JP5601980B2 - Vehicle object determination device - Google Patents

Vehicle object determination device Download PDF

Info

Publication number
JP5601980B2
JP5601980B2 JP2010253874A JP2010253874A JP5601980B2 JP 5601980 B2 JP5601980 B2 JP 5601980B2 JP 2010253874 A JP2010253874 A JP 2010253874A JP 2010253874 A JP2010253874 A JP 2010253874A JP 5601980 B2 JP5601980 B2 JP 5601980B2
Authority
JP
Japan
Prior art keywords
roadside
objects
vehicle
continuous
reference interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010253874A
Other languages
Japanese (ja)
Other versions
JP2012104027A (en
Inventor
由幸 黒羽
英彰 楢
愛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010253874A priority Critical patent/JP5601980B2/en
Publication of JP2012104027A publication Critical patent/JP2012104027A/en
Application granted granted Critical
Publication of JP5601980B2 publication Critical patent/JP5601980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、連続路側物を検出する車両用物体判定装置に関するものである。   The present invention relates to a vehicle object determination device that detects a continuous roadside object.

特許文献1は、連続路側物を検出する車両用進行軌跡予測装置を開示する。該進行軌跡予測装置によれば、自車前方へレーザ光を放射して、その反射光から自車前方の物体を検出するとともに、検出した物体の中から連続路側物を抽出している。その連続路側物抽出方法では、検出した物体を自車に近い順に番号付けするとともに、自車に最も近い停止物を起点ターゲットにし、起点ターゲットに対して、左右位置が最も近い停止物を第2ターゲットとし、起点ターゲットから第2ターゲットへの探索用ベクトルを設定する。   Patent Document 1 discloses a vehicular travel locus prediction device that detects a continuous roadside object. According to the traveling locus predicting apparatus, laser light is emitted forward of the host vehicle, an object in front of the host vehicle is detected from the reflected light, and a continuous roadside object is extracted from the detected object. In the continuous roadside object extraction method, the detected objects are numbered in order from the closest to the host vehicle, the stop closest to the host vehicle is set as the start target, and the stop closest to the left and right positions with respect to the start target is the second. A search vector from the starting target to the second target is set as a target.

次に、第2ターゲットを起点とする探索用ベクトルの先端から、所定範囲内にある停止物を探索して、見つかれば第3ターゲットにするとともに、探索用ベクトルを第2ターゲットから第3ターゲットへのベクトルに更新し、このような処理を、探索用ベクトルの先端側に対応の停止物が見つからなくなるまで、順次繰り返して、見つからなくなるまで辿ってきた各ターゲットを連続路側物と認定している。   Next, from the front end of the search vector starting from the second target, a stop within the predetermined range is searched, and if found, the third target is set, and the search vector is changed from the second target to the third target. Such a process is repeated until the corresponding stop object is not found on the front end side of the search vector, and each target that has been traced until it is not found is recognized as a continuous road side object.

特許文献2は将来の走行軌跡を算出する車両用走行軌跡検出装置を開示する。該車両用走行軌跡検出装置では、車速とヨーレートとに基づき旋回半径を算出し、該旋回半径から将来の旋回走行軌跡を予測している。   Patent Document 2 discloses a vehicle travel locus detection apparatus that calculates a future travel locus. The vehicle travel locus detection apparatus calculates a turning radius based on the vehicle speed and the yaw rate, and predicts a future turning travel locus from the turning radius.

特開2002−131432号公報JP 2002-131432 A 特開2006−85524号公報JP 2006-85524 A

特許文献1の連続路側物抽出方法では、自車が直進しているときは問題ないが、自車が例えば右旋回しているとき、走行路の右側の路側物の探索用ベクトルが、走行路を横切って左側の路側物につながり、走行路の左側の路側物を右側の路側物と誤認識してしまうことが起こり易い。   In the continuous roadside object extraction method of Patent Document 1, there is no problem when the host vehicle is traveling straight, but when the host vehicle is turning right, for example, the search vector for the roadside object on the right side of the path is It is easy to happen that the roadside object on the left side of the traveling road is mistakenly recognized as the right roadside object.

本発明の目的は、自車が旋回するときにも進行路側の連続路側物を的確に検出することができる車両用物体判定装置を提供することである。   An object of the present invention is to provide a vehicle object determination device capable of accurately detecting a continuous roadside object on the traveling road side even when the host vehicle turns.

第1発明の物体判定装置は、車両の旋回角を検出する旋回角センサと、車速を検出する車速センサと、旋回角及び車速に基づき車両の旋回進行軌跡を予測する進行軌跡予測部と、車両の前方に存在する物体を検出する物体検出部と、前記進行軌跡予測部により予測された前記旋回進行軌跡に対して少なくとも左右一方の側に路側物判定エリアを設定して、同一の路側物判定エリアに存在する物体のみを、連続路側物の判定対象として、前記物体検出部が検出した物体が連続路側物であるか否かを判定する物体判定部とを備え、前記物体判定部は、前記判定エリアに存在する複数の物体を路側物として認識し、隣り同士である路側物間の距離の平均値を基準間隔として算出するに当たり、隣り同士である路側物間の距離の内の最小値を抽出し、隣り同士である前記路側物間の距離が、前記最小値のN(Nは2以上の自然数)倍相当となっているものについては該距離を1/Nとした値を補正距離としてから、前記平均値を基準間隔として算出する基準間隔算出処理と、前記判定エリアに存在する2つの路側物に対し、前記基準間隔に対するそれら2つの路側物の間の距離の差が前記基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定する連続路側物判定処理とを実施することを特徴とする。 An object determination apparatus according to a first aspect of the present invention includes a turning angle sensor that detects a turning angle of a vehicle, a vehicle speed sensor that detects a vehicle speed, a travel locus prediction unit that predicts a turning progress locus of the vehicle based on the turning angle and the vehicle speed, An object detection unit for detecting an object existing in front of the vehicle and a roadside object determination area on at least one of the left and right sides with respect to the turning progress trajectory predicted by the travel trajectory prediction unit. An object determination unit that determines whether or not the object detected by the object detection unit is a continuous roadside object, with only an object existing in the area as a determination target of the continuous roadside object, In recognizing a plurality of objects existing in the determination area as roadside objects and calculating the average value of the distances between adjacent roadside objects as a reference interval, the minimum value of the distances between adjacent roadside objects is calculated. Extract and When the distance between the roadside objects that are adjacent to each other is equivalent to N (N is a natural number of 2 or more) times the minimum value, the distance is set to 1 / N as a correction distance, A reference interval calculation process for calculating an average value as a reference interval, and for two roadside objects existing in the determination area, a difference in distance between the two roadside objects relative to the reference interval is a predetermined ratio of the reference interval. When the difference is within the range, the two roadside objects are subjected to continuous roadside object determination processing for determining that the two roadside objects are continuous roadside objects.

第1発明によれば、進行軌跡予測部により予測された車両の旋回進行軌跡に対して少なくとも左右一方の側に路側物判定エリアを設定して、検出物体が連続路側物であるか否かの判定では、同一の路側物判定エリアに存在する物体のみを判定対象とする。結果、自車の旋回時に走行路の左右反対側の物体同士を連続路側物として検出することを防止することができる。   According to the first aspect of the present invention, the roadside object determination area is set on at least one of the left and right sides with respect to the turning progress track of the vehicle predicted by the travel path prediction unit, and whether or not the detected object is a continuous roadside object is determined. In the determination, only objects existing in the same roadside object determination area are determined. As a result, it is possible to prevent the objects on the opposite sides of the traveling path from being detected as continuous road objects when the vehicle is turning.

