JP5592097B2 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
JP5592097B2
JP5592097B2 JP2009244687A JP2009244687A JP5592097B2 JP 5592097 B2 JP5592097 B2 JP 5592097B2 JP 2009244687 A JP2009244687 A JP 2009244687A JP 2009244687 A JP2009244687 A JP 2009244687A JP 5592097 B2 JP5592097 B2 JP 5592097B2
Authority
JP
Japan
Prior art keywords
heat
power
wind turbine
wind
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009244687A
Other languages
English (en)
Other versions
JP2011089492A (ja
Inventor
坂本  明
政司 金子
Original Assignee
株式会社日本エコソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本エコソリューションズ filed Critical 株式会社日本エコソリューションズ
Priority to JP2009244687A priority Critical patent/JP5592097B2/ja
Publication of JP2011089492A publication Critical patent/JP2011089492A/ja
Application granted granted Critical
Publication of JP5592097B2 publication Critical patent/JP5592097B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、風力を受けて回転する風車を利用して発電を行う風力発電装置に関する。
従来から、風力を受けて回転する風車を備え、この風車の回転軸を発電機の入力軸に連結し、風力で発電を行うようにした風力発電装置が利用されている。
このような風力発電装置によれば、自然界に存在する無尽蔵ともいえる風力を動力源として採用するので、化石燃料のように枯渇するおそれがまったくない。そのうえ、発電の際に燃料を燃焼させる必要がないので、二酸化炭素がまったく発生しない。
このため、風力発電装置の台数を増やして、その発電量を増大していければ、火力発電で化石燃料が燃焼される量が低減され、二酸化炭素の発生量を低減でき、地球温暖化の抑制に貢献することができる。
ここで、自然界における風は、一定の風速で連続して吹くことはなく、風速が常に変動している。このため、従来の風力発電装置は、風速の変動にかかわらず、所定の電力量が確保できるように、風車及び発電機を選択する、換言すると、風速が速くなっても、風速の遅いときと同じ一定の電力が発電されるように設計することにより、一定以上の稼働率を確保している。
具体的には、従来の風力発電装置の風車は、風速の応じてピッチが変化するブレードを有し、所定の風速よりも早い風を受けると、ピッチを変化させて、その風力を逃がすようになっており、これにより、風速が変化しても、風車が一定の回転速度で回転し、発電機で所定の電力が安定して発電されるようになっており、また、発電機の過回転や、この過回転による発電機の過熱が未然に防止されるようになっている。
このような従来の風力発電装置では、発電可能な電力を制限することで、稼働率を確保しているので、風力に応じて発電電力を増そうとすると、いきなり稼働率が低下して、実用に耐えなくなる、換言すると、稼働率を低下させることなく、風力に応じた電力を獲得することができない、という問題がある。
また、従来の風力発電装置では、発電機として交流誘導機を採用すると、風速の変動により、出力電圧や出力周波数も変動してしまい、出力電圧及び出力周波数が変動しない品質のよい電力を供給することはできない、という問題もある。
ところで、風力に応じたエネルギーを取り出すために、風力で摩擦熱を発生させるとともに、発生した熱を蓄熱するようにした風力熱発生装置が知られている(例えば、特許文献1参照)。
更に詳しく説明すると、前述の風力熱発生装置は、水を張った蓄熱装置の内部に回転可能に設けられた回転羽根を回転させ、これにより、回転羽根と水との間で摩擦熱を発生させて蓄熱するものである。ここで、回転羽根の中央部分を構成するハブには、複数の固定羽根が固定されるとともに、これらの固定羽根の間から径方向に突没可能に複数の揺動羽根が設けられている。
このような風力熱発生装置によれば、風力を受けて回転羽根が回転すると、摩擦で熱エネルギーを発生することができ、そのうえ、回転羽根が回転する際に、遠心力が揺動羽根を作動させ、揺動羽根の突出量が回転速度に応じて変化するので、これにより、風力の強弱に対応して熱エネルギーの発生率を増減することができる。
このため、風力が弱いときは、揺動羽根が突出しないので、弱い風力でも風車が回転し、少ないながらも熱エネルギーを発生させることができ、発生した熱エネルギーを蓄熱装置に蓄積すれば、ある程度の量が蓄熱装置に蓄積されたところで、この熱エネルギーを、給湯用熱源、冷暖房用熱源、及び、温室栽培用熱源として有効利用することができる。
一方、風力が強いときは、揺動羽根が突出して、瞬時に多くの熱エネルギーを連続的に発生させるので、発生した熱エネルギーを、そのまま、給湯用熱源、冷暖房用熱源、及び、温室栽培用熱源として有効利用することができる。
従って、稼働率を確保するために、獲得可能な熱エネルギーの量を制限する必要がなく、その時の風力に応じた量の熱エネルギーを獲得することができる。
特開平5−10249号公報
前述のような風力熱発生装置では、熱媒体として液相の水を採用しており、液相の状態の水は、加熱しても、発電機を効率よく駆動可能な温度に到達させることができないので、風力から電気エネルギーを取り出して利用することができず、前述した問題、すなわち、稼働率を低下させずに、風力に応じた電力を獲得することができない、という問題を解決することはできない。
なお、回転速度に応じて突出量が変化する揺動羽根を発電機の回転軸に設け、この揺動羽根の抵抗変化で発電機の回転速度を調節し、発電機の回転速度を所定の範囲内に制御することが考えられるが、揺動羽根は、遠心力で突出動作するので、発電機の回転速度が変化しないと、揺動羽根の突出量が変化せず、発電機を所定の回転速度で運転させることができず、このため、その出力電圧や出力周波数が変動してしまい、従って、出力電圧及び出力周波数が変動しない品質のよい電力を供給することはできない、という問題は解決できない。
そこで、各請求項にそれぞれ記載された各発明は、稼働率を低下させずに、風力に応じた品質のよい電力が得られる風力発電装置を提供することを目的とするものである。
各請求項にそれぞれ記載された各発明は、前述の目的を達成するためになされたものである。以下に、各発明の特徴点を、図面に示した発明の実施の形態を用いて説明する。
なお、符号は、発明の実施の形態において用いた符号を示し、本発明の技術的範囲を限定するものではない。
(請求項1)
(特徴点)
請求項1記載の発明は、次の点を特徴とする。
すなわち、請求項1に記載の発明は、風力を受けて回転する風車(2)を利用して発電を行う風力発電装置(1,1A,1B)であって、前記風車(2)が発生する駆動力を熱に変換することで、当該風車(2)の回転速度を減速するとともに、変換した熱で熱媒体を加熱可能に形成されているリターダ装置(30, 90)と、このリターダ装置(30, 90)で加熱された熱媒体を溜めることで熱を蓄積する蓄熱装置(40)と、この蓄熱装置(40)に蓄積された熱を原動力として駆動する原動機(17)と、この原動機(17)の駆動力で駆動されて発電を行うエンジン発電機(18)と、前記風車(2)の回転軸に入力軸が係合されて風力で発電を行う風車発電機(16)と、前記風車(2)の回転速度を検知し、前記風車(2)の回転速度が所定速度となるように、前記リターダ装置(30, 90)の減速力を調節する制御装置(50)とを備えていることを特徴とする。
ここで、風車としては、プロペラ型等の回転軸が水平配置されるもの、並びに、ダリウス型及びジャイロミル型等の回転軸が垂直配置されるもののいずれもが採用できる。
また、リターダ装置としては、ステータに対して回転するロータが当該ステータに近接して設けられるとともに、ステータとの間にオイルが充填され、ロータの回転によってオイルが攪拌されると、その摩擦抵抗でロータの減速を行う流体式リターダ装置、あるいは、回転するロータに対して静止するように固定されたステータに永久磁石が埋め込まれ、ロータの回転によってロータ表面に渦電流が発生するようにし、この渦電流の発生による誘導起電力の反力を利用してロータの減速を行う永久磁石式リターダ装置を採用することができる。
(請求項2)
(特徴点)
請求項2記載の発明は、前述した請求項1に記載の発明において、次の特徴点を備えているものである。
