JP5601780B2 - Mold and mold manufacturing method - Google Patents

Mold and mold manufacturing method Download PDF

Info

Publication number
JP5601780B2
JP5601780B2 JP2009056661A JP2009056661A JP5601780B2 JP 5601780 B2 JP5601780 B2 JP 5601780B2 JP 2009056661 A JP2009056661 A JP 2009056661A JP 2009056661 A JP2009056661 A JP 2009056661A JP 5601780 B2 JP5601780 B2 JP 5601780B2
Authority
JP
Japan
Prior art keywords
molding
raw material
open pores
mold
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009056661A
Other languages
Japanese (ja)
Other versions
JP2009241595A (en
Inventor
公久 金子
邦彦 吉岡
浩二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009056661A priority Critical patent/JP5601780B2/en
Publication of JP2009241595A publication Critical patent/JP2009241595A/en
Application granted granted Critical
Publication of JP5601780B2 publication Critical patent/JP5601780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成形型及び成形体の製造方法、より詳しくは、自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型及びその成形体の製造方法に関する。   The present invention relates to a mold and a method for manufacturing a molded body, and more particularly to a mold for molding a molded body having a predetermined shape by injecting a molding material having self-curing properties, and a method for manufacturing the molded body.

従来、成形型としては、セラミック原料粉末と水を含むスラリーの中に水硬性ウレタンをゲル化剤として添加したものや、セラミック原料粉末、分散媒、ゲル化剤、分散剤を含むスラリーの成形用原料を用意し、これを成形型に注入し複雑形状の成形体を安全且つ簡単に成形するものが提案されている(例えば、特許文献1参照)。   Conventionally, as a mold, for molding a slurry containing ceramic raw material powder and water with hydraulic urethane added as a gelling agent, or a slurry containing ceramic raw material powder, dispersion medium, gelling agent and dispersing agent There has been proposed a method in which a raw material is prepared and poured into a mold to form a complex shaped article safely and easily (for example, see Patent Document 1).

特開平11−171651号公報JP-A-11-171651

ところで、この特許文献1に記載された成形型では、成形用原料が水硬性ウレタンなどゲル化剤の硬化反応により成形体を得るため、吸水性のない金属、プラスチック、ガラスなどにより形成することにより、成形用原料に含まれているゲル化剤を成形型が吸収してしまうのを防止し、ゲル化剤の流出により硬化反応を妨げるのを抑制していた。しかしながら、成形用原料に含まれている分散媒が存在しても硬化反応は進行するが、結局はこの分散媒を成形体から排除する必要があるから、成形型内で硬化反応を十分行ったあとに成形体に含まれる分散媒を揮発させる必要があり、処理時間が長くなる問題があった。一方、成形用原料に含まれているゲル化剤の硬化反応の途中で成形型の一部を離型し、硬化反応が不十分な状態の成形体を外気にさらすことにより成形体に含まれる分散媒を揮発させることも可能であるが、このような場合には、成形体が十分な強度を有していないことがあり、離型後に成形体が収縮し成形体寸法が維持されない、離型時に成形体が破損してしまうなどの不都合があった。また、このような成形方法において、閉じた成形型に成形用原料を流し込むことから、成形後に成形体と成形型の間に空気が入り込めない真空状態となることがあり、成形体を離型する際に離型応力が大きくなり成形体が破損してしまうことがあった。また、成形体が複雑形状の場合、成形型を工夫するなどしなければ任意方向に成形体を離型するのが困難である場合があった。   By the way, in the shaping | molding die described in this patent document 1, since the shaping | molding raw material obtains a molded object by hardening reaction of gelling agents, such as hydraulic urethane, by forming with a metal, a plastic, glass, etc. without water absorption Therefore, the gelling agent contained in the forming raw material is prevented from being absorbed by the mold, and the hardening reaction is prevented from being hindered by the outflow of the gelling agent. However, the curing reaction proceeds even in the presence of the dispersion medium contained in the molding material. However, since it is necessary to eliminate this dispersion medium from the molded body, the curing reaction was sufficiently performed in the mold. Later, it was necessary to volatilize the dispersion medium contained in the molded body, and there was a problem that the processing time was prolonged. On the other hand, part of the mold is released during the curing reaction of the gelling agent contained in the molding raw material, and the molded body with insufficient curing reaction is included in the molded body by exposure to the outside air. Although it is possible to volatilize the dispersion medium, in such a case, the molded body may not have sufficient strength, and after the mold release, the molded body contracts and the size of the molded body is not maintained. There were inconveniences such as the molded body being damaged during molding. Further, in such a molding method, since the raw material for molding is poured into a closed mold, there may be a vacuum state in which air cannot enter between the molded body and the mold after molding, and the molded body is released from the mold. In some cases, the mold release stress increases and the molded body may be damaged. Further, when the molded body has a complicated shape, it may be difficult to release the molded body in an arbitrary direction unless the mold is devised.

本発明は、このような課題に鑑みなされたものであり、自己硬化性を有する成形用原料を用いて成形体を成形する際に、処理時間をより短縮すると共に、より確実に成形体を成形することができる成形型及び成形体の製造方法を提供することを目的とする。また、自己硬化性を有する成形用原料を用いて成形体を成形する際に、より容易に離型することができる成形型及び成形体の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and when forming a molded body using a molding material having self-curing properties, the processing time is further shortened and the molded body is more reliably molded. It is an object of the present invention to provide a mold and a method for producing a molded body that can be used. It is another object of the present invention to provide a mold and a method for producing the molded body that can be more easily released when a molded body is molded using a molding material having self-curing properties.

本発明は、上述の目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the above-mentioned object.

即ち、本発明の成形型は、
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成される樹脂層と、
を備えたものである。
That is, the mold of the present invention is
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
A resin layer formed without blocking the open pores in a predetermined range in the depth direction of the open pores from the molding surface;
It is equipped with.

この成形型では、液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入すると、成形用原料が開気孔に導入されてしまうのを、成形面から所定範囲の深さに形成された樹脂層により防止しつつ、成形用原料及び成形体に含まれる分散媒から揮発する気体は、開気孔から外部空間へ通過させる。このように、成形型内で十分に硬化反応の進行と成形用原料及び成形体に含まれる分散媒の揮発とを同時に実行可能であるため、処理時間をより短縮することができる。また、成形体の硬化反応が不十分な状態で成形型の一部を離型し成形体を外気にさらすことにより成形体に含まれる分散媒の揮発を早めるようなことを抑制可能であるため、成形体に十分な強度を持たせ、その破損や成形体寸法の変化などを抑制し、より確実に成形体を成形することができる。   In this mold, when a flowable self-curing molding material containing liquid and particles is injected, the molding material is introduced into the open pores at a depth within a predetermined range from the molding surface. The gas volatilized from the dispersion medium contained in the molding raw material and the molded body is allowed to pass from the open pores to the external space while being prevented by the formed resin layer. As described above, since the progress of the curing reaction and the volatilization of the dispersion medium contained in the molding raw material and the molded body can be performed simultaneously in the mold, the processing time can be further shortened. In addition, since it is possible to suppress the volatilization of the dispersion medium contained in the molded body from being accelerated by releasing a part of the mold and exposing the molded body to the outside air in a state where the curing reaction of the molded body is insufficient. In addition, the molded body can have sufficient strength, and the molded body can be more reliably molded by suppressing the breakage and the change in the dimension of the molded body.

本発明の成形型において、前記樹脂層は、樹脂を溶媒に溶解させた樹脂溶解液を浸漬することにより形成されており、前記開気孔の平均気孔径D(m)、前記樹脂溶解液が揮発する時間td(s)、前記成形用原料が流動性を失うまでの時間ts(s)、外気中の前記樹脂溶解液の液体の表面張力γd(N/m)、外気中の前記成形用原料の液体の表面張力γs(N/m)、前記成形面と前記樹脂溶解液との接触角θd(°)、前記成形面と前記成形用原料との接触角θs(°)、前記樹脂溶解液の粘度ηd(Pa・s)、前記成形用原料の粘度ηs(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)、被覆される前記樹脂層の厚さh(m)としたとき、該樹脂層が前記成形用原料との間で次式(1)を満たすよう形成されているものとしてもよい。ここで、式(1)の左辺は樹脂溶解液が開気孔へ浸漬される浸漬距離に関する値を表し、右辺は成形用原料が樹脂層の形成されている開気孔へ浸漬される浸漬距離に関する値を表し、式(1)は樹脂溶解液と成形用原料との浸漬距離の大小関係を表す。こうすれば、成形用原料が開気孔へ浸漬する距離よりも長い範囲の樹脂層を開気孔へ設けることができるため、より確実に成形体を成形することができる。 In the molding die of the present invention, the resin layer is formed by immersing a resin solution in which a resin is dissolved in a solvent, and the average pore diameter D (m) of the open pores and the resin solution is volatilized. Time t d (s), time t s (s) until the molding raw material loses fluidity, surface tension γ d (N / m) of the liquid resin solution in the outside air, Liquid surface tension γ s (N / m) of the molding raw material liquid, contact angle θ d (°) between the molding surface and the resin solution, contact angle θ s (° between the molding surface and the molding raw material) ), Viscosity η d (Pa · s) of the resin solution, viscosity η s (Pa · s) of the molding raw material, pressure P (Pa) when the molding raw material is injected into the mold, and coating When the thickness h (m) of the resin layer is set, the resin layer is formed so as to satisfy the following formula (1) with the molding raw material: It is good as it is. Here, the left side of the formula (1) represents a value related to the immersion distance in which the resin solution is immersed in the open pores, and the right side is a value related to the immersion distance in which the molding raw material is immersed in the open pores in which the resin layer is formed. Formula (1) represents the magnitude relationship of the immersion distance between the resin solution and the molding raw material. In this way, a resin layer having a longer range than the distance at which the molding raw material is immersed in the open pores can be provided in the open pores, so that the molded body can be more reliably molded.

Figure 0005601780
Figure 0005601780

本発明の成形型において、前記樹脂層は、部材粒子の表面を前記樹脂で被覆することにより形成されており、前記成形型は、前記成形体の形状とする成形面を形成するように部材粒子を成形して形成されており、前記開気孔の曲路率f、前記開気孔の平均気孔径D(m)、前記成形用原料が流動性を失うまでの時間t(s)、外気中の前記成形用原料の液体の表面張力γ(N/m)、前記成形面と前記成形用原料との接触角θ(°)、前記成形用原料の粘度η(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)とし、接触角θが0°以上90°未満のとき、前記所定範囲として、前記成形面から次式(2)で表される深さまで前記部材粒子により構成されているものとしてもよい。こうすれば、接触角θが0°以上90°未満のときに、開気孔内への液体の浸透現象を管路における毛管現象にモデル化した後述するOlsson Pihlの式(4)に対して曲路率fを含むパラメータを乗じて得られる式(2)を利用して、成形用原料が開気孔へ浸透する距離以上の樹脂層を設けることができるから、より確実に成形体を成形することができる。ここで、曲路率fは、所定の単位長さの試験片の外周をシールし、既知の流体(例えば水など)を浸透させ、深さLを浸透するのに必要な理論時間Tcと、実測時間Tmの比であるTm/Tcを求め、この値とするものとした。   In the molding die of the present invention, the resin layer is formed by coating the surface of member particles with the resin, and the molding die forms member particles so as to form a molding surface having the shape of the molded body. , The curvature f of the open pores, the average pore diameter D (m) of the open pores, the time t (s) until the forming raw material loses fluidity, Liquid surface tension γ (N / m) of the molding raw material, contact angle θ (°) between the molding surface and the molding raw material, viscosity η (Pa · s) of the molding raw material, the molding raw material When the contact angle θ is 0 ° or more and less than 90 °, the predetermined range is from the molding surface to the depth represented by the following formula (2). It may be composed of member particles. In this way, when the contact angle θ is 0 ° or more and less than 90 °, a curve is formed with respect to the later-described Olsson Pihl equation (4) in which the permeation phenomenon of the liquid into the open pores is modeled as a capillary phenomenon in the pipeline. By using the formula (2) obtained by multiplying the parameter including the path ratio f, a resin layer having a distance that allows the molding raw material to penetrate into the open pores can be provided, so that the molded body can be molded more reliably. Can do. Here, the curvature f is a theoretical time Tc required to seal the outer periphery of a test piece having a predetermined unit length, infiltrate a known fluid (for example, water), and infiltrate the depth L, and Tm / Tc, which is the ratio of the actual measurement time Tm, was obtained and used as this value.

Figure 0005601780
Figure 0005601780

本発明の成形型において、前記樹脂層は、前記開気孔の平均気孔径D(m)、前記成形用原料が流動性を失うまでの時間t(s)、外気中の前記成形用原料の液体の表面張力γ(N/m)、前記成形面と前記成形用原料との接触角θ(°)、前記成形用原料の粘度η(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)とし、接触角θが0°以上90°未満のとき、前記所定範囲としての深さL(m)が次式(3)を満たすよう形成されているものとしてもよい。こうすれば、接触角θが0°以上90°未満のときに、開気孔内への液体の浸透現象を管路における毛管現象にモデル化したOlsson Pihlの式(4)を利用して、余剰の樹脂層を成形型に設けずに済む。   In the molding die of the present invention, the resin layer includes an average pore diameter D (m) of the open pores, a time t (s) until the molding raw material loses fluidity, and a liquid of the molding raw material in the outside air. Surface tension γ (N / m), contact angle θ (°) between the molding surface and the molding material, viscosity η (Pa · s) of the molding material, and injection of the molding material into the mold When the contact angle θ is 0 ° or more and less than 90 °, the depth L (m) as the predetermined range may be formed so as to satisfy the following formula (3): Good. In this way, when the contact angle θ is 0 ° or more and less than 90 °, an excess is obtained by using Olsson Pihl's equation (4) in which the liquid penetration into the open pores is modeled as a capillary phenomenon in the pipeline. It is not necessary to provide the resin layer on the mold.

Figure 0005601780
Figure 0005601780

Figure 0005601780
Figure 0005601780

接触角θ(°)を用いる態様の本発明の成形型において、前記樹脂層は、前記接触角θが65°以上85°以下であることが好ましく、80°以上であることがより好ましい。接触角が65°以上85°以下の範囲では、成形用原料の液体が開気孔内へ浸透するのを抑制しやすいため、より均一且つ十分な強度を成形体に持たせやすく、離型する際の離型応力も小さくすることができる。65°以下では、成形用原料が開気孔に浸透しやすく、85°以上では、成形用原料が高粘度である場合や成形型が複雑な形状である場合、成形型内を成形用原料が流動し難く、成形用原料が気泡を巻き込み不良が発生しやすい。80°以上では離型応力がより小さく安全に成形体を得ることができる。なお、離型応力とは、直径3.0×10-2mの円柱状をした成形体サンプルを金属(ジュラルミン)上に成形し、その成形体サンプルを金属の成形面から垂直方向に離型する際に発生する引張荷重の最大値を、成形面の面積で除したものである。引張試験の条件はJIS−K6849に従い行った。ここで、接触角θは、金属板(ジュラルミン、表面粗さRa=5.0×10-1μm)の表面に樹脂層を形成し、成形用原料の液滴10μLを垂らし、接触角測定機により計測した値をいう。なお、表面粗さRaは、中心線平均粗さともいい、JIS−B0601に基づいて求めた表面粗さをいう。 In the molding die of the present invention using the contact angle θ (°), the resin layer preferably has a contact angle θ of 65 ° or more and 85 ° or less, and more preferably 80 ° or more. When the contact angle is in the range of 65 ° or more and 85 ° or less, it is easy to prevent the forming raw material liquid from penetrating into the open pores. The mold release stress can be reduced. Below 65 °, the molding raw material easily penetrates into the open pores, and above 85 °, the molding raw material flows in the molding die when the molding raw material has a high viscosity or the molding die has a complicated shape. It is difficult to form, and the molding raw material tends to involve bubbles and cause defects. If it is 80 ° or more, the mold release stress is smaller and a molded product can be obtained safely. The mold release stress means that a cylindrical shaped sample having a diameter of 3.0 × 10 −2 m is formed on a metal (duralumin), and the formed sample is released in a vertical direction from the metal forming surface. The maximum value of the tensile load generated at the time of dividing is divided by the area of the molding surface. The tensile test was performed according to JIS-K6849. Here, the contact angle θ is obtained by forming a resin layer on the surface of a metal plate (duralumin, surface roughness Ra = 5.0 × 10 −1 μm), and dropping 10 μL of a forming raw material droplet. The value measured by. In addition, surface roughness Ra is also called centerline average roughness, and means the surface roughness calculated | required based on JIS-B0601.

本発明の成形型において、前記開気孔は、平均気孔径D(m)が1.0×10-7m以上1.0×10-6m以下に形成されていることが好ましく、2.0×10-7m以上5.0×10-7m以下に形成されていることがより好ましい。平均気孔径Dが1.0×10-7m以上では、樹脂層などにより開気孔が閉塞されてしまうのを抑制しやすく、平均気孔径Dが1.0×10-6m以下では、成形用原料に含まれる一般に用いられる粒子(例えば、アルミナ、ジルコニア、窒化珪素、チタン酸バリウム、フェライトなど)の開気孔への導入が抑制されやすく、毛管現象による液体の浸透モデルを元に液体の浸透を考察しやすいから、比較的容易に成形用原料の液体が開気孔内へ浸透するのを抑制することができる。ここで、平均気孔径Dは、樹脂層を形成したサンプルを水銀圧入法で測定した結果を用いるものとする。 In the molding die of the present invention, the open pores are preferably formed with an average pore diameter D (m) of 1.0 × 10 −7 m or more and 1.0 × 10 −6 m or less, and 2.0 × it is more preferably formed in the following 10 -7 m or 5.0 × 10 -7 m. When the average pore diameter D is 1.0 × 10 −7 m or more, it is easy to prevent the open pores from being blocked by a resin layer or the like, and when the average pore diameter D is 1.0 × 10 −6 m or less, molding is performed. Introduction of commonly used particles (for example, alumina, zirconia, silicon nitride, barium titanate, ferrite, etc.) contained in raw materials for use into open pores is easy, and liquid penetration is based on a liquid penetration model based on capillary action. Therefore, it is possible to relatively easily prevent the liquid forming material from penetrating into the open pores. Here, as the average pore diameter D, a result obtained by measuring a sample in which a resin layer is formed by a mercury intrusion method is used.

本発明の成形型において、前記開気孔は、前記平均気孔径D(m)が前記成形用原料に含まれる粒子の平均粒径φ(m)に対してφ≧Dを満たすよう形成されているものとしてもよい。こうすれば、開気孔に粒子が入り込み開気孔を閉塞してしまうのをより抑制することができる。この成形用原料に含まれる粒子の平均粒径φ(m)は、レーザ光回折法を用いて測定されたメディアン径(D50)をいうものとする。   In the molding die of the present invention, the open pores are formed such that the average pore diameter D (m) satisfies φ ≧ D with respect to the average particle diameter φ (m) of particles contained in the molding raw material. It may be a thing. By doing so, it is possible to further suppress the particles from entering the open pores and closing the open pores. The average particle diameter φ (m) of the particles contained in the forming raw material refers to the median diameter (D50) measured using a laser light diffraction method.

本発明の成形型において、前記樹脂層は、フッ素樹脂、フッ素樹脂の変性物、シリコン樹脂及びシリコン樹脂の変性物から成る群より選ばれた1種又は2種以上により形成されているものとしてもよい。このように、濡れ性の悪い樹脂を利用すれば、液体が開気孔に導入されてしまうのをこれらの樹脂を利用して比較的容易に防止することができる。また、離型時に発生する離型応力も小さくすることができる。   In the molding die of the present invention, the resin layer may be formed of one or more selected from the group consisting of a fluororesin, a modified fluororesin, a silicone resin, and a modified silicone resin. Good. As described above, if resins having poor wettability are used, it is possible to relatively easily prevent liquid from being introduced into the open pores by using these resins. Moreover, the mold release stress which generate | occur | produces at the time of mold release can also be made small.

本発明の成形体の製造方法は、
所定形状の成形体の製造方法であって、
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製する調製工程と、
上述したいずれか1つに記載の成形型へ前記調製した成形用原料を注入し前記所定形状の成形体を成形する成形工程と、
硬化した成形体を前記成形型から離型する離型工程と
を含むものである。
The method for producing a molded article of the present invention comprises:
A method for producing a molded body having a predetermined shape,
A preparation step of preparing a molding raw material having fluid and self-curing properties including liquid and particles;
A molding step of injecting the prepared molding raw material into the molding die according to any one of the above and molding the molded body of the predetermined shape,
And a mold release step of releasing the cured molded body from the mold.

この成形体の製造方法では、液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製し、上述したいずれか1つの成形型へ調製した成形用原料を注入し所定形状の成形体を成形し、硬化した成形体を成形型から離型する。このとき、成形用原料を注入すると、成形用原料の液体が開気孔に導入されてしまうのを樹脂層により防止しつつ、成形用原料及び成形体に含まれる分散媒から揮発する気体は、開気孔から外部空間へ通過させる。このように、成形型内で十分に硬化反応の進行と成形用原料及び成形体に含まれる分散媒の揮発とを同時に実行可能であり、熱処理などを行うことにより硬化反応、分散媒の揮発のどちらか一方を主として実行可能でもある。また、成形体の硬化反応が不十分な状態で成形型の一部を離型し成形体を外気にさらすことにより成形体に含まれる分散媒の揮発を早めるようなことを抑制可能であるため、成形体に十分な強度を持たせ、成形体寸法の変化を抑制し、更に樹脂層の存在により離型応力を小さくして離型することにより、その破損などを抑制し、より確実に成形体を成形することができる。また、開気孔から空気が導入されるため、成形後に成形体と成形型の間に空気が入り込み、成形体と成形型の間が真空状態となりにくく、成形体を離型する際の離型応力を小さくすることにより、離型時の成形体の破損を抑制することができる。なお、外部に連通する開気孔から強制的に気体を供給することにより、成形体と成形型との離型をより容易にすることができる。   In this method of manufacturing a molded body, a molding raw material containing liquid and particles and having fluidity and self-curing properties is prepared, and the molding raw material prepared in any one of the above-described molding dies is poured into a predetermined shape. A molded body is molded, and the cured molded body is released from the mold. At this time, when the molding raw material is injected, the resin layer prevents the liquid of the molding raw material from being introduced into the open pores, and the gas volatilized from the molding raw material and the dispersion medium contained in the molded body is opened. Pass from the pores to the external space. In this way, it is possible to execute the curing reaction sufficiently in the mold and volatilize the dispersion medium contained in the molding raw material and the molded body at the same time. Either one is mainly feasible. In addition, since it is possible to suppress the volatilization of the dispersion medium contained in the molded body from being accelerated by releasing a part of the mold and exposing the molded body to the outside air in a state where the curing reaction of the molded body is insufficient. , Giving the molded body sufficient strength, suppressing changes in the size of the molded body, and further reducing mold release stress due to the presence of the resin layer, thereby preventing breakage and more reliable molding The body can be shaped. In addition, since air is introduced from the open pores, air enters between the molded body and the mold after molding, and it is difficult for the molded body and the mold to be in a vacuum state. By making small, it is possible to suppress damage to the molded body at the time of mold release. Note that by forcibly supplying the gas from the open pores communicating with the outside, it is possible to more easily release the molded body and the mold.

本発明の成形体の製造方法において、前記離型工程では、前記開気孔から流体を圧入し強制的に所定方向から離型させるものとしてもよい。こうすれば、流体の圧入により成形体をより容易に離型することができる。ここで、「流体」は、例えば水や有機溶媒などの液体としてもよいし、空気や窒素ガスなどの気体としてもよく、このうち気体がより好ましい。   In the method for producing a molded body of the present invention, in the mold release step, fluid may be press-fitted from the open pores to forcibly release the mold from a predetermined direction. If it carries out like this, a molded object can be released more easily by press injection of a fluid. Here, the “fluid” may be a liquid such as water or an organic solvent, or may be a gas such as air or nitrogen gas, of which a gas is more preferable.

本発明の成形体の製造方法において、前記成形工程では、前記成形面における前記開気孔面積の異なる2以上の部材からなる前記成形型を用いて前記所定形状の成形体を成形し、前記離型工程では、前記2以上の部材の成形面における開気孔面積の違いを利用して所定の順序で前記2以上の部材と前記成形体とを離型するものとしてもよい。こうすれば、開気孔の面積を利用して比較的容易に離型する順序を定めることができ、例えば成形体の離型時の破損などをより低減して、より確実に成形体を成形することができる。   In the method for producing a molded body according to the present invention, in the molding step, the molded body having the predetermined shape is molded using the molding die composed of two or more members having different open pore areas on the molding surface, and the mold release In the step, the two or more members and the molded body may be released from each other in a predetermined order using a difference in open pore area on the molding surface of the two or more members. In this way, the order of mold release can be determined relatively easily using the area of the open pores. For example, the molded article can be more reliably molded by reducing breakage when the molded article is released. be able to.

本発明の成形体の製造方法は、前記成形工程の前に前記成形型の開気孔へ樹脂を含む液体を供給して前記開気孔へ前記樹脂層を形成させる樹脂層形成工程、を含むものとしてもよい。こうすれば、樹脂層を確実に形成することにより、より確実に成形用原料の液体が開気孔内へ浸透するのを抑制し、より十分な強度を成形体に持たせて離型することができる。また、開気孔に微量に残留する成形体の残渣も、気体の供給などにより簡単に除去することができる。また、成形型の使用により樹脂層が剥離などした場合に容易にそれを修復することができる。   The method for producing a molded body of the present invention includes a resin layer forming step of supplying a liquid containing a resin to the open pores of the mold and forming the resin layer on the open pores before the molding step. Also good. In this way, by reliably forming the resin layer, the liquid of the molding raw material can be more reliably prevented from penetrating into the open pores, and the molded body can be released with sufficient strength. it can. Further, a small amount of the molded product residue remaining in the open pores can be easily removed by supplying gas or the like. Further, when the resin layer is peeled off by using a mold, it can be easily repaired.

本発明の成形体の製造方法において、前記成形型は、複数の部材からなり、前記成形工程では、前記成形型へ前記成形用原料を注入し前記成形型の複数の部材を組み付けた状態で該成形型を所定の硬化温度として硬化反応を促進させるものとしてもよい。例えば、通気性がない成形型において複数の部材を組み付けた状態で硬化温度とする場合には成形用原料及び成形体に含まれる分散媒から生じる気体は成形型から排出されないから、成形体の硬化反応が不十分で成形体が破損してしまう場合があるが、ここでは開気孔から気体として排出可能であるから、成形型の複数の部材を組み付けた状態で硬化反応を促進可能であるから、一層処理時間を短縮することができる。   In the method for producing a molded body of the present invention, the molding die includes a plurality of members, and in the molding step, the molding raw material is injected into the molding die and the plurality of members of the molding die are assembled. It is good also as what accelerates | stimulates hardening reaction by using a shaping | molding die as predetermined | prescribed hardening temperature. For example, when the curing temperature is set in a state where a plurality of members are assembled in a non-breathable molding die, the gas generated from the molding material and the dispersion medium contained in the molded body is not discharged from the molding die. The molded body may be damaged due to insufficient reaction, but since it can be discharged as a gas from the open pores here, it is possible to promote the curing reaction in a state where a plurality of members of the molding die are assembled, Further processing time can be shortened.

本発明の成形体の製造方法において、前記調製工程では、ウレタン反応により前記自己硬化する前記成形用原料を調製するものとしてもよい。こうすれば、ウレタン反応する成形用原料を用いて、処理時間をより短縮すると共に、より確実に成形体を成形することができる。   In the method for producing a molded article of the present invention, in the preparation step, the molding material that is self-cured by a urethane reaction may be prepared. If it carries out like this, while using the raw material for shaping | molding which reacts with urethane, processing time can be shortened more and a molded object can be shape | molded more reliably.

本発明の一実施形態である成形型20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the shaping | molding die 20 which is one Embodiment of this invention. 成形用原料の粘度ηと毛管浸透のモデルにおける樹脂層33の深さLとの関係を表すプロット図である。It is a plot figure showing the relationship between the viscosity (eta) of the raw material for shaping | molding, and the depth L of the resin layer 33 in the model of capillary penetration. 樹脂層33の平均気孔径Dと毛管浸透のモデルにおける樹脂層33の深さLとの関係を表すプロット図である。It is a plot figure showing the relationship between the average pore diameter D of the resin layer 33, and the depth L of the resin layer 33 in the model of capillary penetration. 樹脂層33を開気孔32に形成する説明図である。FIG. 6 is an explanatory diagram for forming a resin layer 33 in open pores 32. 成形型50を作製する説明図である。It is explanatory drawing which produces the shaping | molding die.

次に、本発明を実施するための形態を図面を用いて説明する。図1は、本発明の一実施形態である成形型20の構成の概略を示す構成図である。この成形型20は、図1に示すように、成形体を成形するものであり、成形型部材としての下型22と、下型22上に固定される上型24と、上型24上に固定されるプレート26と、下型22と上型24とにより形成され成形体の形状に対応する空間である成形体形成部30と、によって構成されている。なお、図1では、1つの成形体を成形するものを示したが、複数の成形体を成形可能なものとしてもよい。この成形型20は、成形用原料で形成された焼結前の部材である卵形状の成形体を成形するよう形成されている。この成形体は、粒子(例えばアルミナなど)、ウレタン反応により自己硬化するゲル化剤(例えばイソシアネートとポリオールなど)、分散媒を含む成形用原料を用いて作製される。なお、成形体の形状は、特に限定されず、例えば、中空状、ドーム状、半球状、シート状の成形体など、任意の形状とすることができる。また、成形体内部に異なる物質を内包する場合もある。   Next, modes for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of the configuration of a mold 20 according to an embodiment of the present invention. As shown in FIG. 1, the mold 20 is for molding a molded body. The mold 20 is a lower mold 22 as a mold member, an upper mold 24 fixed on the lower mold 22, and an upper mold 24. It is constituted by a plate 26 to be fixed, and a molded body forming portion 30 which is a space formed by the lower mold 22 and the upper mold 24 and corresponding to the shape of the molded body. In addition, although what shape | molded one molded object was shown in FIG. 1, it is good also as what can shape | mold a some molded object. The molding die 20 is formed so as to mold an egg-shaped molded body, which is a pre-sintered member formed of a molding raw material. This molded body is produced using a molding material containing particles (for example, alumina), a gelling agent (for example, isocyanate and polyol) that is self-cured by urethane reaction, and a dispersion medium. In addition, the shape of a molded object is not specifically limited, For example, it can be set as arbitrary shapes, such as a hollow shape, a dome shape, a hemisphere, and a sheet-like molded object. In some cases, a different substance is included in the molded body.

成形型20の下型22は、図1に示すように、成形型20の下部に配置される外形が矩形状の部材である。この下型22の上面には、卵形の成形体を形成する窪み状の成形面23が形成されている。上型24は、下型22の上方に組み付けられる外形が矩形状の部材である。この上型24は、その下面側に、卵形の成形体を形成する窪み状の成形面25が形成されている。この上型24には、成形面25の端部へ連通する注入路24aと、成形面25の上部から上方に形成された排出路24bとが形成されている。プレート26は、上型24の上方に組み付けられる外形が矩形状の部材である。このプレート26には、上型24の上方に組み付けられると、注入路24aに接続し成形体形成部30へ連通する注入口27と、排出路24bに接続し成形体形成部30から外部へ連通する排出口28とが形成されている。   As shown in FIG. 1, the lower mold 22 of the mold 20 is a member having a rectangular outer shape disposed at the lower part of the mold 20. On the upper surface of the lower mold 22, a hollow molding surface 23 that forms an egg-shaped molding is formed. The upper die 24 is a member whose outer shape is assembled above the lower die 22. The upper mold 24 has a concave molding surface 25 that forms an egg-shaped molding on the lower surface side. The upper mold 24 is formed with an injection path 24 a communicating with the end of the molding surface 25 and a discharge path 24 b formed upward from the upper part of the molding surface 25. The plate 26 is a member having an outer shape that is assembled above the upper mold 24. When the plate 26 is assembled above the upper mold 24, the inlet 27 is connected to the injection path 24a and communicates with the molded body forming section 30, and the plate 26 is connected to the discharge path 24b and communicates from the molded body forming section 30 to the outside. A discharge port 28 is formed.

この成形型20では、下型22、上型24、プレート26が組み付けられると、上型24の成形面25と、下型22の成形面23とにより、卵状の空間である成形体形成部30が形成される。また、注入路24aと注入口27とが接続して成形用原料を成形体形成部30へ注入可能となり、排出路24bと排出口28とが接続して余剰の成形用原料を成形体形成部30から排出可能となる。   In this mold 20, when the lower mold 22, the upper mold 24, and the plate 26 are assembled, a molded body forming portion that is an egg-shaped space is formed by the molding surface 25 of the upper mold 24 and the molding surface 23 of the lower mold 22. 30 is formed. Further, the injection path 24a and the injection port 27 are connected to allow the molding raw material to be injected into the molded body forming part 30, and the discharge path 24b and the discharge port 28 are connected to supply the excess molding raw material to the molded body forming part. 30 can be discharged.

また、下型22及び上型24は、金属と同等の機械的強度及び加工性を有する多孔質金属により形成されている。なお、上型24は、形状以外の構成について下型22と同様であるので、下型22について説明するものとし、その説明を省略する。この下型22には、成形面23と外部空間とが連通する開気孔32が形成されている。この開気孔32には、成形面23から浸透深さLまでの領域に樹脂層33が形成されている。   Moreover, the lower mold | type 22 and the upper mold | type 24 are formed with the porous metal which has the mechanical strength and workability equivalent to a metal. The upper mold 24 is the same as the lower mold 22 except for the shape, and therefore the lower mold 22 will be described and the description thereof will be omitted. The lower mold 22 is formed with open pores 32 through which the molding surface 23 communicates with the external space. A resin layer 33 is formed in the open pores 32 in a region from the molding surface 23 to the penetration depth L.

開気孔32は、平均気孔径D(m)が1.0×10-7m以上1.0×10-6m以下に形成されていることが好ましく、2.0×10-7m以上5.0×10-7m以下に形成されていることがより好ましい。ここでは、3.0×10-7(m)で形成されている。例えば樹脂層の厚さを考慮すると、平均気孔径Dが1.0×10-7m以上とすると、開気孔32の内壁に樹脂層33が形成されても、開気孔32が閉塞されにくく、成形時に発生する成形用原料及び成形体に含まれる分散媒から生じる気体をこの開気孔32から放出可能である。また、1.0×10-6m以下とすると、成形用原料として用いる粒子の開気孔への導入が抑制されやすい。また、成形用原料の密度ρは103(kg/m3)程度であり、成形用原料の分散媒の表面張力γは10-2〜10-1(N/m)程度である。1辺1mの立方体において、スラリー自重により立方体に作用する力Fは、表面張力γによって作用する力と比して105〜106倍である。すなわち、成形用原料の運動において、力Fが支配的である。ここで、力Fは、長さの3乗に比例して減少するのに対して、表面張力γは1乗に比例して減少するから、一辺の長さが1.0×10-6mのときなど、力Fは表面張力γの10-7〜10-6倍となり、両者の関係は逆転し、成形用原料の運動において表面張力γが支配的になる。すなわち、毛管浸透のモデルが浸透の進行・抑制を主として司ることになると考えられる。このため、毛管浸透のモデルを利用して、開気孔32への分散媒の浸透をより容易に考察することができる。この平均気孔径Dは、水銀圧入法で測定した結果を用いるものとする。水銀圧入法による測定条件は、対象となるサンプルを直径8.0×10-3m、厚さ2.0×10-2mの形状に加工し、大気圧から60000psiまで20psi刻みで測定したメディアン径(D50)をいう。また、開気孔32は、平均気孔径D(m)が成形用原料に含まれる粒子の平均粒径φ(m)に対してφ≧Dを満たすように設計されている。この成形用原料に含まれる粒子の平均粒径φ(m)は、レーザ光回折法を用いて測定されたメディアン径(D50)をいうものとする。 The open pores 32 are preferably formed with an average pore diameter D (m) of 1.0 × 10 −7 m or more and 1.0 × 10 −6 m or less, and 2.0 × 10 −7 m or more and 5 or less. More preferably, it is formed to be 0.0 × 10 −7 m or less. Here, it is formed with 3.0 × 10 −7 (m). For example, considering the thickness of the resin layer, if the average pore diameter D is 1.0 × 10 −7 m or more, even if the resin layer 33 is formed on the inner wall of the open pores 32, the open pores 32 are not easily blocked, The gas generated from the molding raw material generated during molding and the dispersion medium contained in the compact can be released from the open pores 32. Moreover, when it is 1.0 × 10 −6 m or less, introduction of particles used as a forming raw material into open pores is easily suppressed. The density ρ of the forming raw material is about 10 3 (kg / m 3 ), and the surface tension γ of the dispersion medium of the forming raw material is about 10 −2 to 10 −1 (N / m). In a cube with a side of 1 m, the force F acting on the cube due to its own weight is 10 5 to 10 6 times the force acting on the surface tension γ. That is, the force F is dominant in the movement of the forming raw material. Here, the force F decreases in proportion to the third power of the length, whereas the surface tension γ decreases in proportion to the first power, so that the length of one side is 1.0 × 10 −6 m. In such a case, the force F is 10 −7 to 10 −6 times the surface tension γ, the relationship between the two is reversed, and the surface tension γ becomes dominant in the movement of the forming raw material. In other words, it is thought that the capillary penetration model mainly governs the progression and suppression of penetration. For this reason, it is possible to more easily consider the penetration of the dispersion medium into the open pores 32 using a capillary penetration model. As this average pore diameter D, the result measured by the mercury intrusion method is used. The measurement condition by the mercury intrusion method is that the target sample is processed into a shape with a diameter of 8.0 × 10 −3 m and a thickness of 2.0 × 10 −2 m, and measured in 20 psi increments from atmospheric pressure to 60000 psi. It refers to the diameter (D50). The open pores 32 are designed such that the average pore diameter D (m) satisfies φ ≧ D with respect to the average particle diameter φ (m) of the particles contained in the forming raw material. The average particle diameter φ (m) of the particles contained in the forming raw material refers to the median diameter (D50) measured using a laser light diffraction method.

樹脂層33は、フッ素樹脂、フッ素樹脂の変性物、シリコン樹脂及びシリコン樹脂の変性物から成る群より選ばれた1種又は2種以上により形成されているのが好ましく、ここでは、フッ素樹脂により形成されている。フッ素樹脂としては、例えば、フルオロアルキルアクリレートポリマー、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、フルオロエチレンビニルエーテル、ポリクロロトリフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー等を好適に利用することができる。この樹脂層33は、樹脂を溶媒に溶解させた樹脂溶解液を浸漬することにより形成されており、開気孔32の平均気孔径D(m)、樹脂溶解液が揮発する時間td(s)、成形用原料が流動性を失うまでの時間ts(s)、外気中の樹脂溶解液の液体の表面張力γd(N/m)、外気中の成形用原料の液体の表面張力γs(N/m)、成形面23,25と樹脂溶解液との接触角θd(°)、成形面23,25と成形用原料との接触角θs(°)、樹脂溶解液の粘度ηd(Pa・s)、成形用原料の粘度ηs(Pa・s)、成形用原料を成形型20に注入する際の圧力P(Pa)、被覆される樹脂層33の厚さh(m)としたとき、この樹脂層33が成形用原料との間で次式(1)を満たすよう形成されていることが好ましい。ここで、式(1)の左辺は樹脂溶解液が開気孔へ浸漬される浸漬距離に関する値を表し、右辺は成形用原料が樹脂層の形成されている開気孔へ浸漬される浸漬距離に関する値を表し、式(1)は樹脂溶解液と成形用原料との浸漬距離の大小関係を表す。こうすれば、成形用原料が開気孔へ浸漬する距離よりも長い範囲の樹脂層を開気孔へ設けることができるため、より確実に成形体を成形することができる。 The resin layer 33 is preferably formed of one or more selected from the group consisting of a fluororesin, a modified fluororesin, a silicone resin, and a modified silicone resin. Is formed. Examples of the fluororesin include fluoroalkyl acrylate polymer, polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, fluoroethylene vinyl ether, polychlorotrifluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene. A copolymer or the like can be suitably used. The resin layer 33 is formed by immersing a resin solution obtained by dissolving a resin in a solvent. The resin layer 33 has an average pore diameter D (m) of the open pores 32 and a time t d (s) for the resin solution to volatilize. , Time t s (s) until the molding raw material loses fluidity, surface tension γ d (N / m) of the liquid resin solution in the outside air, surface tension γ s of the liquid of the molding raw material in the outside air (N / m), contact angle θ d (°) between the molding surfaces 23 and 25 and the resin solution, contact angle θ s (°) between the molding surfaces 23 and 25 and the molding raw material, and viscosity η of the resin solution. d (Pa · s), viscosity η s (Pa · s) of the molding material, pressure P (Pa) when the molding material is injected into the mold 20, and the thickness h (m of the resin layer 33 to be coated ), The resin layer 33 is preferably formed so as to satisfy the following formula (1) with the molding raw material. Here, the left side of the formula (1) represents a value related to the immersion distance in which the resin solution is immersed in the open pores, and the right side is a value related to the immersion distance in which the molding raw material is immersed in the open pores in which the resin layer is formed. Formula (1) represents the magnitude relationship of the immersion distance between the resin solution and the molding raw material. In this way, a resin layer having a longer range than the distance at which the molding raw material is immersed in the open pores can be provided in the open pores, so that the molded body can be more reliably molded.

Figure 0005601780
Figure 0005601780

また、樹脂層33は、開気孔32の屈曲度や断面積の不均一さを表す曲路率f、開気孔32の平均気孔径D(m)、成形用原料が流動性を失うまでの時間t(s)、外気中の成形用原料の液体の表面張力γ(N/m)、成形面23,25と成形用原料との接触角θ(°)、成形用原料の粘度η(Pa・s)、成形用原料を成形型に注入する際の圧力P(Pa)とし、接触角θが0°以上90°未満のとき、樹脂層33を形成すべき深さL(m)が次式(3)を満たすよう形成されていることが好ましい。即ち、接触角θが0°以上90°未満のときに、開気孔32内への液体の浸透現象について管路における毛管浸透をモデル化したOlsson Pihlの式(4)を利用することができる。このOlsson Pihlの式では、直線の管路での毛管浸透のモデルであり、実際の成形型20の開気孔32は曲路率fを有しているから、この曲路率fを考慮すると、樹脂層33を形成すべき最大深さLmaxは、次式(5)で与えられる。また、樹脂層33を最低限形成すべき最小深さLminは、最大深さLmaxの所定割合とするよう見積もられるから、次式(6)を用いることができる。したがって、この最大深さLmaxと最小深さLminによって規定される式(3)を用いて浸透深さLを設定するのである。このようにして、成形用原料の液体が開気孔内へ浸透するのを抑制し、十分な強度を成形体に持たせつつ、例えば成形型20の全体の開気孔32へ樹脂層33を設けるなどする場合に比して、余剰の樹脂層32を成形型20に設けずに済む。なお、曲路率fは、所定の単位長さの試験片の外周をシールし、既知の流体(例えば水など)を浸透させ、深さLを浸透するのに必要な理論時間Tcと、実測時間Tmの比である、Tm/Tcを求め、この値とするものとした。また、上記式(3)を満たすときには、樹脂層32は、接触角θが65°以上85°以下であることが好ましく、80°以上であることがより好ましい。接触角が65°以上85°以下の範囲では、成形用原料の液体が開気孔内へ過度に浸透するのを抑制しやすく濡れ性も悪いため、より確実に成形体を得ることができる。ここで、接触角θは、金属板(ジュラルミン、表面粗さRa=5.0×10-1μm)の表面に樹脂層33を形成し、成形用原料の液体10μLの液滴を垂らし、接触角測定機により計測した値をいう。なお、表面粗さRaは、中心線平均粗さともいい、JIS−B0601に基づいて求めた表面粗さをいう。したがって、上述したように、成形用原料の自重による力Fの影響が毛細管力と比較して略無視できる場合などには、この接触角θと開気孔32の平均気孔径Dとにより、開気孔32内への液体の浸透を防止する構造を設計することができる。 In addition, the resin layer 33 has a curvature f representing the degree of bending and cross-sectional area non-uniformity of the open pores 32, an average pore diameter D (m) of the open pores 32, and a time until the molding material loses fluidity. t (s), surface tension γ (N / m) of the liquid of the molding raw material in the outside air, contact angle θ (°) between the molding surfaces 23 and 25 and the molding raw material, viscosity η (Pa · s), when the pressure P (Pa) when injecting the molding raw material into the molding die and the contact angle θ is 0 ° or more and less than 90 °, the depth L (m) at which the resin layer 33 should be formed is It is preferable to be formed so as to satisfy (3). That is, when the contact angle θ is 0 ° or more and less than 90 °, the Olsson Pihl equation (4) that models the capillary penetration in the conduit for the penetration phenomenon of the liquid into the open pores 32 can be used. In this Olsson Pihl equation, it is a model of capillary penetration in a straight line, and since the actual open pores 32 of the mold 20 have a curvature f, when considering this curvature f, The maximum depth Lmax at which the resin layer 33 is to be formed is given by the following equation (5). Further, since the minimum depth Lmin at which the resin layer 33 should be formed at a minimum is estimated to be a predetermined ratio of the maximum depth Lmax, the following equation (6) can be used. Therefore, the penetration depth L is set using the equation (3) defined by the maximum depth Lmax and the minimum depth Lmin. In this way, for example, the resin layer 33 is provided in the entire open pores 32 of the molding die 20 while preventing the liquid of the molding raw material from penetrating into the open pores and giving the molded body sufficient strength. Compared with the case where it does, it does not need to provide the excessive resin layer 32 in the shaping | molding die 20. FIG. The curvature f is the actual time Tc required for sealing the outer periphery of a test piece having a predetermined unit length, infiltrating a known fluid (for example, water), and infiltrating the depth L, and the actual measurement. Tm / Tc, which is the ratio of time Tm, was determined and used as this value. Moreover, when satisfy | filling said Formula (3), it is preferable that the contact angle (theta) is 65 to 85 degrees, and, as for the resin layer 32, it is more preferable that it is 80 or more. When the contact angle is in the range of 65 ° or more and 85 ° or less, the molding raw material liquid can be easily prevented from penetrating into the open pores, and the wettability is poor. Here, the contact angle θ is determined by forming a resin layer 33 on the surface of a metal plate (duralumin, surface roughness Ra = 5.0 × 10 −1 μm), and dropping a 10 μL droplet of a forming raw material liquid. The value measured by the angle measuring machine. In addition, surface roughness Ra is also called centerline average roughness, and means the surface roughness calculated | required based on JIS-B0601. Therefore, as described above, when the influence of the force F due to the weight of the molding raw material is substantially negligible compared to the capillary force, the open pores are determined by the contact angle θ and the average pore diameter D of the open pores 32. A structure can be designed to prevent liquid penetration into 32.

Figure 0005601780
Figure 0005601780

Figure 0005601780
Figure 0005601780

Figure 0005601780
Figure 0005601780

Figure 0005601780
Figure 0005601780

ここで、樹脂層33の深さLの設定方法について、式(3)を用いて説明する。図2は、成形用原料の粘度ηと毛管浸透のモデルにおける樹脂層33の深さLとの関係を表すプロット図であり、図3は、樹脂層33の平均気孔径Dと毛管浸透のモデルにおける樹脂層33の深さLとの関係を表すプロット図である。ここでは、接触角θが85°(0°以上90°未満)の場合をモデルとして、図2では、平均気孔径Dを2.0×10-7m、時間tを300s、表面張力γを2.0×10-2N/m、成形用原料を成形型に注入する際の圧力Pを1.0×104Pa、曲路率fを3とし、図3では、時間tを300s、表面張力γを2.0×10-2N/m、粘度ηを1Pa・s、成形用原料を成形型に注入する際の圧力Pを1.0×104Pa、曲路率fを3とした場合の式(3)を用いた計算結果を示した。図2に示すように成形用原料の粘度ηに対し、接触角θが85°の樹脂層33を形成する際には、一点鎖線と二点鎖線とに囲まれた範囲に樹脂層33の深さLを設定すればよいことがわかる。同様に、図3に示すように、平均気孔径Dに対し、接触角θが85°の樹脂層33を形成する際には、一点鎖線と二点鎖線とに囲まれた範囲に樹脂層33の深さLを設定すればよい。 Here, a method for setting the depth L of the resin layer 33 will be described using Expression (3). FIG. 2 is a plot showing the relationship between the viscosity η of the molding material and the depth L of the resin layer 33 in the capillary penetration model, and FIG. 3 is a model of the average pore diameter D of the resin layer 33 and the capillary penetration model. It is a plot figure showing the relationship with the depth L of the resin layer 33 in FIG. Here, the case where the contact angle θ is 85 ° (0 ° or more and less than 90 °) is used as a model. In FIG. 2, the average pore diameter D is 2.0 × 10 −7 m, the time t is 300 s, and the surface tension γ is 2.0 × 10 −2 N / m, the pressure P when injecting the molding raw material into the mold is 1.0 × 10 4 Pa, the curvature f is 3, and in FIG. 3, the time t is 300 s, The surface tension γ is 2.0 × 10 −2 N / m, the viscosity η is 1 Pa · s, the pressure P when the molding material is injected into the mold is 1.0 × 10 4 Pa, and the curvature f is 3 The calculation result using the formula (3) is shown. As shown in FIG. 2, when forming the resin layer 33 having a contact angle θ of 85 ° with respect to the viscosity η of the forming raw material, the depth of the resin layer 33 is within the range surrounded by the alternate long and short dash line. It can be seen that the length L may be set. Similarly, as shown in FIG. 3, when the resin layer 33 having a contact angle θ of 85 ° with respect to the average pore diameter D is formed, the resin layer 33 is within a range surrounded by the alternate long and short dash line. The depth L may be set.

成形型20は、気孔率が10%以上50%以下で形成するのが好ましく、15%以上25%以下で形成するのがより好ましい。気孔率が10%以上では、開気孔32の容積を十分確保可能であり、気孔率50%以下では、成形型20の強度を確保しやすい。気孔率は成形型の材質と気孔径、成形用原料に含まれる分散媒の揮発性によって最適値が変化する。ここで、成形型20の気孔率は全体が必ずしも均一である必要はなく、例えば気孔率が成形型20の外側に行くにつれて大きくなるといった気孔率の勾配があっても問題はない。気孔率はかさ密度から計算によって求めた。また、成形面23の面積S0(m2)に対する開気孔32の面積S1(m2)の比率であるS1/S0は、5%以上25%以下であることが好ましく、10%以上15%以下であることがより好ましい。5%以上では、成形用原料及び成形体からの分散媒が揮発し気体として外部に抜けやすく好ましく、20%以下では、成形体の表面の粗さを抑制することができ、好ましい。この面積S0,S1は、SEMにより倍率10000倍で対象の領域の画像を取得し縦7.5×10-6m、横1.0×10-5mのサイズの画像を対象にして観察し、対象領域の異なる10ヶ所で画像を測定し、その平均値から求めるものとした。 The mold 20 is preferably formed with a porosity of 10% to 50%, more preferably 15% to 25%. When the porosity is 10% or more, a sufficient volume of the open pores 32 can be secured, and when the porosity is 50% or less, the strength of the mold 20 is easily secured. The optimum value of the porosity varies depending on the material of the mold, the pore diameter, and the volatility of the dispersion medium contained in the molding material. Here, the porosity of the mold 20 does not necessarily have to be uniform as a whole. For example, there is no problem even if there is a porosity gradient such that the porosity increases toward the outside of the mold 20. The porosity was calculated from the bulk density. Further, S1 / S0, which is the ratio of the area S1 (m 2 ) of the open pores 32 to the area S0 (m 2 ) of the molding surface 23, is preferably 5% or more and 25% or less, and is preferably 10% or more and 15% or less. It is more preferable that If it is 5% or more, the dispersion medium from the molding raw material and the molded body is preferably volatilized and easily escapes to the outside as a gas, and if it is 20% or less, the surface roughness of the molded body can be suppressed. The areas S0 and S1 are obtained by acquiring an image of a target region with a magnification of 10,000 times by SEM and observing an image having a size of 7.5 × 10 −6 m and 1.0 × 10 −5 m in width. The images were measured at 10 different locations in the target area and obtained from the average value.

次に、この成形型20の作製方法について説明する。まず、開気孔32を有する塊状の部材を用意する。この部材としては、多孔質金属、樹脂材料、スポンジや等方性特殊炭素材料などが挙げられ、このうち加工性及び機械的強度が高いものが好ましく、多孔質金属、等方性特殊炭素材料などが好適である。開気孔の有無の確認は、例えば、型部材の側面をシールし、シールしていない一方の面に空気や水などの流体を加圧して供給し、他方の面から排出されるか否かを確認することにより行うことができる。この部材を、図1に示すように、成形体を成形する空間に相当する成形体形成部30となるように、任意形状に加工して成形面23,25を形成する。この加工は、切削、レーザ加工など、加工する部材に合わせて適宜選択することができる。次に、開気孔32へ樹脂層33を形成する。図4は、樹脂層33を開気孔32に形成する説明図である。図4(a)に示すように、成形面23を形成したあと、接触角θの大きな樹脂を溶剤に溶解した樹脂溶液33aを成形面23から上記設定した深さLまで含浸させる(図4(b))。この樹脂溶液33aの含浸方法としては、樹脂溶液33a中への成形型20のディッピング、樹脂溶液33aの成形型へのスプレー、成形面23への塗布などの方法によって行うことができる。このとき、真空引きを行い、開気孔32内部へ強制的に樹脂溶液33aを引き込んでもよい。その後、樹脂溶液33aの溶剤を揮発させると、開気孔32の内壁が樹脂層33により被覆される(図4(c))。なお、樹脂溶液33aに含まれる樹脂分は、例えば0.3体積%〜10体積%程度(又は例えば3重量%程度)と少ないことから、開気孔32の内壁を被覆する樹脂層33は、薄膜として形成され、開気孔32が埋められにくい。こうして、成形用原料に含まれる液体は開気孔32へ導入されずに成形用原料及び成形体に含まれる分散媒から揮発する気体は開気孔32から排出可能な成形型20を作製することができる。   Next, a method for producing the mold 20 will be described. First, a massive member having open pores 32 is prepared. Examples of this member include porous metals, resin materials, sponges, isotropic special carbon materials, etc. Among them, those having high workability and mechanical strength are preferable, porous metals, isotropic special carbon materials, etc. Is preferred. Confirmation of the presence or absence of open pores is, for example, whether or not the side surface of the mold member is sealed, a fluid such as air or water is pressurized and supplied to one unsealed surface, and discharged from the other surface. This can be done by checking. As shown in FIG. 1, this member is processed into an arbitrary shape so as to form a molded body forming portion 30 corresponding to a space for molding the molded body, thereby forming molding surfaces 23 and 25. This processing can be appropriately selected according to the member to be processed, such as cutting or laser processing. Next, the resin layer 33 is formed in the open pores 32. FIG. 4 is an explanatory diagram for forming the resin layer 33 in the open pores 32. As shown in FIG. 4A, after forming the molding surface 23, a resin solution 33a obtained by dissolving a resin having a large contact angle θ in a solvent is impregnated from the molding surface 23 to the set depth L (FIG. 4 ( b)). The resin solution 33a can be impregnated by a method such as dipping the molding die 20 into the resin solution 33a, spraying the resin solution 33a onto the molding die, or coating the molding surface 23. At this time, evacuation may be performed to forcibly draw the resin solution 33 a into the open pores 32. Thereafter, when the solvent of the resin solution 33a is volatilized, the inner walls of the open pores 32 are covered with the resin layer 33 (FIG. 4C). In addition, since the resin content contained in the resin solution 33a is as small as, for example, about 0.3% by volume to 10% by volume (or, for example, about 3% by weight), the resin layer 33 covering the inner walls of the open pores 32 is a thin film. The open pores 32 are difficult to be filled. Thus, the molding die 20 can be produced in which the liquid contained in the molding raw material is not introduced into the open pores 32 but the gas volatilized from the molding raw material and the dispersion medium contained in the molded body can be discharged from the open pores 32. .

次に、この成形型20を用いて成形体を製造する方法について説明する。この成形体の製造方法は、液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製する調製工程と、上述したいずれか1つに記載の成形型へ調製した成形用原料を注入し所定形状の成形体を成形する成形工程と、成形型から成形体を離型する離型工程とを含むものである。まず、調整工程では、成形用原料を調製する。成形用原料は、粒子と硬化成分としての有機化合物とを含み、有機化合物相互の化学反応により硬化する周知の自己硬化性の成形用原料を用いることができる。このような成形用原料は、粒子のほか、分散媒、ゲル化剤を含み、粘性や硬化反応調整のため分散剤、触媒などを含んでいてもよい。ここでは、粒子を例えばアルミナなどとし、分散媒を水とし、ゲル化剤としてウレタン系の有機化合物とする自己硬化性の成形用原料を用いるものとした。こうすれば、ウレタン反応する成形用原料を用いて、処理時間をより短縮すると共に、より確実に成形体を成形することができる。なお、成形用原料としては、上記の成形用原料にかかわらず、種々のものを用いることができる。   Next, a method for producing a molded body using the mold 20 will be described. The method for producing the molded body includes a preparation step of preparing a flowable and self-curing molding raw material containing liquid and particles, and a molding raw material prepared in any one of the above-described molding dies. And a molding step for molding a molded body of a predetermined shape, and a mold release step for releasing the molded body from the molding die. First, in the adjusting step, a forming raw material is prepared. As the molding material, a well-known self-curing molding material that contains particles and an organic compound as a curing component and cures by a chemical reaction between the organic compounds can be used. Such a forming raw material contains, in addition to particles, a dispersion medium and a gelling agent, and may contain a dispersing agent, a catalyst and the like for adjusting viscosity and curing reaction. Here, for example, self-curing molding raw material is used in which the particles are alumina, the dispersion medium is water, and the urethane organic compound is used as a gelling agent. If it carries out like this, while using the raw material for shaping | molding which reacts with urethane, processing time can be shortened more and a molded object can be shape | molded more reliably. In addition, as a raw material for shaping | molding, various things can be used irrespective of said raw material for shaping | molding.

次に、成形工程では、この成形型20へ成形用原料を注入して成形体を成形する。まず、下型22と上型24とプレート26とを組み付けて成形型20とし、調製した成形用原料を注入口27から注入する。すると、注入路24aを介して成形体形成部30へ成形用原料が流入する。なお、成形用原料の注入であるが、成形用原料を加圧して注入口27から成形体形成部30へ供給することが、より十分な充填や複雑な形状のものを成形することを考慮する上では好ましい。成形用原料を成形体形成部30へ注入したときに、成形型20の成形面23,25に形成されている開気孔32への成形用原料の浸透が樹脂層33により抑制される。ここで、成形用原料が開気孔32へ浸透してしまうと、例えば、十分に硬化反応が進行しないうちに、成形用原料に含まれるゲル化剤が成形型20側へ移動してしまうから、成形体に十分な強度を付与することができないことがある。ここでは、樹脂層33により成形用原料が開気孔32へ過度に浸透するのを抑制可能であるため、これらのような問題の発生を抑制可能である。続いて、成形用原料を注入していくと、成形体形成部30を満たしたあと成形用原料の余剰分が、排出路24bを介して排出口28から排出される。成形用原料を成形体形成部30へ充填したあと、例えば室温で所定の化学反応により、成形用原料を硬化させ成形体を得る。このとき、成形用原料及び成形体に含まれる分散媒から揮発する気体などが、開気孔32を通過して外部空間へ放出される。なお、室温での硬化反応で十分な強度が得られない場合には、下型22,上型24,プレート26を組み付けた状態で、成形型20を加熱、又は冷却して硬化反応を進行させてもよい。ここで、通気性がない成形型において複数の部材を組み付けた状態で硬化温度とする場合には、成形用原料及び成形体に含まれる分散媒から揮発する気体は成形型から排出されにくいことがあり、成形体の硬化反応が不十分で破損してしまったり、一定量以上に揮発し難く乾燥に多くの時間を要するなどの場合がある。ここでは、開気孔32から気体として排出可能であるから、成形型20の複数の部材を組み付けた状態で硬化反応を促進可能であるから、一層処理時間を短縮することができる。成形用原料の硬化反応が終了すると、プレート26を離型し、下型22、上型24から成形体を離型する離型工程を経て、成形体形成部30に形成された成形体を得る。この際、濡れ性の悪い樹脂層33が表面に存在することから成形体を成形型から離型する際の離型応力を小さくすることが可能である。また開気孔の存在により空気が侵入しにくい形状の場合でも、真空の効果を受けることなく離型することができる。この離型工程では、開気孔32から流体を圧入し強制的に所定方向から離型させるものとしてもよい。こうすれば、流体の圧入により成形体をより容易に離型することができる。ここで、「流体」は、例えば水や有機溶媒などの液体としてもよいし、空気や窒素ガスなどの気体としてもよく、このうち気体がより好ましい。この成形体は、必要に応じて残留分散媒の揮発を乾燥温度(例えば130℃)で所定時間行ってもよい。得られた成形体は、必要であれば仮焼して脱脂し、構成される材料や用途などに応じた焼成温度で焼成する。このように、硬化反応中の成形体を成形型20内に納めたままで、成形体の硬化反応の進行と、成形体に含まれている分散媒の揮発とを並列的に進行させ、より確実に成形体が得られる方法で成形工程を実行するのである。   Next, in the molding step, a molding material is molded by injecting a molding material into the molding die 20. First, the lower die 22, the upper die 24 and the plate 26 are assembled to form the molding die 20, and the prepared molding raw material is injected from the injection port 27. Then, the forming raw material flows into the formed body forming portion 30 through the injection path 24a. In addition, although it is injection | pouring of the shaping | molding raw material, it considers shaping | molding the thing of more sufficient filling or a complicated shape to pressurize and supply the shaping | molding raw material to the molded object formation part 30 from the injection port 27. Preferred above. When the molding material is injected into the molded body forming unit 30, the resin layer 33 suppresses the penetration of the molding material into the open pores 32 formed in the molding surfaces 23 and 25 of the molding die 20. Here, if the forming raw material penetrates into the open pores 32, for example, the gelling agent contained in the forming raw material moves to the mold 20 side before the curing reaction sufficiently proceeds. In some cases, sufficient strength cannot be imparted to the molded body. Here, since it is possible to suppress excessive penetration of the molding material into the open pores 32 by the resin layer 33, it is possible to suppress the occurrence of such problems. Subsequently, when the molding material is injected, the surplus of the molding material is discharged from the discharge port 28 through the discharge path 24b after the molded body forming portion 30 is filled. After the molding material is filled into the molded body forming unit 30, the molding material is cured by a predetermined chemical reaction at room temperature, for example, to obtain a molded body. At this time, the gas volatilized from the dispersion medium contained in the forming raw material and the formed body passes through the open pores 32 and is discharged to the external space. When sufficient strength cannot be obtained by the curing reaction at room temperature, the curing reaction is advanced by heating or cooling the molding die 20 with the lower die 22, the upper die 24, and the plate 26 assembled. May be. Here, when the curing temperature is set in a state where a plurality of members are assembled in a non-breathable molding die, the gas volatilized from the molding material and the dispersion medium contained in the molded body may not be easily discharged from the molding die. In some cases, the molded body may be damaged due to insufficient curing reaction, or it may be difficult to evaporate to a certain amount or more and take a long time for drying. Here, since the gas can be discharged as gas from the open pores 32, the curing reaction can be promoted in a state where a plurality of members of the mold 20 are assembled, so that the processing time can be further shortened. When the curing reaction of the molding raw material is completed, the plate 26 is released, and a molded body formed in the molded body forming portion 30 is obtained through a mold release process in which the molded body is released from the lower mold 22 and the upper mold 24. . At this time, since the resin layer 33 having poor wettability is present on the surface, it is possible to reduce the release stress when the molded body is released from the mold. Moreover, even when the shape is such that air does not easily enter due to the presence of the open pores, the mold can be released without receiving a vacuum effect. In this mold release step, fluid may be press-fitted from the open pores 32 and forcedly released from a predetermined direction. If it carries out like this, a molded object can be released more easily by press injection of a fluid. Here, the “fluid” may be a liquid such as water or an organic solvent, or may be a gas such as air or nitrogen gas, of which a gas is more preferable. This molded body may be subjected to volatilization of the residual dispersion medium at a drying temperature (for example, 130 ° C.) for a predetermined time if necessary. The obtained molded body is calcined and degreased if necessary, and fired at a firing temperature according to the material and use. In this way, while the molded body undergoing the curing reaction is kept in the molding die 20, the progress of the curing reaction of the molded body and the volatilization of the dispersion medium contained in the molded body proceed in parallel, thereby ensuring more certainty. The molding step is executed by a method that can obtain a molded body.

ここで、成形工程の前に、成形型20の繰り返し使用により樹脂層33が剥離や劣化した際には、図4に示すように、成形型20の開気孔32へ樹脂溶液33aを供給して開気孔32へ樹脂層33を形成させる樹脂層形成工程を実行してもよい。こうすれば、樹脂層33を確実に形成することにより、より確実に成形用原料の液体が開気孔内へ浸透するのを抑制し、より十分な強度を成形体に持たせることができる。また、成形型の使用により樹脂層33が剥離などした場合に容易にそれを修復することができる。ここで、開気孔32が形成されていない成形型では、離型剤などを表面に塗布することがあるが、均一に離型剤層を形成することが困難である。成形型20では、樹脂溶液33aが開気孔32へ浸透するため、成形面23,25がより容易に平滑な面となる。なお、樹脂層形成工程は、調製工程の前に行うことが好ましい。   Here, before the molding step, when the resin layer 33 is peeled off or deteriorated due to repeated use of the mold 20, the resin solution 33 a is supplied to the open pores 32 of the mold 20 as shown in FIG. 4. A resin layer forming step of forming the resin layer 33 in the open pores 32 may be executed. In this way, by reliably forming the resin layer 33, it is possible to more reliably suppress the liquid of the molding raw material from penetrating into the open pores and to give the molded body a more sufficient strength. Further, when the resin layer 33 is peeled off by using a mold, it can be easily repaired. Here, in a mold in which the open pores 32 are not formed, a release agent or the like may be applied to the surface, but it is difficult to form a release agent layer uniformly. In the mold 20, the resin solution 33 a penetrates into the open pores 32, so that the molding surfaces 23 and 25 become smooth surfaces more easily. In addition, it is preferable to perform a resin layer formation process before a preparation process.

以上詳述した本実施形態の成形型20によれば、液体と粒子とを含み自己硬化性を有する成形用原料を注入すると、成形用原料が開気孔32に導入されてしまうのを、成形面23,25から深さLまで形成された樹脂層33により抑制しつつ、成形用原料及び成形体に含まれる分散媒から揮発する気体は、開気孔32から外部空間へ通過させる。このように、成形型内で十分に硬化反応の進行と成形体に含まれる分散媒の揮発とを同時に実行可能であるため、処理時間をより短縮することができる。また、十分な強度を有してしない状態で成形型20の一部を離型し硬化反応が不十分な成形体を外気にさらすことにより成形体に含まれる分散媒の揮発を早めるようなことを抑制可能であるため、成形体に十分な強度を持たせてから離型することが可能である。また、外部に連通する開気孔を有しているため成形体と成形型の間に空気が入り難く成形体を成形型から離型する際に離型応力が大きくなることを抑制可能である。さらに、被覆されている樹脂は濡れ性が悪いため、成形体を成形型から離型する際に離型応力を小さくすることが可能である。以上から、その破損などを抑制し、より確実に成形体を成形することができる。また、式(3),(4)を満たすような深さLまで樹脂層33が開気孔32の内壁に形成されているため、開気孔内への液体の浸透現象を管路における毛管現象にモデル化したOlsson Pihlの式を利用して、より確実に成形用原料の液体が開気孔内へ浸透するのを抑制し、より十分な強度を成形体に持たせることができるし、余剰の樹脂層33を成形型20に設けずに済む。更に、開気孔32は、平均気孔径Dが3.0×10-7mに形成されているため、樹脂層33などにより開気孔が閉塞されてしまうのを抑制しやすく、毛細管力による液体の浸透モデルを元に液体の浸透を考察でき、成形用原料の液体が開気孔内へ浸透する距離を算出し、それを抑制することができる。更にまた、開気孔32は、平均気孔径D(m)が粒子の平均粒径φ(m)以下に形成されているため、開気孔32に粒子が入り込み開気孔32を閉塞してしまうのをより抑制することができる。そしてまた、成形用原料に含まれる液体が開気孔32に浸透してしまうのを、接触角θの大きなフッ素樹脂を利用して比較的容易に防止することができる。 According to the molding die 20 of the present embodiment described in detail above, when a molding raw material containing liquid and particles and having self-curing properties is injected, the molding raw material is introduced into the open pores 32. While being suppressed by the resin layer 33 formed from 23 and 25 to the depth L, the gas volatilized from the dispersion medium contained in the raw material for molding and the molded body is passed through the open pores 32 to the external space. As described above, since the progress of the curing reaction and the volatilization of the dispersion medium contained in the molded body can be performed simultaneously in the mold, the processing time can be further shortened. Further, the volatilization of the dispersion medium contained in the molded body is accelerated by releasing a part of the mold 20 in a state where it does not have sufficient strength and exposing the molded body with insufficient curing reaction to the outside air. Therefore, it is possible to release the mold after giving the molded body sufficient strength. Moreover, since it has open pores communicating with the outside, it is difficult for air to enter between the molded body and the mold, and it is possible to suppress an increase in mold release stress when the molded body is released from the mold. Furthermore, since the coated resin has poor wettability, the release stress can be reduced when the molded body is released from the mold. From the above, it is possible to suppress the breakage and the like and more reliably form the molded body. In addition, since the resin layer 33 is formed on the inner wall of the open pore 32 to a depth L that satisfies the expressions (3) and (4), the liquid permeation phenomenon into the open pore is converted into a capillary phenomenon in the pipeline. By using the modeled Olsson Pihl equation, the molding raw material liquid can be more reliably prevented from penetrating into the open pores, and the molded body can be provided with a sufficient strength. It is not necessary to provide the layer 33 on the mold 20. Furthermore, since the open pores 32 are formed with an average pore diameter D of 3.0 × 10 −7 m, it is easy to prevent the open pores from being blocked by the resin layer 33 or the like, and the liquid pores due to the capillary force can be prevented. The penetration of the liquid can be considered based on the penetration model, and the distance through which the liquid of the forming raw material penetrates into the open pores can be calculated and suppressed. Furthermore, since the open pores 32 are formed so that the average pore diameter D (m) is equal to or less than the average particle diameter φ (m) of the particles, the particles enter the open pores 32 and block the open pores 32. It can be suppressed more. Further, it is possible to relatively easily prevent the liquid contained in the forming raw material from penetrating into the open pores 32 by using a fluororesin having a large contact angle θ.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、式(5),(6)を用いて樹脂層33を形成する深さLの範囲などを求めるものとしたが、式(6)を省略してもよいし、式(5),(6)を省略して深さLを設定するものとしてもよい。開気孔32へ成形用原料が浸透しない所定領域まで樹脂層33が形成されていればよい。   For example, in the above-described embodiment, the range of the depth L in which the resin layer 33 is formed is calculated using the formulas (5) and (6), but the formula (6) may be omitted. The depth L may be set by omitting the expressions (5) and (6). It is only necessary that the resin layer 33 is formed up to a predetermined area where the molding raw material does not penetrate into the open pores 32.

上述した実施形態では、図4に示すように、成形面23を形成したあとの部材が有する開気孔32へ樹脂溶液33aを用いて樹脂層33を形成する成形型20を作製するものとしたが、図5に示すように、表面を樹脂層43で被覆した部材粒子41を用意し、この部材粒子41を例えばプレス成形や鋳込み成形などにより成形することにより開気孔42に樹脂層43を形成し任意の形状の成形面44を有する成形型50を作製するものとしてもよい。即ち、成形型50は、成形体の形状とする成形面44を形成するように部材粒子41を成形して形成されており、樹脂層43は、部材粒子41の表面を樹脂で被覆することにより形成されている。こうしても、成形・乾燥の処理時間をより短縮すると共に、より確実に成形体を成形することができる。この部材粒子41は、金属粉末(例えば鉄やチタンなど水銀圧入法を用いて測定するためアマルガムを作らないものが好ましい。)、樹脂粉末(ポリエチレンやポリイミド、アクリル系樹脂、メラミン系樹脂など)、セラミックス粉末(アルミナやジルコニアなど)などを用いることができる。樹脂層43は、上述した樹脂層33と同様の材質を用いることができる。また、部材粒子41を成形型50に成形するとき、樹脂層43で被覆した部材粒子41を深さLまでとし、それより深い部分を樹脂層43で被覆しない部材粒子41を用いて行ってもよい。こうすれば、余剰の樹脂層43を形成するのを抑制可能である。このとき、樹脂層43で被覆した部材粒子41と樹脂層43で被覆しない部材粒子41との配合比を変化させ、成形面44へ近づくほど樹脂層43がより多く存在するように成形型50を作製してもよい。   In the above-described embodiment, as shown in FIG. 4, the molding die 20 is manufactured in which the resin layer 33 is formed using the resin solution 33 a in the open pores 32 of the member after the molding surface 23 is formed. As shown in FIG. 5, member particles 41 whose surfaces are covered with a resin layer 43 are prepared, and the resin particles 43 are formed in the open pores 42 by molding the member particles 41 by, for example, press molding or cast molding. It is good also as what produces the shaping | molding die 50 which has the molding surface 44 of arbitrary shapes. That is, the molding die 50 is formed by molding the member particles 41 so as to form the molding surface 44 in the shape of a molded body, and the resin layer 43 is formed by coating the surface of the member particles 41 with a resin. Is formed. Even if it does in this way, while processing time of shaping | molding / drying can be shortened more, a molded object can be shape | molded more reliably. The member particles 41 are metal powders (for example, those that do not make amalgam because they are measured using a mercury intrusion method such as iron and titanium), resin powders (polyethylene, polyimide, acrylic resins, melamine resins, etc.), Ceramic powder (such as alumina or zirconia) can be used. The resin layer 43 can be made of the same material as the resin layer 33 described above. Further, when the member particles 41 are molded into the molding die 50, the member particles 41 covered with the resin layer 43 may be made up to the depth L, and the deeper portions may be used with the member particles 41 not covered with the resin layer 43. Good. By so doing, it is possible to suppress the formation of the excessive resin layer 43. At this time, the compounding ratio of the member particles 41 covered with the resin layer 43 and the member particles 41 not covered with the resin layer 43 is changed, and the molding die 50 is arranged so that the resin layer 43 is more present as the molding surface 44 is approached. It may be produced.

このとき、成形型50では、開気孔42の屈曲度や断面積の不均一さを表す曲路率f、開気孔42の平均気孔径D(m)、成形用原料が流動性を失うまでの時間t(s)、外気中の成形用原料の液体の表面張力γ(N/m)、前記成形面と前記成形用原料との接触角θ(°)、前記成形用原料の粘度η(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)とし、接触角θが0°以上90°未満のとき、樹脂層43の形成される深さL(所定範囲)として、成形面44から次式(2)で表される深さまで部材粒子41により構成されているものとしてもよい。こうすれば、接触角θが0°以上90°未満のときに、開気孔内への液体の浸透現象を管路における毛管現象にモデル化したOlsson Pihlの式(4)に対して曲路率fを含むパラメータを乗じて得られる式(2)を利用して、成形用原料が開気孔42へ浸透する距離以上の樹脂層43を設けることができるから、より確実に成形体を成形することができる。   At this time, in the molding die 50, the curvature f representing the degree of bending of the open pores 42 and the non-uniform cross-sectional area, the average pore diameter D (m) of the open pores 42, and until the forming raw material loses fluidity. Time t (s), surface tension γ (N / m) of the liquid of the molding raw material in the outside air, contact angle θ (°) between the molding surface and the molding raw material, viscosity η (Pa S), the pressure P (Pa) when the molding raw material is poured into the mold, and the depth L (predetermined range) where the resin layer 43 is formed when the contact angle θ is 0 ° or more and less than 90 ° ), It may be constituted by the member particles 41 from the molding surface 44 to the depth represented by the following formula (2). In this way, when the contact angle θ is 0 ° or more and less than 90 °, the curvature is in contrast to the Olsson Pihl equation (4) in which the liquid penetration into the open pores is modeled as a capillary phenomenon in the pipeline. By using the formula (2) obtained by multiplying the parameter including f, the resin layer 43 having a distance that allows the molding raw material to permeate the open pores 42 can be provided, so that the molded body can be molded more reliably. Can do.

Figure 0005601780
Figure 0005601780

上述した実施形態では、成形面23及び成形面25における開気孔32の面積について説明しなかったが、例えば、成形工程では、成形面における開気孔面積の異なる2以上の成形型部材を有する成形型(上型24や下型22)を用いて所定形状の成形体を成形し、離型工程では、各成形面における開気孔面積の違いを利用して所定の順序で2以上の成形型と成形体とを離型するものとしてもよい。例えば、図1において、下型22から離型した方が成形体の破損が少ないことが経験的にわかっている場合などには、下型22の開気孔32の面積を上型24に比して大きくし、下型22側を離型しやすくすることができる。こうすれば、開気孔32の面積を利用して比較的容易に離型する順序を定めることができ、例えば成形体の破損などをより低減してより確実に成形体を成形することができる。このとき、例えば、下型22の成形面23の面積と、上型24の成形面25の面積を考慮して各成形型部材の開気孔32の面積を設定するものとする。なお、下型22の成形面23の面積と上型24の成形面25の面積とを同じ面積とすると、各下型22,上型24の開気孔32の面積の設定がしやすい。また、開気孔面積を調整する手段としては、開気孔32を有する多孔質体を利用して成形型を作製する場合には、この多孔質体の気孔率を調整することなどが考えられる。また、樹脂で被覆した部材粒子を使用して成形型を作製する場合には、元となる部材粒子の粒径を変えることなどが考えられる。   In the embodiment described above, the area of the open pores 32 on the molding surface 23 and the molding surface 25 has not been described. For example, in the molding process, a molding die having two or more molding die members having different open pore areas on the molding surface. A molded body having a predetermined shape is formed using (the upper mold 24 and the lower mold 22), and two or more molding dies are formed in a predetermined order using a difference in open pore area on each molding surface in the mold release process. It is good also as what releases a body. For example, in FIG. 1, when it is empirically known that the molded body is less damaged when released from the lower mold 22, the area of the open pores 32 of the lower mold 22 is compared with that of the upper mold 24. The lower mold 22 side can be easily released. By so doing, it is possible to determine the order of mold release relatively easily using the area of the open pores 32, and for example, it is possible to more reliably form the molded body by reducing damage to the molded body. At this time, for example, the area of the open hole 32 of each mold member is set in consideration of the area of the molding surface 23 of the lower mold 22 and the area of the molding surface 25 of the upper mold 24. If the area of the molding surface 23 of the lower mold 22 and the area of the molding surface 25 of the upper mold 24 are the same, it is easy to set the area of the open holes 32 of the lower mold 22 and the upper mold 24. Further, as a means for adjusting the open pore area, when a mold is produced using a porous body having the open pores 32, it is conceivable to adjust the porosity of the porous body. Moreover, when producing a shaping | molding die using the member particle | grains coat | covered with resin, changing the particle size of the original member particle | grain etc. can be considered.

以下には、成形型20を具体的に作製した例を、実験例として説明する。   Below, the example which produced the shaping | molding die 20 concretely is demonstrated as an experiment example.

[実験例1]
開気孔のない金属(ジュラルミン)を加工して成形面を設け、図1に示すような成形体形成部を形成した成形型を作製し、この成形面の表面に接触角θが85°のフッ素樹脂を塗布し、乾燥させ深さLが0mの樹脂層(表面のみのコート)を形成した。接触角θは、ジュラルミンA7075(表面粗さRa=5.0×10-1μm)の表面に樹脂層を形成し、成形用原料を10μL滴下し、接触角測定機を用いて計測を行いこの計測を3回行った平均値として求めた。これを実験例1の成形型とした。なお、表面粗さRaは、中心線平均粗さともいい、JIS−B0601に基づいて求めた。成形用原料は、粒子をアルミナ粒子(平均粒径が5.0×10-7m)、分散媒として有機2塩基酸エステルを用い、ゲル化剤としてイソシアネート、ポリオールを用い、更に、分散剤、触媒を添加することで、その粘度を1Pa・sに調整した。粒子の平均粒径は、粒子(屈折率1.7)を分散媒(屈折率1.4)に分散させ、レーザー回折/散乱式粒度分布測定器を用いて測定した。測定はバッチセル方式で行い、透過率は約80%となるように粒子量を調整した。測定結果は5.00×10-8〜2.62×10-4mを64分割(分割幅は1.00×10-8〜3.33×10-5m)した頻度分布、累積分布、メディアン径(D50)、90%粒径を出力した。平均粒径の測定は、同様の粒子に対して3回行い、メディアン径の平均値として求めた。この成形用原料の表面張力γは、2.0×10-2(N/m)であった。粒子の平均粒径は、メディアン径(D50)として求めた。この調製した成形用原料を実験例1の成形型に、注入する際の圧力Pを1.0×104Paで注入し、50℃で、硬化時間60分、120分、180分の3パターンについて各12個のサンプルを作製した。各々の硬化時間の経過後に離型し、各成形体の状態を実体顕微鏡により観察した。その結果を表1に示す。この表1には、基材と、樹脂層の接触角(°)、樹脂深さL(m)、各硬化時間における、サンプル数に対する良品の評価値を示し、後述する実験例2〜15についての実験結果も示した。なお、良品の評価値は、離型後の成形体の歩留まりが90%以上を「○」、90%未満を「×」として評価した。
[Experimental Example 1]
A metal with no open pores (duralumin) is processed to provide a molding surface, and a molding die having a molded body forming portion as shown in FIG. 1 is produced. Fluorine having a contact angle θ of 85 ° on the surface of the molding surface Resin was applied and dried to form a resin layer having a depth L of 0 m (coating only on the surface). The contact angle θ is measured by using a contact angle measuring machine by forming a resin layer on the surface of duralumin A7075 (surface roughness Ra = 5.0 × 10 −1 μm), dropping 10 μL of a molding material. It calculated | required as an average value which measured 3 times. This was used as the mold of Experimental Example 1. In addition, surface roughness Ra is also called centerline average roughness and was calculated | required based on JIS-B0601. The raw material for molding is alumina particles (average particle size is 5.0 × 10 −7 m), organic dibasic acid ester is used as a dispersion medium, isocyanate and polyol are used as a gelling agent, a dispersant, The viscosity was adjusted to 1 Pa · s by adding a catalyst. The average particle size of the particles was measured by dispersing the particles (refractive index 1.7) in a dispersion medium (refractive index 1.4) and using a laser diffraction / scattering particle size distribution analyzer. The measurement was performed by a batch cell method, and the amount of particles was adjusted so that the transmittance was about 80%. The measurement results are a frequency distribution, a cumulative distribution obtained by dividing 5.00 × 10 −8 to 2.62 × 10 −4 m into 64 (division width is 1.00 × 10 −8 to 3.33 × 10 −5 m), The median diameter (D50) and 90% particle diameter were output. The average particle diameter was measured three times for similar particles, and the average value of the median diameter was obtained. The molding material had a surface tension γ of 2.0 × 10 −2 (N / m). The average particle diameter of the particles was determined as the median diameter (D50). The prepared molding material is injected into the mold of Experimental Example 1 at a pressure P of 1.0 × 10 4 Pa, and at 50 ° C., a curing time of 60 minutes, 120 minutes, and 3 patterns of 180 minutes. Twelve samples were prepared for each. After each curing time, the mold was released, and the state of each molded body was observed with a stereomicroscope. The results are shown in Table 1. This Table 1 shows the evaluation values of non-defective products with respect to the number of samples in the base material, the contact angle (°) of the resin layer, the resin depth L (m), and each curing time. The experimental results were also shown. In addition, the evaluation value of the non-defective product was evaluated as “◯” when the yield of the molded body after mold release was 90% or more, and “X” when less than 90%.

Figure 0005601780
Figure 0005601780

[実験例2]
開気孔を有する多孔質金属を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが85°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層の深さLが5.0×10-5mまで形成した以外は、実験例1と同様の処理を行い、実験例2の成形型を作製し、これを用いて実験例1と同様に成形体を作製した。開気孔の平均気孔径Dは、樹脂層を形成する前の成形型について、水銀ポロシメータにより水銀圧入法で測定した。対象とするサンプルを直径8.0×10-3m、厚さ2.0×10-2m形状のサンプルに加工し、前処理(5分間の真空引き)を行う。前処理の終わったサンプルを測定器にセットし常温で大気圧から60000psiまで20psi刻みで測定し、メディアン径(D50)を得た。同様の測定を5サンプルに対して行い、その平均値を求めた。その結果、平均気孔径Dは、2.0×10-7m(平均気孔半径rが1.0×10-7m)であった。また、樹脂層の深さLは、SEMにより倍率100倍で画像を取得し縦7.5×10-4m、横1.0×10-3mのサイズの画像を対象にして行った。対象領域の異なる5ヶ所で画像を取得し各画像から無作為に2点を測定し計10点に対して測定しその平均値を平均気孔径Dとした。また、実験例2は、曲路率fが3であった。この曲路率fは、所定の単位長さの試験片の外周をシールし水を浸透させ深さLを浸透するのに必要な理論時間Tcと、実測時間Tmとの比である、Tm/Tcを求め、これを曲路率fとした。
[Experiment 2]
A porous metal having open pores is processed to provide a molding surface to produce a molding die. A fluororesin having a contact angle θ of 85 ° is applied to the surface of the molding surface by spraying and dried to obtain a resin layer depth L Except that it was formed up to 5.0 × 10 −5 m, the same treatment as in Experimental Example 1 was performed, and a molding die of Experimental Example 2 was produced, and a molded body was produced in the same manner as in Experimental Example 1 using this. . The average pore diameter D of the open pores was measured by a mercury intrusion method using a mercury porosimeter with respect to the mold before forming the resin layer. The target sample is processed into a sample having a diameter of 8.0 × 10 −3 m and a thickness of 2.0 × 10 −2 m, and pretreatment (evacuation for 5 minutes) is performed. The sample after the pretreatment was set in a measuring instrument and measured at normal temperature from atmospheric pressure to 60000 psi in steps of 20 psi to obtain a median diameter (D50). The same measurement was performed on 5 samples, and the average value was obtained. As a result, the average pore diameter D was 2.0 × 10 −7 m (the average pore radius r was 1.0 × 10 −7 m). Further, the depth L of the resin layer was obtained by obtaining an image with a magnification of 100 by SEM and measuring an image having a size of 7.5 × 10 −4 m and 1.0 × 10 −3 m. Images were acquired at five different areas of the target region, two points were randomly measured from each image, and a total of ten points were measured. The average value was defined as the average pore diameter D. In Experimental Example 2, the curvature f was 3. This curvature f is a ratio of the theoretical time Tc required to seal the outer periphery of a test piece of a predetermined unit length, infiltrate water and permeate the depth L, and the actually measured time Tm, Tm / Tc was determined and this was defined as the curvature f.

[実験例3〜5]
樹脂溶液を塗布することにより、樹脂層をそれぞれ深さ1.5×10-4m、1.8×10-4m、2.1×10-4mまで形成した以外は、実験例2と同様の処理を行い、それぞれを実験例3〜5とする成形型を作製した。実験例3〜5は、平均気孔径Dが2.0×10-7m(平均気孔半径rが1.0×10-7m)、曲路率fが3であった。これらを用いて実験例1と同様に成形体を作製した。
[Experimental Examples 3 to 5]
Except that the resin layers were formed to a depth of 1.5 × 10 −4 m, 1.8 × 10 −4 m, and 2.1 × 10 −4 m, respectively, by applying the resin solution. The same process was performed and the shaping | molding die which sets each to Experimental Examples 3-5 was produced. In Experimental Examples 3 to 5, the average pore diameter D was 2.0 × 10 −7 m (the average pore radius r was 1.0 × 10 −7 m), and the curvature f was 3. Using these, a molded body was produced in the same manner as in Experimental Example 1.

[実験例6]
成形面の表面に接触角θが75°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層を形成した以外は実験例1と同様の工程を行い実験例6の成形型を作製した。これを用いて実験例1と同様に成形体を作製した。
[Experimental Example 6]
Except that a fluororesin having a contact angle θ of 75 ° was applied to the surface of the molding surface by spraying and dried to form a resin layer, the same process as in Experimental Example 1 was performed to produce a molding die of Experimental Example 6. Using this, a molded body was produced in the same manner as in Experimental Example 1.

[実験例7〜10]
開気孔を有する部材を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが75°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層の深さLが1.0×10-4mまで形成した以外は、実験例1と同様の処理を行い、実験例7の成形型を作製した。また、樹脂層をそれぞれ深さ2.0×10-4m、2.5×10-4m、3.0×10-4mまで形成した以外は、実験例7と同様の処理を行い、それぞれを実験例8〜10とする成形型を作製した。実験例7〜10は、平均気孔径Dが2.0×10-7m(平均気孔半径rが1.0×10-7m)、曲路率fが3であった。これらを用いて実験例1と同様に成形体を作製した。
[Experimental Examples 7 to 10]
A member having open pores is processed to provide a molding surface, and a molding die is produced. A fluororesin having a contact angle θ of 75 ° is applied to the surface of the molding surface by spraying and dried, and the depth L of the resin layer is 1. Except for forming up to 0.0 × 10 −4 m, the same process as in Experimental Example 1 was performed to produce a mold for Experimental Example 7. In addition, the same treatment as in Experimental Example 7 was performed except that the resin layers were formed to a depth of 2.0 × 10 −4 m, 2.5 × 10 −4 m, and 3.0 × 10 −4 m, respectively. Molding dies for each of Experimental Examples 8 to 10 were prepared. In Experimental Examples 7 to 10, the average pore diameter D was 2.0 × 10 −7 m (the average pore radius r was 1.0 × 10 −7 m), and the curvature f was 3. Using these, a molded body was produced in the same manner as in Experimental Example 1.

[実験例11]
成形面の表面に接触角θが65°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層を形成した以外は実験例1と同様の工程を行い実験例6の成形型を作製した。これを用いて実験例1と同様に成形体を作製した。
[Experimental Example 11]
Except that a fluororesin having a contact angle θ of 65 ° was applied to the surface of the molding surface by spraying and dried to form a resin layer, the same process as in Experimental Example 1 was performed to produce a molding die of Experimental Example 6. Using this, a molded body was produced in the same manner as in Experimental Example 1.

[実験例12〜15]
開気孔を有する多孔質金属を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが65°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層の深さLが1.5×10-4mまで形成した以外は、実験例1と同様の処理を行い、実験例12の成形型を作製した。また、樹脂層をそれぞれ深さ3.0×10-4m、3.5×10-4m、4.0×10-4mまで形成した以外は、実験例12と同様の処理を行い、それぞれを実験例13〜15とする成形型を作製した。実験例12〜15は、平均気孔径Dが2.0×10-7m(平均気孔半径rが1.0×10-7m)、曲路率fが3であった。これらを用いて実験例1と同様に成形体を作製した。
[Experimental Examples 12 to 15]
A porous metal having open pores is processed to provide a molding surface to produce a molding die. A fluororesin having a contact angle θ of 65 ° is applied to the surface of the molding surface by spraying and dried to obtain a resin layer depth L Except for forming up to 1.5 × 10 −4 m, the same process as in Experimental Example 1 was performed to produce a mold of Experimental Example 12. In addition, the same treatment as in Experimental Example 12 was performed except that the resin layers were formed to a depth of 3.0 × 10 −4 m, 3.5 × 10 −4 m, and 4.0 × 10 −4 m, respectively. Molding dies each having experimental examples 13 to 15 were produced. In Experimental Examples 12 to 15, the average pore diameter D was 2.0 × 10 −7 m (the average pore radius r was 1.0 × 10 −7 m), and the curvature f was 3. Using these, a molded body was produced in the same manner as in Experimental Example 1.

[実験例16]
気孔率が0%である、開気孔のない金属(ジュラルミン)を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが85°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層を形成した実験例16の成形型を作製した。これを用いて硬化時間90分で実験例1と同様に成形体を作製し、成形体を成形型から離型し、成形用原料重量S(g)、成形用原料中の分散媒重量Sa(g)、離型後の成形体重量M(g)として、式(5)を用いて分散媒の揮発量R(重量%)を求めた。この実験結果を表2に示す。この表2には、基材と、樹脂層の接触角(°)、樹脂深さL(m)、気孔率(%)、硬化90分時の分散媒の揮発量R(重量%)、サンプル数に対する良品の評価値、及び不良要因を示し、後述する実験例17〜28についての実験結果も示した。なお、良品の評価値は、離型後の成形体の歩留まりが90%以上を「○」、30%以上90%未満を「△」、30%未満を「×」として評価した。
揮発量R(重量%)=(S−M)/Sa×100…式(5)
[Experimental Example 16]
A metal mold with a porosity of 0% and without open pores (duralumin) is processed to form a molding die, and a fluororesin having a contact angle θ of 85 ° is applied to the surface of the molding surface by spraying. Then, a molding die of Experimental Example 16 in which a resin layer was formed by drying was produced. Using this, a molded body was produced in the same manner as in Experimental Example 1 with a curing time of 90 minutes, and the molded body was released from the mold, and the molding material weight S (g) and the dispersion medium weight Sa ( g) As a molded body weight M (g) after mold release, the volatilization amount R (% by weight) of the dispersion medium was determined using the formula (5). The experimental results are shown in Table 2. Table 2 shows the base material, the contact angle (°) of the resin layer, the resin depth L (m), the porosity (%), the volatilization amount R (weight%) of the dispersion medium after 90 minutes of curing, the sample The evaluation value of the non-defective product with respect to the number and the cause of failure are shown, and the experimental results for Experimental Examples 17 to 28 described later are also shown. The evaluation value of the non-defective product was evaluated as “◯” when the yield of the molded product after release was 90% or more, “Δ” when 30% or more and less than 90%, and “X” when less than 30%.
Volatilization amount R (% by weight) = (SM) / Sa × 100 Formula (5)

Figure 0005601780
Figure 0005601780

[実験例17〜22]
気孔率が3.0%、10%、15%、25%、35%、50%である開気孔を有する多孔質金属を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが85°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層の深さLを2.0×10-4mまで形成し、それぞれを実験例17〜22とする成形型を作製した。実験例17〜22は、平均気孔径Dが4.0×10-7m(平均気孔半径rが2.0×10-7m)、曲路率fが3であった。これらを用いて実験例16と同様に成形体を作製して分散媒の揮発量Rなどを評価した。
[Experimental Examples 17 to 22]
A porous metal having open pores with a porosity of 3.0%, 10%, 15%, 25%, 35%, 50% is processed to form a molding surface, and a molding die is produced. A fluororesin having a contact angle θ of 85 ° is applied to the substrate by spraying and dried to form a resin layer depth L of up to 2.0 × 10 −4 m. did. In Experimental Examples 17 to 22, the average pore diameter D was 4.0 × 10 −7 m (the average pore radius r was 2.0 × 10 −7 m), and the curvature f was 3. Using these, molded bodies were produced in the same manner as in Experimental Example 16, and the volatilization amount R of the dispersion medium was evaluated.

[実験例23〜28]
気孔率が3.0%、10%、15%、25%、35%、50%である開気孔を有する多孔質金属を加工して成形面を設け成形型を作製し、この成形面の表面に接触角θが85°のフッ素樹脂をスプレーにより塗布し、乾燥させ樹脂層の深さLを4.0×10-4mまで形成し、それぞれを実験例23〜28とする成形型を作製した。実験例23〜28は、平均気孔径Dが4.0×10-7m(平均気孔半径rが2.0×10-7m)、曲路率fが3であった。これらを用いて実験例16と同様に成形体を作製して分散媒の揮発量Rなどを評価した。
[Experimental Examples 23 to 28]
A porous metal having open pores with a porosity of 3.0%, 10%, 15%, 25%, 35%, 50% is processed to form a molding surface, and a molding die is produced. A fluororesin having a contact angle θ of 85 ° is applied to the substrate by spraying and dried to form a resin layer depth L of up to 4.0 × 10 −4 m. did. In Experimental Examples 23 to 28, the average pore diameter D was 4.0 × 10 −7 m (the average pore radius r was 2.0 × 10 −7 m), and the curvature f was 3. Using these, molded bodies were produced in the same manner as in Experimental Example 16, and the volatilization amount R of the dispersion medium was evaluated.

[実験結果]
実験例1〜15の実験結果を表1に示し、実験例16〜29の実験結果を表2に示す。表1に示すように、実験例1,6,11では、いずれの硬化時間でも離型時の歩留まりが悪かった。また、実験例2,7,12では、樹脂層が浅く、成形体の表面が粗かったり、成形型の開気孔に詰まった残渣が取れにくかった。これに対し、実験例3〜5,8〜10,13〜15は、短時間で成形体が硬化し、且つ離型しやすい良好な結果が得られた。実験例4の180分、実験例10の60分及び120分、実験例14の60分、実験例15の180分では、ハンドリングミスによる不良品が発生した。なお、上述した式(4)〜(6)でt=300sとして算出した深さL、Lmax、Lmin、の値は、それぞれ接触角85°では、1.8×10-4,2.4×10-4,1.2×10-4mであり、接触角75°では、2.9×10-4,3.9×10-4,1.9×10-4mであり、接触角65°では、3.7×10-4,4.9×10-4,2.4×10-4mであった。また、表2に示すように、樹脂層の深さLが2.0×10-4m及び4.0×10-4mでは、気孔率10%〜25%の成形型が成形体に含まれる分散媒の揮発性が良好で、且つ良品率が高かった。気孔率、即ち、開気孔の面積割合が10〜25%では、成形体の表面が良好であり、25%を超えると成形体の表面が粗くなることがわかった。なお、樹脂層の深さLが4.0×10-4mであるものについては、成形体が脆弱であったため、成形型の裏側からエアを供給して成形体を離型した。この際、実験例25〜27では、ハンドリングミスにより不良品が発生した。実験例24〜28では、気孔率25%までは大きく分散媒揮発量が増加しないが、これは、部分的に樹脂層が開気孔を閉塞していることなどが考えられる。また、実験例24では、エアの供給による離型を試みたが、成形型の気孔率が低く十分に加圧できず、失敗した。樹脂層の深さLが浅いと樹脂層に被覆されていない領域と成形体のスラリーとが接触して密着してしまい、それによって局所的な離型性が低下し、表面が粗くなると共に、密着した残渣を除去できず、成形型の寿命が短くなることがわかった。このように、開気孔があり、樹脂層が所定深さまで形成されているものでは、成形体に含まれる分散媒の揮発が促進され、かつ離型性が高く、良好な成形体が得られることがわかった。
[Experimental result]
The experimental results of Experimental Examples 1 to 15 are shown in Table 1, and the experimental results of Experimental Examples 16 to 29 are shown in Table 2. As shown in Table 1, in Experimental Examples 1, 6, and 11, the yield at the time of mold release was poor at any curing time. In Experimental Examples 2, 7, and 12, the resin layer was shallow, the surface of the molded body was rough, and residues clogged in the open pores of the mold were difficult to remove. In contrast, in Experimental Examples 3 to 5, 8 to 10, and 13 to 15, good results were obtained in which the molded body was cured in a short time and was easy to release. At 180 minutes of Experimental Example 4, 60 minutes and 120 minutes of Experimental Example 10, 60 minutes of Experimental Example 14, and 180 minutes of Experimental Example 15, defective products due to handling errors occurred. Note that the depths L, Lmax, and Lmin calculated as t = 300 s in the above formulas (4) to (6) are 1.8 × 10 −4 and 2.4 × at a contact angle of 85 °, respectively. 10 −4 , 1.2 × 10 −4 m, and at a contact angle of 75 °, the contact angle is 2.9 × 10 −4 , 3.9 × 10 −4 , and 1.9 × 10 −4 m. At 65 °, they were 3.7 × 10 −4 , 4.9 × 10 −4 , and 2.4 × 10 −4 m. Moreover, as shown in Table 2, when the depth L of the resin layer is 2.0 × 10 −4 m and 4.0 × 10 −4 m, a mold having a porosity of 10% to 25% is included in the molded body. The dispersion medium obtained had good volatility and the yield rate was high. It was found that when the porosity, that is, the area ratio of open pores was 10 to 25%, the surface of the molded body was good, and when it exceeded 25%, the surface of the molded body became rough. In addition, about the thing whose depth L of a resin layer is 4.0x10 <-4> m, since the molded object was weak, air was supplied from the back side of the shaping | molding die, and the molded object was released. At this time, in Experimental Examples 25 to 27, defective products were generated due to handling mistakes. In Experimental Examples 24-28, the volatilization amount of the dispersion medium does not increase greatly up to a porosity of 25%. This may be because the resin layer partially blocks the open pores. In Experimental Example 24, mold release was attempted by supplying air. However, the mold had a low porosity and could not be pressurized sufficiently, and failed. When the depth L of the resin layer is shallow, the region that is not covered with the resin layer and the slurry of the molded body come into contact with each other, thereby causing local releasability to deteriorate and the surface to become rough, It was found that the adhered residue could not be removed and the mold life was shortened. Thus, in the case where there are open pores and the resin layer is formed to a predetermined depth, the volatilization of the dispersion medium contained in the molded body is promoted, and the mold release property is high, and a good molded body can be obtained. I understood.

本発明は、自己硬化性を有する成形体原料を用いた成形体の製造分野に利用可能である。   INDUSTRIAL APPLICATION This invention can be utilized for the manufacture field | area of the molded object using the molded object raw material which has self-hardening property.

20,50 成形型、22 下型、23,44 成形面、24 上型、24a 注入路、24b 排出路、25 成形面、26 プレート、27 注入口、28 排出口、30 成形体形成部、32,42 開気孔、33,43 樹脂層、33a 樹脂溶液、41 部材粒子。   20, 50 Mold, 22 Lower mold, 23, 44 Molding surface, 24 Upper mold, 24a Injection channel, 24b Discharge channel, 25 Molding surface, 26 Plate, 27 Inlet, 28 Discharge port, 30 Molded body forming part, 32 , 42 Open pores, 33, 43 Resin layer, 33a Resin solution, 41 Member particles.

Claims (14)

液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成され前記成形用原料の液体が前記開気孔内へ浸透するのを抑制する樹脂層と、をえ、
前記樹脂層は、樹脂を溶媒に溶解させた樹脂溶解液を浸漬することにより形成されており、前記開気孔の平均気孔径D(m)、前記樹脂溶解液が揮発する時間t d (s)、前記
成形用原料が流動性を失うまでの時間t s (s)、外気中の前記樹脂溶解液の液体の表面
張力γ d (N/m)、外気中の前記成形用原料の液体の表面張力γ s (N/m)、前記成形面と前記樹脂溶解液との接触角θ d (°)、前記成形面と前記成形用原料との接触角θ s (°)、前記樹脂溶解液の粘度η d (Pa・s)、前記成形用原料の粘度η s (Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)、被覆される前記樹脂層の厚さh(m)としたとき、該樹脂層が前記成形用原料との間で次式(1)を満たすよう形成されている、成形型。
Figure 0005601780
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
E Bei and a resin layer suppresses the liquid of the molding material is formed without block the the open pores penetrating into the open pores within a predetermined range in the depth direction of the open pores from the molding surface ,
The resin layer is formed by immersing a resin solution obtained by dissolving a resin in a solvent, and the average pore diameter D (m) of the open pores, and the time t d (s) for evaporating the resin solution. The above
Time t s (s) until the molding raw material loses fluidity, the surface of the liquid resin solution in the outside air
Tension γ d (N / m), surface tension γ s (N / m) of the liquid of the molding raw material in the outside air , contact angle θ d (°) between the molding surface and the resin solution, the molding surface And the molding raw material contact angle θ s (°), the resin solution viscosity η d (Pa · s), the molding raw material viscosity η s (Pa · s), and the molding raw material into the molding When the pressure P (Pa) at the time of pouring into the mold and the thickness h (m) of the resin layer to be coated are formed, the resin layer is formed so as to satisfy the following formula (1) with the molding raw material It is, the mold.
Figure 0005601780
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成され前記成形用原料の液体が前記開気孔内へ浸透するのを抑制する樹脂層と、を備え
前記樹脂層は、部材粒子の表面を前記樹脂で被覆することにより形成されており、
前記成形型は、前記成形体の形状とする成形面を形成するように部材粒子を成形して形成されており、前記開気孔の曲路率f、前記開気孔の平均気孔径D(m)、前記成形用原料が流動性を失うまでの時間t(s)、外気中の前記成形用原料の液体の表面張力γ(N/m)、前記成形面と前記成形用原料との接触角θ(°)、前記成形用原料の粘度η(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)とし、接触角θが0°以上90°未満のとき、前記所定範囲として、前記成形面から次式(2)で表される深さまで前記部材粒子により構成されている、成形型。
Figure 0005601780
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
And a resin layer suppresses the liquid of the molding material is formed without block the the open pores penetrating into the open pores within a predetermined range in the depth direction of the open pores from the molding surface,
The resin layer is formed by coating the surface of member particles with the resin,
The molding die is formed by molding member particles so as to form a molding surface having the shape of the molded body. The curvature f of the open pores and the average pore diameter D (m) of the open pores. , Time t (s) until the molding material loses fluidity, surface tension γ (N / m) of the liquid of the molding material in the outside air, contact angle θ between the molding surface and the molding material (°), viscosity η (Pa · s) of the molding material, pressure P (Pa) when the molding material is injected into the mold, and when the contact angle θ is 0 ° or more and less than 90 °, A molding die configured with the member particles from the molding surface to a depth represented by the following formula (2) as the predetermined range .
Figure 0005601780
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成され前記成形用原料の液体が前記開気孔内へ浸透するのを抑制する樹脂層と、を備え
前記樹脂層は、前記開気孔の曲路率f、前記開気孔の平均気孔径D(m)、前記成形用原料が流動性を失うまでの時間t(s)、外気中の前記成形用原料の液体の表面張力γ(N/m)、前記成形面と前記成形用原料との接触角θ(°)、前記成形用原料の粘度η(Pa・s)、前記成形用原料を前記成形型に注入する際の圧力P(Pa)としたとき、前記所定範囲としての深さL(m)が次式(3)を満たすよう形成されている、成形型。
Figure 0005601780
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
And a resin layer suppresses the liquid of the molding material is formed without block the the open pores penetrating into the open pores within a predetermined range in the depth direction of the open pores from the molding surface,
The resin layer has a curvature f of the open pores, an average pore diameter D (m) of the open pores, a time t (s) until the molding raw material loses fluidity, and the molding raw material in the outside air. The liquid surface tension γ (N / m), the contact angle θ (°) between the molding surface and the molding raw material, the viscosity η (Pa · s) of the molding raw material, and the molding raw material into the molding die The mold is formed so that the depth L (m) as the predetermined range satisfies the following expression (3) when the pressure P (Pa) when injecting is applied .
Figure 0005601780
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成され前記成形用原料の液体が前記開気孔内へ浸透するのを抑制する樹脂層と、を備え
前記樹脂層は、前記接触角θが65°以上85°以下である、成形型。
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
A resin layer that is formed without blocking the open pores in a predetermined range in the depth direction of the open pores from the molding surface, and suppresses the liquid of the molding raw material from penetrating into the open pores ,
The said resin layer is a shaping | molding die whose said contact angle (theta) is 65 degrees or more and 85 degrees or less .
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を注入して所定形状の成形体を成形する成形型であって、
前記成形用原料と接触し該成形用原料を前記成形体の形状とする成形面と外部空間とを連通する開気孔と、
前記成形面から前記開気孔の深さ方向に所定範囲で該開気孔を塞がずに形成され前記成形用原料の液体が前記開気孔内へ浸透するのを抑制する樹脂層と、を備え
前記樹脂層は、フッ素樹脂、フッ素樹脂の変性物、シリコン樹脂及びシリコン樹脂の変性物から成る群より選ばれた1種又は2種以上により形成されている、成形型。
A molding die that molds a molded body of a predetermined shape by injecting a flowable self-curing molding material containing liquid and particles,
Open pores in contact with the molding raw material and communicating the molding surface with the molding raw material and the outer space;
And a resin layer suppresses the liquid of the molding material is formed without block the the open pores penetrating into the open pores within a predetermined range in the depth direction of the open pores from the molding surface,
The said resin layer is a shaping | molding die currently formed by the 1 type (s) or 2 or more types chosen from the group which consists of a fluororesin, the modified material of a fluororesin, a silicon resin, and the modified material of a silicon resin .
前記樹脂層は、前記接触角θが65°以上85°以下である、請求項1〜のいずれか1項に記載の成形型。 The said resin layer is a shaping | molding die of any one of Claims 1-3 whose said contact angle (theta) is 65 to 85 degree. 前記樹脂層は、フッ素樹脂、フッ素樹脂の変性物、シリコン樹脂及びシリコン樹脂の変性物から成る群より選ばれた1種又は2種以上により形成されている、請求項1〜4、6のいずれか1項に記載の成形型。 The said resin layer is formed by 1 type (s) or 2 or more types chosen from the group which consists of a fluororesin, the modified material of a fluororesin, a silicon resin, and the modified material of a silicon resin, Any one of Claims 1-4, 6 2. The mold according to item 1. 前記開気孔は、平均気孔径D(m)が1.0×10-7m以上1.0×10-6m以下に形成されている、請求項1〜のいずれか1項に記載の成形型。 The open pores according to any one of claims 1 to 7 , wherein an average pore diameter D (m) is formed to be 1.0 x 10-7 m or more and 1.0 x 10-6 m or less. Mold. 前記開気孔は、前記平均気孔径D(m)が前記成形用原料に含まれる粒子の平均粒径φ(m)に対してφ≧Dを満たすよう形成されている、請求項1〜のいずれか1項に記載の成形型。 The open pores, the average pore diameter D (m) is formed so as to satisfy the average particle diameter phi (m) with respect to phi ≧ D of the particles contained in the molding material, according to claim 1-8 The mold according to any one of the above. 所定形状の成形体の製造方法であって、
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製する調製工程と、
請求項1〜のいずれか1項に記載の成形型へ前記調製した成形用原料を注入し前記所定形状の成形体を成形する成形工程と、
硬化した成形体を前記成形型から離型する離型工程と、をみ、
前記成形工程では、前記成形面における前記開気孔面積の異なる2以上の部材からなる前記成形型を用いて前記所定形状の成形体を成形し、
前記離型工程では、前記2以上の部材の成形面における開気孔面積の違いを利用して所定の順序で前記2以上の部材と前記成形体とを離型する、成形体の製造方法。
A method for producing a molded body having a predetermined shape,
A preparation step of preparing a molding raw material having fluid and self-curing properties including liquid and particles;
A molding step of injecting the prepared molding raw material into the molding die according to any one of claims 1 to 9 and molding the molded body having the predetermined shape,
A releasing step of releasing the cured molded article from the mold, only including,
In the molding step, the molded body having the predetermined shape is molded using the molding die composed of two or more members having different open pore areas on the molding surface,
In the mold release step, a method of manufacturing a molded body , wherein the two or more members and the molded body are released in a predetermined order using a difference in open pore area on a molding surface of the two or more members .
所定形状の成形体の製造方法であって、
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製する調製工程と、
請求項1〜のいずれか1項に記載の成形型へ前記調製した成形用原料を注入し前記所定形状の成形体を成形する成形工程と、
硬化した成形体を前記成形型から離型する離型工程と、を含み
前記成形工程の前に前記成形型の開気孔へ樹脂を含む液体を供給して前記開気孔へ前記樹脂層を形成させる樹脂層形成工程、を含む、成形体の製造方法。
A method for producing a molded body having a predetermined shape,
A preparation step of preparing a molding raw material having fluid and self-curing properties including liquid and particles;
A molding step of injecting the prepared molding raw material into the molding die according to any one of claims 1 to 9 and molding the molded body having the predetermined shape,
The cured molded article comprises a releasing step of releasing from the mold,
The manufacturing method of a molded object including the resin layer formation process of supplying the liquid containing resin to the open pore of the said shaping | molding mold before the said shaping | molding process, and forming the said resin layer in the said open pore .
所定形状の成形体の製造方法であって、
液体と粒子とを含み流動性のある自己硬化性を有する成形用原料を調製する調製工程と、
請求項1〜のいずれか1項に記載の成形型へ前記調製した成形用原料を注入し前記所定形状の成形体を成形する成形工程と、
硬化した成形体を前記成形型から離型する離型工程と、を含み
前記調製工程では、ウレタン反応により前記自己硬化する前記成形用原料を調製する、成形体の製造方法。
A method for producing a molded body having a predetermined shape,
A preparation step of preparing a molding raw material having fluid and self-curing properties including liquid and particles;
A molding step of injecting the prepared molding raw material into the molding die according to any one of claims 1 to 9 and molding the molded body having the predetermined shape,
The cured molded article comprises a releasing step of releasing from the mold,
In the preparation step, the molding raw material is prepared by preparing the molding raw material to be self-cured by a urethane reaction .
前記離型工程では、前記開気孔から流体を圧入し強制的に所定方向から離型させる、請求項10〜12のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 10 to 12, wherein in the releasing step, a fluid is press-fitted from the open pores to forcibly release from a predetermined direction. 前記成形型は、複数の部材からなり、
前記成形工程では、前記成形型へ前記成形用原料を注入し前記成形型の複数の部材を組み付けた状態で該成形型を所定の硬化温度として硬化反応を促進させる、請求項10〜13のいずれか1項に記載の成形体の製造方法。
The mold is composed of a plurality of members,
Wherein in the molding step, to accelerate the curing reaction forming die as a predetermined curing temperature in a state of assembling a plurality of members of said mold and injecting the molding material into the mold, any claim 10 to 13 The manufacturing method of the molded object of Claim 1.
JP2009056661A 2008-03-10 2009-03-10 Mold and mold manufacturing method Active JP5601780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056661A JP5601780B2 (en) 2008-03-10 2009-03-10 Mold and mold manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008059895 2008-03-10
JP2008059895 2008-03-10
JP2009056661A JP5601780B2 (en) 2008-03-10 2009-03-10 Mold and mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2009241595A JP2009241595A (en) 2009-10-22
JP5601780B2 true JP5601780B2 (en) 2014-10-08

Family

ID=41304042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056661A Active JP5601780B2 (en) 2008-03-10 2009-03-10 Mold and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP5601780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536626B (en) * 2022-02-23 2023-06-23 泰州禾益新材料科技有限公司 Cross-linked cured polymer film forming die and application method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612507A (en) * 1984-06-15 1986-01-08 新東工業株式会社 Porous durable mold and manufacture thereof
JPS61164806A (en) * 1985-01-18 1986-07-25 Bridgestone Corp Molding
JP3856117B2 (en) * 2002-01-28 2006-12-13 日本碍子株式会社 Manufacturing method of injection molded body

Also Published As

Publication number Publication date
JP2009241595A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US7955546B2 (en) Forming die and method for manufacturing formed body using forming die
Fischer et al. Funnel‐shaped microstructures for strong reversible adhesion
CN101248219A (en) Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same
US20200269320A1 (en) Molding method and apparatus, particularly applicable to metal and/or ceramics
US20180370080A1 (en) Techniques for casting from additively fabricated molds and related systems and methods
US10259036B2 (en) Variable diameter investment casting mold for casting of reticulated metal foams
JP5601780B2 (en) Mold and mold manufacturing method
EP3642039B1 (en) Container for use in stereolithographic systems
US20210299943A1 (en) Method of 3d printing a cellular solid
CN106079174B (en) PDMS microwell array method for preparing template
Lee et al. Hydrophobic stretchable polydimethylsiloxane films with wrinkle patterns prepared via a metal‐assisted chemical etching process using a Si master mold
WO2023001418A1 (en) Method for the additive manufacturing of casting molds
US20220032501A1 (en) Method for manufacturing three-dimensional fired body
TWI705884B (en) Method for embossing at least one microstructure or nanostructure with an embossing die
US20190384167A1 (en) Electrochemical imprinting of micro- and nano-structures in porous silicon, silicon, and other semiconductors
KR101147789B1 (en) Method for manufacturing aluminum vacuum chamber
Su et al. Crack‐free drying of ceramic microparts on a hydrophobic flexible polymer substrate using soft lithography
JP2017136829A (en) Method for creating mold, mold creation device, and method for molding model material
JP4681396B2 (en) Rapid molding process for ceramic molds.
Guo et al. Continuous stereolithography 3d printing of multi-network hydrogels in triply periodic minimal structures (tpms) with tunable mechanical strength for energy absorption
WO2022044930A1 (en) Laminate molding fired body and method for manufacturing said laminate molding fired body
Tang et al. Fabrication of ceramic cores via layered extrusion forming using graphite as pore-forming agent
WO2023068189A1 (en) Ceramic article production method
RU2760029C1 (en) Method for making ceramic molds and rods according to permanent patterns
US20240149331A1 (en) Method and system for additive metal casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5601780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150