発明によれば、連続路側物の平均間隔を基準間隔として算出し、算出後に検出される物体については、2つの検出物体間の距離を該基準間隔と対比して、該2つの検出物体が連続路側物であるか否かを判定するので、すなわち、2つの検出物体だけでもそれらが連続路側物であるか否かを基準間隔に基づき判定することができるので、判定を迅速化することができる。 According to the first invention, the average interval between the continuous roadside objects is calculated as the reference interval, and for the object detected after the calculation, the distance between the two detected objects is compared with the reference interval, and the two detected objects are calculated. Since it is possible to determine whether or not they are continuous roadside objects based on the reference interval, it is possible to speed up the determination. Can do.

物体の検出においては、一部の連続路側物が破損している等の原因により、連続的に並ぶ連続路側物の列の一部の連続路側物が検出不能となることがある。第発明によれば、路側物間の距離の最小値を検出して、順序付けの順番で隣り同士の路側物間の距離が最小値のN倍相当のものに対しては、該距離をNで除した値に補正した上で、距離の平均値を求めるので、一部の連続路側物が検出できなかったときにも、基準間隔を適切に算出することができる。 In detecting an object, some continuous roadside objects in a row of continuously arranged roadside objects may become undetectable due to reasons such as damage to some continuous roadside objects. According to the first invention, the minimum value of the distance between the roadside objects is detected, and the distance between the adjacent roadside objects in the order of ordering is N times the minimum value. Since the average value of the distances is obtained after correction to the value divided by, the reference interval can be appropriately calculated even when some continuous roadside objects cannot be detected.

第2発明の物体判定装置は、車両の旋回角を検出する旋回角センサと、車速を検出する車速センサと、旋回角及び車速に基づき車両の旋回進行軌跡を予測する進行軌跡予測部と、車両の前方に存在する物体を検出する物体検出部と、前記進行軌跡予測部により予測された前記旋回進行軌跡に対して少なくとも左右一方の側に路側物判定エリアを設定して、同一の路側物判定エリアに存在する物体のみを、連続路側物の判定対象として、前記物体検出部が検出した物体が連続路側物であるか否かを判定する物体判定部とを備え、前記物体判定部は、前記判定エリアに存在する複数の物体を路側物として認識し、隣り同士である路側物間の距離の平均値を基準間隔として算出する基準間隔算出処理と、前記判定エリアに存在する2つの路側物に対し、前記基準間隔に対するそれら2つの路側物の間の距離の差が前記基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定するとともに、2つの路側物に対して、前記基準間隔のN(Nは2以上の自然数)分の1を補正基準間隔とし、前記補正基準間隔に対するそれら2つの路側物の間の距離の差が前記補正基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定する連続路側物判定処理とを実施することを特徴とする。
An object determination apparatus according to a second aspect of the invention includes a turning angle sensor that detects a turning angle of a vehicle, a vehicle speed sensor that detects a vehicle speed, a travel locus prediction unit that predicts a turning progress locus of the vehicle based on the turning angle and the vehicle speed, An object detection unit for detecting an object existing in front of the vehicle and a roadside object determination area on at least one of the left and right sides with respect to the turning progress trajectory predicted by the travel trajectory prediction unit. An object determination unit that determines whether or not the object detected by the object detection unit is a continuous roadside object, with only an object existing in the area as a determination target of the continuous roadside object, A reference interval calculation process for recognizing a plurality of objects existing in the determination area as roadside objects and calculating an average value of distances between adjacent roadside objects as a reference interval, and two roadside objects existing in the determination area versus , When the difference in distance between the two roadside object relative to the reference interval is the difference within a predetermined percentage of the reference interval, with their two roadside objects determined to be continuous roadside object, the two For roadside objects, 1 / N (N is a natural number greater than or equal to 2) of the reference interval is used as a correction reference interval, and the difference in distance between the two roadside objects with respect to the correction reference interval is the correction reference interval. can to be the difference within a predetermined ratio, they are two roadside objects which comprises carrying out the continuous roadside object determination process determines that the continuous roadside object.

物体の検出においては、一部の連続路側物が破損している等の原因により、連続的に並ぶ連続路側物の列の1つ以上の連続路側物が続けて未検出となることが起きる。そのようなときには、2つの路側物が連続路側物であるにもかかわらず、両者の距離は基準間隔のN倍相当になってしまう。また、基準間隔の検出の際に、自車と連続路側物の列との角度関係等によっては、一部の連続路側物が自車側の連続路側物の陰になってしまい、連続路側物の間隔が真の値のN倍相当で算出されてしまうことがある。そのようなときには、連続路側物判定処理では、2つの路側物が、実際の連続路側物列における並び順で隣り同士の路側物であるにもかかわらず、両者の距離は、間違って算出されてしまった基準間隔の1/N相当になってしまう。第発明によると、2つの路側物に対して、それら路側物の間の距離が、N分の1の値に対して所定割合の範囲内の差となっているときには、それら路側物は連続路側物であると判定するので、いずれのときも、連続路側物として正しく判定することができる。 In the detection of an object, one or more continuous roadside objects in a row of continuous roadside objects arranged continuously may be continuously undetected due to a cause such as damage of some continuous roadside objects. In such a case, although the two roadside objects are continuous roadside objects, the distance between them is equivalent to N times the reference interval. In addition, when detecting the reference interval, depending on the angular relationship between the vehicle and the row of continuous roadside objects, some continuous roadside objects may be behind the continuous roadside object on the own vehicle side. May be calculated as N times the true value. In such a case, in the continuous roadside object determination process, although the two roadside objects are adjacent roadside objects in the order of arrangement in the actual continuous roadside object row, the distance between the two is calculated incorrectly. This is equivalent to 1 / N of the reference interval. According to the second invention, for two roadside objects, when the distance between the roadside objects is a difference within a predetermined ratio with respect to a value of 1 / N , the roadside objects are continuous. Since it determines with a roadside thing, in any case, it can determine correctly as a continuous roadside thing.

発明の車両用物体判定装置は、第1又は第2発明の車両用物体判定装置において、前記物体判定部は、前記物体検出部から所定の離散時間ごとに前方物体情報を取得して、前方物体情報の取得ごとに前記連続路側物判定処理を実施し、前記基準間隔に基づき連続路側物と判定される路側物が所定時間以上、出現しないときには、前記基準間隔をリセットすることを特徴とする。 The vehicle object determination device according to a third aspect of the present invention is the vehicle object determination device according to the first or second aspect , wherein the object determination unit obtains front object information from the object detection unit every predetermined discrete time, The continuous roadside object determination process is performed every time the front object information is acquired, and the roadway object determined to be a continuous roadside object based on the reference interval is reset when the roadside object does not appear for a predetermined time or longer. To do.

連続路側物の列には終端があるとともに、連続路側物の間隔は連続路側物の列ごとに異なることがある。基準間隔の条件を満たす路側物が所定時間以上にわたり出現しないときは、該基準間隔の基になった連続路側物の列は終了している可能性が高いとともに、連続路側物の次の列では、該基準間隔とは異なる基準間隔となることがある。第発明によれば、連続路側物の列が終了したと判断されると、該列の基準間隔はリセットされ、次の連続路側物に対しては新たに基準間隔が算出されるので、基準間隔が各連続路側物列ごとに異なるときにも、連続路側物を的確に検出することができる。
The row of continuous roadside objects has a termination, and the interval between the continuous roadside objects may be different for each row of continuous roadside objects. When a roadside object that satisfies the reference interval does not appear for a predetermined time or longer, the row of continuous roadside items that are the basis of the reference interval is likely to be completed, and in the next row of continuous roadside items, The reference interval may be different from the reference interval. According to the third invention, when it is determined that the row of continuous roadside objects has been completed, the reference interval of the row is reset, and a new reference interval is calculated for the next continuous roadside object. Even when the interval is different for each continuous roadside object row, the continuous roadside object can be accurately detected.

車両の車両用物体判定装置のブロック図。The block diagram of the vehicle object determination apparatus of a vehicle. 車両直進時の路側物判定エリアの説明図。Explanatory drawing of the roadside thing determination area at the time of a vehicle going straight. 車両旋回時の路側物判定エリアの説明図。Explanatory drawing of the roadside thing determination area at the time of vehicle turning. 連続路側物検出処理の前半部分のフローチャート。The flowchart of the first half part of a continuous roadside thing detection process. 連続路側物検出処理の後半部分のフローチャート。The flowchart of the latter half part of a continuous roadside thing detection process.

図1において、車両用物体判定装置10は、車両に搭載され、旋回角センサ11、車速センサ12、物体検出部13、進行軌跡予測部14及び物体判定部15を備えている。旋回角センサ11は、ヨーレートセンサ又は操舵角センサから成り、車両の旋回角を直接又は間接に検出する。   In FIG. 1, the vehicle object determination device 10 is mounted on a vehicle and includes a turning angle sensor 11, a vehicle speed sensor 12, an object detection unit 13, a travel locus prediction unit 14, and an object determination unit 15. The turning angle sensor 11 includes a yaw rate sensor or a steering angle sensor, and detects the turning angle of the vehicle directly or indirectly.

なお、旋回角とは、時刻t1における車両中心線L1と、時刻t1から時間δt経過後の車両中心線L2とを定義し、車両中心線L1に対する車両中心線L2の角度をδθと定義するとき、δθ/δtと定義する。この旋回角の定義では、車両中心線の向きは車両前方とし、旋回角は時計方向を正とする。また、この定義では、旋回角は、ヨーレートと同一となるが、単位時間に限定しない一定時間(例:物体判定部15が物体検出部13から前方物体情報を取得する取得間隔)当たりのδθも旋回角と定義する。旋回角は、また、操舵角と車速とから算出することができる。旋回角から車両の旋回半径が算出され、旋回半径から車両の旋回時の走行軌跡が算出される。   The turning angle is defined as the vehicle center line L1 at time t1 and the vehicle center line L2 after the passage of time δt from time t1, and the angle of the vehicle center line L2 with respect to the vehicle center line L1 is defined as δθ. , Δθ / δt. In the definition of the turning angle, the direction of the vehicle center line is the front of the vehicle, and the turning angle is positive in the clockwise direction. In this definition, the turning angle is the same as the yaw rate, but δθ per fixed time (eg, the acquisition interval at which the object determination unit 15 acquires the front object information from the object detection unit 13) is not limited to unit time. It is defined as the turning angle. The turning angle can also be calculated from the steering angle and the vehicle speed. A turning radius of the vehicle is calculated from the turning angle, and a travel locus at the time of turning of the vehicle is calculated from the turning radius.

車速センサ12は車輪の回転速度等から車両の速度を検出する。物体検出部13は、例えば走査式レーザレーダ装置であり、車両の前部に取り付けられて、所定範囲の車両前方にレーザ光を、走査高さを鉛直方向へ所定の刻みで変更しつつ、各走査高さでは水平方向へ走査しながら照射し、その反射光から、車両前方に存在する物体の方向及び物体までの距離を検出する。   The vehicle speed sensor 12 detects the speed of the vehicle from the rotational speed of the wheels. The object detection unit 13 is, for example, a scanning laser radar device, and is attached to the front of the vehicle. The object detection unit 13 changes the laser beam to the front of the vehicle in a predetermined range and changes the scanning height in the vertical direction at predetermined intervals. Irradiation is performed while scanning in the horizontal direction at the scanning height, and the direction of the object existing in front of the vehicle and the distance to the object are detected from the reflected light.

進行軌跡予測部14は、旋回角センサ11が検出した旋回角と車速センサ12が検出した車速とに基づき車両の将来の走行軌跡としての進行軌跡を予測する。進行軌跡予測部14が予測する進行軌跡についての具体的な説明は図2及び図3において後述する。   The traveling locus prediction unit 14 predicts a traveling locus as a future traveling locus of the vehicle based on the turning angle detected by the turning angle sensor 11 and the vehicle speed detected by the vehicle speed sensor 12. A specific description of the travel locus predicted by the travel locus prediction unit 14 will be described later with reference to FIGS.

物体判定部15は、物体検出部13が検出した前方物体と進行軌跡予測部14が予測した進行軌跡とに基づき連続路側物の検出処理を含む物体判定処理を実施する。デリニエータ(例えば反射板等の視線誘導標)等の連続路側物の検出処理についての具体的な説明は、後述の図5及び図6において行う。   The object determination unit 15 performs an object determination process including a continuous roadside object detection process based on the forward object detected by the object detection unit 13 and the travel path predicted by the travel path prediction unit 14. A specific description of the detection processing of the continuous roadside object such as a delineator (for example, a line-of-sight guide such as a reflector) will be given in FIGS. 5 and 6 to be described later.

図2及び図3において、車両用物体判定装置10は自車20に装備される。車両用物体判定装置10の物体検出部13は、自車20のACCシステム(Adaptive Cruise Control System)にも使用され、前走車21を含む前方の物体を検知する。ACCシステムでは、自車20に対し、前走車21が存在しないときは、予め設定した車速で定速走行を行わせ、前走車21が存在するときは、予め設定した車間距離を保って追従走行させる。   2 and 3, the vehicle object determination device 10 is installed in the host vehicle 20. The object detection unit 13 of the vehicle object determination device 10 is also used in an ACC system (Adaptive Cruise Control System) of the host vehicle 20 and detects a front object including the preceding vehicle 21. In the ACC system, when the preceding vehicle 21 does not exist for the host vehicle 20, the vehicle 20 is driven at a constant speed at a preset vehicle speed, and when the preceding vehicle 21 exists, the preset inter-vehicle distance is maintained. Follow the car.

進行軌跡予測部14は、旋回角センサ11の出力に基づき自車20が直進中か旋回中かを検出する。旋回角の絶対値は、自車20の直進中は所定の閾値(該閾値>0)未満であり、自車20の旋回中は閾値以上となる。   Based on the output of the turning angle sensor 11, the traveling locus prediction unit 14 detects whether the host vehicle 20 is traveling straight or turning. The absolute value of the turning angle is less than a predetermined threshold value (the threshold value> 0) while the host vehicle 20 is traveling straight, and is equal to or greater than the threshold value when the host vehicle 20 is turning.

自車20の直進時の直線進行軌跡22(図2)は、自車20の車両中心線を中心線とする所定幅W1(W1>自車20の左右幅)の領域となる。自車20の旋回時の旋回進行軌跡32(図3)は、車両中心線上の自車前端位置から前方へ延び出す旋回円を中心線にして所定幅W2(W2>車両用物体判定装置10の左右幅。W1=W2又はW1≠W2。)の領域の曲線状領域になる。該旋回円は、車速と旋回角とから算出した旋回半径から算出する。   A straight traveling locus 22 (FIG. 2) when the host vehicle 20 is traveling straight is an area having a predetermined width W1 (W1> the left-right width of the host vehicle 20) with the vehicle center line of the host vehicle 20 as the center line. A turning progress locus 32 (FIG. 3) at the time of turning of the host vehicle 20 has a predetermined width W2 (W2> the vehicle object determination device 10) with a turning circle extending forward from the front end position of the host vehicle on the center line of the vehicle. Left and right width. W1 = W2 or W1 ≠ W2. The turning circle is calculated from the turning radius calculated from the vehicle speed and the turning angle.

