JP5598701B2 - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP5598701B2
JP5598701B2 JP2010093995A JP2010093995A JP5598701B2 JP 5598701 B2 JP5598701 B2 JP 5598701B2 JP 2010093995 A JP2010093995 A JP 2010093995A JP 2010093995 A JP2010093995 A JP 2010093995A JP 5598701 B2 JP5598701 B2 JP 5598701B2
Authority
JP
Japan
Prior art keywords
primary side
valve body
gas
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010093995A
Other languages
Japanese (ja)
Other versions
JP2011226497A (en
Inventor
靖彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010093995A priority Critical patent/JP5598701B2/en
Publication of JP2011226497A publication Critical patent/JP2011226497A/en
Application granted granted Critical
Publication of JP5598701B2 publication Critical patent/JP5598701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Check Valves (AREA)

Description

本発明は、周囲の空間の気圧よりも大きな気圧にて所定の空間内に気体を供給することによって該所定空間内の該気体の濃度を高める、所謂パージ(与圧)操作を実施するにあたり、該気体の逆流を防止する逆流防止弁に関する。より詳細には、該所定空間内と周囲空間との差圧が僅かであっても安定して動作して、実用上十分な気体の供給量を確保し得る逆流防止弁に関する。   In carrying out a so-called purge (pressurization) operation in which the concentration of the gas in the predetermined space is increased by supplying the gas into the predetermined space at a pressure higher than the pressure in the surrounding space. The present invention relates to a backflow prevention valve that prevents backflow of the gas. More specifically, the present invention relates to a backflow prevention valve that operates stably even if the differential pressure between the predetermined space and the surrounding space is small, and can ensure a practically sufficient gas supply amount.

磁力の強い所謂希土類磁石等に用いられる金属磁石材料は、粉体の状態で高活性であって急激に酸化されることから、圧粉-焼結操作に至るまでその酸化を好適に抑制することが必要となる。従って、圧縮成形工程等、各種製造工程においては、例えば窒素の供給等によって材料周辺或いは処理装置自体の雰囲気を低酸化濃度に制御しなければならない。特許文献1には、製造装置全体を囲うと共にその空間内の気体を窒素置換することを目的とし、製造ラインの気密化を図る技術が開示されている。当該技術において、例えば所謂メンテナンスゾーンと呼ばれる空間内部の低酸素濃度化を図る場合、該空間内部の気体を窒素によって急速にパージ・置換して、製造工程を実施可能な状態を得ている。また、その後の濃度維持においては窒素の供給量を減少させて、且つその状態で窒素の供給を継続することによって窒素の使用量の低減による製造コストの低減を図っている。   Metal magnet materials used in so-called rare earth magnets with strong magnetic force are highly active in powder and are rapidly oxidized, so that the oxidation is suitably suppressed until the compacting-sintering operation. Is required. Therefore, in various manufacturing processes such as a compression molding process, the atmosphere around the material or the processing apparatus itself must be controlled to a low oxidation concentration by supplying nitrogen, for example. Patent Document 1 discloses a technique for enclosing the entire manufacturing apparatus and air-tightening the manufacturing line for the purpose of replacing the gas in the space with nitrogen. In this technique, for example, when the oxygen concentration inside a space called a so-called maintenance zone is reduced, the gas inside the space is rapidly purged and replaced with nitrogen to obtain a state where the manufacturing process can be performed. Further, in maintaining the concentration thereafter, the supply amount of nitrogen is decreased, and the supply of nitrogen is continued in that state, thereby reducing the manufacturing cost by reducing the amount of nitrogen used.

前述した急速パージ時では、ある程度以上の流量にて窒素を供給できれば、所定の低酸素濃度となった空間を得ることは比較的容易である。更にパージ効率を高所下場合でも、窒素流量の増加によって所謂パージ時間の短縮は容易である。また、装置全体を筐体にて密閉する様式の場合、該筐体の密閉度が高ければパージに要する窒素の量も抑制可能である。しかし、実際の製造装置の可動時においては、低酸素濃度を維持した状態で用いられる窒素量が、製造コスト上大きな問題となる場合が多い。よって、濃度維持に要する窒素量については、極力小さな流量とすることが好ましい。しかしこの場合、特に筐体内部の空間と外部空間との差圧が僅かな条件となることから、窒素供給ラインにおいて所謂上流と下流との間の差圧が十分に取ることは容易ではない。この場合、周囲或いは装置内部と接続される経路において、上流と下流との間で得られる差圧が小さい場合には、供給される窒素の逆流等が生じることが考えられる。   At the time of the rapid purge described above, if nitrogen can be supplied at a flow rate of a certain level or more, it is relatively easy to obtain a space having a predetermined low oxygen concentration. Further, even when the purge efficiency is high, the so-called purge time can be easily reduced by increasing the nitrogen flow rate. Further, in the case where the entire apparatus is sealed in a casing, the amount of nitrogen required for purging can be suppressed if the casing is highly sealed. However, when the actual manufacturing apparatus is movable, the amount of nitrogen used in a state where the low oxygen concentration is maintained often becomes a big problem in manufacturing cost. Therefore, the amount of nitrogen required for maintaining the concentration is preferably as small as possible. However, in this case, since the differential pressure between the space inside the housing and the external space becomes a slight condition, it is not easy to take a sufficient differential pressure between the so-called upstream and downstream in the nitrogen supply line. In this case, if the differential pressure obtained between the upstream and downstream in the path connected to the surroundings or inside the apparatus is small, it is conceivable that a backflow of supplied nitrogen or the like occurs.

特開2007−083280号公報JP 2007-083280 A 特開平9−042499号公報Japanese Patent Laid-Open No. 9-042499 実用新案登録第3100586号公報Utility Model Registration No. 3100586

気体の供給に際して逆流を防止する構成として、特許文献2或いは3に開示される所謂逆流防止弁が知られている。しかしながら、特許文献2に開示される構成は液体を対象としており、上述したような気体を対象とした場合と比較して当該弁の上流と下流において明確な圧力差を得ることが可能である。従って、該文献に開示される構成をそのまま本発明が対象とするパージ装置に用いたとしても、作用する差圧が僅かであることから十分な効果は得られないと考えられる。また、特許文献3に開示される構成は気体を対象とするものであるが、上述した急速パージの際の大流量の気体の供給時と、装置の状態維持時の小流量の気体の供給時に関しては何ら考慮されていない。即ち、開示される装置は、実際には何れか一方の条件での使用にしか供せられない。以上から、微差圧で動作可能であると同時に大流量(例えば3000L/min)から小流量(例えば10L/min)まで対応可能な逆流防止弁の提供が望まれる。   A so-called backflow prevention valve disclosed in Patent Document 2 or 3 is known as a configuration for preventing backflow when supplying gas. However, the configuration disclosed in Patent Document 2 targets a liquid, and a clear pressure difference can be obtained upstream and downstream of the valve as compared with the case where a gas as described above is targeted. Therefore, even if the configuration disclosed in this document is used as it is in the purge apparatus targeted by the present invention, it is considered that a sufficient effect cannot be obtained because the acting differential pressure is slight. Moreover, although the structure disclosed by patent document 3 is intended for gas, at the time of supply of a large flow rate gas at the time of the rapid purge described above and at the time of supply of a small flow rate gas at the time of maintaining the state of the apparatus Is not considered at all. That is, the disclosed apparatus can actually only be used under either condition. In view of the above, it is desired to provide a backflow prevention valve that can operate with a slight differential pressure and can handle a large flow rate (eg, 3000 L / min) to a small flow rate (eg, 10 L / min).

本発明は以上の状況に鑑みて為されたものであり、配置される上流と下流との間の圧力差が僅かであっても動作可能であって、且つ必要に応じて大流量から小流量までの気体の供給を可能とする逆流防止弁の提供を目的とする。   The present invention has been made in view of the above situation, and can be operated even when the pressure difference between the upstream and downstream positions is small, and from a large flow rate to a small flow rate as necessary. An object of the present invention is to provide a backflow prevention valve that can supply gas up to.

上記課題を解決するために、本発明に係る逆流防止弁は、気体が一次側から二次側に流れる系に配置されて、二次側から一次側への気体の逆流を防止する逆流防止弁であって、一次側及び二次側に接続されて気体が流れることが可能な気体流路と、気体流路の中に配置されて、一次側に存在する気体から作用する一次側圧力と二次側に存在する気体から作用する二次側圧力との圧力差により作用する力によって所定領域を移動可能な弁体と、気体流路の一方の端部を構成し、気体流路の一部である一次側通気口を有する一次側部材と、一次側通気口の一次側開口に固定されて一次側開口と同軸のシール開口を有するシート状の弾性部材であって、弁体と密着することによって気体流路を閉鎖可能なシール部材と、を有し、シール部材におけるシール開口の内径は一次側開口の内径よりも小さく、シール部材は一次側開口の内側にはみ出すはみ出し部分を有することを特徴としている。   In order to solve the above-mentioned problem, the backflow prevention valve according to the present invention is arranged in a system in which gas flows from the primary side to the secondary side, and prevents the backflow of gas from the secondary side to the primary side. A gas flow path that is connected to the primary side and the secondary side and through which a gas can flow; and a primary pressure that is disposed in the gas flow path and that acts from the gas present on the primary side and A valve body that can move in a predetermined region by a force that acts due to a pressure difference from the secondary pressure that acts from the gas present on the secondary side, and constitutes one end of the gas flow path, and a part of the gas flow path A primary side member having a primary side vent and a sheet-like elastic member fixed to the primary side opening of the primary side vent and having a seal opening coaxial with the primary side opening, and is in close contact with the valve body A sealing member capable of closing the gas flow path by, and in the sealing member The inner diameter of Lumpur opening is smaller than the inner diameter of the primary-side opening, the sealing member is characterized by having a portion protruding protruding inside the primary-side opening.

なお、上述した逆流防止弁にあっては、一次側通気口の一次側開口の内径は一次側通気口の他の部分の内径に対して大きいことが好ましい。また、該逆流防止弁は、弁体の移動範囲である所定領域を規定し、弁体のシール部材上の所定の位置への着座を促す弁体動作範囲規制手段を更に有することが好ましい。更に、該弁体は複数存在し、一次側通気口及びシール部材は前記弁体各々に対応して配置されることが好ましい。この場合、複数の弁体は、重量の異なる弁体を含むことがより好ましい。或いは複数の弁体に応ずる複数の一次側通気口は、前記開口の内径が異なる一次側通気口を含むことがより好ましい。   In the above-described backflow prevention valve, the inner diameter of the primary side opening of the primary side vent is preferably larger than the inner diameter of the other part of the primary side vent. In addition, it is preferable that the check valve further includes a valve body operation range regulating means that defines a predetermined region that is a moving range of the valve body and that promotes seating of the valve body at a predetermined position on the seal member. Furthermore, it is preferable that there are a plurality of the valve bodies, and the primary side vent and the seal member are arranged corresponding to each of the valve bodies. In this case, it is more preferable that the plurality of valve bodies include valve bodies having different weights. Alternatively, the plurality of primary side vents corresponding to the plurality of valve bodies more preferably include primary side vents having different inner diameters of the openings.

また、上記課題を解決するために、本発明に係る逆流防止弁は、気体が一次側から二次側に流れる系に配置されて、二次側から前記一次側への前記気体の逆流を防止する逆流防止弁であって、一次側及び二次側に接続されて気体が流れることが可能な気体流路と、気体流路の中に配置されて、一次側に存在する気体から作用する一次側圧力と二次側に存在する気体から作用する二次側圧力との圧力差により作用する力によって所定領域を移動可能な弁体と、気体流路の一方の端部を構成し、気体流路の一部である一次側通気口を有する一次側部材と、一次側通気口の一次側開口に固定されて、弁体と密着することによって気体流路を閉鎖可能なシール部材と、を有し、弁体は複数存在し、一次側通気口及びシール部材は弁体各々に対応して配置されることを特徴としている。   Moreover, in order to solve the said subject, the backflow prevention valve which concerns on this invention is arrange | positioned in the system into which gas flows from a primary side to a secondary side, and prevents the backflow of the said gas from a secondary side to the said primary side. A backflow prevention valve that is connected to the primary side and the secondary side and is capable of flowing gas, and is disposed in the gas flow path and acts from the gas present on the primary side A valve body capable of moving in a predetermined region by a force acting due to a pressure difference between the side pressure and the secondary pressure acting from the gas existing on the secondary side, and one end of the gas flow path, A primary side member having a primary side vent that is a part of the channel, and a seal member that is fixed to the primary side opening of the primary side vent and that can close the gas flow path by being in close contact with the valve body. However, there are a plurality of valve bodies, and the primary side vent and the seal member are arranged corresponding to each valve body. It is characterized by being.

なお、上述した逆流防止弁にあって、複数の前記弁体は、重量の異なる弁体を含むことが好ましい。或いは複数の弁体に応ずる複数の一次側通気口は、一次側開口の内径が異なる一次側通気口を含むことが好ましい。また、上述した逆流防止弁に合っては、シール部材における一次側開口と同軸に固定されたシール開口の内径は、一次側開口の内径よりも小さく、シール部材は一次側開口の内側にはみ出すはみ出し部分を有することがより好ましい。   In the backflow prevention valve described above, it is preferable that the plurality of valve bodies include valve bodies having different weights. Or it is preferable that the several primary side vent which respond | corresponds to a some valve body contains the primary side vent which the internal diameter of a primary side opening differs. For the above-described backflow prevention valve, the inner diameter of the seal opening fixed coaxially with the primary side opening in the seal member is smaller than the inner diameter of the primary side opening, and the seal member protrudes inside the primary side opening. More preferably, it has a portion.

本発明によれば、逆流防止弁を配置した所謂上流と下流との間の差圧が微量な場合であっても、逆流防止弁として安定し且つ応答性に優れた逆流防止動作を為すことが可能となる。また、十分な気体流路の確保が可能であることから、大流量から小流量まで気体を供給することが可能である。更に、本発明によれば、ケースを例えば透明な樹脂材料によって形成することにより機構の動作を実際に目視することが可能であり、動作の適否等を容易に知ることが可能となる。また、電気的な制御が不要であることから、気体の供給系の構築に要するコストの低減、管理維持費の低減といった効果も得ることが可能となる。   According to the present invention, even when the differential pressure between the upstream and downstream where the backflow prevention valve is arranged is small, the backflow prevention valve can perform a backflow prevention operation that is stable and excellent in responsiveness. It becomes possible. In addition, since a sufficient gas flow path can be secured, it is possible to supply gas from a large flow rate to a small flow rate. Furthermore, according to the present invention, it is possible to actually observe the operation of the mechanism by forming the case with, for example, a transparent resin material, and it is possible to easily know whether the operation is appropriate. In addition, since electrical control is unnecessary, it is possible to obtain effects such as a reduction in cost required for construction of a gas supply system and a reduction in management and maintenance costs.

本発明に係る逆流防止弁の一態様について、第一の実施形態である該逆流防止弁を気体の流れ方向(逆流防止弁の軸方向)に沿って切断した断面における主要部の構成を模式的に示す図である。About the one aspect | mode of the backflow prevention valve which concerns on this invention, the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve which is 1st embodiment along the gas flow direction (axial direction of a backflow prevention valve) is typical. FIG. シール厚さとはみ出し量との関係を説明するための側面模式図である。It is a side surface schematic diagram for demonstrating the relationship between seal thickness and the amount of protrusion. 本発明に係る逆流防止弁の第一の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the flow direction of gas about 1st embodiment of the backflow prevention valve which concerns on this invention. 図3Aに示す構成において、実際に逆流を防止した状態を模式的に示す図である。It is a figure which shows typically the state which prevented the backflow actually in the structure shown to FIG. 3A. 本発明の第二の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the gas flow direction about 2nd embodiment of this invention. 本発明の第三の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the flow direction of gas about 3rd embodiment of this invention. 本発明の第四の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the flow direction of gas about 4th embodiment of this invention. 図6Aに示した実施形態において、該逆流防止弁を同図中の線6B−6Bに沿って切断した断面を図中B方向から見た状態を模式的に示す図である。6A is a diagram schematically showing a state in which a cross section of the backflow prevention valve taken along line 6B-6B in the drawing is viewed from the direction B in the embodiment shown in FIG. 6A. FIG. 本発明の第五の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the flow direction of gas about 5th embodiment of this invention. 図7Aに示した実施形態において、該逆流防止弁が実際に小流量の気体の供給を為す状態を模式的に示す図である。FIG. 7B is a diagram schematically showing a state in which the backflow prevention valve actually supplies a small flow rate gas in the embodiment shown in FIG. 7A. 本発明の第六の実施形態について、該逆流防止弁を気体の流れ方向に沿って切断した断面における主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part in the cross section which cut | disconnected this backflow prevention valve along the flow direction of gas about 6th embodiment of this invention. 図8Aに示した実施形態において、該逆流防止弁が実際に小流量の気体の供給を為す状態を模式的に示す図である。FIG. 8B is a diagram schematically showing a state in which the backflow prevention valve actually supplies a small flow rate gas in the embodiment shown in FIG. 8A.

(第一の実施形態)
本発明に係る逆流防止弁の第一の実施形態について、以下に図面を参照して説明する。図1は、本発明の第一の実施形態に係る逆流防止弁1の主要構成について、該逆流防止弁における気体の流れ方向に沿ってこれを切断した際の断面における概略構成を示している。該逆流防止弁1は、弁体2、シール部材3、一次側部材5、二次側部材7、ケース部材9、締結部材11、ガイド部材13、及びストッパ部材19を有する。該逆流防止弁1において、一次側部材5が配置される図中下側より二次側部材7が配置される図中上側に気体は流れ、該逆流防止弁1はこれと逆向きの気体の流れを防止する。本実施形態では、便宜上、該逆流防止弁1に対し、気体を供給する側であって一次側部材5に接続される系の一次側を上流側とし、気体を排出させる側であって二次側部材7に接続される系の二次側を下流側とする。
(First embodiment)
A first embodiment of a check valve according to the present invention will be described below with reference to the drawings. FIG. 1: has shown schematic structure in the cross section when this is cut | disconnected along the flow direction of the gas in this backflow prevention valve about the main structures of the backflow prevention valve 1 which concerns on 1st embodiment of this invention. The backflow prevention valve 1 includes a valve body 2, a seal member 3, a primary side member 5, a secondary side member 7, a case member 9, a fastening member 11, a guide member 13, and a stopper member 19. In the backflow prevention valve 1, gas flows from the lower side in the figure where the primary side member 5 is placed to the upper side in the figure where the secondary side member 7 is placed, and the backflow prevention valve 1 Prevent flow. In the present embodiment, for convenience, the primary side of the system connected to the primary side member 5 is the upstream side and the gas is discharged to the backflow prevention valve 1 for the secondary side. The secondary side of the system connected to the side member 7 is the downstream side.

一次側部材5は、平板上の部材であり、中央部に平板の表面5aから裏面5bに貫通する略円形の開口を有した一次側通気口5cを有する。一次側通気口5cの裏面5b側の開口部を、一次側開口5dと定義する。なお、ここで述べる表面5aは逆流防止弁1に繋げられる上流側(図中において一次側と記される側)に配置される面であり、裏面5bは逆流防止弁1の内部側に向かう面である。また、二次側部材7も、平板状の部材であり、中央部に平板の表面7aから裏面7bに貫通する略円形の開口を有した二次側通気口7cを有する。なお、ここで述べる表面7aは逆流防止弁1に繋げられる下流側(図中において二次側と記される側)に配置される面であり、裏面7bは逆流防止弁1の内部側に向かう面である。   The primary side member 5 is a member on a flat plate, and has a primary side vent hole 5c having a substantially circular opening penetrating from the flat surface 5a to the back surface 5b at the center. An opening on the back surface 5b side of the primary side vent 5c is defined as a primary side opening 5d. The front surface 5a described here is a surface arranged on the upstream side (the side indicated as the primary side in the drawing) connected to the backflow prevention valve 1, and the back surface 5b is a surface facing the inner side of the backflow prevention valve 1. It is. Moreover, the secondary side member 7 is also a flat plate-like member, and has a secondary side vent hole 7c having a substantially circular opening penetrating from the flat surface 7a to the back surface 7b at the center. The front surface 7a described here is a surface disposed on the downstream side (the side indicated as the secondary side in the drawing) connected to the backflow prevention valve 1, and the back surface 7b faces the inner side of the backflow prevention valve 1. Surface.

中空を有するケース部材9は、一次側部材5の裏面5bと二次側部材7の裏面7bとの間に挟まれるように配置され、その一次側端面9a及び二次側端面9bにおいて各々一次側気密用部材15及び二次側気密用部材17と密着する。本実施形態では、一次側及び二次側気密用部材15、17には所謂Oリングを用いる。締結部材11は例えば所謂ボルトナットによって構成され、一次側部材5と二次側部材7との間にケース部材9を挟持させ、これらを一体化させて筒状の逆流防止弁1のケースを形成する。なお、これら一次側部材5における一次側通気口5c、ケース部材9における中空部、及び二次側部材7における二次側通気口7cは、本発明における逆流防止弁1における気体流路12を構成する。   The case member 9 having a hollow is arranged so as to be sandwiched between the back surface 5b of the primary side member 5 and the back surface 7b of the secondary side member 7, and the primary side end surface 9a and the secondary side end surface 9b are respectively on the primary side. The airtight member 15 and the secondary side airtight member 17 are in close contact with each other. In the present embodiment, so-called O-rings are used for the primary side and secondary side airtight members 15 and 17. The fastening member 11 is constituted by, for example, a so-called bolt and nut, and a case member 9 is sandwiched between the primary side member 5 and the secondary side member 7, and these are integrated to form a case of the cylindrical backflow prevention valve 1. To do. The primary side vent 5c in the primary side member 5, the hollow part in the case member 9, and the secondary side vent 7c in the secondary side member 7 constitute the gas flow path 12 in the check valve 1 in the present invention. To do.

弁体2は、所定の重量を有する球形状の部材である。シール部材3は例えばシリコンゴムからなるシート状の弾性部材であり一次側開口5dの内径より大きな外寸と、該一次側開口5dの内径より小さな内径の貫通孔を有する。シール部材3のシート面を貫通する該貫通孔の開口をシール開口3aとする(図3A及び図4参照)。逆流防止弁1は、一次側部材5は鉛直方向における下方に配置されている。従って、気体の圧力が弁体2に与えられない状態において、重力の影響を受ける弁体2はシール部材3のシール開口3aの周囲面によって支えられ、該周囲面と密着した状態となる。なお、シール開口3aと一次側開口5dとの関係の詳細については後述する。ガイド部材13は弁体2の動作方向を規制して、弁体2のシール部材3上の所定位置への着座を促す作用を呈する。本実施例では、ガイド部材13は棒状の部材からなり、ケース部材9の内部において、逆流防止弁1の二次側部材7側から一次側部材5側に延在するように一次側開口5dを囲んで複数本配置される。   The valve body 2 is a spherical member having a predetermined weight. The sealing member 3 is a sheet-like elastic member made of, for example, silicon rubber, and has an outer dimension larger than the inner diameter of the primary side opening 5d and a through hole having an inner diameter smaller than the inner diameter of the primary side opening 5d. The opening of the through hole that penetrates the sheet surface of the seal member 3 is defined as a seal opening 3a (see FIGS. 3A and 4). In the backflow prevention valve 1, the primary side member 5 is disposed below in the vertical direction. Therefore, in a state where no gas pressure is applied to the valve body 2, the valve body 2 affected by gravity is supported by the peripheral surface of the seal opening 3 a of the seal member 3 and is in close contact with the peripheral surface. The details of the relationship between the seal opening 3a and the primary side opening 5d will be described later. The guide member 13 restricts the operation direction of the valve body 2 and exhibits the action of prompting the valve body 2 to be seated at a predetermined position on the seal member 3. In this embodiment, the guide member 13 is made of a rod-shaped member, and the primary side opening 5d is formed in the case member 9 so as to extend from the secondary side member 7 side of the backflow prevention valve 1 to the primary side member 5 side. A plurality of them are arranged so as to surround them.

次に、図1に示す実施形態の逆流防止弁1の動作原理について、同図を参照して説明する。弁体2はシール部材3とは接離自在である。ガイド部材13は弁体2の移動方向を規制し、該弁体2とシール部材3との当接時の位置関係を好適な状態に維持する働きを有する。ストッパ部材19はガイド部材13と協働して弁体2の移動範囲を規制するが、詳細については後述する。上述したように逆流防止弁1は上流側の系(一次側の気体経路)と下流側の系(二次側の気体経路)との間に配置され、これら両系各々から作用する気体の圧力差、及び重力によって弁体2は逆流防止弁1の内部を移動する。一次側の経路に存在する気体の圧力より弁体2が受ける力が、二次側の経路に存在する気体の圧力より弁体2が受ける力と弁体2に作用する重力との和よりも大きい場合には、弁体2はシール部材3から離れる。その結果、一次側通気口5cから二次側通気口7cに繋がる気体流路12が開放される。よって、一次側の経路から二次側の経路に向けて気体が流される。   Next, the principle of operation of the check valve 1 of the embodiment shown in FIG. 1 will be described with reference to FIG. The valve body 2 is detachable from the seal member 3. The guide member 13 has a function of restricting the moving direction of the valve body 2 and maintaining the positional relationship between the valve body 2 and the seal member 3 in a suitable state. The stopper member 19 cooperates with the guide member 13 to regulate the movement range of the valve body 2, and details will be described later. As described above, the check valve 1 is disposed between the upstream system (primary gas path) and the downstream system (secondary gas path), and the pressure of the gas acting from each of these systems. Due to the difference and gravity, the valve body 2 moves inside the check valve 1. The force received by the valve body 2 from the gas pressure existing in the primary path is greater than the sum of the force received by the valve body 2 from the gas pressure existing in the secondary path and the gravity acting on the valve body 2. If larger, the valve body 2 is separated from the seal member 3. As a result, the gas flow path 12 connected from the primary side vent 5c to the secondary side vent 7c is opened. Therefore, gas flows from the primary side path toward the secondary side path.

逆に、一次側の経路に存在する気体の圧力より弁体2が受ける力が二次側の経路に存在する気体の圧力より弁体2が受ける力と弁体2に作用する重力との和よりも小さい場合には、弁体2はシール部材3の所定位置に着座する。これにより、弁体2はシール部材3と当接、密着し、一次側通気口5cから二次側通気口7cに繋がる気体流路12は閉鎖される。よって、一次側の経路から二次側の経路に向けて気体が流されなくなる。即ち、重力の作用を無視したとすると、気体流路12における一次側或いは上流側に存在する気体から作用する上流側(一次側)圧力と、二次側或いは下流側に存在する気体から作用する下流側(二次側)圧力と、の圧力差、即ち差圧により作用する差圧力の変化によって、弁体2は所定領域14を移動する。ここで、所定領域14とは、本実施形態ではシール部材3、ストッパ部材19(或いは二次側部材7)、及びガイド部材13によって規制された、弁体2の移動可能な領域を言う。   Conversely, the force received by the valve element 2 from the gas pressure existing in the primary path and the force received by the valve element 2 from the gas pressure existing in the secondary path and the gravity acting on the valve element 2 If smaller, the valve body 2 is seated at a predetermined position of the seal member 3. As a result, the valve body 2 contacts and closely contacts the seal member 3, and the gas flow path 12 connected from the primary side vent 5c to the secondary side vent 7c is closed. Therefore, no gas flows from the primary side path toward the secondary side path. That is, if the action of gravity is ignored, it acts from the upstream (primary side) pressure acting from the gas existing on the primary side or upstream side in the gas flow path 12 and from the gas existing on the secondary side or downstream side. The valve body 2 moves in the predetermined region 14 due to the pressure difference between the downstream side (secondary side) pressure, that is, the change in the differential pressure acting on the differential pressure. Here, the predetermined area 14 refers to an area in which the valve body 2 is movable, which is regulated by the seal member 3, the stopper member 19 (or the secondary side member 7), and the guide member 13 in the present embodiment.

なお、本実施の形態では、ケース部材9には例えばガラス、アクリル、ポリカーボネイト、塩化ビニル等、透明な材料が用いられる。当該材料を用いることによって、弁体2の動作を直接目視にて確認することが可能となり、動作異常についての特別な検出機構を配することなく、該動作の適否を確認できるという効果が得られる。また、本形態では、ケース部材9を円筒形状としているが、断面多角形の筒状の部材よりこれを構成することとしても良い。   In the present embodiment, the case member 9 is made of a transparent material such as glass, acrylic, polycarbonate, or vinyl chloride. By using the material, it is possible to directly confirm the operation of the valve body 2 by visual observation, and it is possible to confirm the suitability of the operation without providing a special detection mechanism for the operation abnormality. . In this embodiment, the case member 9 has a cylindrical shape. However, the case member 9 may be formed of a cylindrical member having a polygonal cross section.

弁体2は、ポリプロピレン(PP)樹脂から構成することが好ましい。PP樹脂は、比重が0.9g/ccと軽く、高強度、低吸湿性で薬品に強いという特性を有する。また、形状としては所謂真球が好ましいが、本実施形態の如くシール部材3としてシート状の部材を用いることにより、弁体2とシール部材3との接触が面接触可能となり、真球度が低くとも必要十分なシール特性を得ることが可能となっている。シール部材3として、本実施形態では弾性体シートである、厚さ0.2mmのシリコンゴムシートを用いている。シール部材3におけるシール開口3aの内径は前述したように一次側通気口5cにおける一次側開口5dの内径よりも小さくし、逆流防止弁1の軸方向(気体の流れ方向)の断面で見た場合に、一次側開口5dの内側にシリコンゴムシートがはみ出た状態としている。このはみ出た部分は該シート厚さを薄くしたことと、及び該シートが弾性体であることと、によって撓むことが容易である。従って、弁体2が軽量且つ低真球度であっても、この撓みによって弁体2の表面とシール部材3の表面とが面接触となり、必要十分なシール性が確実に得られる。なお、本実施形態では耐久性、加工の容易性、弾性、等の観点から、シール部材の材料としてシリコンゴムシートを用いているが、適当な弾性を有するシート状の材料であれば、これを用いることが可能である。また、シール開口3aの形状は、弁体2を気体の流れ方向から見た場合の透視形状と相似であって該透視形状よりも小さく、形状の中心を一致させた場合に弁体2の外縁がシール開口3aの周囲当接する形状であれば上述した円形に規定されない。   The valve body 2 is preferably made of polypropylene (PP) resin. PP resin has a light specific gravity of 0.9 g / cc, high strength, low hygroscopicity, and resistance to chemicals. In addition, a so-called true sphere is preferable as the shape, but by using a sheet-like member as the seal member 3 as in the present embodiment, the contact between the valve body 2 and the seal member 3 can be brought into surface contact, and the sphericity can be increased. Necessary and sufficient sealing characteristics can be obtained even at the lowest. As the seal member 3, a silicon rubber sheet having a thickness of 0.2 mm, which is an elastic sheet in this embodiment, is used. As described above, the inner diameter of the seal opening 3a in the seal member 3 is smaller than the inner diameter of the primary side opening 5d in the primary side vent 5c, and is seen in a cross section in the axial direction (gas flow direction) of the check valve 1. In addition, the silicon rubber sheet protrudes inside the primary side opening 5d. The protruding portion can be easily bent by reducing the thickness of the sheet and by making the sheet an elastic body. Therefore, even if the valve body 2 is light and has a low sphericity, the surface of the valve body 2 and the surface of the seal member 3 are brought into surface contact with each other by this bending, and a necessary and sufficient sealing performance can be reliably obtained. In this embodiment, a silicon rubber sheet is used as a material for the sealing member from the viewpoint of durability, ease of processing, elasticity, and the like. However, if a sheet-like material having appropriate elasticity is used, It is possible to use. The shape of the seal opening 3a is similar to the perspective shape when the valve body 2 is viewed from the gas flow direction, is smaller than the perspective shape, and the outer edge of the valve body 2 when the center of the shape is matched. If it is the shape which contact | abuts the circumference | surroundings of the seal opening 3a, it is not prescribed | regulated in the circular shape mentioned above.

次に、図2を参照して、一次側通気口5cの開口径とシール部材のはみ出し部分3bとの関係について述べる。図2は逆流防止弁1を気体の流れ方向に切断した断面であって、シール部材3及び該シール部材3が固定される一次側部材5の一次側開口5dにおける開口部端及びその近傍を模式的に示している。同図においてはみ出し部分3bのはみ出し量(シール部材3の一次側開口5dの内縁から略円形の開口の中心部に向けて突出する量)をhとし、シート厚さをtとする。はみ出し量hが小さい場合にはシート自体の撓み量が小さくなり、シール効果が低減されてしまう。また、はみ出し量hが大きい場合には、シール効果自体は大きく変動しない反面、一次側側通気口5を狭める影響が大きくなり、当該弁を通過する実際の気体流量に影響を及ぼし始めてしまう。実験によれば、シート厚さt=0.2mmの場合、はみ出し量hが1.0mmの条件が最も好適であり、0.8mm以上1.2mm以下の範囲において好適なシール効果が得られることが確認されている。なお、上述したようにシール開口3aの形状は弁体2の形状の相似形状とされることが好ましいのと同様、一次側開口5dの形状もシール開口3aと形状の中心が同心で配置された相似形状であることが好ましい。しかし一次側開口5dの形状はシール開口3aの形状と異ならせることも可能である。   Next, with reference to FIG. 2, the relationship between the opening diameter of the primary side vent 5c and the protruding portion 3b of the seal member will be described. FIG. 2 is a cross section of the backflow prevention valve 1 cut in the gas flow direction, and schematically shows the opening end and the vicinity thereof in the primary side opening 5d of the primary side member 5 to which the sealing member 3 and the sealing member 3 are fixed. Is shown. In the figure, the amount of protrusion of the protruding portion 3b (the amount protruding from the inner edge of the primary side opening 5d of the seal member 3 toward the center of the substantially circular opening) is h, and the sheet thickness is t. When the protrusion amount h is small, the amount of bending of the sheet itself is small, and the sealing effect is reduced. Further, when the protruding amount h is large, the sealing effect itself does not vary greatly, but the effect of narrowing the primary side vent 5 becomes large, and the actual flow rate of gas passing through the valve begins to be affected. According to experiments, when the sheet thickness is t = 0.2 mm, the condition that the protrusion h is 1.0 mm is most suitable, and a suitable sealing effect is obtained in the range of 0.8 mm to 1.2 mm. Has been confirmed. As described above, the shape of the seal opening 3a is preferably similar to the shape of the valve body 2, and the shape of the primary side opening 5d is also concentrically arranged with the seal opening 3a. A similar shape is preferred. However, the shape of the primary side opening 5d can be different from the shape of the seal opening 3a.

図3A及び図3Bを用いて、これまで述べてきた第一の実施形態、及び該実施形態における弁体2の挙動等に関して以下に更に詳細に説明する。同図に示すように、一次側部材5には一次側通気口5cが設けられている。また、一次側部材5における裏面5bには、円形の一次側開口5dの中心とシール開口3aの中心とを一致させ、一次側開口5dをシール部材3にて囲むようにシール部材3が固定されている。先にも述べたように、シール開口3aの内径D3は一次側開口5dの内径D5よりも小さく設定され、且つ一次側開口5dに対するシート部材3のはみ出し部分3bのはみ出し量は上述したhとされている。   With reference to FIGS. 3A and 3B, the first embodiment described so far and the behavior of the valve body 2 in the embodiment will be described in more detail below. As shown in the figure, the primary side member 5 is provided with a primary side vent hole 5c. Further, the seal member 3 is fixed to the back surface 5b of the primary side member 5 so that the center of the circular primary side opening 5d coincides with the center of the seal opening 3a and the primary side opening 5d is surrounded by the seal member 3. ing. As described above, the inner diameter D3 of the seal opening 3a is set smaller than the inner diameter D5 of the primary side opening 5d, and the amount of protrusion of the protruding portion 3b of the sheet member 3 with respect to the primary side opening 5d is h described above. ing.

一次側部材5が鉛直下方に配置されることによって、弁体2には該弁体の重量に応じた重力が作用している。しかし、図3Aに示すように上流側から供給される気体の圧力と下流側から作用する気体の圧力との差圧により弁体2に作用する力(以下差圧力と称する。)が、弁体2に作用する重力に抗する場合には、弁体2は該差圧力によって持ち上げられる。即ち図3Aに示されるように弁体2はシート部材3から離れ、一次側通気口5cは開放されて逆流防止弁1内、言い換えれば気体流路12内への気体の流入が可能となる。二次側たる下流側に十分に気体が供給される等により該下流側の圧力が上昇する、或いは一次側たる上流側の気体の供給量が低下して該上流側の圧力が低下する等の状態となると、前述した差圧力が弁体2に作用する重力に抗することができなくなる。その結果、弁体2はシート部材3に向かって落下し、図3Bに示すようにシート部材3のシール開口3a周囲と、所定の位置関係にて着座、当接する。シート部材3は弁体2によって撓められ、該撓みによってシート部材3は弁体2の表面と面接触し、その結果、上流側から逆流防止弁1における気体流路12を完全に閉鎖する。以上の弁体2等の動作によって、該逆流防止弁1を介しての下流側からの上流側への気体の逆流は好適に防止される。   By arranging the primary side member 5 vertically downward, gravity corresponding to the weight of the valve body acts on the valve body 2. However, as shown in FIG. 3A, a force (hereinafter referred to as differential pressure) acting on the valve body 2 due to the differential pressure between the pressure of the gas supplied from the upstream side and the pressure of the gas acting from the downstream side. In the case of resisting the gravity acting on 2, the valve body 2 is lifted by the differential pressure. That is, as shown in FIG. 3A, the valve body 2 is separated from the seat member 3, and the primary side vent 5 c is opened to allow gas to flow into the backflow prevention valve 1, in other words, the gas flow path 12. The downstream pressure rises due to the sufficient supply of gas to the downstream side which is the secondary side, etc., or the supply pressure of the upstream side which is the primary side falls and the upstream pressure is lowered, etc. In this state, the above-described differential pressure cannot resist the gravity acting on the valve body 2. As a result, the valve body 2 falls toward the seat member 3, and is seated and abutted on the periphery of the seal opening 3a of the seat member 3 in a predetermined positional relationship as shown in FIG. 3B. The seat member 3 is bent by the valve body 2, and the sheet member 3 is brought into surface contact with the surface of the valve body 2 by the bending, and as a result, the gas flow path 12 in the check valve 1 is completely closed from the upstream side. By the operation of the valve body 2 and the like described above, the backflow of gas from the downstream side to the upstream side through the backflow prevention valve 1 is suitably prevented.

ここで、弁体2の重量による弁開閉圧力(所謂クラッキング圧力)について検証する。なお、気体の流入経路、流出経路、及び逆流防止弁内等の配管内抵抗は、実際には気体の流量に応じて変化する。しかし、以下の検証ではこれらを無視し、最終的には逆流防止弁における逆流防止状態での気密性であることから、空間内での圧力上昇が例えば1〜2Kpaといったある限界値を超えなければ良いとして考える。ここで、例えば、シール部材3におけるシール開口3aの穴径をφ30mmとした場合、
断面積=30×π/4=707mm=7.07 cm
受圧面は球面だが、平面と仮定しても良いので、推力は、
7.07 cm ×100Pa=7.07gf
弁体2の重さは5.0gの場合、クラッキング圧力は、
100Pa/7.07gf×5.0gf=70.72Pa
つまり、70.72Paで弁が開く。
弁体2の重さが5.1gの場合
100Pa/7.07gf×5.1gf=72.14Pa となる。
弁体の重さが6.0gの場合
100Pa/7.07gf×6.0gf=84.86Pa となる。
以上より、本逆流防止弁1は70〜80Paといった10〜10クラスの差圧での動作が可能となり、10Paクラスの大気圧と比較して非常に僅かの圧力差であっても、動作することが可能となる。
Here, the valve opening / closing pressure (so-called cracking pressure) due to the weight of the valve body 2 will be verified. In addition, the resistance in the piping such as the gas inflow path, the outflow path, and the backflow prevention valve actually varies depending on the gas flow rate. However, in the following verification, these are ignored, and finally the airtightness in the backflow prevention state in the backflow prevention valve, so that the pressure rise in the space must not exceed a certain limit value such as 1 to 2 Kpa. Think of it as good. Here, for example, when the hole diameter of the seal opening 3a in the seal member 3 is φ30 mm,
Cross-sectional area = 30 2 × π / 4 = 707 mm 2 = 7.07 cm 2
The pressure-receiving surface is a spherical surface, but it can be assumed that the surface is flat.
7.07 cm 2 × 100 Pa = 7.07 gf
When the weight of the valve body 2 is 5.0 g, the cracking pressure is
100Pa / 7.07gf × 5.0gf = 70.72Pa
That is, the valve opens at 70.72 Pa.
When the weight of the valve body 2 is 5.1 g, 100 Pa / 7.07 gf × 5.1 gf = 72.14 Pa.
When the weight of the valve body is 6.0 g, 100 Pa / 7.07 gf × 6.0 gf = 84.86 Pa.
Thus, the present check valve 1 becomes capable of operating at a differential pressure of 10 1 to 10 2 classes like 70~80Pa, even pressure difference of very small compared to the atmospheric pressure of 10 5 Pa class It becomes possible to operate.

なお、本実施形態では弁体2としてPP樹脂からなる球体を用いることとした。しかし、本発明は当該形態に限定されず、例えばその他の樹脂、或いは材料より構成することとしても良い。例えば熱可塑性の樹脂を用いて中空状の球体を構成し、これを用いることとしても良い。該熱可塑性樹脂によれば真球度を高めることが容易であると共にPP樹脂に対して重量も軽く、更に高強度というメリットが存在する。熱可塑性という特性上利用範囲が限定されるが、シール部材3との面接触がより容易に得られるというメリットもあることから、より差圧が小さい場合であっても該差圧に追随して好適に使用可能と考えられる。   In the present embodiment, a spherical body made of PP resin is used as the valve body 2. However, this invention is not limited to the said form, For example, it is good also as comprising from another resin or material. For example, a hollow sphere may be formed using a thermoplastic resin, and this may be used. According to the thermoplastic resin, it is easy to increase the sphericity, the weight is lighter than that of the PP resin, and there is a merit of high strength. Although the range of use is limited due to the property of thermoplasticity, there is also a merit that surface contact with the seal member 3 can be obtained more easily, so even if the differential pressure is smaller, the differential pressure is followed. It is considered that it can be suitably used.

また、本実施形態では、ガイド部材は複数の棒状部材により構成されることとしているが、ガイド部材の態様はこれに限定されない。例えばメッシュ或いはパンチングメタル等、十分な通気性を有する素材からなり、弁体2の径よりも大きな内径を有する筒状の構成物としても良い。この場合、該構成物は、ケース部材9の内部において、弁体2の移動範囲を所定領域14として規制し且つ気体流路12を閉鎖する際に弁体2のシート部材3上の着座位置への速やかな移動を促す作用を有すれば、例示した以外の形状等から構成されても良い。本発明では微差圧での動作を目的とすると同時に大流量での気体の供給も可能であることが必要な環境で使用可能な逆流防止弁の提供を目的としている。従って、ケース部材9の内径は弁体2の外径に対して十分な大きさを保つ値とされている。   In the present embodiment, the guide member is composed of a plurality of rod-shaped members, but the mode of the guide member is not limited to this. For example, it is good also as a cylindrical structure which consists of a raw material which has sufficient air permeability, such as a mesh or a punching metal, and has an internal diameter larger than the diameter of the valve body 2. FIG. In this case, the component restricts the movement range of the valve body 2 as the predetermined region 14 inside the case member 9 and closes the gas flow path 12 to the seating position on the seat member 3 of the valve body 2. If it has the effect | action which accelerates | stimulates this quick movement, you may be comprised from shapes other than illustrated. An object of the present invention is to provide a check valve that can be used in an environment where it is necessary to operate at a slight differential pressure and at the same time be capable of supplying a gas at a large flow rate. Therefore, the inner diameter of the case member 9 is set to a value that maintains a sufficient size with respect to the outer diameter of the valve body 2.

本形態の如くガイド部材を配置することによって、ケース部材9の内径を広げることによる十分な内径を有した気体流路の確保と、弁体2のシール部材3に対する適正位置、即ち着座位置への確実且つ速やかな移動とを両立するという効果が得られる。即ち、弁体2の気体流路12の軸方向(流路軸方向)と垂直な平面内での移動をガイド部材13によって規制し、シール部材3の所定位置への確実な着座を保障している。本実施形態の場合、ガイド部材13単体にて、弁体2の動作範囲を所定領域14と規定すると共に弁体2のシート部材3上の適正且つ所定位置への着座を促す、弁体動作範囲規制手段13を構成する。なお、本実施形態では図1に示す形態の変形例として、弁体2の下流側(二次側)への動作範囲を二次側部材7によって規定している。なお、ここで述べる所定位置とは、シール部材3のシール開口3aと弁体2の重心とが差圧力の作用する軸線上で整列し、且つ弁体2がシール開口3aの周囲と密着してシール開口3a及び一次側開口5dを閉鎖する位置(即ち図3Bに示される弁体2の位置)をいう。   By arranging the guide member as in this embodiment, it is possible to secure a gas flow path having a sufficient inner diameter by widening the inner diameter of the case member 9 and to move the valve body 2 to the appropriate position with respect to the seal member 3, that is, to the seating position. The effect of achieving both reliable and quick movement is obtained. That is, the movement of the valve body 2 in the plane perpendicular to the axial direction of the gas flow path 12 (flow path axial direction) is restricted by the guide member 13 to ensure reliable seating of the seal member 3 at a predetermined position. Yes. In the case of this embodiment, the guide member 13 alone defines the operating range of the valve body 2 as the predetermined region 14 and promotes the seating of the valve body 2 on the seat member 3 in an appropriate and predetermined position. The restricting means 13 is configured. In this embodiment, as a modification of the embodiment shown in FIG. 1, the operation range to the downstream side (secondary side) of the valve body 2 is defined by the secondary side member 7. The predetermined position described here is that the seal opening 3a of the seal member 3 and the center of gravity of the valve body 2 are aligned on the axis on which the differential pressure acts, and the valve body 2 is in close contact with the periphery of the seal opening 3a. This refers to the position where the seal opening 3a and the primary side opening 5d are closed (that is, the position of the valve body 2 shown in FIG. 3B).

しかし、供給される気体の流量が大きい場合には、例えば弁体2がケース部材9内部で吹き上げられ、二次側開口7cに当接して気体流路12を閉鎖する場合も生じる恐れがある。本実施形態では、このような場合への対処として、図1に示すように、ケース部材9内部に更にストッパ部材19を配置し、弁体2の下流側開口への極端な接近を防止することとしている。即ち、シール部材3とストッパ部材19とによって弁体2の流路軸方向の移動範囲を主に規定し、ガイド部材13によって流路軸方向と水平な面内での移動範囲を主に規定し、よって弁体2の移動範囲を所定の領域として規定することが好ましい。この場合、ストッパ部材19は、ガイド部材13と共に、弁体2の動作範囲を所定範囲と規定すると共に弁体2のシート部材3上の適正位置への着座を促す、弁体動作範囲規制手段13、19を構成する。なお、ストッパ部材19は弁体2の動作範囲を規定可能であれば種々の形態が可能であり、図3Aに示し形態のように流す気体の流量に応じてはこれを無くすことも可能である。また、本実施形態では、シール開口3aに対して弁体2の動作方向は垂直であり、ガイド部材13もこれに合せて配置されている。また、二次側通気口7cも、中心が弁体2の動作軸と一致している。しかし、本発明では、弁体動作範囲規制手段が上述した機能を呈することが可能であれば、弁体2の動作方向がシール開口3aの開口方向に対して角度を有するものであっても良く、二次側通気口7cも該動作軸から隔置された場所に配置されても良い。   However, when the flow rate of the supplied gas is large, for example, the valve body 2 may be blown up inside the case member 9 and may come into contact with the secondary side opening 7c to close the gas flow path 12. In the present embodiment, as a countermeasure to such a case, as shown in FIG. 1, a stopper member 19 is further arranged inside the case member 9 to prevent an extreme approach to the downstream opening of the valve body 2. It is said. That is, the seal member 3 and the stopper member 19 mainly define the movement range of the valve body 2 in the flow path axis direction, and the guide member 13 mainly defines the movement range in a plane parallel to the flow path axis direction. Therefore, it is preferable to define the movement range of the valve body 2 as a predetermined area. In this case, the stopper member 19, together with the guide member 13, defines the operating range of the valve body 2 as a predetermined range and promotes the seating of the valve body 2 at an appropriate position on the seat member 3. , 19 is configured. The stopper member 19 can take various forms as long as it can define the operating range of the valve body 2, and can be eliminated depending on the flow rate of the gas flowing as shown in FIG. 3A. . In the present embodiment, the operation direction of the valve body 2 is perpendicular to the seal opening 3a, and the guide member 13 is also arranged accordingly. The center of the secondary vent 7c also coincides with the operation axis of the valve body 2. However, in the present invention, the operation direction of the valve body 2 may have an angle with respect to the opening direction of the seal opening 3a as long as the valve body operation range regulating means can exhibit the above-described function. The secondary vent 7c may also be arranged at a location spaced from the operation axis.

以上に述べた構成により、大気圧と比較して10-4倍以下の非常に小さな圧力差においても弁体2とシール部材3とが十分な大きさの面接触を為すことで大きなシール作用を呈することができ、確実に動作し得る逆流防止弁1を構築することが可能となる。また、弁体2が気体流路12を開放した場合に、弁体2とケース部材9との間に十分な広さの気体流路12を確保することが可能となる。また、一次側経路と二次側経路との圧力差が徐々になくなった場合であっても、弁体2はシート部材3上の適切な位置に確実に移動することとなり、逆流防止弁1としての確実な動作を得ることが可能となる。 With the above-described configuration, even when the pressure difference is 10 −4 times or less compared to the atmospheric pressure, the valve body 2 and the seal member 3 make a large sealing effect by making a sufficiently large surface contact. It is possible to construct the check valve 1 that can be present and can operate reliably. In addition, when the valve body 2 opens the gas flow path 12, it is possible to ensure a sufficiently wide gas flow path 12 between the valve body 2 and the case member 9. Further, even when the pressure difference between the primary side path and the secondary side path gradually disappears, the valve body 2 surely moves to an appropriate position on the seat member 3. It is possible to obtain a reliable operation.

(第二の実施形態)
次に、図4を参照して本発明の第二の実施形態について述べる。なお、上述した第一の実施形態と同じ構成要素については同じ参照番号を用いて図中これを示すこととし、ここでの詳細な説明は省略する。前述した第一の実施形態では、シール部材3が一次側通気口5cにおける一次側開口5dの内側にはみ出す構成であることから、気体の流路をシール部材3が狭めているとも考えられ、大流量対応という観点からは好ましくない、また、シール部材3が撓む際に一次側開口5dの開口縁部にのみシール部材3が押し付けられ、且つ略90度に折り曲げられることから、曲がり部分への過度の負荷が懸念される。図4に示す第二の実施形態では、一次側通気口5cにおいて、裏面5bに近づくにつれて一次側通気口5cの内径がD5を最小として徐々に大きくなる所謂テーパ部分5eが設けられている。この場合、一次側開口5dの内径D6は、テーパ部分5eの最大径として定義される。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, about the same component as 1st embodiment mentioned above, this shall be shown in a figure using the same reference number, and detailed description here is abbreviate | omitted. In the first embodiment described above, since the seal member 3 protrudes inside the primary side opening 5d in the primary side vent 5c, it is considered that the seal member 3 narrows the gas flow path. It is not preferable from the viewpoint of flow rate correspondence, and when the seal member 3 bends, the seal member 3 is pressed only against the opening edge of the primary side opening 5d and is bent at approximately 90 degrees. There is concern about excessive load. In the second embodiment shown in FIG. 4, a so-called tapered portion 5 e is provided in the primary side vent 5 c so that the inner diameter of the primary side vent 5 c gradually increases with D5 as the distance from the back surface 5 b approaches. In this case, the inner diameter D6 of the primary side opening 5d is defined as the maximum diameter of the tapered portion 5e.

本実施形態では、テーパ部分5eを配することにより、シール部材3のシール開口3aの内径D3を、一次側通気口5cの内径と同等以上に維持可能としている。従って、流量の維持が容易であると共に、当該気体流路より得られる流量を確実に設計上の値として得ることが可能となる。ここで、シール開口3aの内径D3、一次側通気口5cでの内径D5、及び一次側開口5dの内径(即ちテーパ部5eにおける最大径)D6の関係はD5≦D3<D6となることが望ましい。即ち、一次側開口5dの内径は一次側通気口5cの該一次側開口5d以外の部分の内径より大きく、且つシール開口3aの内径より小さく設定される。また、該テーパ部分5eの存在により、弁体2がシール部材3に当接し、該シール部材3が撓められた際であっても、曲げ部分の角度をより緩やかなものとすると共に、テーパ部分5eによっても部分的にこれを支持することを可能としている。従って、シール部材3の特定部位に対する過度の負荷が避けられると言う効果も付随的に得られる。同時にテーパ部分5eが面として弁体2の表面に接することが可能であることから、シール部材3と弁体2との面接触をサポートし、シール効果をより確実なものとする効果も得られる。   In the present embodiment, by providing the tapered portion 5e, the inner diameter D3 of the seal opening 3a of the seal member 3 can be maintained equal to or greater than the inner diameter of the primary side vent 5c. Accordingly, the flow rate can be easily maintained, and the flow rate obtained from the gas flow path can be reliably obtained as a design value. Here, the relationship among the inner diameter D3 of the seal opening 3a, the inner diameter D5 at the primary-side vent 5c, and the inner diameter of the primary-side opening 5d (that is, the maximum diameter at the tapered portion 5e) D6 is preferably D5 ≦ D3 <D6. . That is, the inner diameter of the primary side opening 5d is set larger than the inner diameter of the primary side vent 5c other than the primary side opening 5d and smaller than the inner diameter of the seal opening 3a. Further, due to the presence of the tapered portion 5e, even when the valve body 2 comes into contact with the seal member 3 and the seal member 3 is bent, the angle of the bent portion is made gentler and the taper portion 5e is tapered. This can be partially supported by the portion 5e. Therefore, an effect that an excessive load on a specific part of the seal member 3 can be avoided is also obtained. At the same time, since the tapered portion 5e can contact the surface of the valve body 2 as a surface, the surface contact between the seal member 3 and the valve body 2 is supported, and the effect of making the sealing effect more reliable is also obtained. .

(第三の実施形態)
図4に示した第二の実施形態は、シール部材3への負荷の低減及びテーパ面によるシール効果の補助といった副次的な効果が得られる。図5に示す第三の実施形態は、第二の実施形態と比較してより加工容易な形態にて該逆流防止弁における大流量適応を可能とする形態である。なお、上述した第一或いは第二の実施形態と同じ構成要素については同じ参照番号を用いて図中これを示すこととし、ここでの詳細な説明は省略する。図5に示す実施形態では、一次側通気口5cの一次側開口5dにおいて、内径をD5より大きなD6とした所謂段差部分5fが設けられている。ここで、環状のシール部材3の内径D3、一次側通気口5cの内径D5、及び一次側開口5d(即ち段差部分5f)の内径D6の関係は、第二の実施形態と同様にD5≦D3<D6となっていることが望ましい。即ち、一次側開口5dの内径は一次側通気口5cの該一次側開口5d以外の部分の内径より大きく、且つシール開口3aの内径より小さく設定される。以上の関係を満たし、且つ段差部分5fにおける逆流防止弁1の軸方向の深さdをシール部材3の撓み量を収容可能となる値に設定することによって、気体の流れに対するシール部材3のはみ出し量の影響を極力抑制することが可能となる。
(Third embodiment)
In the second embodiment shown in FIG. 4, secondary effects such as reduction of the load on the seal member 3 and assistance of the sealing effect by the tapered surface can be obtained. The third embodiment shown in FIG. 5 is a form that enables adaptation of a large flow rate in the check valve in a form that is easier to process than the second embodiment. In addition, about the same component as 1st or 2nd embodiment mentioned above, this shall be shown in a figure using the same reference number, and detailed description here is abbreviate | omitted. In the embodiment shown in FIG. 5, a so-called step portion 5f having an inner diameter D6 larger than D5 is provided in the primary side opening 5d of the primary side vent 5c. Here, the relationship among the inner diameter D3 of the annular seal member 3, the inner diameter D5 of the primary side vent 5c, and the inner diameter D6 of the primary side opening 5d (that is, the step portion 5f) is D5 ≦ D3 as in the second embodiment. <D6 is desirable. That is, the inner diameter of the primary side opening 5d is set larger than the inner diameter of the primary side vent 5c other than the primary side opening 5d and smaller than the inner diameter of the seal opening 3a. By satisfying the above relationship and setting the axial depth d of the backflow prevention valve 1 at the step portion 5f to a value that can accommodate the amount of deflection of the seal member 3, the seal member 3 protrudes from the gas flow. It becomes possible to suppress the influence of the amount as much as possible.

(第四の実施形態)
第一から第三の実施形態において、更に該逆流防止弁を通過する気体の流量を増加させようとした場合、単純に上流側通気口となる一次側通気口5c及び下流側通気口となる二次側通気口7cを大きくし且つこれに対応して弁体2を大きくすることも考えられる。しかし、弁体2を大きくすることによって、微差圧での該逆流防止弁の好適な動作が困難となる。以下に述べる実施形態は当該状況に鑑みて構築された、より大流量への対応と微差圧動作とを両立し得る形態である。図6Aは、当該第四の実施形態に係る逆流防止弁1について、これを軸方向に沿い且つ該軸を含む面により切断した断面の概略構成を示す図である。また、図6Bは当該逆流防止弁1を図6A中の線6B−6Bに沿って切断した断面を矢印B方向から見た状態の概略構成を示している。なお、上述した第一の実施形態等と同じ構成要素については基本的には同じ名称及び同じ参照番号を用い、該構成要素が複数存在する場合には詳細な説明においては第一、第二等の付記、及び図中においてはa、b、c等の区別用の参照番号の付記にてこれらを示すこととし、ここでの詳細な説明は省略する。
(Fourth embodiment)
In the first to third embodiments, when it is attempted to further increase the flow rate of the gas passing through the check valve, the primary side vent 5c that is simply the upstream side vent and the second side vent that is the downstream side vent. It is also conceivable to enlarge the valve body 2 correspondingly by enlarging the secondary vent 7c. However, increasing the size of the valve body 2 makes it difficult to perform a suitable operation of the check valve at a slight differential pressure. The embodiment described below is a form that is constructed in view of the situation and that can cope with a larger flow rate and a slightly differential pressure operation. FIG. 6A is a diagram showing a schematic configuration of a cross section of the backflow prevention valve 1 according to the fourth embodiment, which is cut along a plane along the axial direction and including the shaft. Moreover, FIG. 6B has shown schematic structure of the state which looked at the cross section which cut | disconnected the said backflow prevention valve 1 along line 6B-6B in FIG. 6A from the arrow B direction. In addition, about the same component as 1st embodiment mentioned above etc., the same name and the same reference number are used fundamentally, and when there are a plurality of these components, in the detailed explanation, the first, second, etc. These are indicated by reference numerals for distinguishing reference numbers such as a, b, and c in the drawings, and detailed description thereof is omitted here.

本実施形態では、単一のケース部材9の中に弁体2が複数個(本形態では四個)配置される構成を示している。弁体2に対応して一次側通気口5cも弁体2と同数個配置され、且つ個々の弁体2用のガイド部材13が弁体2各々に対して各一式ずつ配置されている。本実施形態では、二次側部材7には、大口径の単一の二次側通気口7cが設けられている。当該形態も、弁体2が二次側通気口7cから外部に飛び出す、或いは所定の移動範囲から外れることを防止するために、ストッパ部材19を有している。ストッパ部材はガイド部材13の気体の流れ方向における下流側(二次側部材7が配置される側)に配置され、ガイド部材13に規定される弁体2の動作範囲の一方の端部を規定する。ここで、動作範囲の他方の端部はシール部材3によって規定される。なお、本実施形態では二次側部材7より支柱たるサポート部材21を突き出させ、該サポート部材21によってストッパ部材19を支持している。   In the present embodiment, a configuration in which a plurality of valve bodies 2 (four in this embodiment) are arranged in a single case member 9 is shown. Corresponding to the valve bodies 2, the same number of primary side vents 5 c as the valve bodies 2 are arranged, and a set of guide members 13 for the individual valve bodies 2 is arranged for each of the valve bodies 2. In the present embodiment, the secondary side member 7 is provided with a single secondary side vent hole 7c having a large diameter. This form also has a stopper member 19 in order to prevent the valve body 2 from jumping out of the secondary vent 7c or out of a predetermined movement range. The stopper member is disposed downstream of the guide member 13 in the gas flow direction (the side where the secondary member 7 is disposed), and defines one end of the operating range of the valve body 2 defined by the guide member 13. To do. Here, the other end of the operating range is defined by the seal member 3. In the present embodiment, the support member 21 as a support column is protruded from the secondary side member 7, and the stopper member 19 is supported by the support member 21.

ストッパ部材19は平板状の部材であり、サポート部材21によって二次側部材7と平行に支持された状態において、一次側通気口5aの各々と対向する位置に、弁体2が通過できない大きさの貫通孔19aが位置するように構成されている。また、ガイド部材13は該ストッパ部材19により一次側部材5に向かって延在するように各々支持される。なお、本実施形態におけるシール部材3のはみ出し部分3bのはみ出し量h、及び一次側通気口5aの一次側開口5dの形状は、前述した第一から第三の実施形態各々の形態とすることが望ましい。また、本実施形態では弁体2を四個としているが、本実施形態は当該個数に限定されず、八個、十六個等、弁体の数を更に増やした形態とすることも可能であり、更に二次側通気口7cは大口径の単一も貫通孔からなるのではなく、小口径の貫通孔(通気口)を複数設ける様式としても良い。   The stopper member 19 is a flat plate-like member, and when the support member 21 is supported in parallel with the secondary side member 7, the valve body 2 cannot pass through the position facing each of the primary side vents 5a. The through hole 19a is positioned. The guide members 13 are supported by the stopper members 19 so as to extend toward the primary member 5. In this embodiment, the protruding amount h of the protruding portion 3b of the seal member 3 and the shape of the primary side opening 5d of the primary side vent 5a are the same as those of the first to third embodiments described above. desirable. In the present embodiment, the number of the valve bodies 2 is four, but the present embodiment is not limited to the number, and the number of valve bodies can be further increased to eight, sixteen, etc. In addition, the secondary vent 7c may not be formed of a single large-diameter through-hole, but may be provided with a plurality of small-diameter through-holes (vents).

(第五の実施形態)
上述した第四の実施形態では、弁体2は全て均等な構成物としている。ここで、先にクラッキング圧力の検証において示したように、当該圧力は弁体2の重量によって変化する。第五の実施形態では弁体2の重量をパラメータに用いることによって、より微差圧での逆流防止弁の動作を可能としている。当該実施形態を図7A及び図7Bを用いて説明する。なお、これら図は、第一の実施形態を示した図3Aと同様の様式にて本形態の主要構成物を示したものであって、先の述べたように同一の構成要素に関しては同一の参照符号等を用い、その説明は省略する。また、図7Aは上流側圧力P1と下流側圧力P2との間にP1<P2の関係が成立し、逆流防止弁1が気体の逆流を防止した状態を示す。また、図7Bはこの関係が逆転し、逆流防止弁1に対して部分的に気体の流入が生じ始めた状態を示している。
(Fifth embodiment)
In the fourth embodiment described above, the valve bodies 2 are all equal components. Here, as shown in the verification of the cracking pressure, the pressure changes depending on the weight of the valve body 2. In the fifth embodiment, by using the weight of the valve body 2 as a parameter, the backflow prevention valve can be operated with a more differential pressure. The embodiment will be described with reference to FIGS. 7A and 7B. These drawings show the main components of the present embodiment in the same manner as in FIG. 3A showing the first embodiment. As described above, the same components are the same. Reference numerals and the like are used, and description thereof is omitted. FIG. 7A shows a state where the relationship of P1 <P2 is established between the upstream pressure P1 and the downstream pressure P2, and the backflow prevention valve 1 prevents the backflow of gas. FIG. 7B shows a state in which this relationship is reversed, and gas inflow partially starts to occur in the check valve 1.

本実施形態では、三個の弁体である第一の弁体2a、第二の弁体2b及び第三の弁体2cを用いているが、弁体各々の重量について夫々Wa、Wb、及びWcとし、これらの間においてWa>Wb>Wcの関係が成り立つこととしている。上流側の圧力が増加し、P1>P2の状態になった場合、小流量時には気体から各々の弁体に加えられるクラッキング圧力が小さいため、図7Bに示すように、この圧力に対応し得る軽い弁体、本形態では例えば第三の弁体2cのみがシート部材3から離れる。当該クラッキング圧力に対応する流量のみ、当該逆流防止弁1を介して気体を流すことが可能となる。即ち、弁体の重量に準じて、弁体各々に作用する圧力及び重力の均衡が崩れたものから順次作動し、弁体の重量に応じた気体を供給することが可能となる。この様に弁体の重量を適宜変えて設定することによって、差圧変化に対して弁体が各々応答性良く一次側通気口5cを開放することとなり、非常に小さな差圧変化にも対応することが可能となる。また、大流量時においては、全ての弁体が一次側通気口5cを開放し、前述した第四の実施形態の如く気体を流すことが可能となる。従って、差圧の小さな微小流量時から大流量時まで、広範な気体の流量域での動作が可能となる。   In the present embodiment, the first valve body 2a, the second valve body 2b, and the third valve body 2c, which are three valve bodies, are used. Wa, Wb, and It is assumed that the relationship of Wa> Wb> Wc is established between them. When the pressure on the upstream side increases and P1> P2, the cracking pressure applied from the gas to each valve body is small when the flow rate is small. Therefore, as shown in FIG. In the present embodiment, for example, only the third valve body 2 c is separated from the seat member 3. Only a flow rate corresponding to the cracking pressure can flow gas through the backflow prevention valve 1. That is, according to the weight of the valve body, the pressure acting on each valve body and the gravity are actuated sequentially from the balance, and the gas corresponding to the weight of the valve body can be supplied. In this way, by setting the weight of the valve body as appropriate, the valve body opens the primary-side vent 5c with good responsiveness to the differential pressure change, and can cope with a very small differential pressure change. It becomes possible. Moreover, at the time of a large flow rate, all the valve bodies open the primary side vent hole 5c, and it becomes possible to flow gas as in the fourth embodiment described above. Therefore, it is possible to operate in a wide gas flow range from a minute flow rate with a small differential pressure to a large flow rate.

(第六の実施形態)
また、上述したように、クラッキング圧力は弁体2の受圧面積によっても異なっている。よって、第五の実施形態と同様の効果は、該受圧面積、即ち一次側通気口5cの内径を変化させることによっても得られる。このような実施形態を第六の実施形態として図8A及び8Bを用いて説明する。図8A及び8Bは、図7A及び7Bと同様の様式にて当該実施形態を説明する図である。本形態では、上流側部材5の三個の一次側通気口であって、第一の一次側通気口5ca、第二の一次側通気口5cb及び第三の一次側通気口5ccを用いている。各々の内径はD5a、D5b及びD5cであって、D5a<D5b<D5cなる関係を満たしている。ここで、例えばD5b=30mm、D5c=32mmとした場合、
シール部材3のシール開口3aの内径(一次側通気口の内径に対応)をφ30mmとすると
断面積=30×π/4=707mm=7.07 cm
受圧面は球面だが、平面と仮定しても良いので、推力は、
7.07 cm ×100Pa=7.07gf
弁体2の重さを2.7gとすると、クラッキング圧力は、
100Pa/7.07gf×2.7gf=38.19Pa となる。
つまり、38.19Paで弁が開く。
これに対してシール部材3のシール開口3bの内径をφ32mmとすると
断面積=32×π/4=804mm=8.04 cm
100Paで8.04gfの推力
弁体2の重さは2.7gなので、クラッキング圧力は、
100Pa/8.04gf×2.7gf=33.58Pa となる。
従って、同じ弁体2の重さでも、クラッキング圧力の差が約4.6Pa確保できる。即ち、一次側通気口5c各々の内径(一次側開口5dの内径)に準じて、弁体各々に作用する圧力及び重力の均衡が崩れたものから順次作動し、該内径に応じた気体を供給することが可能となる。即ち、該形態の逆流防止弁では、複数の弁体に応じた複数の一次側通気口を有し、且つ該複数の一次側通気口においては一次側開口の内径が異なるものが含まれている。この様に一次側通気口の内径を適宜変えて設定することによって、差圧変化に対して弁体が各々応答性良く一次側通気口5cを開放することとなり、非常に小さな差圧変化にも対応することが可能となる。また、大流量時においては、全ての弁体が一次側通気口5cを開放し、前述した第四の実施形態の如く気体を流すことが可能となる。従って、差圧の小さな微小流量時から大流量時まで、広範な気体の流量域での動作が可能となる。
(Sixth embodiment)
Further, as described above, the cracking pressure varies depending on the pressure receiving area of the valve body 2. Therefore, the same effect as that of the fifth embodiment can be obtained by changing the pressure receiving area, that is, the inner diameter of the primary side vent 5c. Such an embodiment will be described as a sixth embodiment with reference to FIGS. 8A and 8B. 8A and 8B are diagrams illustrating the embodiment in the same manner as in FIGS. 7A and 7B. In this embodiment, the three primary side vents of the upstream member 5 are the first primary side vent 5ca, the second primary side vent 5cb, and the third primary side vent 5cc. . Each inner diameter is D5a, D5b, and D5c, and satisfies the relationship D5a <D5b <D5c. Here, for example, when D5b = 30 mm and D5c = 32 mm,
When the inner diameter of the seal opening 3a of the seal member 3 (corresponding to the inner diameter of the primary vent) is φ30 mm, the cross-sectional area = 30 2 × π / 4 = 707 mm 2 = 7.07 cm 2
The pressure-receiving surface is a spherical surface, but it can be assumed that the surface is flat.
7.07 cm 2 × 100 Pa = 7.07 gf
If the weight of the valve body 2 is 2.7 g, the cracking pressure is
100 Pa / 7.07 gf × 2.7 gf = 38.19 Pa
That is, the valve opens at 38.19 Pa.
On the other hand, when the inner diameter of the seal opening 3b of the seal member 3 is φ32 mm, the cross-sectional area = 32 2 × π / 4 = 804 mm 2 = 8.04 cm 2
The thrust of 8.04 gf at 100 Pa Since the weight of the valve body 2 is 2.7 g, the cracking pressure is
100 Pa / 8.04 gf × 2.7 gf = 33.58 Pa
Therefore, even with the same weight of the valve body 2, a difference in cracking pressure of about 4.6 Pa can be secured. That is, in accordance with the inner diameter of each primary side vent hole 5c (the inner diameter of the primary side opening 5d), the pressure acting on each valve body is actuated sequentially from the balance of gravity and gas corresponding to the inner diameter is supplied. It becomes possible to do. That is, the backflow prevention valve of this form includes a plurality of primary-side vents corresponding to a plurality of valve bodies, and the plurality of primary-side vents include those having different primary-side opening inner diameters. . In this way, by appropriately changing the inner diameter of the primary side vent, the valve body opens the primary side vent 5c with good responsiveness to the differential pressure change, and even for a very small differential pressure change. It becomes possible to respond. Moreover, at the time of a large flow rate, all the valve bodies open the primary side vent hole 5c, and it becomes possible to flow gas as in the fourth embodiment described above. Therefore, it is possible to operate in a wide gas flow range from a minute flow rate with a small differential pressure to a large flow rate.

なお、上述した第四及び第五の実施形態において、シール部材3として先に述べたシート状の弾性部材を用いた場合を示したが、本実施形態はこれに限定されない。即ち、各々の一次側通気口において対応するクラッキング圧力が設定可能であることから、例えばシール部材3としてOリング形状の部材を用いることも可能である。   In the fourth and fifth embodiments described above, the case where the above-described sheet-like elastic member is used as the seal member 3 is shown, but the present embodiment is not limited to this. That is, since a corresponding cracking pressure can be set at each primary side vent, for example, an O-ring shaped member can be used as the seal member 3.

以上第四乃至第六の実施形態に示すように、複数の弁体を用いる様式からなる逆流防止弁において、複数の一次側通気口5cの各々について、その動作圧力を異ならせることによって、より微小な差圧による微小流量での気体の供給から全ての一次側通気口5cを開放した大流量での気体の供給まで対応することが可能となる。また、当該第四乃至第六の実施形態において、一次側通気口5cを始めとする第1乃至第三の実施形態に記載された種々の応用例を適用することが可能である。更に、これら弁の動作には電気的な制御が一切不要であることから、気体供給系の構築に要するコスト等を削減することも可能となる。   As described above in the fourth to sixth embodiments, in the backflow prevention valve having a mode using a plurality of valve bodies, the operating pressure of each of the plurality of primary-side vents 5c is made different by making the operation pressure different. It is possible to cope with gas supply at a small flow rate due to a differential pressure to gas supply at a large flow rate with all the primary vents 5c opened. In the fourth to sixth embodiments, various application examples described in the first to third embodiments including the primary-side vent 5c can be applied. Furthermore, since no electrical control is required for the operation of these valves, it is possible to reduce the cost required for constructing the gas supply system.

本発明における逆流防止弁は、パージ等で低圧ガスを無駄なく使用する点において、冒頭の金属磁石関連の製造装置のみならず、種々の用途に適用可能である。例えば、不活性ガスを常時充填することが必要な、例えばフラックスフリーの半田付け装置や設備、或いは防爆のために気中溶剤濃度を低減する必要があるエリアへの吸気、への採用など様々な応用が考えられる。   The backflow prevention valve in the present invention is applicable not only to the metal magnet-related manufacturing apparatus at the beginning but also to various uses in that low pressure gas is used without waste in purging or the like. For example, various applications such as flux-free soldering equipment and facilities that require constant filling with inert gas, or intake into areas where the concentration of airborne solvents needs to be reduced for explosion protection, etc. Application is conceivable.

1:逆流防止弁、 2、2a、2b、2c:弁体、 3:シール部材、 3a:シール開口、 3b:はみ出し部分、 5:一次側部材、 5a:表面、 5b:裏面、 5c、5ca、5cb、5cc:一次側通気口、 5d:一次側開口、 5e:テーパ部分、 5f:段差部分、 7:二次側部材、 7a:表面、 7b:裏面、 7c:二次側通気口、 9:ケース部材、 9a:一次側端面、 9b:二次側端面、 11:締結部材、 12:気体流路、 13:ガイド部材、 15:一次側気密用部材 、17:二次側気密用部材、 19:ストッパ部材、 19a:貫通孔、 21:サポート部材 1: backflow prevention valve 2, 2a, 2b, 2c: valve body, 3: seal member, 3a: seal opening, 3b: protruding portion, 5: primary side member, 5a: front surface, 5b: back surface, 5c, 5ca, 5cb, 5cc: Primary side vent, 5d: Primary side opening, 5e: Tapered portion, 5f: Stepped portion, 7: Secondary side member, 7a: Front surface, 7b: Back surface, 7c: Secondary side vent, 9: Case member, 9a: Primary side end surface, 9b: Secondary side end surface, 11: Fastening member, 12: Gas flow path, 13: Guide member, 15: Primary side airtight member, 17: Secondary side airtight member, 19 : Stopper member, 19a: Through hole, 21: Support member

Claims (3)

気体が一次側から二次側に流れる系に配置されて、前記二次側から前記一次側への前記気体の逆流を防止する逆流防止弁であって、
前記一次側及び前記二次側に接続されて前記気体が流れることが可能な気体流路と、
前記気体流路の中に配置されて、前記一次側に存在する気体から作用する一次側圧力と前記二次側に存在する気体から作用する二次側圧力との圧力差により作用する力によって所定領域を移動可能であって、樹脂からなる中空状の弁体と、
前記気体流路の一方の端部を構成し、前記気体流路の一部である一次側通気口を有する一次側部材と、
前記一次側通気口の一次側開口に固定されて、前記弁体と密着することによって前記気体流路を閉鎖可能なシール部材と、を有し、
前記弁体は複数存在し、前記一次側通気口及び前記シール部材は前記弁体各々に対応して配置され、
前記複数の弁体に応ずる複数の前記一次側通気口は、前記一次側開口の内径が異なる一次側通気口を含み、前記内径の異なりにより各々の弁体の受圧面積を異ならせることを特徴とする逆流防止弁。
A backflow prevention valve disposed in a system in which gas flows from a primary side to a secondary side to prevent backflow of the gas from the secondary side to the primary side;
A gas flow path connected to the primary side and the secondary side through which the gas can flow;
Predetermined by a force that is arranged in the gas flow path and acts by a pressure difference between a primary side pressure acting from the gas existing on the primary side and a secondary side pressure acting from the gas existing on the secondary side A hollow valve body made of resin that is movable in the region;
A primary side member that constitutes one end of the gas flow path and has a primary side vent that is part of the gas flow path;
A seal member fixed to the primary side opening of the primary side vent and capable of closing the gas flow path by closely contacting the valve body;
There are a plurality of the valve bodies, and the primary vent and the seal member are arranged corresponding to each of the valve bodies,
The plurality of primary side vents corresponding to the plurality of valve bodies include primary side vents having different inner diameters of the primary side openings, and the pressure receiving areas of the respective valve bodies are made different depending on the different inner diameters. Backflow prevention valve.
前記シール部材における前記一次側開口と同軸に固定されたシール開口の内径は、前記一次側開口の内径よりも小さく、前記シール部材は前記一次側開口の内側にはみ出すはみ出し部分を有することを特徴とする請求項1に記載の逆流防止弁。   An inside diameter of the seal opening fixed coaxially with the primary side opening in the seal member is smaller than an inside diameter of the primary side opening, and the seal member has a protruding portion that protrudes inside the primary side opening. The backflow prevention valve according to claim 1. 前記弁体の移動範囲である所定領域を規定し、前記弁体の前記シール部材上の所定の位置への着座を促す弁体動作範囲規制手段を更に有することを特徴とする請求項1或いは2の何れかに記載の逆流防止弁。   3. A valve body operating range restricting means that regulates a predetermined area, which is a movement range of the valve body, and promotes seating of the valve body at a predetermined position on the seal member. The check valve according to any one of the above.
JP2010093995A 2010-04-15 2010-04-15 Check valve Active JP5598701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093995A JP5598701B2 (en) 2010-04-15 2010-04-15 Check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093995A JP5598701B2 (en) 2010-04-15 2010-04-15 Check valve

Publications (2)

Publication Number Publication Date
JP2011226497A JP2011226497A (en) 2011-11-10
JP5598701B2 true JP5598701B2 (en) 2014-10-01

Family

ID=45042073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093995A Active JP5598701B2 (en) 2010-04-15 2010-04-15 Check valve

Country Status (1)

Country Link
JP (1) JP5598701B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922625A (en) * 1972-06-26 1974-02-28
JPS4986440U (en) * 1972-11-15 1974-07-26
JPS5640269U (en) * 1979-09-07 1981-04-14
US4607660A (en) * 1985-05-13 1986-08-26 Ingersoll-Rand Company Uni-directional-flow, fluid valve assembly
JPH0638221Y2 (en) * 1987-10-21 1994-10-05 東京計装株式会社 Gas / liquid fluid switching valve
JPH07113426B2 (en) * 1988-04-26 1995-12-06 儀信 小岩 Valve device
JP2506121Y2 (en) * 1989-05-19 1996-08-07 株式会社 電業社機械製作所 Digital valve
US4986310A (en) * 1990-01-22 1991-01-22 Vernay Laboratories, Inc. Low pressure check valve
JPH09229215A (en) * 1996-02-27 1997-09-05 Miura Co Ltd Check valve
JP4723980B2 (en) * 2005-11-11 2011-07-13 積水化学工業株式会社 Check valve
JP2009192048A (en) * 2008-02-18 2009-08-27 Maruyama Mfg Co Ltd Pressure regulating valve

Also Published As

Publication number Publication date
JP2011226497A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US9347580B2 (en) Valve device
JP5121829B2 (en) Flow control device for pressure regulator
CN101180485B (en) Aerated loop valve for liquid box
CN102959486B (en) Pressure reducing apparatus
US6929025B2 (en) Two-way valve
EP3608568B1 (en) Electromagnetic valve having durability against oxygen, hydrogen, and water
KR102497957B1 (en) Control plate for high conductivity valves
EP2233806A1 (en) Solenoid pilot open/close valve
CN112513767B (en) Gas Pressure Regulator
EP2982890A1 (en) Pilot type solenoid valve
US11965615B2 (en) Pipe joint
US6981514B2 (en) Fuel cutoff valve
JP5598701B2 (en) Check valve
EP1484512A2 (en) Electro-pneumatic air pressure regulator
US20140124066A1 (en) Flow valve
US8776823B2 (en) Fuel shut-off valves
US20180038317A1 (en) Gas fuel supply apparatus
JP4684923B2 (en) Check valve and fluid supply device using the same
KR20100130950A (en) Check valve
EP2171326B1 (en) Check valve
US10167973B2 (en) Multi-stage poppet valve
JP6218777B2 (en) Valve device
JP4115436B2 (en) Solenoid proportional valve
JP6902674B2 (en) Metering device for controlling gaseous media
JP2005309983A (en) Gas control valve and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Effective date: 20121219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20130618

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent (=grant) or registration of utility model

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5598701