すなわち、請求項2記載の発明は、前記風車(2)と前記リターダ装置(30, 90)との間に、前記風車(2)が発生する駆動力を受けて作動油を圧送する油圧ポンプ(11)と、この油圧ポンプ(11)から圧送されてきた作動油を受けて回転し、前記リターダ装置(30, 90)を回転駆動する油圧モータ(12)とが設けられ、前記風車(2)が発生する駆動力が作動油を介して前記リターダ装置(30, 90)に伝達されるようになっていることを特徴とする。
(請求項
(特徴点)
請求項記載の発明は、前述した請求項1又は2に記載の発明において、次の特徴点を備えているものである。
すなわち、請求項記載の発明は、前記制御装置(50)として、電力需要に対して前記風車発電機(16)の発電量が不足する場合は、前記風車発電機(16)の発電量を補うために、前記蓄熱装置(40)に蓄積された熱で前記原動機(17)を駆動し、前記原動機(17)の駆動力で前記エンジン発電機(18)に発電を行わせるものが採用されていることを特徴とする。
ここで、原動機、及び、この原動機に駆動されるエンジン発電機を複数組設け、電力需要に対応した台数を作動させる台数制御を行うようにすれば、電力需要に幅広く対応することができる。
(請求項
(特徴点)
請求項記載の発明は、前述した請求項1から請求項までのいずれかに記載の発明において、次の特徴点を備えているものである。
すなわち、請求項記載の発明は、前記蓄熱装置(40)に溜められる熱媒体を加熱するための補助熱源(20)が前記リターダ装置(30, 90)とは別に設けられ、前記蓄熱装置(40)に蓄積されている熱媒体の温度が所定値より低下した場合には、前記補助熱源(20)の熱で熱媒体を加熱することが可能となっていることを特徴とする。
(請求項
(特徴点)
請求項記載の発明は、前述した請求項に記載の発明において、次の特徴点を備えているものである。
すなわち、請求項記載の発明は、太陽の放射熱を利用して熱媒体を加熱する太陽熱採取装置、地熱を利用して熱媒体を加熱する地熱採取装置、及び、燃焼炉で燃料を燃焼する際に発生する熱で熱媒体を加熱する燃焼炉装置のうち、少なくとも一つが補助熱源(20)として採用されていることを特徴とするものである。
(請求項
(特徴点)
請求項記載の発明は、次の点を特徴とするものである。
すなわち、請求項記載の発明は、風力を受けて回転する風車(2)を利用して発電を行う風力発電装置(1,1A,1B)であって、前記風車(2)が発生する駆動力を熱に変換することで、当該風車(2)の回転速度を減速するとともに、変換した熱で熱媒体を加熱可能に形成されているリターダ装置(30, 90)と、このリターダ装置(30, 90)で加熱された熱媒体を溜めることで熱を蓄積する蓄熱装置(40)と、この蓄熱装置(40)に蓄積された熱を熱電素子で電力に変換する熱電変換装置(19)と、前記風車(2)の回転軸に入力軸が係合されて風力で発電を行う風車発電機(16)と、前記風車(2)の回転速度を検知し、前記風車(2)の回転速度が所定速度となるように、前記リターダ装置(30, 90)の減速力を調節する制御装置(50)とを備えていることを特徴とする。
(請求項1の効果)
以上のように構成されている本発明は、以下に記載されるような効果を奏する。
すなわち、請求項1記載の発明によれば、風車が発生する駆動力を熱に変換して熱媒体を加熱するリターダ装置と、リターダ装置が加熱した熱媒体を蓄積することで蓄熱する蓄熱装置と、蓄熱装置に溜めた熱媒体の熱で作動する原動機と、この原動機によって駆動されるエンジン発電機とを設けたので、リターダ装置で風車を減速する際に熱媒体を加熱することができ、しかも、熱媒体に加えられた熱を蓄熱装置に蓄熱し、蓄積した熱を原動力として原動機が動作してエンジン発電機を駆動し、これにより、発電を行うことができる。そして、熱媒体として、自動車のエンジンオイル等として利用されている鉱油を採用すれば、発電機を充分駆動できる温度まで、熱媒体を加熱することができ、これにより、風力から電気エネルギーを取り出して有効に利用することができる。
また、リターダ装置は、その機構上、風車の減速力を連続的に調節できるので、風力に応じた電力を得ることができるようになる。
そして、風力が弱いときは、リターダ装置の減速力を弱めれば、弱い風力でも風車を回転させて熱エネルギーを得ることができ、しかも、得られた熱エネルギーは、蓄熱装置に蓄積することができる。
一方、風力が強いときは、リターダ装置の減速力を増強し、単位時間当たりに風力から得られる熱エネルギーの量を増大させ、瞬時に多くの熱エネルギーを連続的に発生させることができ、こうして発生させた熱エネルギーも蓄熱装置に蓄積される。
このようにして蓄熱装置に充分な熱エネルギーが蓄積されたら、この熱エネルギーで原動機を作動させて、エンジン発電機を駆動すれば、常に需要に対応した電力供給が行え、風力発電装置の稼働率を優れたものにすることができる。
この際、原動機として、回転数が一定となるように出力調整が行えるものを採用すれば、発電機の出力電圧や出力周波数が一定となるように、当該原動機の動作を制御することができ、これにより、発電機から出力される電力は、出力電圧や出力周波数が一定となった品質のよいものとなる。
従って、稼働率を低下させずに、風力を利用して品質のよい電力が得られ、これにより、前記目的が達成される。
また、風車で駆動される風車発電機と、風車の回転速度を検知してリターダ装置の減速力を調節する制御装置とを設け、風車発電機の回転速度を制御装置で制御するようにしたので、風速が変化しても、風車発電機が一定の回転速度で回転し、風車発電機で所定の電力を安定して発電することができる。
このため、風力で直接風車発電機を駆動しても、品質のよい電力が得られ、しかも、風力で、直接、風車発電機を駆動して電力を得ることで、熱エネルギーとの間でエネルギー変換する必要がなくなるので、エネルギー変換の際に生じるエネルギー損失もなくなり、この点からも、風力発電装置の発電効率を向上することができる。
そのうえ、リターダ装置で減速を行った際に発生した熱は、捨てられることなく、熱媒体を通じて蓄熱装置に回収されて蓄積され、原動機の駆動に利用されるので、風車の制動によって、風力エネルギーの一部分が風車発電機で電力に変換できなくなっても、その分は、エンジン発電機で電力に変換されるので、風力エネルギーを無駄なく利用することができる。
(請求項2の効果)
請求項2記載の発明によれば、上記した請求項1記載の発明の効果に加え、次のような効果を奏する。
すなわち、請求項2記載の発明によれば、風車とリターダ装置との間に、油圧ポンプと油圧モータとを設け、風車が発生する駆動力を、作動油を介してリターダ装置に伝達させるようにしたので、風車とリターダ装置とを離隔して配置し、リターダ装置と蓄熱装置とを近接して配置することができ、これにより、熱エネルギーの伝達を熱媒体の搬送で行う際に、熱媒体の搬送距離が短くなり、熱媒体の搬送に伴うエネルギー損失を著しく低減することができ、風力発電装置の発電効率を向上することができる。
(請求項の効果)
請求項記載の発明によれば、上記した請求項1又は2に記載の発明の効果に加え、次のような効果を奏する。
すなわち、請求項記載の発明によれば、電力需要に対して前記風車発電機の発電量が不足する場合は、風車発電機の発電量を補うために、蓄熱装置に蓄積された熱で原動機を駆動し、原動機の駆動力でエンジン発電機に発電を行わせる制御装置を設けたので、風速の変化によって得られる風力エネルギーが変動し、風力エネルギーの変動が電力需要に一致していなくとも、風力エネルギーが余ったときに、余った風力エネルギーを熱エネルギーに変化して蓄熱装置に蓄積していき、風力エネルギーが足りないときに、蓄熱装置に蓄積された熱エネルギーで原動機を駆動して、エネルギーの不足分を補填することができ、これにより、電力需要に対応した電力供給を行うことができる。
(請求項の効果)
請求項記載の発明によれば、上記した請求項1から請求項までのいずれかに記載の発明の効果に加え、次のような効果を奏する。
すなわち、請求項記載の発明によれば、蓄熱装置に溜められる熱媒体を加熱するための補助熱源をリターダ装置とは別に設け、蓄熱装置に蓄積されている熱媒体の温度が所定値より低下した場合には、補助熱源の熱で熱媒体を加熱することを可能としたので、風のない気候が長期間続いたとしても、常に所定量の熱エネルギーを蓄熱装置に蓄積することが可能となり、需要に対して電力供給を途絶えさせることなく、安定した電力供給を行うことができる。
(請求項の効果)
請求項記載の発明によれば、上記した請求項に記載の発明の効果に加え、次のような効果を奏する。
すなわち、請求項記載の発明によれば、太陽の放射熱を利用して熱媒体を加熱する太陽熱採取装置、及び、地熱を利用して熱媒体を加熱する地熱採取装置のいずれかを補助熱源として採用した場合には、加熱の際に燃料を燃焼させる必要がないので、二酸化炭素がまったく発生せず、これにより、地球温暖化の抑制に貢献することができる。
一方、燃焼炉で燃料を燃焼する際に発生する熱で熱媒体を加熱する燃焼炉装置として採用した場合、光合成を行って成長する植物から作られるバイオディーゼル燃料、或いは、原料からバイオディーゼル燃料を作った後に発生する残渣を燃料として燃やせば、これらの燃料が大気中から吸収した二酸化炭素に由来するものなので、燃焼させても全体として見れば、大気中の二酸化炭素量を増加させていないと考えられ、従って、この場合にも、地球温暖化の抑制に貢献することができる。
(請求項の効果)
請求項記載の発明によれば、以下に記載されるような効果を奏する。
すなわち、請求項記載の発明によれば、風車が発生する駆動力を熱に変換して熱媒体を加熱するリターダ装置と、リターダ装置が加熱した熱媒体を蓄積することで蓄熱する蓄熱装置と、この蓄熱装置に蓄積された熱を熱電素子で電力に変換する熱電変換装置とを設けたので、リターダ装置で風車を減速する際に熱媒体を加熱することができ、しかも、熱媒体に加えられた熱を蓄熱装置に蓄熱し、蓄積した熱を熱電変換装置が電力に変換するので、リターダ装置で風車を減速することで電力を得ることができる。そして、熱媒体として、自動車のエンジンオイル等として利用されている鉱油を採用すれば、熱電変換装置を充分作動させることができる温度まで、熱媒体を加熱することができ、これにより、風力から電気エネルギーを取り出して有効に利用することができる。
また、風車で駆動される風車発電機と、風車の回転速度を検知してリターダ装置の減速力を調節する制御装置とを設け、風車発電機の回転速度を制御装置で制御するようにしたので、風速が変化しても、風車発電機が一定の回転速度で回転し、風車発電機で所定の電力を安定して発電することができる。
このため、風力で直接風車発電機を駆動しても、品質のよい電力が得られ、しかも、風力で、直接、風車発電機を駆動して電力を得ることで、熱エネルギーとの間でエネルギー変換する必要がなくなるので、エネルギー変換の際に生じるエネルギー損失もなくなり、この点からも、風力発電装置の発電効率を向上することができる。
そのうえ、リターダ装置で減速を行った際に発生した熱は、捨てられることなく、熱媒体を通じて蓄熱装置に回収されて蓄積され、原動機の駆動に利用されるので、風車の制動によって、風力エネルギーの一部分が風車発電機で電力に変換できなくなっても、その分は、エンジン発電機で電力に変換されるので、風力エネルギーを無駄なく利用することができる。
また、リターダ装置は、その機構上、風車の減速力を連続的に調節できるので、風力に応じた電力を得ることができるようになる。
そして、風力が弱いときは、リターダ装置の減速力を弱めれば、弱い風力でも風車を回転させて熱エネルギーを得ることができ、しかも、得られた熱エネルギーは、蓄熱装置に蓄積することができる。
一方、風力が強いときは、リターダ装置の減速力を増強し、単位時間当たりに風力から得られる熱エネルギーの量を増大させ、瞬時に多くの熱エネルギーを連続的に発生させることができ、こうして発生させた熱エネルギーも蓄熱装置に蓄積される。
このようにして蓄熱装置に充分な熱エネルギーが蓄積されたら、この熱エネルギーで原動機を作動させて、エンジン発電機を駆動すれば、常に需要に対応した電力供給が行え、風力発電装置の稼働率を優れたものにすることができる。
この際、熱電変換装置が出力する直流電力をインバータ装置で直流電力に変換すれば、出力電圧や出力周波数が一定の電力が得られるようになり、当該風力発電装置から出力される電力は、出力電圧や出力周波数が一定となった品質のよいものとなる。
従って、稼働率を低下させずに、風力を利用して品質のよい電力が得られ、これにより、前記目的が達成される。
本発明の第1実施形態の概略構成を示す模式図である。 前記第1実施形態の制御系を示す概略計装図である。 本発明の第2実施形態の概略構成を示す模式図である。 本発明の第3実施形態の概略構成を示す模式図である。 前記第3実施形態に係るリターダ装置の要部を示す断面図である。 前記第3実施形態に係るリターダ装置の動作を説明するための模式図である。 本発明の第4実施形態の概略構成を示す模式図である。
以下に、本発明を実施するための形態である実施形態について、図面を参照しながら説明する。
[第1実施形態]
図1には、本第1実施形態に係る風力発電装置1が示されている。
図1において、風力発電装置1は、風車2で受けとめた風力を利用して発電を行うものである。この風力発電装置1には、図1の如く、地面から上方へ向かって延びるタワー部3と、このタワー部3の頂部において風車2を回転自在に支持するナセル部4と、発電に必要な装置類を収納した機械小屋5とが設けられている。
風車2は、中心から放射状に延びる複数枚のブレード2Aを有し、これらのブレード5Aで風力を受けとめて回転するものとなっている。
タワー部3は、地面近傍よりも強い風力が得られる高い位置に風車2を配置するために、背の高い塔状に形成された建築物である。
このタワー部3には、鉄骨軸組材等を塔状に組み合わせた塔状フレーム(図示略)と、この塔状フレームを内部に収納した筒状のカバー3Aとが設けられている。
このうち、塔状フレームの頂部には、ナセル部4を回動自在に軸支するとともに、略水平に延びる回動支持軸(図示略)が設けられている。
ナセル部4は、鉄骨軸組材等を籠状に組み合わせた籠状フレーム(図示略)と、この籠状フレームを覆う容器状に形成されるとともに、所定の耐候性及び剛性を備えた材質、例えば、繊維強化プラスチック製の保護カバー4Aとを備えたものである。
このうち、籠状フレームは、タワー部3の塔状フレームの頂部に設けられた前述の回動支持軸に回動自在に支持されたものであり、且つ、風車2を回転自在に軸支するとともに略水平に延びる回転支持軸4Bを備えている。
この回転支持軸4Bは、一端が風車2の中心に結合され、風力を受けた風車2が発生する駆動力であるトルクを他端側に伝達する、風車2の回転軸となっている。
このようなナセル部4には、風力で駆動される油圧ポンプ11と、風向を測定する風向計(図示略)と、この風向計によって検知された風向に基づいて、風車2を風上に向けるためのヨー調節機構(図示略)が設けられている。
ここで、油圧ポンプ11は、その入力軸が回転支持軸4Bの他端に結合され、この回転支持軸4Bを介して風車2の発生するトルクが伝達され、これにより、風力で駆動されるようになっている。
また、油圧ポンプ11は、機械小屋5の内部に設けられた油圧モータ12を駆動するものである。すなわち、油圧ポンプ11と油圧モータ12とは、タワー部3の頂部に設けられたタワー部3から機械小屋5の内部まで延びる油圧往管13及び油圧還管14によって相互に接続されている。
なお、油圧往管13及び油圧還管14の各々は、タワー部3側及びナセル部4側のそれぞれに分割されている。そして、油圧往管13及び油圧還管14の各々は、ナセル部4側の部分がタワー部3側の部分に対して回動可能となるように、分割されたもの同士が図示しないスイベル継手を介して相互に連結されている。
このようなナセル部4に支持されている風車2は、風向計及びヨー調節機構によって向きが調節され、常に風上を向いて風力を確実に受けられるように形成されている。
そして、風車2によって受けとめられた風力エネルギーは、油圧ポンプ11で油圧エネルギーに変換され、油圧往管13を通じて機械小屋5内の油圧モータ12へ伝達されるようになっている。また、油圧ポンプ11から油圧モータ12へ圧送された作動油は、油圧モータ12を回転駆動させた後、油圧還管14を通って油圧ポンプ11に戻るようになっている。
機械小屋5は、現場で容易に構築可能なプレハブ式の小さな建物、或いは、予め工場で箱状に形成された後、現場まで搬送されてきたコンテナハウスであり、内部に油圧モータ12等の機械を設置するための機械室が設けられている。
このような機械小屋5には、油圧ポンプ11の圧送する作動油で駆動される前述の油圧モータ12と、油圧往管13内の油圧の変動を吸収するアキュムレータ15と、油圧モータ12に駆動される風車発電機16と、油圧モータ12及び風車発電機16との間に介装されたリターダ装置30と、風力エネルギーから変換された熱エネルギーを蓄積する蓄熱装置40と、蓄熱装置40に蓄熱された熱エネルギーで駆動する原動機であるスターリングエンジン17と、このスターリングエンジン17に駆動されるエンジン発電機18と、リターダ装置30の動作等を制御するために、後述する制御装置50が設けられている。
アキュムレータ15は、ガスの圧縮/膨張を利用して、配管内部で生じる圧力の脈動を吸収するものである。すなわち、アキュムレータ15は、内部がフレキシブルなダイアフラムで二つの部屋に仕切られ、一方の部屋がガスの充填されたガス室とされ、他方の部屋が油圧往管13に接続された受圧室となっている。
そして、アキュムレータ15は、風速の変動による油圧ポンプ11の吐出圧の脈動や、油圧モータ12の負荷変動による作動油圧の脈動が受圧室に導入されると、ガス室のガスが圧縮/膨張し、これにより、前述の脈動を吸収するようになっている。
このようなアキュムレータ15によって、油圧往管13、ひいては、油圧還管14の内部の油圧の脈動が抑制され、当該油圧が安定するようになっている。
風車発電機16は、油圧ポンプ11等を介して、風車2の回転軸が入力軸に連結されて風力で発電を行う発電機となっている。
すなわち、風車2は、風力を受けると回転し、そのトルクで油圧ポンプ11を駆動するようになっている。
油圧モータ12は、油圧ポンプ11から圧送されてくる作動油によって作動するものとなっている。風車発電機16は、油圧モータ12の出力軸12A の先端に結合され、油圧モータ12によって駆動されるようになっている。
これにより、風車2のトルク、換言すると、風力エネルギーが風車発電機16まで伝達され、この風力エネルギーによって風車発電機16が発電を行うようになっている。
また、風車2が発生する駆動力であるトルクは、作動油を介してリターダ装置30にも伝達されるようになっている。
リターダ装置30は、油圧モータ12の出力軸12A に係合し、出力軸12A の回転速度を減速することで、風車2の回転速度を減速する制動装置である。
このリターダ装置30は、風力を受けた風車2が発生するトルク(駆動力)を熱に変換することで、当該風車2の回転速度を減速するものであり、変換した熱で熱媒体である鉱油を加熱するように形成されている。
このようなリターダ装置30によって、風車発電機16は、予め設定された回転速度で回転するように、回転速度が制御されている。リターダ装置30の回転速度制御については、後で詳述する。
蓄熱装置40は、リターダ装置30で加熱された鉱油を溜める所定容量のタンクであり、加熱された鉱油を溜めることで熱を蓄積するものとなっている。
ここで、蓄熱装置40は、外殻がステンレス鋼等から形成された中空構造を有し、中空部分が真空にされて断熱性能に優れた容器となっている。
また、蓄熱装置40は、鉱油往管31及び鉱油還管32によってリターダ装置30と接続され、さらに、鉱油還管32の途中には、後述するオイルポンプ33が設けられている。
これにより、リターダ装置30及び蓄熱装置40の間を鉱油が循環するようになっている。更に詳しく説明すれば、リターダ装置30で加熱された鉱油は、鉱油往管31を通って蓄熱装置40へ送られる一方、蓄熱装置40で放熱した鉱油は、鉱油還管32を通ってリターダ装置30へ送り返されるようになっている。
ここで、蓄熱装置40に溜められている鉱油は、200〜350℃の範囲から逸脱しないように温度が制御されている。蓄熱装置40に溜められている鉱油の温度制御については、後で詳述する。
スターリングエンジン17は、蓄熱装置40内の鉱油を熱源とする外燃機関であり、換言すると、蓄熱装置40に蓄熱された熱を原動力として動作するものとなっている。
ここで、スターリングエンジン17は、加熱器17A が蓄熱装置40の内部に挿入され、蓄熱装置40の内部に蓄熱された熱で加熱器が加熱されるようになっている。
また、スターリングエンジン17は、図示しない冷却器が機械小屋5内の空気に接する位置に配置され、機械小屋5内の空気で冷却器が冷却されるようになっている。
エンジン発電機18は、スターリングエンジン17の出力軸17B の先端に結合され、スターリングエンジン17によって駆動されるようになっている。
ここで、エンジン発電機18は、スターリングエンジン17によって駆動されることから、換言すると、蓄熱装置40に蓄熱された熱エネルギー、ひいては、風車2によって取り込まれた風力エネルギーを原動力として動作するものである。
また、エンジン発電機18は、励磁電流を調節することによって、予め設定された回転速度で回転するように回転速度が制御されたものとなっている。エンジン発電機18の回転速度制御については、後で詳述する。
制御装置50は、リターダ装置30の回転速度制御、蓄熱装置40へ送る鉱油の温度制御、及び、エンジン発電機18の回転速度制御を行うために設けられたものである。
すなわち、制御装置50は、図2に示すように、リターダ装置30の回転速度を制御するリターダ制御部60と、蓄熱装置40へ送る鉱油の温度を制御する温度制御部70、及び、エンジン発電機18の回転速度を制御する発電機制御部80とを備えたものとなっている。
ここで、リターダ装置30は、内部で攪拌されるオイルの摩擦抵抗で減速を行う流体式リターダ装置である。
すなわち、リターダ装置30には、図2の如く、箱状に形成されたケース34と、このケース34の内部に移動不可能に形成されるとともに、鉱油を流通させる流路を有するステータ35と、ケース34に対して回転自在に形成されるとともに、ステータ35に近接して配置されたロータ36とが設けられている。
このようなリターダ装置30は、ステータ35とロータ36との間に形成された隙間34A に鉱油が入れられるとともに、ロータ36が油圧モータ12の出力軸12A に結合され、出力軸12A の回転に伴ってロータ36が回転すると、鉱油がステータ35の流路内を流通し、この鉱油の流通によって生じる抵抗でロータ36の減速を行うものである。
ここで、リターダ装置30は、隙間34A に入っている鉱油の嵩が増えると、鉱油の流通抵抗が増大してロータ36の減速力が強くなり、鉱油の嵩が減ると、鉱油の流通抵抗が減少してロータ36の減速力が弱くなるように形成されている。
リターダ制御部60は、リターダ装置30の隙間34A に入っている鉱油の嵩を調節することで、ロータ36の減速力を操作し、これにより、リターダ装置30の回転速度を一定に制御し、ひいては、風車発電機16の出力電圧の周波数及び位相を適正なものに整えるものとなっている。
すなわち、リターダ装置30には、図2の如く、隙間34A に入れる鉱油を溜めておく鉱油タンク37、及び、隙間34A と鉱油タンク37との間で常に鉱油を循環させる循環ポンプ38とが設けられている。
このうち、鉱油タンク37は、内部に鉱油と空気とが収納された密閉構造のものである。そして、鉱油タンク37は、内部空気の圧力を高めると、内部の鉱油が隙間34A へ送られ、隙間34A 内の鉱油の嵩を増やす一方、内部空気の圧力を低くすると、隙間34A から鉱油が戻り、隙間34A 内の鉱油の嵩が減るようになっている。
そして、リターダ制御部60には、風車発電機16の入力軸の回転速度、換言すると、リターダ装置30の回転速度を調節する回転速度調節器61と、風車発電機16によって電力が供給される需要側電線の線間電圧波形を検出する電圧検出コイル62と、鉱油タンク37の内部に注入するための圧搾空気を供給する空気源装置63と、鉱油タンク37に対して空気の注入及び排出を行うための三方電磁弁64とが設けられている。
ここで、空気源装置63は、周囲の空気を取り込んで圧縮するコンプレッサ64A 、このコンプレッサ64A が圧縮した圧搾空気を蓄えるエアタンク64B 、並びに、図示しない空気冷却機及びエアフィルタ等を含んで構成されたものである。
三方電磁弁64は、図示しないソレノイドを備え、このソレノイドが通電されない非通電状態、いわゆる、ノーマル状態になると、鉱油タンク37の内部を大気に開放し、鉱油タンク37の内部空気を外部に排出するようになっている。これにより、リターダ装置30に形成されている隙間34A 内の鉱油は、嵩が減るようになっている。
逆に、三方電磁弁64は、図示しないソレノイドが通電された通電状態、いわゆる、作動状態になると、空気源装置63のエアタンク64B を鉱油タンク37に接続し、エアタンク64B の内部に圧搾空気を注入するようになっている。これにより、リターダ装置30に形成されている隙間34A 内の鉱油は、嵩が増えるようになっている。
回転速度調節器61は、風車発電機16の入力軸に設けられている図示しないロータリーエンコーダの出力信号を受信し、この出力信号に基づいて、風車発電機16の入力軸の回転数及び位相を検知可能となっている。
また、回転速度調節器61は、電圧検出コイル62の出力信号に基づいて、需要側電線に印加されている電圧の周波数及び位相を検知するものとなっている。
そして、回転速度調節器61は、風車発電機16の入力軸の回転数及び位相が、需要側電線に印加されている電圧の周波数及び位相に対応するように、三方電磁弁64の図示しないソレノイドを作動させるようになっている。
具体的には、回転速度調節器61は、風車発電機16の入力軸の回転数が、需要側電線の線間電圧周波数に比べて多い場合、或いは、風車発電機16の入力軸の位相が需要側電線の線間電圧位相よりも進んでいる場合、三方電磁弁64の図示しないソレノイドを通電させ、リターダ装置30に形成されている隙間34A 内の鉱油の嵩を増やすようになっている。これにより、リターダ装置30のロータ36は、減速力が増し、その回転速度、すなわち、風車発電機16の入力軸の回転速度が低減されるようになっている。
逆に、回転速度調節器61は、風車発電機16の入力軸の回転数が、需要側電線の線間電圧周波数に比べて少ない場合、或いは、風車発電機16の入力軸の位相が需要側電線の線間電圧位相よりも遅れている場合、三方電磁弁64の図示しないソレノイドへの通電を止め、リターダ装置30に形成されている隙間34A 内の鉱油の嵩を減らすようになっている。これにより、リターダ装置30のロータ36は、減速力が減り、その回転速度、すなわち、風車発電機16の入力軸の回転速度が増大されるようになっている。
以上において、リターダ制御部60は、風車発電機16の図示しないロータリーエンコーダによって、風車2の回転速度を検知し、風車2の回転速度が所定速度となるように、リターダ装置30の減速力を調節するものとなっている。
すなわち、リターダ制御部60は、風車発電機16の入力軸の回転状態に応じて、リターダ装置30の隙間34A 内に入っている鉱油の嵩を調節し、これにより、風車発電機16の回転速度を制御し、ひいては、風車発電機16の出力電圧の周波数及び位相を、需要側電線の線間電圧に対応した所定の状態に調整するものとなっている。
温度制御部70は、鉱油往管31から蓄熱装置40の内部へ向かって流出する鉱油の温度を所定の値となるように温度制御するものとなっている。
すなわち、温度制御部70には、図2の如く、鉱油往管31から流出する鉱油の温度を検出する温度検出器71と、鉱油往管31及び鉱油還管32の途中部分同士を相互に連通するバイパス管72への鉱油の流量を調節する電動混合三方弁73と、この電動混合三方弁73を操作して鉱油往管31から流出する鉱油の温度を調節する温度調節器74とが設けられている。
ここで、リターダ装置30は、ロータ36の回転によって隙間34A 内の鉱油が加熱され、加熱されて高温になった鉱油が鉱油タンク37に溜まるようになっている。
オイルポンプ33は、蓄熱装置40の低温側の鉱油を吸い込んで鉱油還管32を通じてリターダ装置30の鉱油タンク37へ戻すとともに、鉱油タンク37に溜まっている高温の鉱油を鉱油往管31を通じて蓄熱装置40の高温側へ送るものとなっている。
そして、バイパス管72は、蓄熱装置40をバイパスする流路であって、鉱油往管31の途中部分と、鉱油還管32の途中に設けられたオイルポンプ33の吸込口側の部分とを接続し、鉱油往管31を通ってきた鉱油を途中で鉱油還管32へ戻してしまう流路である。
電動混合三方弁73は、鉱油還管32を通ってきた蓄熱装置40からの鉱油が流入する第1の入口、バイパス管72を通ってきた鉱油が流入する第2の入口、及び、オイルポンプ33の吸込口へ鉱油を排出する出口の三つの口が形成された三方弁73A と、三方弁73A 内部の図示しない弁プラグを駆動するモータ73B とを備え、モータ73B で弁プラグの位置を移動させると、弁プラグの位置に応じて、蓄熱装置40からの鉱油の流量と、バイパス管72を通ってきた鉱油の流量との比率が調節されるように形成されたものである。
温度調節器74は、温度検出器71が検出した鉱油の温度に応じて、電動混合三方弁73のモータ73B を操作して弁プラグの位置を移動させ、蓄熱装置40からの鉱油の流量と、バイパス管72を通ってきた鉱油の流量との比率を調節するものである。
このような温度制御部70は、温度検出器71が検出した鉱油の温度が低い状態では、バイパス管72を通ってきた鉱油の流量、すなわち、蓄熱装置40へ送らずにリターダ装置30へ戻す鉱油の流量を増やし、リターダ装置30における鉱油の加熱時間を実質的に延長し、蓄熱装置40に供給される鉱油の温度を上昇させるように形成されている。
一方、温度制御部70は、温度検出器71が検出した鉱油の温度が高くなると、バイパス管72を通ってきた鉱油の流量、すなわち、蓄熱装置40へ送る鉱油の流量を減らし、リターダ装置30における鉱油の加熱時間を実質的に短縮し、蓄熱装置40に供給される鉱油の温度を抑制、更には、下降させるように形成されている。
要するに、温度制御部70は、電動混合三方弁73を操作し、これにより、バイパス管72を流通する鉱油の流量であるバイパス流量を調節することで、蓄熱装置40に供給される鉱油の温度が所定の温度となるように温度制御を行うものとなっている。
発電機制御部80は、エンジン発電機18の励磁電流を調節することで、エンジン発電機18の回転速度を一定に制御し、ひいては、エンジン発電機18の出力電圧の周波数及び位相を適正なものに整えるものとなっている。
すなわち、発電機制御部80には、エンジン発電機18の入力軸の回転速度を調節する回転速度調節器81と、エンジン発電機18及び前述の風車発電機16によって電力が供給される需要側電線の線間電圧波形を検出する電圧検出コイル82とが設けられている。
回転速度調節器81は、エンジン発電機18の入力軸に設けられている図示しないロータリーエンコーダの出力信号を受信し、この出力信号に基づいて、エンジン発電機18の入力軸の回転数及び位相を検知するものとなっている。
また、回転速度調節器81は、電圧検出コイル82の出力信号に基づいて、需要側電線に印加されている電圧の周波数及び位相を検知可能となっている。
そして、回転速度調節器81は、エンジン発電機18の入力軸の回転数及び位相が、需要側電線に印加されている電圧の周波数及び位相に対応するように、エンジン発電機18の励磁電流を調節するようになっている。
具体的には、回転速度調節器81は、エンジン発電機18の入力軸の回転数が、需要側電線の線間電圧周波数に比べて多い場合、或いは、エンジン発電機18の入力軸の位相が需要側電線の線間電圧位相よりも進んでいる場合、エンジン発電機18への励磁電流を増して、これにより、エンジン発電機18の回転速度を低減させるようになっている。
逆に、回転速度調節器81は、エンジン発電機18の入力軸の回転数が、需要側電線の線間電圧周波数に比べて少ない場合、或いは、エンジン発電機18の入力軸の位相が需要側電線の線間電圧位相よりも遅れている場合、エンジン発電機18への励磁電流を減じて、これにより、エンジン発電機18の回転速度を増大させるようになっている。
以上において、発電機制御部80は、エンジン発電機18の図示しないロータリーエンコーダによって、エンジン発電機18の回転速度を検知し、エンジン発電機18の回転速度が所定速度となるように、エンジン発電機18の回転速度を制御し、ひいては、エンジン発電機18の出力電圧の周波数及び位相を、需要側電線の線間電圧に対応した所定の状態に調整するものとなっている。
ここで、制御装置50の回転速度調節器81は、電力需要に対して風車発電機16の発電量が不足する場合、換言すると、風車発電機16の発電量を補うために、蓄熱装置40に蓄積された熱でスターリングエンジン17を駆動し、スターリングエンジン17の駆動力でエンジン発電機18に発電を行わせるものとなっている。
すなわち、リターダ制御部60の回転速度調節器61は、電圧検出コイル62の出力信号に基づいて、需要側電線に印加されている線間電圧の値を検知するようになっている。
そして、リターダ制御部60の回転速度調節器61は、風車発電機16の出力端子の電圧値が需要側電線の線間電圧として設定されている定格電圧となるように、リターダ装置30の回転速度を制御するようになっている。
一方、発電機制御部80の回転速度調節器81は、電圧検出コイル82の出力信号に基づいて、需要側電線に印加されている線間電圧の値を検知するようになっている。
そして、発電機制御部80の回転速度調節器81には、エンジン発電機18に発電を開始させる所定の電圧値として発電開始電圧値が予め設定されている。
この発電開始電圧値は、需要側電線の線間電圧として設定されている定格電圧の値よりも低く設定されている。
回転速度調節器81は、需要側電線に印加されている線間電圧、換言すると、風車発電機16の出力端子の電圧が発電開始電圧値よりも低下すると、スターリングエンジン17を起動して、スターリングエンジン17の駆動力でエンジン発電機18に発電を開始させるようになっている。
換言すると、回転速度調節器81は、需要側の負荷が増え、需要側電線に流れる電流が増え、風車発電機16の出力端子の電圧が発電開始電圧値よりも低下することで、電力需要に対して風車発電機16の発電量が不足することを検知し、発電量の不足を検知したことを契機に、スターリングエンジン17の駆動力でエンジン発電機18に発電を開始させるようになっている。
なお、スターリングエンジン17の停止制御については、様々な手法があるが、例えば、蓄熱装置40の高温側部分にサーモスタットを取り付けておき、蓄熱装置40の高温側部分に溜まった鉱油の温度が所定値よりも低下したら、サーモスタットによって、スターリングエンジン17を停止させる手法を採用してもよい。
前述のような本第1実施形態によれば、次のような効果が得られる。
すなわち、風車2が発生する駆動力を熱に変換して鉱油を加熱するリターダ装置30と、リターダ装置30が加熱した鉱油を蓄積することで蓄熱する蓄熱装置40と、蓄熱装置40に溜めた鉱油の熱で作動するスターリングエンジン17と、このスターリングエンジン17によって駆動されるエンジン発電機18とを設け、風車2を減速するリターダ装置30で鉱油を加熱し、加熱された鉱油を蓄熱装置40に溜めることで、熱を蓄積し、蓄積した熱で作動するスターリングエンジン17で、エンジン発電機18を駆動するようにしたので、風速が変動してもスターリングエンジン17でエンジン発電機18を安定した状態で駆動することができ、これにより、安定した電力が得られるようになり、従って、風力から電気エネルギーを取り出して有効に利用することができる。
また、リターダ装置30は、その機構上、風車2の減速力を連続的に調節できるので、風力に応じた電力を得ることができるようになる。
すなわち、風力が弱いときは、リターダ装置30の減速力を弱めれば、弱い風力でも風車2を回転させて熱エネルギーを得ることができ、しかも、得られた熱エネルギーは、蓄熱装置40に蓄積することができる。
一方、風力が強いときは、リターダ装置30の減速力を増強し、単位時間当たりに風力から得られる熱エネルギーの量を増大させ、瞬時に多くの熱エネルギーを連続的に発生させることができ、こうして発生させた熱エネルギーも蓄熱装置40に蓄積できる。
そして、蓄熱装置40に充分な熱エネルギーを蓄積すれば、蓄熱装置40の熱エネルギーを利用してスターリングエンジン17を安定して動作させることができ、安定して動作するスターリングエンジン17でエンジン発電機18を駆動すれば、常に需要に対応した電力の安定供給が行え、風力発電装置1の稼働率を優れたものにすることができる。
この際、スターリングエンジン17の回転数が一定となるように制御し、エンジン発電機18の出力電圧、出力周波数、及び、位相が一定となるようにしたので、エンジン発電機18から出力される電力を、出力電圧や出力周波数等が一定の品質のよいものとなり、これにより、稼働率を低下させずに、風力を利用して品質のよい電力を得ることができる。
さらに、風車2とリターダ装置30との間に、油圧ポンプ11と油圧モータ12とを設け、風車2が発生する駆動力を、作動油を介してリターダ装置30に伝達させるようにしたので、風車2とリターダ装置30とが離隔して配置されていても、リターダ装置30は、蓄熱装置40に近接して配置することができ、これにより、熱エネルギーの伝達を熱媒体である鉱油の搬送で行う際に、鉱油の搬送距離が短くなり、鉱油の搬送に伴うエネルギー損失を著しく低減することができ、従って、風力発電装置1の発電効率を向上することができる。
また、風車2で駆動される風車発電機16と、風車2の回転速度を検知してリターダ装置30の減速力を調節する制御装置50とを設け、制御装置50で制御することで、風車発電機16の回転速度を一定にするようにしたので、風速が変化しても、風車発電機16が一定の回転速度で回転し、風車発電機16で所定の電力を安定して発電することができる。
このため、風力で、直接、風車発電機16を駆動しても、品質のよい電力を得ることができ、しかも、風力で、直接、風車発電機16を駆動して電力を得ることで、熱エネルギーとの間でエネルギー変換する必要がなくなり、これにより、エネルギー変換の際に生じるエネルギー損失もなくなるので、この点からも、風力発電装置1の発電効率を向上することができる。
そのうえ、リターダ装置30で減速を行った際に発生した熱は、捨てられることなく、鉱油に吸収させて蓄熱装置40に蓄積し、スターリングエンジン17の駆動に利用するようにしたので、風車2の制動によって、風力エネルギーの一部分が風車発電機16で電力に変換できなくなっても、その分は、エンジン発電機18で電力に変換されるので、風力エネルギーを無駄なく利用することができる。
さらに、電力需要に対して風車発電機16の発電量が不足する場合は、風車発電機16の発電量を補うために、蓄熱装置40に蓄積された熱でスターリングエンジン17を駆動し、スターリングエンジン17の駆動力でエンジン発電機18に発電を行わせる制御装置50を設けたので、風速の変化によって得られる風力エネルギーが変動し、風力エネルギーの変動が電力需要に一致していなくとも、風力エネルギーが余ったときに、余った風力エネルギーを熱エネルギーに変化して蓄熱装置40に蓄積していき、風力エネルギーが足りないときに、蓄熱装置40に蓄積された熱エネルギーでスターリングエンジン17を駆動して、エネルギーの不足分を補填することができ、これにより、電力需要に対応した電力供給を行うことができる。
[第2実施形態]
図3には、本発明の第2実施形態が示されている。本第2実施形態は、前記第1実施形態における風力の一部を直接電気エネルギーに変換する風力発電装置1を、風力エネルギーを一旦すべて熱エネルギーに変換した後、熱エネルギーを電気エネルギーに変換する風力発電装置1Aとしたものである。
すなわち、風力発電装置1Aには、図3に示すように、前記第1実施形態における風車発電機16がなく、蓄熱装置40に溜められる鉱油を加熱するための補助熱源としての燃焼炉装置20が設けられている。
燃焼炉装置20は、植物を原料とするバイオディーゼル燃料等の燃料を燃焼させることにより熱を発生させる装置であり、原料からバイオディーゼル燃料を作った後に発生する残渣も燃料として利用可能なものである。
燃焼炉装置20は、燃料の燃焼で熱媒体としての溶融塩を加熱するものとなっている。
一方、蓄熱装置40の内部には、熱交換器23が設けられている。この熱交換器23の内部には、加熱された熱媒体としての溶融塩が流通するようになっている。
蓄熱装置40の内部に設けられた熱交換器23は、溶融塩往管21及び溶融塩還管22によって燃焼炉装置20と接続されている。
また、燃焼炉装置20の内部には、熱交換器23との間で溶融塩を循環させるために、図示しない溶融塩循環ポンプが設けられている。この溶融塩循環ポンプの動作によって、燃焼炉装置20で加熱された溶融塩が熱交換器23へ送られ、蓄熱装置40内の鉱油を加熱するようになっている。
この際、蓄熱装置40には、高温側の温度を検出する図示しないサーモスタットが設けられている。
このサーモスタットは、蓄熱装置40の高温側に蓄積されている鉱油の温度が所定値より低下すると、燃焼炉装置20に燃焼を開始させ、その燃焼熱で蓄熱装置40に蓄積されている鉱油を加熱するようになっている。
換言すると、燃焼炉装置20は、蓄熱装置40に蓄積されている鉱油が所定の設定温度よりも低温とならないように、その動作が制御されるようになっている。
ここで、前述の設定温度は、熱交換器23を流通する溶融塩の凝固温度よりも高く設定されるとともに、燃焼炉装置20の図示しない溶融塩循環ポンプは、常に運転を継続するように設定されている。これにより、溶融塩は、常に液相を維持可能となっている。
このような本第2実施形態によっても、前記第1実施形態と同様の作用、効果を達成できるほか、次のような作用効果を付加することができる。
すなわち、蓄熱装置40に溜められる鉱油を加熱するための燃焼炉装置20をリターダ装置30とは別に設け、蓄熱装置40に蓄積されている鉱油の温度が設定温度の値より低下した場合に、燃焼炉装置20に燃焼を開始させ、その熱で鉱油を加熱するようにしたので、風のない気候が長期間続いたとしても、常に所定量の熱エネルギーを蓄熱装置40に蓄積することが可能となり、需要に対して電力供給を途絶えさせることなく、安定した電力供給を行うことができる。
また、補助熱源として、光合成を行って成長する植物から作られるバイオディーゼル燃料、或いは、原料からバイオディーゼル燃料を作った後に発生する残渣を燃料とする燃焼炉装置20を採用したので、その燃料が大気中から吸収した二酸化炭素に由来するものとなり、燃焼によって二酸化炭素を発生させても、全体として見れば、大気中の二酸化炭素量を増加させていないと考えられ、従って、地球温暖化の抑制に貢献することができる。
[第3実施形態]
図4には、本発明の第3実施形態が示されている。
本第3実施形態は、前記第1実施形態における流体式のリターダ装置30を、永久磁石式のリターダ装置90に置き換えたものである。
また、本第3実施形態に係る風力発電装置1Bは、図4に示すように、前記第1実施形態における風力発電装置1に前記第2実施形態における燃焼炉装置20が付加されたものとなっている。
風力発電装置1Bに設けられているリターダ装置90は、永久磁石から回転するロータ36へ向かって放出された磁界によって、ロータ36の表面に渦電流が流れる際に発生する制動力でロータ36の減速を行うものである。
リターダ装置90には、図5に示すように、図示しないケース34の内部に回転自在に設けられるとともに、透磁率の高い材料から形成された円筒状のロータ36と、このロータ36の内側における同心位置に配置された円筒状のステータ35とが設けられている。
このうち、ステータ35は、ロータ36の内側に密着するように配置された円筒状のポールピース部35B と、このポールピース部35B の内側に密着するように配置された円筒状の磁石部35A と、この磁石部35A の内側に密着するように配置された円筒状のヨーク部35C とを備えたものとなっている。
磁石部35A は、複数の永久磁石91が所定のピッチで周方向に配列された磁石列が形成されたものである。磁石部35A における永久磁石91以外の部分は、透磁率が著しく低い部材から形成されている。
この磁石部35A は、ポールピース部35B に対して周方向に沿って移動可能に設けられている。そして、磁石部35A は、図示しないアクチュエータにより、少なくとも後述する位置α及び位置βの二位置間を往復駆動されるようになっている。
ポールピース部35B は、透磁率の高い材料から形成された複数のポールピース92が永久磁石91に対応したピッチで周方向に配列されたポールピース列が形成されたものとなっている。ポールピース部35B におけるポールピース92以外の部分は、透磁率が著しく低い部材から形成されている。
ポールピース92は、周方向に沿った長さ寸法が磁石部35A 側の永久磁石91に対応したものとなっている。
この際、リターダ装置90における磁石部35A の位置αは、図5(A)の如く、ポールピース部35B 側のポールピース92が二つの永久磁石91に跨った状態となる、更に詳しく説明すると、一方の永久磁石91のN極と他方の永久磁石91のS極とに跨る位置である。
そして、磁石部35A が位置αに配置された状態において、永久磁石91のN極から出てポールピース92に入った磁界は、ロータ36を経由せずにポールピース92の内部のみを通る経路、換言すると、図5(A)に示す磁路aを通って、他方の永久磁石91のS極に達するようになっている。
リターダ装置90は、磁石部35A が位置αに配置された状態では、永久磁石91の磁界がロータ36に達しないので、渦電流が発生せず、従って、制動力も熱も発生しないようになっている。
また、リターダ装置90における磁石部35A の位置βは、図5(B)の如く、ポールピース部35B 側のポールピース92と永久磁石91とが互いに重なった状態となる位置である。
そして、磁石部35A が位置αに配置された状態において、永久磁石91のN極から出てポールピース92に入った磁界は、ポールピース92を一旦出て、ロータ36を経由し、再度、ポールピース92に戻ってきてから他方の永久磁石91のS極に達する経路、換言すると、図5(B)に示す磁路bを通って、他方の永久磁石91のS極に達するようになっている。
リターダ装置90は、磁石部35A が位置βに配置された状態では、永久磁石91の磁界がロータ36に達し、渦電流が発生するので、ロータ36を減速する制動力及び熱を発生するようになっている。
図6(A)〜(C)のそれぞれは、リターダ装置90における磁石部35A の磁石列及びポールピース部35B のポールピース列を周方向に展開した展開図である。
図6において、永久磁石91の平面形状は、図6の如く、磁石部35Aの移動方向に対して直交する方向に延びる縦端縁部93を有する長方形状となっている。
ポールピース92は、図6に示すように、永久磁石91の縦端縁部93に対して傾斜した方向に延びる傾斜端縁部94を有する平行四辺形状となっている。