物体判定部15は、進行軌跡予測部14が予測した直線進行軌跡22に対しては、該直線進行軌跡22の左側及び右側に矩形の左路側判定エリア23L及び右路側判定エリア23Rをそれぞれ設定し、旋回進行軌跡32に対しては旋回進行軌跡32の左側及び右側に、外周側の扇形から内周側の扇形を切除して残った所定幅の曲線状の左路側判定エリア33L及び右路側判定エリア33Rをそれぞれ設定する。物体判定部15は、同一の判定エリア内の物体同士について連続路側物の条件を満たすか否かを調べ、満たしていれば、それらは左連続路側物24L,25L,26L、右連続路側物24R,25R,26R、又は右連続路側物34R,35R,36R,37Rであると認定する。これにより、違う判定エリア、すなわち自車20の旋回進行軌跡32に対して相互に反対側のエリアの物体同士が同一の連続路側物列の物体として認定されることが回避される。   The object determination unit 15 sets a rectangular left road-side determination area 23L and a right road-side determination area 23R on the left and right sides of the linear travel locus 22 for the straight travel locus 22 predicted by the travel locus prediction unit 14, respectively. The left and right sides of the turning progress trajectory 32 with respect to the turning progress trajectory 32 are curved left road side determination areas 33L and right road side determinations left by cutting out the inner peripheral fan shape from the outer peripheral fan shape. Each area 33R is set. The object determination unit 15 checks whether or not the conditions of the continuous roadside objects are satisfied for the objects in the same determination area. If the objects are satisfied, they are the left continuous roadside objects 24L, 25L, 26L, and the right continuous roadside object 24R. , 25R, 26R, or right continuous roadside objects 34R, 35R, 36R, 37R. Thereby, it can be avoided that the objects in different determination areas, that is, the areas opposite to each other with respect to the turning travel locus 32 of the host vehicle 20 are recognized as objects in the same continuous road side object row.

図4及び図5において連続路側物の検出処理について説明する。STEP50〜STEP52の処理は進行軌跡予測部14の機能に対応する。すなわち、STEP50〜STEP52では直線進行軌跡22又は旋回進行軌跡32を予測する。STEP53以降の処理は物体判定部15の機能に対応する。   The continuous roadside object detection process will be described with reference to FIGS. The processing of STEP 50 to STEP 52 corresponds to the function of the travel locus prediction unit 14. That is, in STEP50 to STEP52, the straight traveling locus 22 or the turning traveling locus 32 is predicted. The processing after STEP 53 corresponds to the function of the object determination unit 15.

STEP50では、自車20が直進中であるか旋回中であるかを判定する。自車20が直進中であると判定されれば、STEP51へ進んで、直線進行軌跡22を予測する。自車20が旋回中であると判定されれば、STEP52へ進んで、旋回進行軌跡32を予測する。   In STEP 50, it is determined whether the host vehicle 20 is traveling straight or turning. If it is determined that the host vehicle 20 is traveling straight, the process proceeds to STEP 51 to predict the straight traveling locus 22. If it is determined that the host vehicle 20 is turning, the process proceeds to STEP 52 to predict the turning progress locus 32.

STEP53では、直線進行軌跡22又は旋回進行軌跡32に対し、左路側判定エリア23L又は33L、及び右路側判定エリア23R又は33Rを設定する。STEP53の次は、STEP58以降の処理へ進む。STEP58以降の処理は、各判定エリアごとに行う。すなわち、STEP58以降の処理では、相互に異なるエリアに存在する物体に対し、それらが同一の連続路側物列の物体であることについての判定の対象になることはなく、結果、同一の連続路側物列の物体であると認定されることはない。   In STEP 53, the left road side determination area 23L or 33L and the right road side determination area 23R or 33R are set for the straight line movement locus 22 or the turning movement locus 32. After STEP 53, the process proceeds to STEP 58 and subsequent steps. The processing after STEP 58 is performed for each determination area. That is, in the processing after STEP 58, objects existing in mutually different areas are not subject to determination as to whether they are objects in the same continuous roadside object row, and as a result, the same continuous roadside object. It is not recognized as an object in a row.

以降、自車20の前端を通りかつ自車20の左右方向をx軸とし、自車20の車両中心線をy軸とするx−y座標系を考える。また、左右方向の右をx軸の正の向き、自車20の前方をy軸の正の向きとする。該座標系において、x軸とy軸との交点としての原点は、自車20の車両中心線における自車20の前端位置となる。   Hereinafter, an xy coordinate system that passes through the front end of the host vehicle 20 and has the left-right direction of the host vehicle 20 as the x axis and the vehicle center line of the host vehicle 20 as the y axis will be considered. Further, the right in the left-right direction is the positive direction of the x-axis, and the front of the host vehicle 20 is the positive direction of the y-axis. In the coordinate system, the origin as the intersection of the x axis and the y axis is the front end position of the host vehicle 20 on the vehicle center line of the host vehicle 20.

STEP58では、判定エリア内の全物体の中から幅(x軸方向の寸法)が所定値Aw以下でかつ停止している物体のみを連続路側物検出処理の判定対象として抽出する。自車20の前方を自車20と同一向き又は反対方向へ走行する四輪自動車及び二輪自動車は、x軸方向寸法がAwより大きいために、また、停止物体ではなく、移動物体であるために、STEP58の判定により次のSTEP59以降の処理対象から除外される。   In STEP 58, only objects that have a width (dimension in the x-axis direction) that is equal to or smaller than a predetermined value Aw and are stopped are extracted as determination targets for the continuous roadside object detection process from all the objects in the determination area. The four-wheeled and two-wheeled vehicles that run in front of the host vehicle 20 in the same direction as the host vehicle 20 or in the opposite direction are larger than Aw and are not a stop object but a moving object. In step 58, the processing is excluded from the processing target in the next step 59 and subsequent steps.

停止物体であるか否かは、物体の絶対速度を検出して、該絶対速度が所定の閾値未満であるか否かにより判定することができる。物体の絶対速度は、該物体と自車20との相対速度+自車20の車速から算出することができる。相対速度は、自車20のレーザレーダ装置により測定された自車20から物体までの距離の時間変化から算出することができる。   Whether or not the object is a stop object can be determined by detecting the absolute speed of the object and determining whether or not the absolute speed is less than a predetermined threshold. The absolute speed of the object can be calculated from the relative speed between the object and the host vehicle 20 + the vehicle speed of the host vehicle 20. The relative speed can be calculated from the time change of the distance from the own vehicle 20 to the object measured by the laser radar device of the own vehicle 20.

STEP59では、STEP58で抽出した物体を自車20から近い順に番号付けする。番号付けの具体例は、図3の右連続路側物34R,35R,36R,37Rに付けられた#1,#2,#3,#4である。自車20から近い順とは、厳密にはx軸方向及びy軸方向の両方を考慮した自車20から物体までの距離であるが、実施例では、処理の簡略化のために、y軸方向の距離のみの小さい順に、すなわちy座標位置の小さい順に物体を番号付けしている。   In STEP 59, the objects extracted in STEP 58 are numbered in order from the closest to the own vehicle 20. Specific examples of the numbering are # 1, # 2, # 3, and # 4 attached to the right continuous roadside objects 34R, 35R, 36R, and 37R in FIG. Strictly speaking, the order close to the host vehicle 20 is the distance from the host vehicle 20 to the object in consideration of both the x-axis direction and the y-axis direction. However, in the embodiment, in order to simplify the processing, the y-axis The objects are numbered in ascending order of only the direction distance, that is, in ascending order of the y coordinate position.

STEP59では、さらに、番号が隣り同士である2つの物体間のy軸方向距離が極端に小さいときは(所定値Bd以下ときは)、番号の大きい方の物体を次のSTEP60以降の処理対象から除外する。y軸方向距離が極端に近い物体同士は、現実の連続路側物の間隔としてあり得ないからである。   In STEP 59, when the distance in the y-axis direction between two objects whose numbers are adjacent to each other is extremely small (when it is equal to or less than a predetermined value Bd), the object with the larger number is selected from the processing object in the next STEP 60 and subsequent steps. exclude. This is because objects with extremely short distances in the y-axis direction cannot be used as an actual distance between continuous roadside objects.

具体的な処理としては、番号が1番と2番の物体を選んで、それらをそれぞれOa,Obとし、Oa−Ob間のy軸方向距離ydとBdとを対比し、対比の結果、もしyd≦Bdであれば、番号の大きい方のObを次のSTEP60以降の処理対象から除外するとともに、Oaはそのままにして、番号がObの次の番号である物体を新たなObとする。もしyd>Bdであれば、Obを新たなOaとするとともに、番号がObの次の番号である物体を新たなObとする。こうして更新したOa,Obに対し、再び、ydとBdとの対比処理を繰り返す。この対比処理は、Obが末尾の番号の物体になるまで繰り返される。こうして、除外されずに残った物体のみが、次のSTEP60以降において処理対象とする。除外されずに残った物体に対しては、番号抜けを無くすために、変更前の番号順で再度、番号付けする。   As a specific process, the objects with the numbers 1 and 2 are selected, and they are set as Oa and Ob, respectively, and the y-axis direction distances yd and Bd between Oa and Ob are compared with each other. If yd ≦ Bd, the Ob with the larger number is excluded from the processing object after the next STEP 60, and the object whose number is the number next to Ob is left as the new Ob. If yd> Bd, Ob is set as a new Oa, and an object whose number is the number next to Ob is set as a new Ob. The comparison process of yd and Bd is repeated again for Oa and Ob updated in this way. This comparison process is repeated until Ob is the last numbered object. In this way, only the objects that remain without being excluded are set as processing targets in the next STEP 60 and subsequent steps. In order to eliminate missing numbers, the objects remaining without being excluded are numbered again in the order of the numbers before the change.

STEP60では、番号が隣り同士である2つの物体間のx軸方向距離xdが所定値Ad以上であるときは、番号の大きい方の物体を除外する。x軸方向距離xdが所定値Ad以上である物体同士は、現実の連続路側物の間隔としては有り得ないからである。   In STEP 60, when the x-axis direction distance xd between two objects whose numbers are adjacent to each other is equal to or greater than a predetermined value Ad, the object having the larger number is excluded. This is because objects having an x-axis direction distance xd that is equal to or greater than the predetermined value Ad cannot be used as an actual distance between continuous roadside objects.

具体的な処理としては、番号が1番と2番の物体を選んで、それらをそれぞれOa,Obとし、Oa−Ob間のx軸方向距離xdとAdとを対比し、対比の結果、もしxd≧Adであれば、番号の大きい方のObを次のSTEP61以降の処理対象から除外するとともに、Oaはそのままにして、番号がObの次の番号である物体を新たなObとする。もしxd<Adであれば、Obを新たなOaとするとともに、番号がObの次の番号である物体を新たなObとする。こうして更新したOa,Obに対し、再び、xdとAdとの対比処理を繰り返す。この対比処理は、Obが末尾の番号の物体になるまで繰り返される。こうして、除外されずに残った物体のみが、次のSTEP61以降において処理対象となる。除外されずに残った物体に対しては、番号抜けを無くすために、変更前の番号順で再度、番号付けする。   Specifically, the objects with the numbers 1 and 2 are selected, and they are set as Oa and Ob, respectively, and the distances xd and Ad in the x-axis direction between Oa and Ob are compared with each other. If xd ≧ Ad, the Ob with the larger number is excluded from the processing target of the next STEP 61 and subsequent steps, and the object with the number next to Ob is set as a new Ob while leaving Oa as it is. If xd <Ad, Ob is set as a new Oa, and an object whose number is the number next to Ob is set as a new Ob. The comparison process of xd and Ad is repeated again for Oa and Ob updated in this way. This comparison process is repeated until Ob is the last numbered object. In this way, only the objects that remain without being excluded are processed in the next STEP 61 and subsequent steps. In order to eliminate missing numbers, the objects remaining without being excluded are numbered again in the order of the numbers before the change.

なお、STEP60における物体除外後の残留物体数が所定数Ca(例:Ca=4)未満であるときは、物体検出部13からの今回の前方物体配置情報から後述のSTEP64の基準間隔Baの算出は不可能として、連続路側物検出処理を終了する。そして、物体検出部13からの次の前方物体配置情報の取得に伴い、STEP50から再実施する。   When the number of remaining objects after object exclusion in STEP 60 is less than a predetermined number Ca (for example, Ca = 4), calculation of a reference interval Ba in STEP 64 (described later) from the current front object arrangement information from the object detection unit 13. Is impossible, the continuous roadside object detection process is terminated. Then, with the acquisition of the next front object arrangement information from the object detection unit 13, the process is repeated from STEP 50.

STEP61では、番号が隣り同士の物体間のy軸方向距離y1(#1−#2間),y2(#2−#3間),y3(#3−#4間),・・・を算出する(図3のy1,y2,y3を参照)。なお、このy1,y2,y3,・・・の数列を説明の便宜上、「{yi}」と表現する。また、iは数列内の順番を添え字としたものとする。STEP62では、{yi}の要素の中から最小値Bminを検出する。   In STEP 61, y-axis direction distances y1 (between # 1 and # 2), y2 (between # 2 and # 3), y3 (between # 3 and # 4),... (Refer to y1, y2, and y3 in FIG. 3). The sequence of y1, y2, y3,... Is expressed as “{yi}” for convenience of explanation. In addition, i is an index in the order in the sequence. In STEP 62, the minimum value Bmin is detected from the elements of {yi}.

STEP63では、{yi}の各yiに対し、該yiがBminのN(Nは自然数)倍相当であるときは、該yiをyi/Nに補正して、補正{yi}を作成する。具体的には、各yiに対するNとして、Bmin・N−0.5≦yi<Bmin・N+0.5となるときのNが選択される。   In STEP 63, when each yi of {yi} is equivalent to N (N is a natural number) times Bmin, yi is corrected to yi / N to create a correction {yi}. Specifically, N when Bmin · N−0.5 ≦ yi <Bmin · N + 0.5 is selected as N for each yi.

STEP63において、yiをNで除算して補正する理由は、物体検出部13が取得した前方物体情報が現実には完全なものではなく、連続路側物の列を構成する一部の物体が、見落とされたり、又は自車20側の物体との重なりのために検出できなかったりして、番号が隣り同士の物体間隔が連続路側物の実際の間隔のN倍に広がることが現実に起こり得るからである。   In STEP 63, the reason for correcting yi by dividing it by N is that the forward object information acquired by the object detection unit 13 is not actually complete, and some objects constituting the row of continuous roadside objects are overlooked. Or the distance between adjacent objects may be N times larger than the actual distance between consecutive roadside objects due to an overlap with an object on the vehicle 20 side. It is.

STEP64では、補正{yi}の要素の平均値Baを算出する。要素の総数をnとすると、Ba=yiの総和/nである。Baは、各物体に対し、それが連続路側物であるか否かを判定するときの基準間隔とされる。   In STEP 64, the average value Ba of the elements of the correction {yi} is calculated. When the total number of elements is n, Ba = yi sum / n. Ba is a reference interval for determining whether or not each object is a continuous roadside object.

STEP64までが連続路側物の基準間隔Baの算出処理となる。次のSTEP70以降では、物体判定部15が設定した各判定エリアごとに、物体検出部13が検出した物体であって同一のエリア内の複数の物体に対して、連続路側物の関係が認められるか否かを判定し、認められれば、連続路側物と認定する。   The process up to STEP 64 is the calculation process of the reference interval Ba of the continuous roadside object. In the next STEP 70 and subsequent steps, for each determination area set by the object determination unit 15, the relationship between the continuous roadside objects is recognized for a plurality of objects in the same area that are detected by the object detection unit 13. If it is recognized, it is recognized as a continuous roadside object.

STEP70では、{yi}を再生成する。物体検出部13による自車20の前方の物体探索範囲に対し、物体検出部13のレーザ光が該物体探索範囲の全体を走査するのに所定の全範囲走査時間がかかる。このため、前方物体に対してそれらが連続路側物であるか否かのSTEP70〜STEP72の処理も、該全範囲走査時間に同期した離散時間ごとに実施されることになる。   In STEP 70, {yi} is regenerated. A predetermined full range scanning time is required for the laser beam of the object detection unit 13 to scan the entire object search range with respect to the object search range in front of the host vehicle 20 by the object detection unit 13. For this reason, the processing of STEP 70 to STEP 72 for determining whether or not they are continuous roadside objects with respect to the front object is also performed at discrete times synchronized with the full range scanning time.

STEP70の{yi}の再生成は、基準間隔Baを算出する基になった物体検出部13からの前方物体配置情報の取得時から物体検出部13の全範囲走査時間経過後に取得する次の新たな前方物体配置情報に基づき行われる。その後は、基準間隔Baを所定の条件でリセットするまで、全範囲走査時間が経過するごとに、すなわち物体検出部13から新しい前方物体配置情報を取得するごとに、STEP70〜STEP72が繰り返される。   The regeneration of {yi} in STEP 70 is the next new one acquired after the entire range scanning time of the object detection unit 13 has elapsed since the acquisition of the front object arrangement information from the object detection unit 13 that is the basis for calculating the reference interval Ba. This is performed based on accurate front object arrangement information. Thereafter, STEP 70 to STEP 72 are repeated every time the full range scanning time elapses, that is, every time new front object arrangement information is acquired from the object detection unit 13, until the reference interval Ba is reset under a predetermined condition.

STEP70における{yi}の再生成の処理は、具体的には、物体検出部13が取得した前方物体情報に対し、STEP58〜STEP61の処理を全部含んだ処理となる。ただし、基準間隔Baの算出の基にする前述のSTEP60の処理では、該STEP60における物体除外後の残留物体数が所定数Ca(例:Ca=4)未満であるときは、STEP61へは進まずに、処理を終了していたが、STEP70に含めて路側物判定の基にするSTEP60の処理では、残留物体数が2以上であれば、よいとする。   Specifically, the process of regenerating {yi} in STEP 70 is a process including all the processes of STEP 58 to STEP 61 for the front object information acquired by the object detection unit 13. However, in the processing of STEP 60 based on the calculation of the reference interval Ba, when the number of remaining objects after object exclusion in STEP 60 is less than a predetermined number Ca (eg, Ca = 4), the processing does not proceed to STEP 61. In addition, in the processing of STEP 60 that is included in STEP 70 and used as the basis for roadside object determination, it is sufficient if the number of remaining objects is 2 or more.

STEP71では、{yi}の中から、(Ba/N)・(1±α)内又は(Ba・N)・(1±α)内となっているyiのみ抽出して、他のyiは除去する。ここで、Nは、任意の自然数であり、典型的には3以下である。αは、許容率に相当するものであり、例えば3%等、1以下の所定値である。αは、その時の所定の車速パラメータの値に基づき適宜変更するようにしてもよい。   In STEP 71, only yi within (Ba / N) · (1 ± α) or (Ba · N) · (1 ± α) is extracted from {yi}, and other yi are removed. To do. Here, N is an arbitrary natural number, and is typically 3 or less. α corresponds to the allowable rate, and is a predetermined value of 1 or less, such as 3%. α may be appropriately changed based on the value of a predetermined vehicle speed parameter at that time.

STEP71でBa・(1±α)に1/Nを乗算する理由は、STEP64で、yi/Nとした理由と同一であり、連続路側物の列を構成する一部の物体が見落とされたり、又は自車20側の物体との重なりのために検出できなかったりして、番号が隣り同士である物体の間隔が連続路側物の実際の間隔のN倍になっていることが起こるからである。   The reason why Ba · (1 ± α) is multiplied by 1 / N in STEP 71 is the same as that in STEP 64 where yi / N is set, and some objects constituting the row of continuous roadside objects are overlooked. Or, because it cannot be detected due to an overlap with the object on the own vehicle 20 side, the interval between the objects whose numbers are adjacent to each other is N times the actual interval between the continuous roadside objects. .

また、STEP71でBa・(1±α)にNを乗算する理由は、連続路側物の配置が密であったり、物体検出部13から連続路側物を見た角度がたまたま連続路側物間の重なりを増やすものであったりするために、基準間隔Baが、真の基準間隔のN倍で計算されてしまったのに対し、STEP70の{yi}では、順番が隣り同士の連続路側物が正確に検出されて、その間隔が基準間隔Baの1/Nとなっているときに、それらを正しく連続路側物と認定するためである。   The reason for multiplying Ba · (1 ± α) by N in STEP 71 is that the arrangement of the continuous roadside objects is dense, or the angle when the continuous roadside objects are viewed from the object detection unit 13 happens to overlap between the continuous roadside objects. The reference interval Ba has been calculated as N times the true reference interval, whereas in {yi} of STEP 70, the consecutive roadside objects that are next to each other are accurately This is because when the detected interval is 1 / N of the reference interval Ba, they are correctly recognized as continuous roadside objects.

STEP72では、STEP71の処理で1番から連続して残ったyiまでの各yの基になっている物体は連続路側物と認定する。例えば、{y1,y2,y3,y4}の内、y3のみがSTEP71で除外されたときは、y4の基になっている#4,#5の物体は連続路側物とは認定せず、y1,y2の基になっている#1〜#3の物体のみが連続路側物と認定する。なぜならば、#4,#5の物体は、基準間隔は満足するものの、#3−#4間の間隔が連続路側物の間隔とはなっていないので、連続路側物ではない物体が偶然に連続路側物の間隔に一致している可能性が高いからである。また、#4−#5の物体は、自車20から十分に遠いので、次の前方物体配置情報の取得を待って、再判定した方が有利であり、また、その方が連続路側物の検出精度も高まるからである。   In STEP 72, the object that is the basis of each y from the first to the remaining yi in the processing of STEP 71 is recognized as a continuous roadside object. For example, when only y3 of {y1, y2, y3, y4} is excluded in STEP 71, the objects of # 4 and # 5 which are the basis of y4 are not recognized as continuous roadside objects, and y1 , Y2 only the objects # 1 to # 3 are recognized as continuous roadside objects. This is because, although the objects of # 4 and # 5 satisfy the reference interval, the interval between # 3 and # 4 is not the interval of the continuous roadside object. This is because there is a high possibility that the distance between the roadside objects is the same. In addition, since the objects of # 4 to # 5 are sufficiently far from the host vehicle 20, it is advantageous to make another determination after waiting for acquisition of the next front object arrangement information. This is because the detection accuracy is also increased.

STEP70〜STEP72は、物体検出部13からの前方物体配置情報取得ごとに、すなわち、物体検出部13の全範囲走査時間ごとに、繰り返されると、前述したが、STEP72において基準間隔Baに基づき連続路側物と認定される物体が最後に出現してから、所定時間以上、出現しなかった時は、すなわち、今回の連続路側物の列が終了した時には、基準間隔Baはリセットされ、STEP70〜STEP72の繰り返しが終了するとともに、STEP50から再実施されて、新しい基準間隔Baが計算される。こうして、次に出現する連続路側物の列における基準間隔に速やかに対応して、該次の列の連続路側物を的確に検出することができる。   As described above, STEP 70 to STEP 72 are repeated every time the front object arrangement information is acquired from the object detection unit 13, that is, every full range scanning time of the object detection unit 13. In STEP 72, the continuous road side is based on the reference interval Ba. The reference interval Ba is reset when the object recognized as an object does not appear for a predetermined time or more after the last appearance, that is, when the sequence of the current roadside object ends, and STEP 70 to STEP 72 As the iteration ends, the new reference interval Ba is calculated again from STEP 50. In this way, it is possible to accurately detect the continuous roadside object in the next row in response to the reference interval in the next continuous roadside row.

なお、連続路側物は例えば道路のエッジ位置の検出に利用される。連続路側物は、また、道路上に存在しないので、CMBS(Collision Mitigation Brake System:追突被害を軽減するブレーキシステム)のブレーキ対象物から除外される。また、検出物体が、x軸方向へ自車20と一定時間以上、少なくとも部分的に重複していたり、自車20に対して前後左右に移動しているときは、該物体は、車両であると判断されるので、それが判定エリア内にあっても、連続路側物の判定対象から除外する。   The continuous roadside object is used, for example, for detecting the edge position of the road. Since a continuous roadside object does not exist on the road, it is excluded from a brake object of a CMBS (Collision Mitigation Brake System). In addition, when the detected object is at least partially overlapped with the own vehicle 20 in the x-axis direction for a certain time or more, or is moving from front to back and left and right with respect to the own vehicle 20, the object is a vehicle. Therefore, even if it is in the determination area, it is excluded from the determination target of the continuous roadside object.

以上、本発明を実施例に基づき説明したが、本発明はその要旨の範囲内で種々に変更し実施することができる。   As mentioned above, although this invention was demonstrated based on the Example, this invention can be variously changed and implemented within the range of the summary.

例えば、物体検出部13として、走査式レーザレーダ装置以外に、ミリ波レーダ装置や、ステレオカメラや単眼カメラを採用することもできる。ステレオカメラでは、物体までの距離を視差を利用して、算出する。単眼カメラでは、物体までの距離を、画像における物体寸法の時間変化量と車速とから算出することができる。   For example, in addition to the scanning laser radar device, a millimeter wave radar device, a stereo camera, or a monocular camera can be employed as the object detection unit 13. In a stereo camera, the distance to an object is calculated using parallax. With a monocular camera, the distance to the object can be calculated from the amount of time change of the object dimension in the image and the vehicle speed.

図3では、自車10に対して旋回方向内側の右路側判定エリア33Rのみの右連続路側物34R,35R,36R,37Rを検出しているが、旋回方向外側の左路側判定エリア33Lの連続路側物も併せて検出したり、走行状況に応じて、旋回方向内側のみや旋回方向外側のみとすることもできる。   In FIG. 3, the right continuous roadside objects 34R, 35R, 36R, and 37R of only the right road side determination area 33R inside the turning direction with respect to the own vehicle 10 are detected, but the left road side determination area 33L outside the turning direction is continuously detected. Roadside objects can also be detected, or only the inside in the turning direction or only the outside in the turning direction can be set according to the traveling state.

実施例では、物体を自車20から近い順に1,2,3,・・・と番号付けしているが、例えばアルファベット順に対応付けるようなその他の順序付けであってもよい。   In the embodiment, the objects are numbered 1, 2, 3,... In order from the closest to the own vehicle 20, but other ordering such as correspondence in alphabetical order may be used.

実施例では、STEP72を経て連続路側物と認定しているが、STEP64にて平均値Baを求めるために利用された物体を連続路側物と認定してもよい。これにより、平均値Baが決定される前においても連続路側物を認定することができる。   In the embodiment, it is recognized as a continuous roadside object through STEP 72, but the object used for obtaining the average value Ba in STEP64 may be recognized as a continuous roadside object. Thereby, even before average value Ba is determined, a continuous roadside thing can be recognized.

10:車両用物体判定装置、11:旋回角センサ、12:車速センサ、13:物体検出部、14:進行軌跡予測部、15:物体判定部、20:自車、21:前走車、22:直線進行軌跡、23L:左路側判定エリア、23R:右路側判定エリア、24L,25L,26L:左連続路側物、24R,25R,26R:右連続路側物、32:旋回進行軌跡、33L:左路側判定エリア、33R:右路側判定エリア、34R,35R,36R,37R:右連続路側物。 DESCRIPTION OF SYMBOLS 10: Object determination apparatus for vehicles, 11: Turning angle sensor, 12: Vehicle speed sensor, 13: Object detection part, 14: Travel locus prediction part, 15: Object determination part, 20: Own vehicle, 21: Previous vehicle, 22 : Straight traveling locus, 23L: Left roadside determination area, 23R: Right roadside determination area, 24L, 25L, 26L: Left continuous roadside object, 24R, 25R, 26R: Right continuous roadside object, 32: Turning progress locus, 33L: Left Roadside determination area, 33R: Right roadside determination area, 34R, 35R, 36R, 37R: Right continuous roadside object.

Claims (3)

車両の旋回角を検出する旋回角センサと、
車速を検出する車速センサと、
旋回角及び車速に基づき車両の旋回進行軌跡を予測する進行軌跡予測部と、
車両の前方に存在する物体を検出する物体検出部と、
前記進行軌跡予測部により予測された前記旋回進行軌跡に対して少なくとも左右一方の側に路側物判定エリアを設定して、同一の路側物判定エリアに存在する物体のみを、連続路側物の判定対象として、前記物体検出部が検出した物体が連続路側物であるか否かを判定する物体判定部とを備え、
前記物体判定部は、
前記判定エリアに存在する複数の物体を路側物として認識し、隣り同士である路側物間の距離の平均値を基準間隔として算出するに当たり、隣り同士である路側物間の距離の内の最小値を抽出し、隣り同士である前記路側物間の距離が、前記最小値のN(Nは2以上の自然数)倍相当となっているものについては該距離を1/Nとした値を補正距離としてから、前記平均値を基準間隔として算出する基準間隔算出処理と、
前記判定エリアに存在する2つの路側物に対し、前記基準間隔に対するそれら2つの路側物の間の距離の差が前記基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定する連続路側物判定処理とを実施することを特徴とする物体判定装置。
A turning angle sensor for detecting the turning angle of the vehicle;
A vehicle speed sensor for detecting the vehicle speed;
A travel trajectory prediction unit that predicts the trajectory of the vehicle's turning based on the turning angle and the vehicle speed;
An object detection unit for detecting an object existing in front of the vehicle;
A roadside object determination area is set on at least one of the left and right sides with respect to the turning progress track predicted by the travel path prediction unit, and only objects existing in the same roadside object determination area are determined as continuous roadside object determination targets. An object determination unit that determines whether or not the object detected by the object detection unit is a continuous roadside object,
The object determination unit
In recognizing a plurality of objects existing in the determination area as roadside objects and calculating an average value of distances between adjacent roadside objects as a reference interval, a minimum value among distances between adjacent roadside objects When the distance between the roadside objects adjacent to each other is equivalent to N times the minimum value (N is a natural number of 2 or more), a value obtained by setting the distance to 1 / N is a correction distance. A reference interval calculation process for calculating the average value as a reference interval;
For two roadside objects present in the determination area, when the difference in distance between the two roadside objects with respect to the reference interval is within a predetermined percentage range of the reference interval, the two roadside objects are An object determination device that performs continuous roadside object determination processing for determining that the object is a continuous roadside object.
車両の旋回角を検出する旋回角センサと、
車速を検出する車速センサと、
旋回角及び車速に基づき車両の旋回進行軌跡を予測する進行軌跡予測部と、
車両の前方に存在する物体を検出する物体検出部と、
前記進行軌跡予測部により予測された前記旋回進行軌跡に対して少なくとも左右一方の側に路側物判定エリアを設定して、同一の路側物判定エリアに存在する物体のみを、連続路側物の判定対象として、前記物体検出部が検出した物体が連続路側物であるか否かを判定する物体判定部とを備え、
前記物体判定部は、
前記判定エリアに存在する複数の物体を路側物として認識し、隣り同士である路側物間の距離の平均値を基準間隔として算出する基準間隔算出処理と、
前記判定エリアに存在する2つの路側物に対し、前記基準間隔に対するそれら2つの路側物の間の距離の差が前記基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定するとともに、2つの路側物に対して、前記基準間隔のN(Nは2以上の自然数)分の1を補正基準間隔とし、前記補正基準間隔に対するそれら2つの路側物の間の距離の差が前記補正基準間隔の所定割合の範囲内の差であるとき、それら2つの路側物は連続路側物であると判定する連続路側物判定処理とを実施することを特徴とする物体判定装置。
A turning angle sensor for detecting the turning angle of the vehicle;
A vehicle speed sensor for detecting the vehicle speed;
A travel trajectory prediction unit that predicts the trajectory of the vehicle's turning based on the turning angle and the vehicle speed;
An object detection unit for detecting an object existing in front of the vehicle;
A roadside object determination area is set on at least one of the left and right sides with respect to the turning progress track predicted by the travel path prediction unit, and only objects existing in the same roadside object determination area are determined as continuous roadside object determination targets. An object determination unit that determines whether or not the object detected by the object detection unit is a continuous roadside object,
The object determination unit
A reference interval calculation process for recognizing a plurality of objects present in the determination area as roadside objects and calculating an average value of distances between adjacent roadside objects as a reference interval;
For two roadside objects present in the determination area, when the difference in distance between the two roadside objects with respect to the reference interval is within a predetermined percentage range of the reference interval, the two roadside objects are It is determined that the roadside object is a continuous roadside object, and for two roadside objects, N / N (N is a natural number of 2 or more) of the reference interval is set as a correction reference interval, and these two roadside objects with respect to the correction reference interval wherein the can to be the difference within a predetermined ratio, the two roadside object is to carry out a continuous roadside object determination process determines that the continuous roadside object difference in distance of the correction reference distance between An object determination device.
請求項1又は2に記載の物体判定装置において、
前記物体判定部は、前記物体検出部から所定の離散時間ごとに前方物体情報を取得して、前方物体情報の取得ごとに前記連続路側物判定処理を実施し、前記基準間隔に基づき連続路側物と判定される路側物が所定時間以上、出現しないときには、前記基準間隔をリセットすることを特徴とする物体判定装置。
In the object judgment device according to claim 1 or 2,
The object determination unit acquires the front object information from the object detection unit every predetermined discrete time, performs the continuous roadside object determination process every time the front object information is acquired, and based on the reference interval, the continuous roadside object The object determination device is characterized in that the reference interval is reset when a roadside object determined to be no longer appears for a predetermined time or longer.
JP2010253874A 2010-11-12 2010-11-12 Vehicle object determination device Expired - Fee Related JP5601980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253874A JP5601980B2 (en) 2010-11-12 2010-11-12 Vehicle object determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253874A JP5601980B2 (en) 2010-11-12 2010-11-12 Vehicle object determination device

Publications (2)

Publication Number Publication Date
JP2012104027A JP2012104027A (en) 2012-05-31
JP5601980B2 true JP5601980B2 (en) 2014-10-08

Family

ID=46394313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253874A Expired - Fee Related JP5601980B2 (en) 2010-11-12 2010-11-12 Vehicle object determination device

Country Status (1)

Country Link
JP (1) JP5601980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260950B (en) * 2020-01-17 2021-03-26 清华大学 Trajectory prediction-based trajectory tracking method, medium and vehicle-mounted equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138234A (en) * 1992-10-26 1994-05-20 Omron Corp On-vehicle reflector-discrimination device and road and running state-discrimination device using it
JPH06195600A (en) * 1992-12-25 1994-07-15 Omron Corp Method and device for adjusting vehicle traveling speed
JP3528267B2 (en) * 1994-08-26 2004-05-17 マツダ株式会社 Obstacle detection device
JP3229558B2 (en) * 1997-02-21 2001-11-19 三菱電機株式会社 Inter-vehicle distance detection device
JPH11203458A (en) * 1998-01-13 1999-07-30 Nissan Motor Co Ltd Road shape recognizing device
JP2002012053A (en) * 2000-06-29 2002-01-15 Honda Motor Co Ltd Travel control device for vehicle
JP2002303671A (en) * 2001-04-03 2002-10-18 Nissan Motor Co Ltd Object-classification discrimination apparatus
JP3636150B2 (en) * 2002-03-12 2005-04-06 日産自動車株式会社 Judgment method of object type of reflector on runway
JP4506162B2 (en) * 2003-02-20 2010-07-21 日産自動車株式会社 Front object detection apparatus and front object detection method
JP4036158B2 (en) * 2003-07-22 2008-01-23 日産自動車株式会社 Vehicle obstacle detection device and inter-vehicle distance control device
JP4659631B2 (en) * 2005-04-26 2011-03-30 富士重工業株式会社 Lane recognition device

Also Published As

Publication number Publication date
JP2012104027A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US10345443B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
JP4906398B2 (en) In-vehicle road shape identification device, in-vehicle system, road shape identification method and periphery monitoring method
EP2741270B1 (en) Driving assistance apparatus and driving assistance method
CN105109484B (en) Target disorders object determines method and device
JP5884771B2 (en) Collision mitigation device
JP6809531B2 (en) Vehicle determination method, travel route correction method, vehicle determination device, and travel route correction device
JP6654923B2 (en) Map information output device
CN106652557A (en) Method and system for predicting driving path of neighboring vehicle
CN104554258A (en) Path planning for evasive steering manuever employing virtual potential field technique
CN104554272A (en) Path planning for evasive steering maneuver in presence of target vehicle and surrounding objects
WO2016117603A1 (en) Vehicle travel control device and travel control method
US20190005821A1 (en) Driving support device and driving support method
JP2017027202A (en) Driving support system
JP2008171207A (en) Vehicle driving support device
JPWO2014033956A1 (en) Collision determination device and collision determination method
JP6103693B2 (en) Vehicle collision determination device
JP2008195293A (en) Collision-predicting device
JP2012089114A (en) Obstacle recognition device
JP2011053809A (en) White line recognition device for vehicle
JP5202741B2 (en) Branch entry judgment device
US11753002B2 (en) Vehicular control system
CN111469833A (en) Collision mitigation and avoidance
JP2010044461A (en) Apparatus and program for collision estimation
JP2008117073A (en) Interruption vehicle detection device
JP6497329B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5601980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees