances contained in the disposal waste or the liquid containing the harmful substances are put out of the disposal waste. Various disposal methods for waste that have been processed so as not to leak and disposed or dumped, or used as civil engineering / building materials have been proposed (see, for example, Patent Documents 1 and 2). However, in order to solidify a large amount of disposal waste with concrete or asphalt and solidify it, a large-scale facility, a large amount of money, and a great amount of labor are required.

そこで、廃棄物処分場に要処分廃棄物を投棄し、この要処分廃棄物全体をコンクリート、アスファルト等で被覆することにより、要処分廃棄物中の有害物の廃棄物処分場外への漏出を防止するようにするのが簡便かつ安価である。そして、このような要処分廃棄物の処理方法が種々提案されている(例えば、特許文献3、4参照)。   Therefore, by disposing of the disposal waste at the waste disposal site and covering the entire disposal waste with concrete, asphalt, etc., leakage of hazardous substances in the disposal waste to the outside of the waste disposal site is prevented. It is simple and inexpensive to do. Various treatment methods for such waste requiring disposal have been proposed (see, for example, Patent Documents 3 and 4).

特開平7−96263号公報JP-A-7-96263 特開2006−82013号公報JP 2006-82013 A 特開2003-236490号公報JP 2003-236490 A 特開2010−240501号公報JP 2010-240501 A

そして、このように廃棄物処分場に要処分廃棄物を投棄してこれをコンクリート、アスファルト等で被覆する場合、廃棄物処分場のスペースを有効に利用するために、要処分廃棄物の密度をできるだけ高めることが必要である。しかし、従来のこの種の要処分廃棄物の処分方法では、要処分廃棄物を押圧してその密度を高めているだけであるので、要処分廃棄物の密度が十分に高められていない。このため、要処分廃棄物の処分のために広大な廃棄物処分場を必要とするといった問題がある。   And in this way, when disposing of the waste to be disposed at the waste disposal site and covering it with concrete, asphalt, etc., in order to effectively use the space of the waste disposal site, the density of the waste to be disposed of is reduced. It is necessary to raise as much as possible. However, in the conventional disposal method of this kind of required waste, the density of the required waste is not sufficiently increased because the required waste is only pressed to increase its density. For this reason, there exists a problem that a vast waste disposal site is required for disposal of a waste requiring disposal.

本発明は、上記従来の問題を解決するためになされたものであって、要処分廃棄物の密度を可及的に高めつつ、該要処分廃棄物全体を廃棄物処分場でコンクリート、アスファルト等の被覆材料でもって被覆し、要処分廃棄物に含まれる成分が廃棄物処分場外に漏出するのを有効に防止することができる廃棄物の処分手段を提供することを解決すべき課題とする。   The present invention has been made to solve the above-described conventional problems, and while increasing the density of the waste to be disposed as much as possible, the entire waste to be disposed of is made concrete, asphalt, etc. at the waste disposal site. It is an object to be solved to provide a waste disposal means that can be coated with the above coating material and can effectively prevent the components contained in the waste requiring disposal from leaking out of the waste disposal site.

上記課題を解決するためになされた本発明に係る、廃棄物処分場に廃棄すべき要処分廃棄物を、該要処分廃棄物に含まれる物質が廃棄物処分場外に漏出しないように被覆して廃棄するようにした廃棄物処分方法は、内張り工程と、篩分工程と、破砕工程と、充填工程と、被覆工程とを有している。   In order to solve the above-mentioned problems, the waste to be disposed of in the waste disposal site according to the present invention is coated so that the substances contained in the waste to be disposed do not leak out of the waste disposal site. The waste disposal method to be discarded includes a lining process, a sieving process, a crushing process, a filling process, and a covering process.

内張り工程では、凹状の廃棄物処分場の内周面を、要処分廃棄物に含まれる物質を通さない内張り材料で内張りする。篩分工程では、要処分廃棄物を、篩分により、第1基準粒径より大きい粒径をもつ大径粒子と、第1基準粒径以下の粒径をもつ中径粒子とに分離する。破砕工程では、中径粒子を、第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する。混合工程では、大径粒子と小径粒子とを混合して混合粒子を生成する。充填工程では、混合粒子を、内張り材料で内張りされた廃棄物処分場内に充填する。被覆工程では、廃棄物処分場内に充填された混合粒子の上面を、要処分廃棄物に含まれる物質を通さない被覆材料で被覆する。この廃棄物処分方法においては、第1基準粒径は、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80%の範囲内の値、好ましくは65〜75%の範囲内の値、最も好ましくは70%付近(例えば70%±2%)の値となるように設定する。   In the lining process, the inner peripheral surface of the concave waste disposal site is lined with a lining material that does not pass the substances contained in the waste to be disposed of. In the sieving step, the waste to be disposed is separated by sieving into large-diameter particles having a particle size larger than the first reference particle size and medium-diameter particles having a particle size not more than the first reference particle size. In the crushing step, the medium-sized particles are crushed so as to be small-diameter particles having a particle size equal to or smaller than the second reference particle size smaller than the first reference particle size. In the mixing step, large particles and small particles are mixed to produce mixed particles. In the filling step, the mixed particles are filled into a waste disposal site lined with a lining material. In the coating step, the upper surface of the mixed particles filled in the waste disposal site is coated with a coating material that does not pass the substances contained in the waste to be disposed of. In this waste disposal method, the first reference particle size is a value in which the total volume of large particles is in the range of 60 to 80% of the total volume of large particles and medium particles, preferably 65 to 75%. The value is set within a range, most preferably in the vicinity of 70% (for example, 70% ± 2%).

本発明に係る廃棄物処分方法においては、篩分工程を実施する前に、篩分により、要処分廃棄物から、第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離工程と、これらの粗大粒子を上限粒径以下の粒径をもつように破砕した上で要処分廃棄物に戻す粗大粒子破砕工程とを有しているのが好ましい。   In the waste disposal method according to the present invention, before carrying out the sieving step, coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size are separated from the waste requiring disposal by sieving. It is preferable to have a coarse particle separation step and a coarse particle crushing step of crushing these coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and returning them to waste for disposal.

本発明に係る、廃棄物処分場に廃棄すべき要処分廃棄物の密度を高めるための廃棄物処理方法は、篩分工程と、破砕工程と、混合工程とを有している。篩分工程では、要処分廃棄物を、篩分により、第1基準粒径より大きい粒径をもつ大径粒子と、第1基準粒径以下の粒径をもつ中径粒子とに分離する。破砕工程では、中径粒子を、第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する。混合工程では、大径粒子と小径粒子とを混合して混合粒子を生成する。この廃棄物処理方法においては、第1基準粒径を、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80%の範囲内の値、好ましくは65〜75%の範囲内の値、最も好ましくは70%付近(例えば70%±2%)の値となるように設定する。   The waste processing method for increasing the density of the waste requiring disposal to be disposed of in the waste disposal site according to the present invention includes a sieving step, a crushing step, and a mixing step. In the sieving step, the waste to be disposed is separated by sieving into large-diameter particles having a particle size larger than the first reference particle size and medium-diameter particles having a particle size not more than the first reference particle size. In the crushing step, the medium-sized particles are crushed so as to be small-diameter particles having a particle size equal to or smaller than the second reference particle size smaller than the first reference particle size. In the mixing step, large particles and small particles are mixed to produce mixed particles. In this waste treatment method, the first reference particle size is a value in which the total volume of large particles is in the range of 60 to 80% of the total volume of large particles and medium particles, preferably 65 to 75%. The value is set within a range, most preferably in the vicinity of 70% (for example, 70% ± 2%).

本発明に係る廃棄物処理方法においては、篩分工程を実施する前に、篩分により、要処分廃棄物から、第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離工程と、これらの粗大粒子を上限粒径以下の粒径をもつように破砕した上で要処分廃棄物に戻す粗大粒子破砕工程とを有しているのが好ましい。   In the waste treatment method according to the present invention, before carrying out the sieving step, coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size are separated from the waste requiring disposal by sieving. It is preferable to have a coarse particle separation step and a coarse particle crushing step of crushing these coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and returning them to waste for disposal.

本発明に係る、廃棄物処分場に廃棄すべき要処分廃棄物の密度を高めるための廃棄物処理装置は、篩分装置と、破砕装置と、混合装置とを有している。篩分装置は、要処分廃棄物を、第1基準粒径より大きい粒径をもつ大径粒子と、第1基準粒径以下の粒径をもつ中径粒子とに分離する。破砕装置は、中径粒子を、第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する。混合装置は、大径粒子と小径粒子とを混合して混合粒子を生成する。この廃棄物処理装置においては、第1基準粒径は、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80%の範囲内の値、好ましくは65〜75%の範囲内の値、最も好ましくは70%付近(例えば70%±2%)の値となるように設定される。   A waste treatment apparatus for increasing the density of waste to be disposed of in a waste disposal site according to the present invention includes a sieving device, a crushing device, and a mixing device. The sieving apparatus separates the waste for disposal into large particles having a particle size larger than the first reference particle size and medium particles having a particle size equal to or smaller than the first reference particle size. The crushing device crushes the medium-sized particles so as to be small-sized particles having a particle size equal to or smaller than the second reference particle size smaller than the first reference particle size. The mixing device mixes large diameter particles and small diameter particles to generate mixed particles. In this waste treatment apparatus, the first reference particle size is a value in which the total volume of large particles is in the range of 60 to 80% of the total volume of large particles and medium particles, preferably 65 to 75%. It is set to a value within the range, most preferably a value in the vicinity of 70% (for example, 70% ± 2%).

本発明に係る廃棄物処理装置は、篩分装置に導入される要処分廃棄物から、篩分により、第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離装置と、これらの粗大粒子を上限粒径以下の粒径をもつように破砕した上で粗大粒子分離装置に供給する粗大粒子破砕装置とを有しているのが好ましい。   The waste treatment apparatus according to the present invention is a coarse particle for separating coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size from the waste to be disposed introduced into the sieving device by sieving. It is preferable to have a separation device and a coarse particle crushing device that crushes these coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and then supplies the coarse particles to the coarse particle separation device.

本発明に係る廃棄物処分方法、廃棄物処理方法又は廃棄物処理装置において、第2基準粒径は、大径粒子の平均粒径の5分の1以下の値又は第1基準粒径の5分の1以下の値に設定するのが好ましい。また、本発明に係る廃棄物処分方法、廃棄物処理方法又は廃棄物処理装置においては、内張り材料がコンクリート、アスファルト又は合成樹脂シートであり、被覆材料がコンクリート又はアスファルトであるのが好ましい。   In the waste disposal method, the waste treatment method, or the waste treatment apparatus according to the present invention, the second reference particle size is a value equal to or less than one fifth of the average particle size of the large particles, or 5 of the first reference particle size. It is preferable to set the value to 1 / min or less. In the waste disposal method, waste treatment method or waste treatment apparatus according to the present invention, it is preferable that the lining material is concrete, asphalt or a synthetic resin sheet, and the coating material is concrete or asphalt.

本発明に係る廃棄物処分方法、廃棄物処理方法又は廃棄物処理装置によれば、廃棄物処分場に廃棄すべき要処分廃棄物の密度を可及的に高めつつ、該要処分廃棄物に含まれる物質が廃棄物処分場外に漏出しないようにして、該要処分廃棄物を処分ないしは廃棄することができる。   According to the waste disposal method, the waste disposal method, or the waste disposal apparatus according to the present invention, while increasing the density of the disposal waste to be disposed of in the waste disposal site as much as possible, It is possible to dispose of or dispose of the required waste so that the contained substances do not leak out of the waste disposal site.

(a)〜(d)は、本発明の実施形態に係る廃棄物の処分方法を模式的に示す廃棄物処理場の縦断面図である。(A)-(d) is a longitudinal cross-sectional view of the waste disposal site which shows typically the disposal method of the waste which concerns on embodiment of this invention. 本発明の実施形態に係る要処分廃棄物の密度を高めるための処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the processing apparatus for raising the density of the waste for disposal which concerns on embodiment of this invention. 大径粒子と小径粒子とを混合した混合粒子における、大径粒子の割合に対す混合粒子の充填密度の変化特性を示すグラフである。It is a graph which shows the change characteristic of the packing density of the mixed particle with respect to the ratio of the large particle in the mixed particle which mixed the large particle and the small particle. 大径粒子と小径粒子とを混合した混合粒子における、大径粒子と小径粒子の粒径比に対す混合粒子の充填密度の変化特性を示すグラフである。It is a graph which shows the change characteristic of the packing density of the mixed particle with respect to the particle size ratio of a large particle and a small particle in the mixed particle which mixed the large particle and the small particle. 要処分廃棄物の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of a disposal waste. 篩分により粗大粒子が除去された要処分廃棄物の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the waste for disposal from which the coarse particle was removed by sieving. 篩分により分離された大径粒子の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the large diameter particle isolate | separated by sieving. 篩分により分離された中径粒子の粒度分布と、該中径粒子を破砕して得られた小径粒子の粒径分布とを示すグラフである。It is a graph which shows the particle size distribution of the medium diameter particle | grains isolate | separated by sieving, and the particle size distribution of the small diameter particle obtained by crushing this medium diameter particle. 大径粒子と小径粒子とを混合して得られた混合粒子(埋立用廃棄物)の粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the mixed particle (waste for landfill) obtained by mixing a large diameter particle and a small diameter particle.

以下、添付の図面を参照しつつ、本発明の実施形態を具体的に説明する。まず、本発明の実施形態に係る廃棄物の処分方法の概要を説明する。
図1(a)に示すように、本発明の実施形態に係る要処分廃棄物(廃棄物処分場に廃棄すべき廃棄物)の処分方法においては、まず廃棄物処分地1の地面を掘削することにより、水平方向に広がる平坦な底面2aと傾斜している側面2bとを有する凹状の廃棄物処分場2が形成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, the outline | summary of the disposal method of the waste which concerns on embodiment of this invention is demonstrated.
As shown to Fig.1 (a), in the disposal method of the waste requiring disposal (waste which should be discarded in a waste disposal site) which concerns on embodiment of this invention, the ground of the waste disposal site 1 is excavated first. As a result, a concave waste disposal site 2 having a flat bottom surface 2a extending in the horizontal direction and an inclined side surface 2b is formed.

次に、図1(b)に示すように、廃棄物処理場2の内周面、すなわち底面2a及び側面2bに、コンクリート又はアスファルトを用いて内張り層3が形成される。なお、内張り層3の材料は、コンクリート又はアスファルトに限定される訳ではなく、要処分廃棄物中の液体又は固体の成分を通さない材料であれば、これら以外の材料、例えば合成樹脂シート等を用いてもよい。   Next, as shown in FIG.1 (b), the lining layer 3 is formed in the inner peripheral surface of the waste disposal site 2, ie, the bottom face 2a, and the side surface 2b, using concrete or asphalt. The material of the lining layer 3 is not limited to concrete or asphalt, and other materials such as synthetic resin sheets may be used as long as they do not pass liquid or solid components in the waste to be disposed of. It may be used.

この後、図1(c)に示すように、廃棄物処分場2内に要処分廃棄物4が投棄され充填される。後で詳しく説明するとおり、要処分廃棄物4は、その粒度を調整することにより、その密度が可及的に高められている。このため、廃棄物処分場2の容積ないしは規模を可及的に小さくすることができる。   Thereafter, as shown in FIG. 1 (c), the waste to be disposed 4 is dumped and filled in the waste disposal site 2. As will be described in detail later, the density of the disposal waste 4 is increased as much as possible by adjusting the particle size. For this reason, the volume or scale of the waste disposal site 2 can be made as small as possible.

最後に、図1(d)に示すように、コンクリート又はアスファルトを用いて、廃棄物処分場2内の要処分廃棄物4の上面及びその周囲の地面を被覆する被覆層5が形成される。これにより、要処分廃棄物4に含まれる成分、例えばクロム、水銀、カドミウム等の重金属もしくはその化合物等の無機性の有害物、又はPCBもしくはダイオキシン等の有機性の有害物は、廃棄物処分場2内で内張り層3及び被覆層5によって完全に封止され、廃棄物処理場外に漏出するのが確実に防止される。   Finally, as shown in FIG.1 (d), the coating layer 5 which coat | covers the upper surface of the disposal waste 4 in the waste disposal site 2 and the surrounding ground is formed using concrete or asphalt. As a result, components contained in the waste to be disposed 4 such as inorganic harmful substances such as heavy metals such as chromium, mercury, cadmium or their compounds, or organic harmful substances such as PCB or dioxin are disposed of in the waste disposal site. 2 is completely sealed by the lining layer 3 and the covering layer 5, and is surely prevented from leaking out of the waste disposal site.

前記のとおり、廃棄物処理場2に投棄ないしは処分される要処分廃棄物4は、その粒度を調整することにより密度が可及的に高められているが、以下要処分廃棄物4の粒度の調整手法を詳しく説明する。   As described above, the density of the disposal waste 4 dumped or disposed in the waste disposal site 2 is increased as much as possible by adjusting the particle size. The adjustment method will be described in detail.

図2は、要処分廃棄物4の粒度を調整してその密度を可及的に高めるための廃棄物処理装置の構成を示している。図2に示すように、廃棄物処理装置Sにおいては、要処分廃棄物4は、まずベルトコンベア、バケットコンベア等の輸送手段(図示せず)により第1篩分装置11(粗大粒子分離装置)に供給される。第1篩分装置11は、粒径が過度に大きい粗大粒子を除去するためのものであり、粒径dが所定の上限粒径D(例えば20mm)以下の粒子を通過させる一方、粒径dが上限粒径Dを超える粗大粒子の通過を阻止する大きさの篩目をもつ篩(図示せず)を備えている。 FIG. 2 shows the configuration of a waste treatment apparatus for adjusting the particle size of the waste requiring disposal 4 and increasing its density as much as possible. As shown in FIG. 2, in the waste treatment apparatus S, the waste to be disposed 4 is first separated by a first sieving device 11 (coarse particle separation device) by a transport means (not shown) such as a belt conveyor or a bucket conveyor. To be supplied. The first sieving device 11 is for removing coarse particles having an excessively large particle diameter, and allows the particles having a particle diameter d to be equal to or smaller than a predetermined upper limit particle diameter D 1 (for example, 20 mm) to pass through. d is provided with a sieve (not shown) having a size sieve mesh of which prevents the passage of coarse particles exceeding the upper limit particle diameter D 1.

第1篩分装置11によって除去された粗大粒子は、第1破砕装置12(粗大粒子破砕装置)に供給される。第1破砕装置12は、粗大粒子を、その粒径が上限粒径D以下となるように破砕した上で第1篩分装置11に戻す。このように第1破砕装置12により破砕された粒子を第1篩分装置11に戻すので、破砕が十分でなく粒径が上限粒径Dを超える粗大粒子が残留していたとしても、これらの粗大粒子は第1篩分装置11によって除去され再び第1破砕装置12に導入されて破砕されることになる。なお、要処分廃棄物中に多少の粗大粒子が混在していても問題がない場合は、第1破砕装置12で破砕された粒子を、第1篩分装置11には戻さず、後で説明する第2篩分装置13に供給してもよい。 The coarse particles removed by the first sieving device 11 are supplied to the first crushing device 12 (coarse particle crushing device). The first crushing device 12, the coarse particles returned to the first sieve 11 in terms of the particle size were crushed such that the upper diameter D 1 follows. Since returning this way the particles crushed by the first crusher 12 to a first sieving device 11, even if the fracture is a particle size not sufficient coarse particles exceeding the upper limit particle diameter D 1 was left, these The coarse particles are removed by the first sieving device 11 and again introduced into the first crushing device 12 to be crushed. If there is no problem even if some coarse particles are mixed in the waste for disposal, the particles crushed by the first crushing device 12 are not returned to the first sieving device 11, but will be described later. You may supply to the 2nd sieving apparatus 13 to do.

第1破砕装置12としては、例えばローラミル等を用いることができる。ローラミルは、図示していないが、粗大粒子を、回転するローラと静止している壁面ないしは底面との間にかみ込ませて破砕ないしは粉砕する型式の破砕機であり、例えばローラの種類、ローラの位置、ローラの回転数等を変えることにより、容易に破砕後の被破砕物の寸法ないしは粒度を調節することができる。   As the 1st crushing apparatus 12, a roller mill etc. can be used, for example. Although not shown, the roller mill is a type of crushing machine that crushes or crushes coarse particles between a rotating roller and a stationary wall surface or bottom surface. By changing the position, the number of rotations of the rollers, etc., the size or particle size of the object to be crushed can be easily adjusted.

第1篩分装置11を通過した粒径が上限粒径D以下の要処分廃棄物4の粒子は、第2篩分装置13に供給される。第2篩分装置13は、粒径dが上限粒径D以下である要処分廃棄物4の粒子を、粒径dが所定の第1基準粒径D(例えば10mm)を超える大径粒子と、粒径が第1基準粒径D以下である中径粒子とに分離するためのものであり、粒径dが第1基準粒径D以下の粒子を通過させる一方、粒径dが第1基準粒径Dを超える粒子の通過を阻止する大きさの篩目をもつ篩(図示せず)を備えている。 Particles of the first sieving device 11 particle size which passed through the upper limit particle diameter D 1 less essential disposal waste 4 is supplied to a second sieve 13. The second sieving device 13, large-diameter particle size d is a principal disposal particles of waste 4 with no more than the upper diameter D 1, more than the particle size d is a predetermined first reference diameter D 2 (e.g., 10 mm) and particle, the particle diameter is used for separating into a medium-diameter particles is first less than the reference diameter D 2, while the particle diameter d is passing the first reference diameter D 2 smaller particles, the particle size d is provided with a sieve (not shown) having a sieve size that prevents the passage of particles greater than a first reference diameter D 2.

ここで、第1基準粒径Dは、大径粒子の総体積(又は総質量)が大径粒子及び中径粒子の総体積(又は総質量)の60〜80%の範囲内の値、好ましくは65〜75%範囲内の値、最も好ましくは70%付近(例えば70%±2%)の値となるように設定される。第1基準粒径Dをこのような値に設定する根拠は、後で詳しく説明する。なお、このような第1基準粒径Dは、第2篩分装置13に供給される要処分廃棄物4の一部を取出し、その粒度分布を一般に知られている普通の粒度分布測定装置、例えば多段の篩を備えた測定装置で容易に測定することができる。 Here, the first reference diameter D 2, the values in the 60-80% range of the total volume of the total volume of large particles (or the total mass) large particles and the medium-diameter particles (or the total mass), The value is preferably set to a value in the range of 65 to 75%, and most preferably in the vicinity of 70% (for example, 70% ± 2%). Rationale for setting a first reference diameter D 2 to such values will be described later in detail. Such a first reference diameter D 2 retrieves a portion of the main disposal waste 4 to be supplied to the second sieve 13, ordinary particle size distribution measuring apparatus known that particle size distribution in general For example, it can be easily measured with a measuring device equipped with a multistage sieve.

第2篩分装置13の篩目を通過した要処分廃棄物4の中径粒子は、第2破砕装置14に供給される。第2破砕装置14では、中径粒子を、第1基準粒径Dより小さい所定の第2基準粒径D以下(例えば2〜3mm以下)の粒径をもつ小径粒子となるように破砕する。ここで、第2基準粒径Dは、大径粒子の平均粒径Da(図7参照)の5分の1以下の値又は第1基準粒径Dの5分の1以下の値に設定される。第2基準粒径Dをこのような値に設定する根拠は、後で詳しく説明する。 The medium-sized particles of the disposal waste 4 that has passed through the sieve of the second sieving device 13 are supplied to the second crushing device 14. In the second crushing device 14, the medium-sized particles are crushed so as to be small-sized particles having a predetermined second reference particle size D 3 smaller than the first reference particle size D 2 (for example, 2 to 3 mm or less). To do. Here, the second reference diameter D 3 is the value of 1 or less or a value of 1 or less in 5 minutes of the first reference diameter D 2 of the 5 minutes the mean particle diameter Da of the large particles (see FIG. 7) Is set. Basis for setting the second reference diameter D 3 to such values will be described later in detail.

第2破砕装置14としては、例えばロッドミルブレーカ等を用いることができる。ロッドミルブレーカは、ドラムの中に破砕具として複数(例えば、10本)のスチールロッドを配置した破砕機であり、ドラムの回転によってスチールロッドが互いに平行に転動して線接触し、その衝撃によりロッド間に存在する要処分廃棄物4の粗大粒子を破砕する。なお、粒度の調整は、例えばスチールロッドの種類、スチールロッドの配設位置、スチールロッドの回転数等を適宜に調節することにより、容易に行うことができる。   As the 2nd crushing apparatus 14, a rod mill breaker etc. can be used, for example. A rod mill breaker is a crusher in which a plurality of (for example, 10) steel rods are arranged as a crushing tool in a drum, and the steel rods roll in parallel with each other due to the rotation of the drum. The coarse particles of the disposal waste 4 existing between the rods are crushed. The particle size can be easily adjusted by appropriately adjusting, for example, the type of steel rod, the position of the steel rod, the number of rotations of the steel rod, and the like.

第2篩分装置13によって分離された粒径dが1基準粒径Dを超える大径粒子と、第2破砕装置14によって生成された粒径が第2基準粒径D以下の小径粒子は、混合装置15に供給される。そして、混合装置15は、大径粒子と小径粒子とを混合して混合粒子、すなわち埋立用廃棄物を生成する。後で詳しく説明するように、このような混合粒子で構成される要処分廃棄物4の密度は、第1篩分装置11に供給される処理前の要処分廃棄物4の密度(例えば1.2g/cm)、あるいは大径粒子のみで構成された要処分廃棄物4の密度(例えば1.2g/cm)、又は、小径粒子のみで構成された要処分廃棄物4の密度(例えば1.2g/cm)と比べて大幅に(例えば約20%)高められる。 And large particles a particle diameter d which is separated more than 1 standard particle size D 2 by a second sieving device 13, the particle size produced by the second crusher 14 and a second reference diameter D 3 less small particles Is supplied to the mixing device 15. And the mixing apparatus 15 mixes a large diameter particle and a small diameter particle, and produces | generates mixed particle, ie, the waste for a landfill. As will be described in detail later, the density of the disposal waste 4 composed of such mixed particles is equal to the density of the disposal waste 4 before processing supplied to the first sieving apparatus 11 (for example, 1.. 2 g / cm 3 ), or the density of the waste disposal waste 4 composed only of large-diameter particles (for example, 1.2 g / cm 3 ), or the density of the waste disposal waste 4 composed only of small-diameter particles (for example, 1.2 g / cm 3 ), which is a significant increase (eg about 20%).

以下、第1基準粒径Dを、大径粒子の総体積(又は総質量)が大径粒子及び中径粒子の総体積(又は総質量)の60〜80%の範囲内の値、好ましくは65〜75%の範囲内の値、最も好ましくは70%付近(例えば70%±2%)の値となるように設定する根拠、及び、第2基準粒径Dを、大径粒子の平均粒径Daの5分の1以下の値又は第1基準粒径Dの5分の1以下の値に設定する根拠を説明する。 Hereinafter, the first reference diameter D 2, the values in the 60-80% range of the total volume of the total volume of large particles (or the total mass) large particles and the medium-diameter particles (or the total weight), preferably value within the range of 65% to 75%, most preferably basis set to a value of around 70% (e.g. 70% ± 2%), and, a second reference diameter D 3, the large particles to explain the basis for setting the average particle diameter of 1 or less or a value of 1 or less in 5 minutes of the first reference diameter D 2 of the 5 minutes of Da.

図3は、粒子径が一定値dである球形の大径粒子と粒子径が一定値d(≦d)である球形の小径粒子とを混合して得られた混合粒子における、充填密度Pと、全粒子に対する大径粒子の体積又は質量の割合ω(以下「混合割合ω」という。)との関係の一例を、両粒子の粒子径比R(d/d≧1)をパラメータとしてあらわしたグラフである。なお、ここで、「充填密度P」は、所定の体積Vを有する空間に多数の粒子の集合物を充填した場合において、空間体積Vに対して全粒子が占める体積の割合、すなわち集合物中の空隙率をεとすれば(1−ε)であらわされる0以上で1以下の値であり、無次元量である。 3, in the mixed particles large particles and the particle diameter of the spherical particle diameter is a constant value d 1 is obtained by mixing a small diameter spherical particles is a constant value d 2 (≦ d 1), filling An example of the relationship between the density P and the volume or mass ratio ω (hereinafter referred to as “mixing ratio ω”) of the large-sized particles with respect to all the particles is a particle diameter ratio R (d 1 / d 2 ≧ 1) of both particles. Is a graph that represents as a parameter. Here, the “packing density P” is the ratio of the volume occupied by all particles to the space volume V when a space having a predetermined volume V is filled with a large number of particles, that is, in the aggregate. Is a value of 0 or more and 1 or less expressed by (1-ε), and is a dimensionless amount.

図3に示すように、充填密度Pは、粒子径比Rにほとんど関係なく、混合割合ωが0.7付近にあるときに最大(ピーク)となっている。また、粒子径比Rが大きくなればなるほど、充填密度Pの最大値(ピーク値)は大きくなっている。したがって、粒子径が異なる2種類の粒子を混合する場合は、混合割合ωを、0.7を中心とする一定の範囲内に設定する一方、粒子径比Rをできるだけ大きくすれば、充填密度Pを可及的に高めることができる。なお、混合割合ωが0又は1の場合(粒子径比Rは不問)、又は粒子径比Rが1の場合(混合割合ωは不問)、すなわち全粒子の粒子径が均一である場合の充填密度Pは最小値であり、図3に示す例ではおおむね0.58である。   As shown in FIG. 3, the packing density P has a maximum (peak) when the mixing ratio ω is in the vicinity of 0.7 regardless of the particle diameter ratio R. Further, as the particle diameter ratio R increases, the maximum value (peak value) of the packing density P increases. Therefore, when mixing two types of particles having different particle diameters, the mixing ratio ω is set within a certain range centered on 0.7, while the packing density P can be increased by increasing the particle diameter ratio R as much as possible. Can be increased as much as possible. When the mixing ratio ω is 0 or 1 (the particle diameter ratio R is not required), or when the particle diameter ratio R is 1 (the mixing ratio ω is not required), that is, when the particle diameter of all particles is uniform. The density P is the minimum value and is approximately 0.58 in the example shown in FIG.

図4は、充填密度Pの最大値(ピーク値)と粒径比Rの関係を示すグラフである。前記のとおり、粒子径比Rが大きくなればなるほど充填密度Pの最大値(ピーク値)は大きくなるが、図4から明らかなとおり、粒子径比Rが5を超えると、充填密度Pの増加率は著しく鈍化する。すなわち、粒子径比Rを、5を超えて過度に大きくしても、粒子径比Rが5の状態と比べて、充填密度Pをさほど高めることはできない。   FIG. 4 is a graph showing the relationship between the maximum value (peak value) of the packing density P and the particle size ratio R. As described above, the maximum value (peak value) of the packing density P increases as the particle size ratio R increases. As is apparent from FIG. 4, when the particle size ratio R exceeds 5, the packing density P increases. The rate slows down significantly. That is, even if the particle size ratio R is excessively increased beyond 5, the packing density P cannot be increased so much as compared with the state where the particle size ratio R is 5.

したがって、粒子径が一定値である球形の大径粒子と粒子径が一定値である球形の小径粒子とを混合して得られる混合粒子の場合は、大径粒子の総体積(又は総質量)が大径粒子及び小径粒子の総体積(又は総質量)の60〜80%の範囲内、好ましくは65〜75%の範囲内、最も好ましくは70%付近(例えば70%±2%)であり、両粒子の粒子径比が5以上であれば、混合粒子の充填密度Pがほぼ最大限に高められていることになる。以下、このように充填密度Pが高められる粒子の混合状態ないしは粒度分布状態を「高密度充填状態」という。   Therefore, in the case of mixed particles obtained by mixing spherical large-diameter particles having a constant particle diameter and spherical small-diameter particles having a constant particle diameter, the total volume (or total mass) of the large-diameter particles Is in the range of 60 to 80%, preferably in the range of 65 to 75%, most preferably in the vicinity of 70% (for example 70% ± 2%) of the total volume (or total mass) of the large and small particles. If the particle size ratio of both particles is 5 or more, the packing density P of the mixed particles is increased to the maximum. Hereinafter, the mixed state or particle size distribution state of the particles in which the packing density P is increased in this way is referred to as a “high density packed state”.

このような事実に鑑みれば、本発明に係る廃棄物の処分方法において、要処分廃棄物4の粒度分布を高密度充填状態に近似した状態に調整すれば、要処分廃棄物4の充填密度、すなわち要処分廃棄物4の密度を可及的に高めることができるものと考察される。そこで、本発明の実施形態に係る廃棄物の処分方法ないしは処理方法又は処理装置においては、要処分廃棄物4に対して、複数の篩分処理と複数の破砕処理とを施し、要処分廃棄物4の粒度分布が高密度充填状態に近似した状態となるようにしている。   In view of such facts, in the waste disposal method according to the present invention, if the particle size distribution of the waste to be disposed 4 is adjusted to a state close to a high density filling state, the packing density of the waste to be disposed 4 That is, it is considered that the density of the disposal waste 4 can be increased as much as possible. Therefore, in the waste disposal method or processing method or processing apparatus according to the embodiment of the present invention, the waste to be disposed 4 is subjected to a plurality of sieving treatments and a plurality of crushing treatments, and the waste to be disposed of. The particle size distribution of No. 4 is made to be in a state close to a high-density filling state.

以下、図5〜図9を参照しつつ、要処分廃棄物4の粒度分布を高密度充填状態に近似した状態に調整する手法の一例を具体的に説明する。
図5は、廃棄物処理装置Sに供給される要処分廃棄物4の粒度分布の一例を示している。図5から明らかなとおり、この要処分廃棄物4は、粒径が上限粒径D(例えば20mm)を超える粗大粒子を含んでいる。そこで、第1篩分装置11により上限粒径Dを超える粗大粒子を除去する。その結果、要処分廃棄物4の粒度分布は、図6に示す状態となる。なお、粗大粒子は第1破砕装置12により破砕されて第1篩分装置11に戻されるので、図6に示すグラフでは、僅かではあるがその分だけ粒径が上限粒径D以下の粒子の量が増加している。
Hereinafter, an example of a method for adjusting the particle size distribution of the waste requiring disposal 4 to a state close to a high-density filling state will be specifically described with reference to FIGS.
FIG. 5 shows an example of the particle size distribution of the waste requiring disposal 4 supplied to the waste treatment apparatus S. As is apparent from FIG. 5, the waste requiring disposal 4 includes coarse particles having a particle size exceeding the upper limit particle size D 1 (for example, 20 mm). Therefore, coarse particles exceeding the upper limit particle diameter D 1 are removed by the first sieving device 11. As a result, the particle size distribution of the waste requiring disposal 4 is in the state shown in FIG. Incidentally, coarse particles so returned to the first sieve device 11 is crushed by the first crusher 12, the graph shown in FIG. 6, only some are but that much particle size upper limit diameter D 1 smaller particles The amount of is increasing.

次に、第2篩分装置13により、粒径が上限粒径D以下の要処分廃棄物4は、粒径dが第1基準粒径Dを超える大径粒子と、粒径が第1基準粒径D以下である中径粒子とに分離される。図7は、このように分離された、粒径がD〜Dの範囲にある大径粒子の粒度分布を示している。また、図8中のグラフG1は、このように分離された、粒径が第1基準粒径D以下である中径粒子の粒度分布を示している。 Next, the second sieving device 13, the upper limit particle diameter D 1 less essential disposal waste 4 particle size, the larger particles having a particle size d exceeds the first reference diameter D 2, the particle size is first 1 is separated into medium-sized particles having a reference particle diameter D of 2 or less. FIG. 7 shows the particle size distribution of the large-sized particles separated in this way and having a particle size in the range of D 1 to D 2 . A graph G1 in FIG. 8, thus isolated, the particle size indicates the particle size distribution of the medium-diameter particles is first less than the reference diameter D 2.

この後、中径粒子は、第2破砕装置14によって、第2基準粒径D(例えば2〜3mm)以下の粒径をもつ小径粒子となるように破砕される。図8中のグラフG2は、このように生成された、粒径が第2基準粒径D3以下である中径粒子の粒度分布を示している。そして、混合装置15によって、大径粒子と小径粒子とが混合され、混合粒子(埋立用廃棄物)が生成される。図9は、このような混合粒子の粒度分布を示している。図9から明らかンとおり、混合粒子は、粒径がD〜Dの範囲(例えば10〜20mm)にある大径粒子と、粒径がD3以下(例えば2〜3mm≦)である小径粒子とで構成されている。なお、図9に示す例では、粒子全体の体積(又は質量)に対する大径粒子の体積(又は質量)の割合はおおむね70%である。 Thereafter, the medium-sized particles are crushed by the second crushing device 14 so as to be small-diameter particles having a particle size of the second reference particle size D 3 (for example, 2 to 3 mm) or less. A graph G2 in FIG. 8 shows the particle size distribution of the medium-sized particles generated in this way and having a particle size equal to or smaller than the second reference particle size D3. Then, the mixing device 15 mixes the large diameter particles and the small diameter particles to generate mixed particles (landfill waste). FIG. 9 shows the particle size distribution of such mixed particles. As is clear from FIG. 9, the mixed particles include a large particle having a particle diameter in the range of D 1 to D 2 (for example, 10 to 20 mm) and a small particle having a particle diameter of D3 or less (for example, 2-3 mm ≦). It consists of and. In the example shown in FIG. 9, the ratio of the volume (or mass) of the large-diameter particles to the volume (or mass) of the entire particles is approximately 70%.

図3及び図4を参照しつつ説明した粒子径が一定値である球形の大径粒子と粒子径が一定値である球形の小径粒子とを混合した模型的な混合粒子とは異なり、要処分廃棄物4の混合粒子を構成する大径粒子及び小径粒子は球形ではなく、またこれらの粒径は一定値ではなくある程度の幅をもっている。しかしながら、廃棄物処理装置Sによって生成された要処分廃棄物4の混合粒子は、高密度充填状態にある模型的な混合粒子と近似した粒度分布を有しているので、模型的な混合粒子の場合と近似した態様で、その充填密度ひいては密度が高められているものと考察される。   Unlike model mixed particles in which spherical large-diameter particles having a constant particle diameter and spherical small-diameter particles having a constant particle diameter described with reference to FIGS. 3 and 4 are mixed, disposal is required. The large diameter particles and the small diameter particles constituting the mixed particles of the waste 4 are not spherical, and these particle diameters are not constant values but have a certain width. However, since the mixed particles of the disposal waste 4 generated by the waste treatment apparatus S have a particle size distribution that approximates that of the model mixed particles in a high-density packing state, It is considered that the packing density and thus the density is increased in a manner that approximates the case.

かくして、本発明の実施形態に係る廃棄物処分方法、廃棄物処理方法ないしは廃棄物処理装置Sによれば、廃棄物処分場に廃棄すべき要処分廃棄物4の密度を可及的に高めつつ、該要処分廃棄物4に含まれる物質が廃棄物処分場外に漏出しないようにして、該要処分廃棄物4を処分ないしは廃棄することができる。   Thus, according to the waste disposal method, the waste disposal method, or the waste disposal apparatus S according to the embodiment of the present invention, while increasing the density of the disposal waste 4 to be discarded in the waste disposal site as much as possible. In addition, the required waste 4 can be disposed or discarded in such a manner that the substances contained in the required waste 4 do not leak out of the waste disposal site.

S 廃棄物処理装置、1 廃棄物処分地、2 廃棄物処分場、2a 廃棄物処分場の底面、2b 廃棄物処分場の側面、3 内張り層、4 要処分廃棄物、5 被覆層、11 第1篩分装置、12 第1破砕装置、13 第2篩分装置、14 第2破砕装置、15 混合装置。   S Waste treatment equipment, 1 Waste disposal site, 2 Waste disposal site, 2a Bottom surface of waste disposal site, 2b Side surface of waste disposal site, 3 Liner layer, 4 Disposable waste, 5 Coating layer, 11th 1 sieving device, 12 first crushing device, 13 second sieving device, 14 second crushing device, 15 mixing device.

Claims (10)

廃棄物処分場に廃棄すべき廃棄物を、前記廃棄物に含まれる物質が廃棄物処分場外に漏出しないように被覆して廃棄するようにした廃棄物の処分方法であって、
凹状の廃棄物処分場の内周面を、前記廃棄物に含まれる物質を通さない内張り材料で内張りする内張り工程と、
前記廃棄物を、篩分により、第1基準粒径より大きい粒径をもつ大径粒子と前記第1基準粒径以下の粒径をもつ中径粒子とに分離する篩分工程と、
前記中径粒子を、前記第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する破砕工程と、
前記大径粒子と前記小径粒子とを混合して混合粒子を生成する混合工程と、
前記混合粒子を、前記内張り材料で内張りされた前記廃棄物処分場内に充填する充填工程と、
前記廃棄物処分場内に充填された前記混合粒子の上面を、前記廃棄物に含まれる物質を通さない被覆材料で被覆する被覆工程とを有し、
前記第1基準粒径を、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80パーセントの範囲内となるように設定し、
前記第2基準粒径を、前記大径粒子の平均粒径の5分の1以下又は前記第1基準粒径の5分の1以下の値に設定することを特徴とする廃棄物の処分方法。
A waste disposal method in which waste to be disposed of in a waste disposal site is covered and disposed so that a substance contained in the waste does not leak out of the waste disposal site,
A lining process in which the inner peripheral surface of the concave waste disposal site is lined with a lining material that does not pass the substances contained in the waste;
Separating the waste into large particles having a particle size larger than the first reference particle size and medium particle particles having a particle size of the first reference particle size or less by sieving;
A crushing step of crushing the medium-sized particles so as to become small-diameter particles having a particle size equal to or smaller than a second reference particle size smaller than the first reference particle size;
A mixing step of mixing the large particles and the small particles to produce mixed particles;
A filling step of filling the mixed particles into the waste disposal site lined with the lining material;
A coating step of coating an upper surface of the mixed particles filled in the waste disposal site with a coating material that does not pass a substance contained in the waste;
The first reference particle size is set such that the total volume of the large particles is in the range of 60 to 80 percent of the total volume of the large particles and the medium particles;
The second reference particle size is set to a value equal to or less than one-fifth of the average particle size of the large-sized particles or one-fifth or less of the first reference particle size. .
前記第1基準粒径を、大径粒子の総体積が大径粒子及び中径粒子の総体積の65〜75パーセントの範囲内となるように設定することを特徴とする、請求項1に記載の廃棄物の処分方法。   The first reference particle size is set so that the total volume of large particles falls within a range of 65 to 75 percent of the total volume of large particles and medium particles. Waste disposal methods. 前記篩分工程を実施する前に、前記廃棄物から、篩分により、前記第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離工程と、
前記粗大粒子を前記上限粒径以下の粒径をもつように破砕した上で前記廃棄物に戻す粗大粒子破砕工程とを有することを特徴とする、請求項1又は2に記載の廃棄物の処分方法。
Before carrying out the sieving step, a coarse particle separation step of separating coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size from the waste by sieving;
The disposal of waste according to claim 1 or 2, further comprising a coarse particle crushing step of crushing the coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and returning the coarse particles to the waste. Method.
前記内張り材料がコンクリート、アスファルト又は合成樹脂シートであり、前記被覆材料がコンクリート又はアスファルトであることを特徴とする、請求項1〜3のいずれか1つに記載の廃棄物の処分方法。   The waste disposal method according to any one of claims 1 to 3, wherein the lining material is concrete, asphalt, or a synthetic resin sheet, and the covering material is concrete or asphalt. 廃棄物処分場に廃棄すべき廃棄物の密度を高めるための廃棄物の処理方法であって、
前記廃棄物を、篩分により、第1基準粒径より大きい粒径をもつ大径粒子と前記第1基準粒径以下の粒径をもつ中径粒子とに分離する篩分工程と、
前記中径粒子を、前記第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する破砕工程と、
前記大径粒子と前記小径粒子とを混合して混合粒子を生成する混合工程とを有し、
前記第1基準粒径を、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80パーセントの範囲内となるように設定し、
前記第2基準粒径を、前記大径粒子の平均粒径の5分の1以下又は前記第1基準粒径の5分の1以下の値に設定することを特徴とする廃棄物の処理方法。
A waste disposal method for increasing the density of waste to be disposed of in a waste disposal site,
Separating the waste into large particles having a particle size larger than the first reference particle size and medium particle particles having a particle size of the first reference particle size or less by sieving;
A crushing step of crushing the medium-sized particles so as to become small-diameter particles having a particle size equal to or smaller than a second reference particle size smaller than the first reference particle size;
A mixing step of mixing the large particles and the small particles to produce mixed particles;
The first reference particle size is set such that the total volume of the large particles is in the range of 60 to 80 percent of the total volume of the large particles and the medium particles;
The second reference particle size is set to a value equal to or less than one fifth of the average particle size of the large particle or one fifth or less of the first reference particle size. .
前記第1基準粒径を、大径粒子の総体積が大径粒子及び中径粒子の総体積の65〜75パーセントの範囲内となるように設定することを特徴とする、請求項5に記載の廃棄物の処理方法。   The first reference particle size is set such that the total volume of large particles is in a range of 65 to 75 percent of the total volume of large particles and medium particles. Waste disposal methods. 前記篩分工程を実施する前に、前記廃棄物から、篩分により、前記第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離工程と、
前記粗大粒子を前記上限粒径以下の粒径をもつように破砕した上で前記廃棄物に戻す粗大粒子破砕工程とを有することを特徴とする、請求項5又は6に記載の廃棄物の処理方法。
Before carrying out the sieving step, a coarse particle separation step of separating coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size from the waste by sieving;
The waste treatment according to claim 5 or 6, further comprising a coarse particle crushing step of crushing the coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and returning the coarse particles to the waste. Method.
廃棄物処分場に廃棄すべき廃棄物の密度を高めるための廃棄物処理装置であって、
前記廃棄物を、第1基準粒径より大きい粒径をもつ大径粒子と前記第1基準粒径以下の粒径をもつ中径粒子とに分離する篩分装置と、
前記中径粒子を、前記第1基準粒径より小さい第2基準粒径以下の粒径をもつ小径粒子となるように破砕する破砕装置と、
前記大径粒子と前記小径粒子とを混合して混合粒子を生成する混合装置とを有し、
前記第1基準粒径は、大径粒子の総体積が大径粒子及び中径粒子の総体積の60〜80パーセントの範囲内となるように設定され、
前記第2基準粒径が、前記大径粒子の平均粒径の5分の1以下又は前記第1基準粒径の5分の1以下の値に設定されることを特徴とする廃棄物の処理装置。
A waste treatment apparatus for increasing the density of waste to be disposed of in a waste disposal site,
A sieving device for separating the waste into large particles having a particle size larger than a first reference particle size and medium particles having a particle size equal to or smaller than the first reference particle size;
A crushing device for crushing the medium-sized particles so as to be small-sized particles having a particle size equal to or smaller than a second reference particle size smaller than the first reference particle size;
A mixing device for mixing the large diameter particles and the small diameter particles to generate mixed particles;
The first reference particle size is set such that the total volume of large particles is in the range of 60 to 80 percent of the total volume of large particles and medium particles,
The second reference particle size is set to a value of one fifth or less of the average particle size of the large particle or one fifth or less of the first reference particle size. apparatus.
前記第1基準粒径は、大径粒子の総体積が大径粒子及び中径粒子の総体積の65〜75パーセントの範囲内となるように設定されることを特徴とする、請求項に記載の廃棄物の処理装置。 The first reference diameter is characterized in that the total volume of the large particles is set to be within a range of 65 to 75 percent of the total volume of the large particles and the medium-diameter particles, to claim 8 The waste disposal apparatus described. 前記篩分装置に導入される前記廃棄物から、篩分により、前記第1基準粒径より大きい上限粒径を超える粒径をもつ粗大粒子を分離する粗大粒子分離装置と、
前記粗大粒子を前記上限粒径以下の粒径をもつように破砕した上で前記粗大粒子分離装置に供給する粗大粒子破砕装置とを有することを特徴とする、請求項又はに記載の廃棄物の処理装置。
A coarse particle separation device for separating coarse particles having a particle size exceeding the upper limit particle size larger than the first reference particle size by sieving from the waste introduced into the sieving device;
The waste according to claim 8 or 9 , further comprising a coarse particle crushing device that crushes the coarse particles so as to have a particle size equal to or smaller than the upper limit particle size and supplies the coarse particles to the coarse particle separation device. Material processing equipment.
JP2014026914A 2014-02-14 2014-02-14 Waste disposal method, treatment method and treatment apparatus Active JP5602321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014026914A JP5602321B1 (en) 2014-02-14 2014-02-14 Waste disposal method, treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014026914A JP5602321B1 (en) 2014-02-14 2014-02-14 Waste disposal method, treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP5602321B1 true JP5602321B1 (en) 2014-10-08
JP2015150508A JP2015150508A (en) 2015-08-24

Family

ID=51840402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014026914A Active JP5602321B1 (en) 2014-02-14 2014-02-14 Waste disposal method, treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5602321B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922661A (en) * 1982-07-09 1984-02-04 グレ−タ−・マンチエスタ−・カウンシル Method of disposing garbage and its plant
US4834300A (en) * 1988-03-07 1989-05-30 Wojciechowski Christopher R Method and apparatus for solid waste disposal
JPH09506547A (en) * 1993-12-17 1997-06-30 バイオセーフ・インコーポレーテッド Landfill reuse
JP2003205275A (en) * 2002-01-16 2003-07-22 Komatsu Ltd Regeneration method of waste disposal site and regeneration system therefor
JP2003211114A (en) * 2002-01-18 2003-07-29 Jfe Engineering Kk Waste disposal site and construction method thereof
JP2003236507A (en) * 2001-12-10 2003-08-26 Kimura Kanko Kk Backfilling soil and manufacturing method thereof
JP2003266054A (en) * 2002-03-18 2003-09-24 Kumagai Gumi Co Ltd Method for treating lead bullet contaminated soil
JP2004243184A (en) * 2003-02-12 2004-09-02 Kochi Suinetsu Kagaku Gijutsu Kenkyusho:Kk Hydrothermally solidified product containing inorganic wastes as raw material and method and apparatus for manufacturing the same
JP2005131582A (en) * 2003-10-31 2005-05-26 Hitachi Constr Mach Co Ltd Volume reduction processing system and volume reduction processing method of waste disposal place
JP2005248493A (en) * 2004-03-02 2005-09-15 Ishizaka Sangyo Kk Manufacturing method and device for manufacturing back-filling material from soil-sand junk mixture
JP2006015309A (en) * 2004-07-05 2006-01-19 Earth Create Office Co Ltd Volume reduction method for landfill waste

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922661A (en) * 1982-07-09 1984-02-04 グレ−タ−・マンチエスタ−・カウンシル Method of disposing garbage and its plant
US4834300A (en) * 1988-03-07 1989-05-30 Wojciechowski Christopher R Method and apparatus for solid waste disposal
JPH09506547A (en) * 1993-12-17 1997-06-30 バイオセーフ・インコーポレーテッド Landfill reuse
JP2003236507A (en) * 2001-12-10 2003-08-26 Kimura Kanko Kk Backfilling soil and manufacturing method thereof
JP2003205275A (en) * 2002-01-16 2003-07-22 Komatsu Ltd Regeneration method of waste disposal site and regeneration system therefor
JP2003211114A (en) * 2002-01-18 2003-07-29 Jfe Engineering Kk Waste disposal site and construction method thereof
JP2003266054A (en) * 2002-03-18 2003-09-24 Kumagai Gumi Co Ltd Method for treating lead bullet contaminated soil
JP2004243184A (en) * 2003-02-12 2004-09-02 Kochi Suinetsu Kagaku Gijutsu Kenkyusho:Kk Hydrothermally solidified product containing inorganic wastes as raw material and method and apparatus for manufacturing the same
JP2005131582A (en) * 2003-10-31 2005-05-26 Hitachi Constr Mach Co Ltd Volume reduction processing system and volume reduction processing method of waste disposal place
JP2005248493A (en) * 2004-03-02 2005-09-15 Ishizaka Sangyo Kk Manufacturing method and device for manufacturing back-filling material from soil-sand junk mixture
JP2006015309A (en) * 2004-07-05 2006-01-19 Earth Create Office Co Ltd Volume reduction method for landfill waste

Also Published As

Publication number Publication date
JP2015150508A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
CN206810435U (en) Civil engineering work waste treatment device
WO2019016859A1 (en) Improved soil manufacturing/management system using rotary type crushing/mixing device
CN206689196U (en) A kind of heavy-metal contaminated soil repair system
JP4157505B2 (en) Residual bone ash treatment system and residual bone ash treatment method
JP2008173570A (en) Method for treating particle waste
JP2007301531A (en) Asbestos crushing system and asbestos crushing method
JP5602321B1 (en) Waste disposal method, treatment method and treatment apparatus
US5588947A (en) Apparatus and method for treating hazardous waste material
CN203886924U (en) Vertical non-clogging breaking and mixing restoration equipment for polluted soil
CN110937835A (en) Method for resource utilization of waste incineration slag
JP2001096264A (en) Equipment for crushing and classifying concrete
JP6513742B2 (en) Surface coating material for radioactive contaminants and surface coating structure for radioactive contaminants
US20160376195A1 (en) Method and facility for treating sludge, in particular harbour sludge
JP6663296B2 (en) Rocks insolubilization system, tunnel excavation system and tunnel construction method
JP6261277B2 (en) Incineration residue disposal method
US20200038924A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
KR102408663B1 (en) Screen apparatus
JP3133689B2 (en) Pretreatment method for landfill objects
JP6655140B1 (en) Material for degassing equipment at waste disposal site and construction method of degassing equipment
JP2009150069A (en) Mixing apparatus
JP2004141756A (en) Building breaking-up and recycling system
EP2302642A1 (en) Process for treating solid radioactive material
KR102451305B1 (en) Roll crusher
KR102403663B1 (en) building material manufacturing apparatus for recycling glass of waste display device
JPS6349264A (en) Gravel regenerator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250