なお、ポールピース92の傾斜端縁部94は、永久磁石91の縦端縁部93に対して傾斜していればよく、直線状に延びる辺を有するものに限定されず、曲線状に延びる辺を有するものでもよい。
以下に、永久磁石91をポールピース92に対して、図6中、左方へ移動していった場合において、一の永久磁石91のN極から出て、他の永久磁石91のS極に達する磁界、ひいては、この場合におけるリターダ装置90の発熱量について説明する。
位置αに配置されていた磁石部35A が駆動されて位置αから離れても、ポールピース92の図6中右方に配置された傾斜端縁部94の全体が、図6(A)に示すように、永久磁石91の縦端縁部93に重なっている状態では、一の永久磁石91のN極から出てポールピース92の内部に入った磁界は、ロータ36を経由せずにポールピース92の内部のみを通って他の永久磁石91のS極に達するようになっている。
すなわち、一の永久磁石91のN極から出た磁界は、幅方向におけるすべてが磁路aのみを通って、他方の永久磁石91のS極に達するようになっている。
磁石部35A がさらに移動し、ポールピース92の図6中右方に配置された傾斜端縁部94の一部が、図6(B)に示すように、永久磁石91の縦端縁部93と重ならない位置に逸脱した状態では、一の永久磁石91のN極から出てポールピース92の内部に入った磁界は、一部がロータ36を経由して他の永久磁石91のS極に達するようになっている。
すなわち、一の永久磁石91のN極から出た磁界は、幅方向における一部が磁路aを通って他方の永久磁石91のS極に達し、残りが磁路bを通って他方の永久磁石91のS極に達するようになっている。
ここにおいて、ポールピース92に設けられている傾斜端縁部94の端縁が永久磁石91に設けられた縦端縁部93の端縁に対して傾斜しているので、磁石部35A が位置βに近づくにつれて、磁路aを通る磁束数が次第に減っていく一方で、磁路bを通る磁束数が次第に増えていくようになっている。
これにより、リターダ装置90は、磁石部35A を位置αから位置βへ移動させることにより、ロータ36の表面で発生する渦電流を連続的に増やして、リターダ装置90で発生する発熱量を連続的に増大させていくことが可能となっている。
磁石部35A がさらに右方へ移動し、図6(C)に示すように、一の永久磁石91と重なったポールピース92の傾斜端縁部94が他の永久磁石91と重なり合わない位置、換言すると、磁石部35A が位置βに達すると、永久磁石91のN極から出てポールピース92に入った磁界は、ロータ36を経由してから他の永久磁石91のS極に達するようになっている。
すなわち、一の永久磁石91のN極から出た磁界は、幅方向におけるすべてが磁路bのみを通って、他方の永久磁石91のS極に達するようになっている。
このようなリターダ装置90は、蓄熱装置40に蓄積されている鉱油が潤滑油として内部を循環するようになっており、また、この鉱油で冷却を行うようになっており、換言すると、渦電流による発熱で鉱油を加熱するものとなっている。
以上のような本第3実施形態によっても、前記第1及び第2実施形態と同様の作用、効果を達成できる。
[第4実施形態]
図7には、本発明の第4実施形態が示されている。本第4実施形態は、前記第1実施形態におけるスターリングエンジン17及びエンジン発電機18を、熱を電力に変換する熱電変換装置19としたものである。
すなわち、本第4実施形態に係る風力発電装置1Cは、図7に示すように、熱を電力に変換するために、ビスマス・テルル系等の熱電変換素子を複数備えた熱電変換装置19が側面に張り付けられた蓄熱装置40を備えている。
ここで、蓄熱装置40は、少なくとも熱電変換装置19が張り付けられる部分が銅やアルミニウム等の熱伝導率に優れた材質で形成された側壁を備えたものである。そして、蓄熱装置40の外側の面は、熱電変換装置19の貼り付けられた部分以外が、断熱被覆材で覆われている。
また、本第4実施形態に係る機械小屋5Cの内部には、熱電変換装置19が出力する直流電力を交流電力に変換するインバータ装置19A が設けられている。
以上のような本第4実施形態によっても、前記第1〜第3実施形態と同様の作用、効果を達成できる。
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲における変形及び改良などをも含むものである。
すなわち、風車としては、プロペラ型等の回転軸が水平配置されるものに限らず、例えば、ダリウス型の風車、及び、ジャイロミル型の風車等、回転軸が垂直配置されるものを採用してもよい。
回転軸が垂直配置される風車を採用した場合、風車の回転軸をリターダ装置に直接連結しても、リターダ装置を地面近傍に配置でき、従って、リターダ装置と蓄熱装置とを近接して配置できるようになるので、油圧ポンプ及び油圧モータを省略することができ、風力発電装置の全体構成を簡略化することができる。
また、前記実施形態では、スターリングエンジン等の原動機及びエンジン発電機を一つずつ設けたが、原動機及びエンジン発電機を複数組設けてもよい。ここで、原動機及びエンジン発電機を複数組設けた場合、電力需要に対応した台数を作動させる台数制御を行うようにすれば、電力需要に幅広く対応することができる。
さらに、前記実施形態では、一つの蓄熱装置に対して風車及びリターダ装置を一つずつ設けたが、一つの蓄熱装置に対して風車及びリターダ装置を複数組設けてもよい。ここで、一つの蓄熱装置に対して複数組の風車及びリターダ装置を設ければ、蓄熱装置の容積を大きくして、蓄積可能な熱容量を増大することができ、これにより、電力需要が大きく変動しても、電力需要に対応した電力供給を行うことができる。
また、補助熱源としては、燃焼炉で燃料を燃焼する際に発生する熱で熱媒体を加熱する燃焼炉装置に限らず、太陽の放射熱を利用して熱媒体を加熱する太陽熱採取装置、或いは、地熱を利用して熱媒体を加熱する地熱採取装置を採用してもよく、さらに、燃焼炉装置、太陽熱採取装置及び地熱採取装置の少なくとも2つ以上を適宜組み合わせたものを採用してもよい。
さらに、熱エネルギーを原動力として駆動する原動機としては、スターリングエンジンに限らず、他の種類の外燃機関でもよく、さらに、アンモニア、ブタン、ペンタン及びフロン等の沸点温度が低い低沸点液体を鉱油等の熱媒体で沸騰させ、得られた蒸気で駆動されるタービンを備えた低温駆動式タービン原動機や、ペリトロコイド曲線に沿って湾曲した側壁を有する繭型のロータ・ハウジングと、このロータ・ハウジングの内部に回転自在に設けられた三角おむすび型のロータとを有し、鉱油等の熱媒体で沸騰させることで得られた比較的低圧の水蒸気で駆動可能なロータリー式原動機や、比較的低圧の水蒸気で駆動可能な低圧水蒸気用タービン又は低圧水蒸気用スクリューを有する水蒸気利用の原動機や、圧搾空気で駆動可能なエアモータ、空気用タービン又は空気用スクリューを有する圧搾空気利用の原動機等も採用できる。
1, 1A〜1C 風力発電装置
2 風車
11 油圧ポンプ
12 油圧モータ
16 風車発電機
17 原動機としてのスターリングエンジン
18 エンジン発電機
19 熱電変換装置
20 補助熱源としての燃焼炉装置
30 流体式リターダ装置
40 蓄熱装置
50 制御装置
90 永久磁石式リターダ装置

Claims (6)

  1. 風力を受けて回転する風車を利用して発電を行う風力発電装置であって、
    前記風車が発生する駆動力を熱に変換することで、当該風車の回転速度を減速するとともに、変換した熱で熱媒体を加熱可能に形成されているリターダ装置と、
    このリターダ装置で加熱された熱媒体を溜めることで熱を蓄積する蓄熱装置と、
    この蓄熱装置に蓄積された熱を原動力として駆動する原動機と、
    この原動機の駆動力で駆動されて発電を行うエンジン発電機と、
    前記風車の回転軸に入力軸が係合されて風力で発電を行う風車発電機と、
    前記風車の回転速度を検知し、前記風車の回転速度が所定速度となるように、前記リターダ装置の減速力を調節する制御装置と、
    を備えていることを特徴とする風力発電装置。
  2. 前記風車と前記リターダ装置との間には、前記風車が発生する駆動力を受けて作動油を圧送する油圧ポンプと、
    この油圧ポンプから圧送されてきた作動油を受けて回転し、前記リターダ装置を回転駆動する油圧モータとが設けられ、
    前記風車が発生する駆動力が作動油を介して前記リターダ装置に伝達されるようになっていることを特徴とする請求項1記載の風力発電装置。
  3. 前記制御装置は、電力需要に対して前記風車発電機の発電量が不足する場合は、前記風車発電機の発電量を補うために、前記蓄熱装置に蓄積された熱で前記原動機を駆動し、前記原動機の駆動力で前記エンジン発電機に発電を行わせるものであることを特徴とする請求項1又は2記載の風力発電装置。
  4. 前記蓄熱装置に溜められる熱媒体を加熱するための補助熱源が前記リターダ装置とは別に設けられ、前記蓄熱装置に蓄積されている熱媒体の温度が所定値より低下した場合には、前記補助熱源の熱で熱媒体を加熱することが可能となっていることを特徴とする請求項1から請求項までのいずれかに記載の風力発電装置。
  5. 太陽の放射熱を利用して熱媒体を加熱する太陽熱採取装置、地熱を利用して熱媒体を加熱する地熱採取装置、及び、燃焼炉で燃料を燃焼する際に発生する熱で熱媒体を加熱する燃焼炉装置のうち、少なくとも一つが前記補助熱源として採用されていることを特徴とする請求項記載の風力発電装置。
  6. 風力を受けて回転する風車を利用して発電を行う風力発電装置であって、
    前記風車が発生する駆動力を熱に変換することで、当該風車の回転速度を減速するとともに、変換した熱で熱媒体を加熱可能に形成されているリターダ装置と、
    このリターダ装置で加熱された熱媒体を溜めることで熱を蓄積する蓄熱装置と、
    この蓄熱装置に蓄積された熱を熱電素子で電力に変換する熱電変換装置と、
    前記風車の回転軸に入力軸が係合されて風力で発電を行う風車発電機と、
    前記風車の回転速度を検知し、前記風車の回転速度が所定速度となるように、前記リターダ装置の減速力を調節する制御装置と、
    を備えていることを特徴とする風力発電装置。
JP2009244687A 2009-10-23 2009-10-23 風力発電装置 Expired - Fee Related JP5592097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244687A JP5592097B2 (ja) 2009-10-23 2009-10-23 風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244687A JP5592097B2 (ja) 2009-10-23 2009-10-23 風力発電装置

Publications (2)

Publication Number Publication Date
JP2011089492A JP2011089492A (ja) 2011-05-06
JP5592097B2 true JP5592097B2 (ja) 2014-09-17

Family

ID=44107949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244687A Expired - Fee Related JP5592097B2 (ja) 2009-10-23 2009-10-23 風力発電装置

Country Status (1)

Country Link
JP (1) JP5592097B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531918A (zh) * 2013-08-27 2016-04-27 住友电气工业株式会社 风力发电***

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024736B2 (ja) * 2009-10-15 2012-09-12 住友電気工業株式会社 発電システム
CN102392793B (zh) * 2011-07-29 2013-11-27 周天清 一种以空气为介质的能量存储、释放的风力发电***
KR101541417B1 (ko) 2014-06-05 2015-08-06 남지현 와전류 유도 발열장치
JP5901724B1 (ja) * 2014-10-16 2016-04-13 株式会社新来島どっく 船舶油圧ポンプ室ユニットの製造及び設置方法
CN107079537A (zh) * 2014-11-06 2017-08-18 新日铁住金株式会社 涡流式发热装置
CN111162654B (zh) 2014-11-06 2022-11-15 日本制铁株式会社 涡流式发热装置
US20180035493A1 (en) * 2015-02-24 2018-02-01 Nippon Steel & Sumitomo Metal Corporation Eddy current heat generating apparatus
JP6435960B2 (ja) * 2015-03-30 2018-12-12 新日鐵住金株式会社 流体式発熱装置
JP6631039B2 (ja) * 2015-05-21 2020-01-15 日本製鉄株式会社 渦電流式発熱装置
WO2019088920A1 (en) * 2017-11-02 2019-05-09 Baskar Jagannathan A wind powered cooling system
JP7013095B2 (ja) * 2018-09-12 2022-01-31 秋夫 湯田 油圧ポンプ及びその応用装置。
JP2021093877A (ja) * 2019-12-12 2021-06-17 いすゞ自動車株式会社 発電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240244A (en) * 1975-09-26 1977-03-29 Matsushita Electric Ind Co Ltd Wind force energy utlization device
JPS5770963A (en) * 1980-10-20 1982-05-01 Mitsui Eng & Shipbuild Co Ltd Device in application of wind-power energy
JPS58140486A (ja) * 1982-02-16 1983-08-20 Mitsui Eng & Shipbuild Co Ltd 風力エネルギ−利用装置
JPH03189372A (ja) * 1989-12-18 1991-08-19 Hitachi Ltd 無公害エネルギ供給システム
JPH1182284A (ja) * 1997-09-04 1999-03-26 Kawasaki Heavy Ind Ltd 風力利用エネルギーシステム
JP2005285715A (ja) * 2004-03-31 2005-10-13 Atsuo Majima 発電蓄電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531918A (zh) * 2013-08-27 2016-04-27 住友电气工业株式会社 风力发电***
CN105531918B (zh) * 2013-08-27 2018-03-02 住友电气工业株式会社 风力发电***

Also Published As

Publication number Publication date
JP2011089492A (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5592097B2 (ja) 風力発電装置
EP2351912B1 (en) Turbine with heating system, and corresponding solar power plant and operating method
US4236083A (en) Windmill having thermal and electric power output
US7615884B2 (en) Hybrid wind turbine system, apparatus and method
WO2010125568A2 (en) A system for wind energy harvesting and storage wising compressed air and hot water
US9617980B2 (en) Wind power generating system
US20120001436A1 (en) Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive
US20090212560A1 (en) Heating System, Wind Turbine Or Wind Park, Method For Utilizing Surplus Heat Of One Or More Wind Turbine Components And Use Hereof
US8479515B2 (en) Solar power generator
EP2601392A2 (en) Solar tower with integrated gas turbine
KR20120065515A (ko) 풍력과 태양열을 병용한 온수난방장치
WO2013065492A1 (ja) 太陽熱タービン発電装置およびその制御方法
EP2564061B1 (en) Windmill driven energy converting device
CN106121942A (zh) 一种采用液态铅铋传热和储热的超临界太阳能电站
CN101449055A (zh) 来自低温能源的发电
US20230033170A1 (en) Cooling of active elements of electrical machines
CN102852732A (zh) 磁涡流式动能转热能蓄热装置
WO2015092912A1 (ja) 発電装置
CN210919331U (zh) 一种新能源用机电控制装置
JP2012047086A (ja) 発電システム
CN205013330U (zh) 一种直冷火电厂用外转子永磁风机***
KR20120065514A (ko) 풍력을 이용한 온수난방장치
KR101015308B1 (ko) 풍열원화 장치를 이용한 냉·난방 시스템과 냉·난방 방법
KR102429086B1 (ko) 풍력을 이용한 전기-유압 연계 열병합 발전시스템
CN213901533U (zh) 风能驱动磁热***

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees