JP5590902B2 - Anti-floating structure for multi-layer buildings - Google Patents

Anti-floating structure for multi-layer buildings Download PDF

Info

Publication number
JP5590902B2
JP5590902B2 JP2010022608A JP2010022608A JP5590902B2 JP 5590902 B2 JP5590902 B2 JP 5590902B2 JP 2010022608 A JP2010022608 A JP 2010022608A JP 2010022608 A JP2010022608 A JP 2010022608A JP 5590902 B2 JP5590902 B2 JP 5590902B2
Authority
JP
Japan
Prior art keywords
wedge
building
gap
column
load transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010022608A
Other languages
Japanese (ja)
Other versions
JP2011157791A (en
Inventor
亮 水谷
修 南谷
一雄 児嶋
洋一 森島
行正 荻原
繁充 大塚
康信 宮崎
仁 伊藤
敏男 川上
泰一朗 吉川
満 飯塚
公基 加藤
小林  実
茂 淺岡
裕基 川井
司 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010022608A priority Critical patent/JP5590902B2/en
Publication of JP2011157791A publication Critical patent/JP2011157791A/en
Application granted granted Critical
Publication of JP5590902B2 publication Critical patent/JP5590902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は多層建築物の浮上り防止構造に関し、とくに各柱の下部を基礎部から切り離した多層建築物の浮上りを防止する構造に関する。   The present invention relates to a structure for preventing a multi-layered building from rising, and more particularly, to a structure for preventing a multi-layered building from rising from a lower part of each pillar separated from a foundation.

多層建築物を解体する場合に、従来は建設時と逆の順序で躯体やコンクリートを上層階から下層階へと順次破砕又は切断する工法が一般的に採用されている。しかし、上層階から解体する工法は、先ず最上階に解体装置(小型の重機等)を設置したうえで解体に応じて順次下層階へ移動させる作業が必要があり、周囲への振動・騒音・飛石・粉塵等の拡散や飛散を防止するために解体工事に先行して建築物の全体を覆う養生仮設を設ける作業も必要であり、これらの作業が工期、コストを増加させる要因となっている。これに対し、多層建築物の各柱の下部にジャッキを介装し、建築物をジャッキにより徐々に降下(ジャッキダウン)させながら下層階から上層階へと順次解体する工法(以下、ジャッキダウン工法ということがある)が開発されている(特許文献1〜3参照)。   When demolishing a multi-layered building, conventionally, a construction method is generally employed in which the frame and concrete are sequentially crushed or cut from the upper floor to the lower floor in the reverse order of construction. However, in the method of dismantling from the upper floor, it is necessary to first install a dismantling device (small heavy machinery, etc.) on the top floor and then move it to the lower floor in accordance with the dismantling. In order to prevent the diffusion and scattering of stepping stones and dust, it is also necessary to install a temporary curing covering the entire building prior to the demolition work, and these work increase the construction period and costs. . On the other hand, a jack is installed at the bottom of each pillar of a multi-layered building, and the building is gradually demolished from the lower floor to the upper floor while the building is gradually lowered (jacked down) by the jack (hereinafter referred to as the jack down construction method). Have been developed) (see Patent Documents 1 to 3).

図9は、ジャッキダウン工法による多層建築物の解体手順の一例を示す。先ず多層建築物1の特定下層階(図示例では地上階F1)の上部荷重を負担する全ての柱Pの下部を基礎部Bから切り離してジャッキ6を介装し、そのジャッキ介装階F1に解体装置5を進入させて柱以外の躯体やコンクリート(壁等)を解体撤去する(同図(A))。次いで、全ての柱Pのジャッキ6を同時に縮める収縮ステップと、柱P相互間で荷重分担しながら各柱Pのジャッキ6の直上部を順次に吊るし切りしてジャッキ6を伸ばす伸張ステップとを繰り返すことにより、ジャッキ上方の柱に結合した各階層を徐々に降下させる(同図(B))。ジャッキ上方の各階層を1階層降下させたのち、降下した上層階(図示例では2階F2)に解体装置5を進入させて柱以外の躯体やコンクリート(床梁又は床板、壁等)を解体撤去する(同図(D))。図9(E)は、上階層の解体後に同図(A)と同じ状態に復帰することを示しており、上述したジャッキ上方の各階層の降下ステップ(同図(B))と降下した階層の解体ステップ(同図(D))とを同様に繰り返すことにより、3階以上の各階層についても順次解体することができる(同図(F))。   FIG. 9 shows an example of the procedure for dismantling the multi-layered building by the jack-down method. First, the lower part of all the pillars P which bear the upper load of the specific lower floor of the multi-layered building 1 (the ground floor F1 in the illustrated example) is separated from the base part B and the jack 6 is interposed, and the jack interposed floor F1 is installed. The dismantling device 5 is entered to dismantle and remove the frames and concrete (walls, etc.) other than the pillars ((A) in the figure). Next, a contraction step for simultaneously shrinking the jacks 6 of all the pillars P, and an extension step for extending the jacks 6 by sequentially suspending and directly lifting the jacks 6 of the pillars P while sharing the load among the pillars P are repeated. As a result, each level connected to the pillar above the jack is gradually lowered ((B) in the figure). After lowering each level above the jack by one level, the demolishing device 5 is entered into the lowered upper floor (second floor F2 in the example shown) to dismantle the frame and concrete (floor beams or floorboards, walls, etc.) other than the pillars. Remove (Figure (D)). FIG. 9 (E) shows that after the upper hierarchy is dismantled, the state returns to the same state as in FIG. 9 (A), and the lowering step (the same figure (B)) of each hierarchy above the jack described above. By repeating the dismantling step ((D) in the figure) in the same manner, it is possible to sequentially dismantle each of the third and higher floors ((F) in the figure).

図9のジャッキダウン工法によれば、解体装置5を上層階へ移動させる手間を省き、多層建築物1の全体の解体作業を地上で行うことができる。また、高所作業に伴う周囲への影響を小さく抑え、低層階のみを覆う簡単な養生仮設によって飛石や粉塵等の周囲への飛散を有効に防止できる。しかも、建築物1の高さに拘わらず同じ工程速度で解体作業を進めることができ、クレーン等を用いる従来工法に比して多層建築物1を短工期で効率的に解体することが期待できる。   According to the jack-down method of FIG. 9, the labor for moving the dismantling apparatus 5 to the upper floor can be saved, and the entire dismantling work of the multilayer building 1 can be performed on the ground. In addition, the impact on the surroundings due to work at high places can be suppressed to a small extent, and scattering of flying stones, dust, etc. to the surroundings can be effectively prevented by a simple curing temporary construction that covers only the lower floors. Moreover, dismantling work can proceed at the same process speed regardless of the height of the building 1, and it can be expected that the multi-layer building 1 can be efficiently dismantled in a short construction period compared to the conventional construction method using a crane or the like. .

特開2009−138377号工法JP 2009-138377 Method 特開2009−138378号公報JP 2009-138378 A 特開2009−156022号工法Japanese Patent Application Laid-Open No. 2009-156022

しかし、ジャッキダウン工法では、図9(A)に示すように多層建築物1の各柱Pが基礎部Bから切り離された構造となるため、解体中に建築物1が構造的に不安定な状態となりやすい。ジャッキ6の収縮時に生じる不安定状態はジャッキ6の連動制御等によって小さく抑えることも期待できるが、地震時・風負荷時等に建築物1に加わる水平荷重(せん断力)をジャッキ6の連動制御のみによって抑えることは困難であり、各柱Pに大きなせん断力が加わるとジャッキが座屈し又は破損するおそれがある。また、建築物1のアスペクト比(高さ/幅の比率)が大きな場合は、大規模な地震力・風負荷が加わると外周部等の柱Pに引抜き力が生じて浮上り、或いは外周部等の柱Pがジャッキ6の上で水平方向に捩れて(偏心して)ジャッキが破損するおそれがある。   However, in the jackdown method, as shown in FIG. 9 (A), each pillar P of the multi-layer building 1 is separated from the foundation B, so that the building 1 is structurally unstable during dismantling. It is easy to be in a state. Although the unstable state that occurs when the jack 6 contracts can be expected to be reduced by interlocking control of the jack 6, etc., the horizontal load (shearing force) applied to the building 1 during an earthquake or wind load is interlocked control of the jack 6 It is difficult to suppress only by this, and if a large shear force is applied to each column P, the jack may buckle or break. Further, when the aspect ratio (height / width ratio) of the building 1 is large, when a large-scale seismic force / wind load is applied, a pulling force is generated in the pillar P such as the outer peripheral portion, and the outer peripheral portion is lifted or There is a possibility that the pillar P such as the like is twisted (eccentric) in the horizontal direction on the jack 6 and the jack is damaged.

解体中の多層建築物1を構造的に安定な状態に維持するため、図9のジャッキダウン工法では、建築物1の柱Pで囲まれた区画内に基礎部Bからジャッキ介装階(図示例では地上階F1)を貫く高さの荷重伝達構造体(コア壁等)7を設けている(同図(A)参照)。その区画の上層階(図示例では2階F2)の周囲柱に荷重伝達構造体7の外面に沿って荷重伝達梁8を架け渡し、降下ステップ(同図(B))のジャッキ6の収縮時にジャッキ上方の各階層を荷重伝達梁8と共に荷重伝達構造体7の外面に沿って徐々に降下させ、上層階に加わる水平荷重(せん断力)を荷重伝達梁8及び荷重伝達構造体7を介して基礎部Bへ伝達して逃がすことにより、解体中の建築物に地震や風負荷に対する十分な耐震・耐風性能を確保する。また、ジャッキ6の収縮時以外は、荷重伝達梁8と荷重伝達構造体7との間に楔等を打ち込んで両者を結合することにより、解体中の建築物1が構造的に不安定な状態となることを防止する。更に、降下した上層階F2を解体する前に、荷重伝達梁8をその階F2から取り外してその直上階F3の区画の周囲柱に付け替えることにより(同図(C)参照)、3階以上の各階層の解体に際しても同様の耐震・耐風性能を確保している(同図(E)参照)。   In order to keep the multilayer building 1 being dismantled in a structurally stable state, in the jack-down construction method of FIG. 9, a jack interposition floor (see FIG. In the illustrated example, a load transmission structure (core wall or the like) 7 having a height penetrating the ground floor F1) is provided (see FIG. 5A). When the load transmitting beam 8 is bridged along the outer surface of the load transmitting structure 7 on the peripheral pillars of the upper floor of the section (the second floor F2 in the illustrated example), when the jack 6 contracts in the descending step (FIG. 5B). Each level above the jack is gradually lowered along with the load transmission beam 8 along the outer surface of the load transmission structure 7, and a horizontal load (shearing force) applied to the upper floor is transmitted via the load transmission beam 8 and the load transmission structure 7. By transmitting to the base B and allowing it to escape, the building being demolished will have sufficient seismic and wind resistant performance against earthquakes and wind loads. Further, when the jack 6 is not contracted, the building 1 being dismantled is structurally unstable by driving a wedge or the like between the load transmission beam 8 and the load transmission structure 7 and connecting them together. To prevent it. Furthermore, before dismantling the lowered upper floor F2, by removing the load transmission beam 8 from the floor F2 and replacing it with the surrounding pillars of the section of the immediately upper floor F3 (see FIG. 3C), more than 3 floors The same seismic and wind resistant performance is ensured when dismantling each level (see (E) in the figure).

しかし、図9のように荷重伝達構造体7及び荷重伝達梁8を用いる方法では、建築物1に加わるせん断力の影響を小さく抑えることはできても、建築物1に加わる引抜き力(浮上り力)に十分抵抗できない問題点がある。例えばアスペクト比の大きな多層建築物1では、せん断力を基礎部Bに逃がしたとしても、大規模地震時等に建築物1が振り子状に揺動して外周部の柱Pに浮上り荷重が加わることが懸念される。ジャッキダウン工法の安全を確保するためには、せん断力だけでなく浮上り力についても構造的に抵抗できる状態に多層建築物1を維持することが求められる。また、図9の方法では、ジャッキ6の収縮時以外は荷重伝達梁8と荷重伝達構造体7とを結合しているため、ジャッキ6の収縮時(建築物1の降下時)に結合を解除する必要があり、ジャッキ6の収縮作業が煩雑となり手間がかかる問題点もある。多層建築物を短工期で効率的に解体できるというジャッキダウン工法の利点を生かすためには、ジャッキの収縮を妨げることなく多層建築物を常時安定な状態に維持することが重要である。   However, in the method using the load transmission structure 7 and the load transmission beam 8 as shown in FIG. 9, the pulling force (lifting) applied to the building 1 can be suppressed even though the influence of the shearing force applied to the building 1 can be reduced. There is a problem that it is not possible to sufficiently resist (force). For example, in a multi-layer building 1 with a large aspect ratio, even if the shear force is released to the foundation part B, the building 1 swings in a pendulum shape during a large-scale earthquake or the like, and a floating load is applied to the column P at the outer periphery. There is concern about joining. In order to ensure the safety of the jack-down method, it is required to maintain the multilayer building 1 in a state that can structurally resist not only the shearing force but also the lifting force. In the method of FIG. 9, since the load transmission beam 8 and the load transmission structure 7 are coupled except when the jack 6 is contracted, the coupling is released when the jack 6 is contracted (when the building 1 is lowered). There is a problem that the contraction work of the jack 6 becomes complicated and takes time and effort. In order to take advantage of the jack-down method of efficiently dismantling a multi-layered building in a short construction period, it is important to keep the multi-layered building stable at all times without hindering the contraction of the jack.

そこで本発明の目的は、各柱を基礎部から切り離した多層建築物において柱の降下を妨げることなく柱の浮上りを防止する構造を提供することにある。   Therefore, an object of the present invention is to provide a structure that prevents the column from rising without interfering with the descent of the column in a multi-layered building in which each column is separated from the foundation.

図1の実施例を参照するに、本発明による多層建築物の浮上り防止構造は、多層建築物1の各柱Pの下部を基礎部Bから切り離し、建築物1の地震時に浮上り力を受ける柱P1、P4の側面と基礎部B又は基礎部Bに連結した荷重伝達躯体10とを所定間隙dで対向させ、対向間隙dに柱Pの浮上り時に間隙dを閉塞し且つ柱Pの降下時に閉塞を解除する楔機構20を設けたものである。   Referring to the embodiment of FIG. 1, the structure for preventing the lifting of a multi-layered building according to the present invention separates the lower part of each pillar P of the multi-layered building 1 from the foundation part B, and increases the lifting force during the earthquake of the building 1. The side surfaces of the pillars P1 and P4 to be received and the base part B or the load transmitting housing 10 connected to the base part B are opposed to each other with a predetermined gap d, and the gap d is closed when the pillar P is lifted to the facing gap d. A wedge mechanism 20 is provided to release the blockage when lowered.

好ましくは、図1(D)に示すように、楔機構20に、基礎部B又は荷重伝達躯体10の間隙対向面に固定したテーパ付き楔受け材22と、柱Pの間隙対向面に摩擦係合しつつ対向間隙dに下方から嵌合するテーパ付き楔材21と、楔材21を基礎部B又は荷重伝達躯体10に支持しつつ対向間隙dの下方に保持する保持部材23とを含める。保持部材23には、楔材21を上方へ押圧する弾性部材24を含めることができる。また、図4に示すように、楔受け材22又は楔材21の対向面に静摩擦係数μ1の小さな滑り面22aを設けることが望ましい。   Preferably, as shown in FIG. 1D, the wedge mechanism 20 has a tapered wedge receiving member 22 fixed to the gap facing surface of the base portion B or the load transmission housing 10 and a frictional engagement between the gap facing surface of the column P. A tapered wedge member 21 that fits into the opposing gap d from below while being joined, and a holding member 23 that supports the wedge member 21 on the base B or the load transmission housing 10 and holds it under the opposing gap d. The holding member 23 can include an elastic member 24 that presses the wedge material 21 upward. Also, as shown in FIG. 4, it is desirable to provide a sliding surface 22a having a small static friction coefficient μ1 on the opposing surface of the wedge receiving member 22 or the wedge member 21.

或いは,図5に示すように,楔機構20に,柱Pの間隙対向面に固定したテーパ付き楔受け材22と,基礎部B又は荷重伝達躯体10の間隙対向面に摩擦係合しつつ対向間隙dに上方から嵌合するテーパ付き楔材21とを含めてもよい。この場合は,図5に示すように,多層建築物1の各柱Pの下部を基礎部Bから切り離し,建築物1の地震時に浮上り力を受ける柱P1,P4と対向する基礎部B又は基礎部Bに連結した荷重伝達躯体10に鉛直溝14を設け,柱Pにその鉛直溝14内へ嵌入するブラケット15を取り付け,鉛直溝14の両側面とブラケット15との対向間隙dにそれぞれ柱Pの浮上り時に間隙dを閉塞し且つ柱Pの降下時に閉塞を解除する楔機構20を設けることができる。また,楔受け材22又は楔材21の間隙対向面に静摩擦係数μ1の小さな滑り面22aを設けることが望ましい。更に望ましくは,図7及び図8に示すように,楔機構20に,楔材21を対向間隙dの上方に落下可能に保持する保持装置25と,建築物1の上部の揺動を検知する感震器37と,感震器37の検知信号に応じて保持装置25による楔材21の保持を解除する解除装置27とを含める。 Alternatively, as shown in FIG. 5, the wedge mechanism 20 is opposed to the tapered wedge receiving member 22 fixed to the gap facing surface of the column P and the gap facing surface of the base B or the load transmission housing 10 while frictionally engaging. A tapered wedge member 21 fitted into the gap d from above may be included. In this case, as shown in FIG. 5, the lower part of each pillar P of the multi-layer building 1 is separated from the foundation part B, and the foundation part B facing the pillars P1 and P4 receiving the lifting force during the earthquake of the building 1 or A vertical groove 14 is provided in the load transmission housing 10 connected to the base portion B, brackets 15 to be fitted into the vertical grooves 14 are attached to the pillars P, and pillars are respectively provided in opposing gaps d between both side surfaces of the vertical grooves 14 and the brackets 15. It is possible to provide a wedge mechanism 20 that closes the gap d when the P rises and releases the closure when the column P descends . Further, it is desirable to provide a sliding surface 22 a having a small static friction coefficient μ 1 on the surface of the wedge receiving member 22 or the wedge member 21 facing the gap. More preferably, as shown in FIGS. 7 and 8, the wedge mechanism 20 detects the swinging of the holding device 25 that holds the wedge material 21 so as to be dropped above the opposing gap d and the upper portion of the building 1. A seismic device 37 and a release device 27 that releases the holding of the wedge material 21 by the holding device 25 in accordance with the detection signal of the seismic device 37 are included.

本発明による多層建築物の浮上り防止構造は、各柱Pの下部が基礎部Bから切り離された多層建築物1において、建築物1の地震時に浮上り力を受ける柱P1、P4の側面と基礎部B(又は基礎部Bに連結した荷重伝達躯体10)とを所定間隙dで対向させ、対向間隙dに柱Pの浮上り時に間隙dを閉塞し且つ柱Pの降下時に閉塞を解除する楔機構20を設けるので、次の有利な効果を奏する。   In the multilayer building 1 according to the present invention, in the multilayer building 1 in which the lower part of each pillar P is separated from the base part B, the side surfaces of the pillars P1 and P4 that receive the lifting force during the earthquake of the building 1 The base B (or the load transmission housing 10 connected to the base B) is opposed to the base gap B by a predetermined gap d, the gap d is closed when the column P is lifted to the counter gap d, and the blockage is released when the column P is lowered. Since the wedge mechanism 20 is provided, the following advantageous effects can be obtained.

(イ)柱Pに引抜き力が生じていない時は、その柱Pと基礎部B(又は基礎部Bに連結した荷重伝達躯体10)との間の対向間隙dが楔機構20により開放されているので、基礎部Bに拘束されずに柱Pを降下させ又は柱Pの位置を微調整することができる。
(ロ)地震時・強風時等に柱Pに引抜き力が生じると、その柱Pと基礎部Bとの対向間隙dを楔機構20が自動的に閉塞して柱Pの移動を拘束するので、建築物1をせん断力及び浮上り力の何れにも抵抗できる構造とすることができる。
(ハ)従って、本発明を多層建築物1のジャッキダウン工法に適用すれば、建築物1の降下(ジャッキ6の収縮)を妨げることなく地震時・風負荷時にのみ建築物1を基礎部Bに結合することが可能となり、解体中の建築物1を地震時・強風時にも構造的に安全な構造に維持できる。
(ニ)また、本発明の楔機構は基礎部Bに支持することができ、多層建築物1の降下に応じて楔機構20の付け替え作業等を省略できるので、本発明を適用することでジャッキダウン工法の省力化、短工期化を図ることができる。
(ホ)また、楔機構20にある程度の遊びを設け、地震時等に所定範囲内で柱Pの浮上りを許容する構造とすることにより多層建築物1に伝わる地震エネルギー等を低減し、建築物1の耐震性能・安全性の向上を図ることも期待できる。
(A) When no pulling force is generated in the column P, the opposing gap d between the column P and the base part B (or the load transmission housing 10 connected to the base part B) is opened by the wedge mechanism 20. Therefore, the column P can be lowered or the position of the column P can be finely adjusted without being constrained by the base portion B.
(B) When a pulling force is generated in the column P during an earthquake or a strong wind, the wedge mechanism 20 automatically closes the facing gap d between the column P and the base B, and restrains the movement of the column P. The building 1 can have a structure that can resist both shearing force and lifting force.
(C) Therefore, if the present invention is applied to the jack-down method of the multilayer building 1, the building 1 is constructed only at the time of earthquake and wind load without disturbing the descent of the building 1 (shrinkage of the jack 6). The building 1 being demolished can be maintained in a structurally safe structure even during earthquakes and strong winds.
(D) Moreover, since the wedge mechanism of the present invention can be supported by the base portion B, and the replacement work of the wedge mechanism 20 can be omitted in accordance with the lowering of the multi-layer building 1, the jack can be applied by applying the present invention. It is possible to save labor and shorten the construction period of the down construction method.
(E) Further, by providing a certain amount of play to the wedge mechanism 20 and allowing the column P to float within a predetermined range in the event of an earthquake, etc., the seismic energy transmitted to the multi-layer building 1 is reduced, and the building It can also be expected to improve the seismic performance and safety of object 1.

以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明による多層建築物の浮上り防止構造の一実施例の説明図である。 図1の多層建築物の断面図である。 図1の浮上り防止構造における楔機構の作用を示す説明図である。 図3の楔機構におけるテーパ付き楔材およびテーパ付き楔受け材の説明図である。 本発明による多層建築物の浮上り防止構造の他の実施例の説明図である。 図5の浮上り防止構造における楔機構の作用を示す説明図である。 楔材の保持装置と感震器と楔材の保持解除装置とを設けた楔機構の一実施例の説明図である。 図7の楔材の保持装置および保持解除装置の詳細を示す説明図である。 従来のジャッキダウン工法の説明図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is explanatory drawing of one Example of the floating prevention structure of the multilayer building by this invention. It is sectional drawing of the multilayer building of FIG. It is explanatory drawing which shows the effect | action of the wedge mechanism in the lifting prevention structure of FIG. It is explanatory drawing of the tapered wedge material and the tapered wedge receiving material in the wedge mechanism of FIG. It is explanatory drawing of the other Example of the floating prevention structure of the multilayer building by this invention. It is explanatory drawing which shows the effect | action of the wedge mechanism in the lifting prevention structure of FIG. It is explanatory drawing of one Example of the wedge mechanism provided with the holding | maintenance apparatus of a wedge material, a seismic device, and the holding | release release apparatus of a wedge material. It is explanatory drawing which shows the detail of the holding | maintenance apparatus and holding | maintenance release apparatus of the wedge material of FIG. It is explanatory drawing of the conventional jackdown construction method.

図1(A)は、図9に示したジャッキダウン工法で解体する多層建築物1に本発明の浮上り防止構造を適用した実施例を示す。図示例の建築物1は、地上階F1の上部荷重を負担する全ての柱P1〜P4の下部を基礎部Bから切り離し、各柱Pの切断した下端に上層各階の荷重を支えるジャッキ6を介装してジャッキ介装階Fvを設けたものである。ただし、ジャッキダウン工法における柱P1〜P4の切断位置(ジャッキ介装階Fvの階層)は地上階F1に限られず、建築物1の特定下層階の各柱Pを切断してジャッキ介装階Fvとすることができる。例えば、図1(C)に示すようにジャッキ介装階Fvを地下階B1又は2階F2、3階F3とし、その階Fvの上部荷重を支える全ての柱Pを基礎部Bから切り離してジャッキ介装階Fvとしてもよい。   FIG. 1A shows an embodiment in which the anti-lift structure of the present invention is applied to a multilayer building 1 dismantled by the jack-down method shown in FIG. The building 1 in the illustrated example is provided with a jack 6 that supports the loads on the upper floors at the lower ends where the pillars P are cut off from the base B and the lower parts of all the pillars P1 to P4 bearing the upper load of the ground floor F1 are separated. A jack interposing floor Fv is provided. However, the cutting positions of the columns P1 to P4 in the jack-down method (the level of the jack interposing floor Fv) are not limited to the ground floor F1, and the jack interfacing floor Fv by cutting each column P of the specific lower floor of the building 1 It can be. For example, as shown in FIG. 1 (C), the jack interposition floor Fv is the basement floor B1 or the second floor F2, the third floor F3, and all the pillars P that support the upper load of the floor Fv are separated from the base section B and are jacked. It may be an intervening floor Fv.

また、図示例の建築物1は、ジャッキダウン工法で解体する前に、ジャッキ介装階Fvの直上階F(v+1)(図示例では2階F2)の床梁又は床板3をダイヤモンドブレード、ワイヤーソー等によって全ての柱Pから切り離し、ジャッキ介装階Fvの直上階に解体装置5(図9参照)を進入させる解体作業階F(v+1)を設けている。各柱Pのジャッキ6を収縮させるジャッキダウン工法の降下ステップ(図9(B)参照)において、各柱Pと切り離された解体作業階F(v+1)の床梁又は床板3は降下せず、それより上方の各柱Pと結合した各階層(図示例では3階F3以上)を解体作業階F(v+1)に降下させて解体する(図9(D)参照)。解体作業階F(v+1)をジャッキ介装階Fvと別階層とすることにより、ジャッキ介装階Fvに解体装置5を進入させる図9の解体方法に比して、解体装置5とジャッキ6との接触を避けて解体作業の安全を図ると共にジャッキ介装階Fvの作業環境の改善を図ることができる。また、解体作業階F(v+1)の床梁又は床板3と基礎部Bとを壁柱等の連結構造体11で連結することにより、以下に述べる荷重伝達躯体10aの一部として解体作業階F(v+1)の床梁又は床板3を利用することが可能となる。   In addition, the building 1 in the example shown in the drawing is made of a diamond beam, a wire, and a floor beam or floor plate 3 on the floor F (v + 1) (the second floor F2 in the example shown) immediately above the jack interposing floor Fv before being dismantled by the jackdown method. A dismantling work floor F (v + 1) is provided that is separated from all the pillars P by a saw or the like and allows the disassembling device 5 (see FIG. 9) to enter the floor directly above the jack interposing floor Fv. In the descent step (see FIG. 9 (B)) of the jack-down method for contracting the jack 6 of each pillar P, the floor beam or floor plate 3 of the dismantling work floor F (v + 1) separated from each pillar P does not descend, Each level (3rd floor F3 or more in the illustrated example) coupled to each pillar P above it is lowered to the dismantling work floor F (v + 1) for dismantling (see FIG. 9D). Compared with the dismantling method of FIG. 9 in which the disassembling apparatus 5 enters the jack interposing floor Fv by making the dismantling work floor F (v + 1) different from the jack interposing floor Fv, the disassembling apparatus 5 and the jack 6 It is possible to improve the working environment of the jack interposing floor Fv while avoiding the contact of the jack and making the dismantling work safe. Further, by connecting the floor beam 3 or the base plate 3 of the dismantling work floor F (v + 1) and the foundation part B with a connecting structure 11 such as a wall column, the dismantling work floor F as a part of the load transmission housing 10a described below. It becomes possible to use the floor beam or floor plate 3 of (v + 1).

図示例の浮上り防止構造は、建築物1の地震時・風負荷時等に浮上り力を受ける外周部等の各柱P1、P4(以下、浮上り柱Pということがある)の側面と所定間隙dで対向するように基礎部Bに連結して構築した荷重伝達躯体10と、その間隙dに配置した楔機構20とを有する。図示例の荷重伝達躯体10は、連結構造体11により基礎部Bと連結された解体作業階F(v+1)の床梁又は床板3と、建築物1の外縁部に基礎部Bと連結して立ち上げた架台構造体12とにより構成されている。図示例の架台構造体12は、基礎部Bから建築物1の浮上り柱Pのジャッキ上方部分と対向する高さ(図示例では、解体作業階F(v+1)の床梁又は床板3と同程度の高さ)で立ち上げたS造又はRC造等の耐力構造体であり、地震時・風負荷時等に建築物1に加わる浮上り荷重を十分に負担できる強度、耐力、靭性を有する。基礎部Bに連結した床梁又は床板3を浮上り柱Pのジャッキ上方の内側面に所定間隙dで対向させ、基礎部Bから立ち上げた架台構造体12を浮上り柱Pのジャッキ上方の外側面に所定間隙dで対向させることにより、図2に示すように、間隙dを介して各浮上り柱Pを挟み込み又は囲むように荷重伝達躯体10を配置する。ただし、荷重伝達躯体10の構成は図示例に限定されず、例えば図5に示すように、荷重伝達躯体10を架台構造体12のみで構成し、その架台構造体12に鉛直溝14を設けると共に浮上り柱Pに溝14へ嵌入するブラケット15を取り付け、そのブラケット15と鉛直溝14の両側面との間隙dに柱Pを挟み込むように荷重伝達躯体10を配置してもよい。   The lift prevention structure in the illustrated example includes the side surfaces of the pillars P1 and P4 (hereinafter sometimes referred to as the lift pillars P) such as the outer peripheral portion that receives the lift force during an earthquake or wind load of the building 1. It has a load transmission housing 10 constructed by connecting to the base B so as to face each other with a predetermined gap d, and a wedge mechanism 20 disposed in the gap d. The load transmission housing 10 in the illustrated example is connected to the foundation beam B at the outer edge of the building 1 and the floor beam or floor plate 3 of the dismantling work floor F (v + 1) connected to the foundation B by the connection structure 11. It is comprised by the stand structure 12 which started. The gantry structure 12 in the illustrated example is the same height as the floor beam or the floor board 3 on the dismantling work floor F (v + 1) in the illustrated example. It is a strength structure such as S structure or RC structure that has been launched at a certain height), and has sufficient strength, strength, and toughness to be able to bear the floating load applied to the building 1 during earthquakes and wind loads. . The floor beam or floor plate 3 connected to the foundation B is opposed to the inner surface above the jack of the floating column P with a predetermined gap d, and the gantry structure 12 raised from the foundation B is positioned above the jack of the floating column P. As shown in FIG. 2, the load transmission housing 10 is disposed so as to sandwich or surround each floating column P via the gap d by facing the outer surface with a predetermined gap d. However, the configuration of the load transmission housing 10 is not limited to the illustrated example. For example, as shown in FIG. 5, the load transmission housing 10 is configured by only the gantry structure 12, and the vertical groove 14 is provided in the gantry structure 12. A bracket 15 that fits into the groove 14 may be attached to the floating column P, and the load transmission housing 10 may be arranged so that the column P is sandwiched between gaps d between the bracket 15 and both sides of the vertical groove 14.

図2は、建築物1の解体作業階F(v+1)の水平断面図を示し、各浮上り柱Pと荷重伝達躯体10との対向間隙dにおける楔機構20の配置を表している。楔機構20は、図1(A)に示すように柱Pの降下時には間隙dを開放し、ジャッキダウン工法の降下ステップ時(図9(B)参照)にジャッキの収縮(建築物1の降下)を許容するが、図1(B)に示すように柱Pの浮上り時には間隙dを閉塞し、柱Pと荷重伝達躯体10とを結合して柱Pの浮上りを防止するものである。図示例のように、各浮上り柱Pの両側面の間隙dにそれぞれ楔機構20を配置し、一対の楔機構20で各柱Pを両側の荷重伝達躯体10と結合可能とすることにより柱Pの浮上りを確実に防止することができる。また、浮上り柱Pの両側に楔機構20を配置することで、柱Pを荷重伝達躯体10に対して位置決めし、各柱Pのジャッキ6の収縮時(建築物1の降下時)に荷重伝達躯体10に対する柱Pの横ずれや捩れを防止することができる。ただし、楔機構20の配置位置及び数は図示例に限定されず、例えば各浮上り柱Pの周囲に3個以上の楔機構20を配置してもよい。   FIG. 2 is a horizontal sectional view of the dismantling work floor F (v + 1) of the building 1 and shows the arrangement of the wedge mechanism 20 in the facing gap d between each floating column P and the load transmission housing 10. As shown in FIG. 1 (A), the wedge mechanism 20 opens the gap d when the column P is lowered, and contracts the jack (descent of the building 1) during the lowering step of the jack-down method (see FIG. 9 (B)). However, as shown in FIG. 1B, when the column P is lifted, the gap d is closed, and the column P and the load transmission housing 10 are coupled to prevent the column P from rising. . As shown in the example, the wedge mechanisms 20 are arranged in the gaps d on both side surfaces of each floating column P, and each column P can be coupled to the load transmission housings 10 on both sides by a pair of wedge mechanisms 20. P can be reliably prevented from rising. Further, by arranging the wedge mechanism 20 on both sides of the floating column P, the column P is positioned with respect to the load transmission housing 10, and the load is applied when the jack 6 of each column P is contracted (when the building 1 is lowered). Lateral displacement and twisting of the column P with respect to the transmission housing 10 can be prevented. However, the arrangement position and the number of the wedge mechanisms 20 are not limited to the illustrated example. For example, three or more wedge mechanisms 20 may be arranged around each floating column P.

なお、図示例では、建築物1の2階2Fの床梁又は床板3を浮上り防止用の荷重伝達躯体10として利用するため、その床梁又は床板3とほぼ同じ高さ架台構造体12を建築物1の外縁部に構築しているが、架台構造体12は本発明の浮上り防止構造に必須のものではない。例えば図1(C)に示すように、建築物1のジャッキ介装階Fvを地下階B1に設けた場合は、建築物1の基礎部Bをそのまま荷重伝達躯体10として利用することができるので、架台構造体12は省略可能である。   In the illustrated example, since the floor beam or floor plate 3 on the second floor 2F of the building 1 is used as the load transmission housing 10 for preventing lifting, the frame structure 12 having the same height as the floor beam or floor plate 3 is used. Although it is constructed at the outer edge of the building 1, the gantry structure 12 is not essential for the lifting prevention structure of the present invention. For example, as shown in FIG. 1 (C), when the jack interposition floor Fv of the building 1 is provided in the basement floor B1, the foundation B of the building 1 can be used as it is as the load transmission housing 10. The gantry structure 12 can be omitted.

図1(D)は、浮上り柱Pと荷重伝達構造体10との間隙dに配置する楔機構20の一例を示す。図示例の楔機構20は、荷重伝達躯体10の間隙対向面に固定したテーパ付き楔受け材22と、浮上り柱Pの間隙対向面に摩擦係合しつつ対向間隙dに下方から嵌合するテーパ付き楔材21とを有する。また、荷重伝達躯体10に一端を支持しつつ他端を対向間隙dの下方に張り出して楔材21を保持する保持部材(L字型ブラケット等)23を有し、その保持部材23により楔材21を荷重伝達躯体10に支持して間隙dの下方の所定保持位置に上向きに保持する。保持部材23は、柱Pの側面に摩擦係合させた楔材21が柱Pの上昇時(浮上り時)に追従して上昇することを許容するが、柱Pの降下時には摩擦力に抗して楔材21を保持することにより追従した移動を阻止する。   FIG. 1D shows an example of the wedge mechanism 20 disposed in the gap d between the floating column P and the load transmission structure 10. The wedge mechanism 20 in the illustrated example is fitted into the opposing gap d from below while frictionally engaging the tapered wedge receiving material 22 fixed to the gap facing surface of the load transmission housing 10 and the gap facing surface of the floating column P. And a tapered wedge member 21. The load transmission housing 10 has a holding member (L-shaped bracket or the like) 23 that supports one end of the load transmission housing 10 and projects the other end below the facing gap d to hold the wedge material 21. 21 is supported by the load transmission housing 10 and held upward at a predetermined holding position below the gap d. The holding member 23 allows the wedge material 21 frictionally engaged with the side surface of the pillar P to rise following the rise of the pillar P (at the time of lifting), but resists frictional force when the pillar P is lowered. Then, the following movement is prevented by holding the wedge material 21.

図3(A)に示すように、浮上り柱Pに引抜き力が生じていない通常時は、保持部材23により楔材21が間隙dを閉塞しない間隙下方の保持位置に保持される。柱Pのジャッキ6を収縮させて建築物1を降下させるときは、図3(B)に示すように、柱Pとの摩擦係合により楔材21に間隙dから抜け出す方向(下向き方向)の力が加わるので、楔材21を保持位置に保持したまま建築物1をスムーズに降下させることができる。逆に、図3(C)に示すように地震時・強風時等に柱Pに引抜き力が生じたときは、柱Pとの摩擦係合により楔材21に間隙dへ嵌合する方向(上向き方向)の力が加わり、保持位置の楔材21が楔受け材22との間隙dに噛み込んで柱Pと荷重伝達躯体10とを結合し、荷重伝達躯体10を介して引抜き力を基礎部Bへ伝達して逃がすと共に柱Pの変位を拘束して浮上りを防止する。   As shown in FIG. 3A, in a normal time when the pulling force is not generated in the floating column P, the wedge member 21 is held by the holding member 23 at a holding position below the gap that does not close the gap d. When the building 6 is lowered by contracting the jack 6 of the pillar P, as shown in FIG. 3B, the wedge 21 is pulled out of the gap d by frictional engagement with the pillar P (downward direction). Since force is applied, the building 1 can be smoothly lowered while holding the wedge material 21 in the holding position. On the contrary, as shown in FIG. 3C, when a pulling force is generated in the pillar P during an earthquake or a strong wind, the direction in which the wedge material 21 is fitted into the gap d by frictional engagement with the pillar P ( Force in the upward direction) is applied, the wedge material 21 in the holding position is engaged with the gap d between the wedge receiving material 22 and the column P and the load transmission housing 10 are coupled, and the pulling force is based on the load transmission housing 10. It is transmitted to the part B and escaped, and the displacement of the column P is restrained to prevent lifting.

好ましくは、保持部材23にバネ、ゴムその他の弾性部材24を設け、弾性部材24の下端を保持部材23に固定すると共にその上端に楔材21を取り付けて上方へ押圧することにより、図3(A)に示す通常時に、弾性部材24の押圧力により楔材21を保持位置から押し上げて楔受け材22との間隙dに遊嵌させる。この場合も、図3(B)の浮上り柱Pのジャッキ6の収縮時には、柱Pとの摩擦力により弾性部材24を押し縮め、間隙dに遊嵌させた楔材21を保持部材23の保持位置まで抜け出させることにより、柱Pと荷重伝達構造体10との拘束を解除して建築物1を自重でスムーズに降下させることができる。また、ジャッキ6の収縮の終了後、押し縮められた弾性部材24の反発力により楔材21を上方に押し上げて図3(A)の通常状態に回復・復帰させることができる。更に地震時・強風時等に柱Pに引抜き力が生じたときは、図3(C)を参照して上述した場合と同様に、柱Pとの摩擦力によって弾性部材24が引き伸ばされ、楔材21を楔受け材22との間隙dに喰い込ませて柱Pと荷重伝達躯体10とを結合し、柱Pの変位を拘束して浮上りを防止できる。保持部材23に弾性部材24を含めることにより、柱Pの降下時以外は間隙dを実質的に閉塞しつつ降下時にのみ間隙dを解除する構造とすることができ、多層建築物1の耐震・耐風性能を高めることが期待できる。   Preferably, the holding member 23 is provided with an elastic member 24 such as a spring, rubber, etc., and the lower end of the elastic member 24 is fixed to the holding member 23, and the wedge member 21 is attached to the upper end and pressed upward, so that FIG. At the normal time shown in A), the wedge member 21 is pushed up from the holding position by the pressing force of the elastic member 24 and is loosely fitted in the gap d with the wedge receiving member 22. In this case as well, when the jack 6 of the floating column P in FIG. By letting out to the holding position, the restraint between the column P and the load transmission structure 10 can be released, and the building 1 can be smoothly lowered by its own weight. In addition, after the contraction of the jack 6 is finished, the wedge member 21 can be pushed upward by the repulsive force of the compressed elastic member 24 to recover and return to the normal state of FIG. Further, when a pulling force is generated in the column P during an earthquake or a strong wind, the elastic member 24 is stretched by the frictional force with the column P as in the case described above with reference to FIG. The material 21 is entrapped in the gap d between the wedge receiving material 22 and the column P and the load transmission housing 10 are coupled, so that the displacement of the column P can be restrained to prevent the lifting. By including the elastic member 24 in the holding member 23, the gap d can be released only during the descent while substantially closing the gap d except when the column P is lowered. It can be expected to improve wind resistance.

更に好ましくは、図4(A)に示すように、楔材21又は楔受け材22のテーパ面(楔材21と楔受け材22との対向面の何れか又は両方)を静摩擦係数μ1の小さな滑り面22aとする。楔材21と楔受け材22との静摩擦係数μ1が大きくなると、楔材21と浮上り柱Pの間隙対向面(表面)との静摩擦係数μ2が相対的に小さくなるので楔材21が柱Pの表面上で滑ってしまい、柱Pの浮き上がりに対して楔材21が追従できなくなる。弾性部材24の押圧力を無視した場合、柱Pの表面で楔材21が滑らない条件は、図4に示すように(1)〜(3)式で表すことができる。(1)式において、μ2・Hは柱Pの表面の静摩擦力、Fは楔受け材22の表面の静摩擦力μ1・Nによって定まる反対向きの力を示す。(1)〜(3)式は、柱Pの表面で楔材21の滑りを防ぐためには楔受け材22との静摩擦係数μ1を小さくし、それと共に柱Pとの静摩擦係数μ2を大きくすることが有効であることを示している。例えば、楔材21又は楔受け材22のテーパ面に摺動材・滑動材を取り付け又はグリス等の潤滑剤を塗布することにより、静摩擦係数μ1をできるだけ小さくする。逆に、楔材21と柱Pとの接触面は、ブラスト(粗化)処理又は錆びの発生等の表面処理を施すことにより、静摩擦係数μ1をできるだけ大きくすることが望ましい。   More preferably, as shown in FIG. 4A, the tapered surface of the wedge member 21 or the wedge receiving member 22 (one or both of the opposing surfaces of the wedge member 21 and the wedge receiving member 22) has a small static friction coefficient μ1. Let it be a sliding surface 22a. When the static friction coefficient μ1 between the wedge member 21 and the wedge receiving member 22 is increased, the static friction coefficient μ2 between the wedge member 21 and the gap facing surface (surface) of the floating column P is relatively decreased. The wedge material 21 cannot follow the lift of the pillar P. When the pressing force of the elastic member 24 is ignored, the condition that the wedge material 21 does not slip on the surface of the column P can be expressed by the equations (1) to (3) as shown in FIG. In the equation (1), μ 2 · H represents a static friction force on the surface of the column P, and F represents an opposite force determined by the static friction force μ 1 · N on the surface of the wedge receiving member 22. In the formulas (1) to (3), in order to prevent the wedge material 21 from slipping on the surface of the column P, the static friction coefficient μ1 with the wedge receiving material 22 is decreased, and at the same time, the static friction coefficient μ2 with the column P is increased. Is valid. For example, the static friction coefficient μ1 is made as small as possible by attaching a sliding material / sliding material to the tapered surface of the wedge material 21 or the wedge receiving material 22 or applying a lubricant such as grease. On the contrary, it is desirable to make the static friction coefficient μ1 as large as possible on the contact surface between the wedge member 21 and the column P by performing a surface treatment such as blasting (roughening) or generation of rust.

μ2・H>F ……………………………………………………………………………(1)
H=N・cosθ+μ1・N・sinθ ……………………………………………(2)
F=N・sinθ+μ1・N・cosθ ……………………………………………(3)
μ2>F/H
=(sinθ+μ1・cosθ)/(cosθ+μ1・sinθ)
≒(sinθ+μ1・cosθ)/cosθ …………………………………(4)
=tanθ+μ1 ………………………………………………………………(5)
μ2>tanθ−μ1 ………………………………………………………………(6)
μ2 ・ H> F …………………………………………………………………………… (1)
H = N · cos θ + μ1 · N · sin θ ……………………………………… (2)
F = N · sinθ + μ1 · N · cosθ …………………………………………… (3)
μ2> F / H
= (Sin θ + μ1 · cos θ) / (cos θ + μ1 · sin θ)
≒ (sinθ + μ1 ・ cosθ) / cosθ ……………………………… (4)
= Tan θ + μ1 ……………………………………………………………… (5)
μ2> tanθ−μ1 ……………………………………………………………… (6)

また、楔材21の頭頂角θを、楔材21の楔受け材22との静摩擦係数μ1及び柱Pとの静摩擦係数μ2に応じて選択することが望ましい。(3)式は、反対向きの力Fを小さくするために、楔受け材22の静摩擦係数μ1と共に楔材21の頭頂角θを小さくすること、すなわちμ1・sinθ≒0とすることが望ましいことを示している。μ1・sinθ≒0を仮定すると、(1)〜(3)式は(4)〜(5)式のように整理できる。(5)式は、柱Pの表面で楔材21の滑りを防ぐために、楔材21の頭頂角tanθを(柱Pの静摩擦係数μ2−楔受け材22の静摩擦係数μ1)より小さくすることが有効であることを示している。従って、楔受け材22の静摩擦係数μ1及び柱Pの静摩擦係数μ2に応じて、(5)式を満たすように楔材21の頭頂角θを選択することにより、柱Pの表面での楔材21の滑りを防止することができる。例えば、楔受け材22又は楔材21の表面に静摩擦係数μ1=0.1程度の滑り面22aを設け、楔材21の頭頂角θをtanθ=0.1程度とした場合は、楔材21と柱Pとの接触面に静摩擦係数μ1が0.2以上見込めるようなブラスト処理又は表面処理を施す。   Further, it is desirable to select the vertex angle θ of the wedge material 21 in accordance with the static friction coefficient μ1 between the wedge material 21 and the wedge receiving material 22 and the static friction coefficient μ2 between the column P and the wedge material 21. In order to reduce the force F in the opposite direction, the expression (3) should desirably reduce the crown angle θ of the wedge material 21 together with the static friction coefficient μ1 of the wedge receiving material 22, that is, μ1 · sin θ≈0. Is shown. Assuming μ1 · sin θ≈0, equations (1) to (3) can be arranged as equations (4) to (5). In order to prevent the wedge material 21 from slipping on the surface of the column P, the equation (5) is such that the vertex angle tan θ of the wedge material 21 is made smaller than (the static friction coefficient μ2 of the column P2−the static friction coefficient μ1 of the wedge receiving material 22). It shows that it is effective. Therefore, the wedge material on the surface of the column P is selected by selecting the vertex angle θ of the wedge material 21 so as to satisfy the expression (5) according to the static friction coefficient μ1 of the wedge receiving material 22 and the static friction coefficient μ2 of the column P. 21 can be prevented from slipping. For example, when the sliding surface 22a having a static friction coefficient μ1 = 0.1 is provided on the surface of the wedge receiving member 22 or the wedge member 21, and the vertex angle θ of the wedge member 21 is set to tan θ = 0.1, the wedge member 21 A blasting process or a surface process is applied to the contact surface between the cylinder P and the column P so that the static friction coefficient μ1 can be 0.2 or more.

更に、楔材21の頭頂角θ、楔材21と柱Pとの静摩擦係数μ2、及び楔材21と楔受け材22との静摩擦係数μ1を、間隙dに一旦嵌合した楔材21が地震時の水平力等によって間隙dから抜け出すことがないように選択することが望ましい。間隙dに一旦嵌合した楔材21が抜け出さないための条件は、(5)式による静摩擦係数μ1の符号を反転させることにより、(6)式で表すことができる。(6)式を満たすように、すなわち楔材21の両側の静摩擦係数の和(柱Pの静摩擦係数μ2+楔受け材22の静摩擦係数μ1)を楔材21の頭頂角tanθより大きくすることで、間隙dに嵌合した楔材21の抜け出しを防止するセルフロック機能が得られる。   Further, the wedge material 21 once fitted in the gap d with the apex angle θ of the wedge material 21, the static friction coefficient μ2 between the wedge material 21 and the column P, and the static friction coefficient μ1 between the wedge material 21 and the wedge receiving material 22 is It is desirable to select so as not to escape from the gap d due to the horizontal force at the time. The condition for preventing the wedge material 21 once fitted in the gap d from coming out can be expressed by the equation (6) by reversing the sign of the static friction coefficient μ1 by the equation (5). By satisfying the expression (6), that is, by making the sum of the static friction coefficients on both sides of the wedge material 21 (static friction coefficient μ2 of the column P + static friction coefficient μ1 of the wedge receiving material 22) larger than the vertex angle tanθ of the wedge material 21, A self-locking function that prevents the wedge material 21 fitted in the gap d from coming off is obtained.

上述した浮上り防止構造を図1の多層建築物1に適用したうえで、図9に示すジャッキダウン工法を適用すれば、建築物1をせん断力だけでなく浮上り力についても構造的に抵抗できる状態に維持しつつ、建築物1を下層階から上層階へと順次解体することができる。また、ジャッキの収縮を妨げることなく地震時・風負荷時に引抜き力が生じた時のみ多層建築物1の各浮上り柱Pを基礎部Bに結合して建築物1を安全に解体することができる。しかも、図9に示す方法では建築物1の解体に応じて荷重伝達梁8の付け替え作業が必要であるのに対し、図1(D)及び図3に示すように本発明では楔機構20を基礎部Bに支持したまま柱Pを降下(ジャッキ6を収縮)させることができるので、建築物1の解体に応じて楔機構20を付け替える作業等を省略することができ、ジャッキダウン工法の省力化、短工期化を図ることができる。なお、本発明の浮上り防止構造は、図9に示す荷重伝達構造体7及び荷重伝達梁8と組み合わせて用いることも可能であり、そのような組み合わせによってジャッキダウン工法を一層安全に施工することもできる。   9 is applied to the multi-layer building 1 shown in FIG. 1 and the jack-down method shown in FIG. 9 is applied, the building 1 is structurally resistant not only to the shearing force but also to the lifting force. The building 1 can be dismantled sequentially from the lower floor to the upper floor while maintaining the state in which it is possible. In addition, it is possible to safely dismantle the building 1 by connecting the floating pillars P of the multi-layer building 1 to the foundation B only when a pulling force is generated during an earthquake or wind load without hindering the contraction of the jack. it can. Moreover, in the method shown in FIG. 9, the load transfer beam 8 needs to be replaced in accordance with the dismantling of the building 1, whereas in the present invention, the wedge mechanism 20 is used as shown in FIGS. Since the column P can be lowered (the jack 6 is contracted) while being supported by the base B, the work of changing the wedge mechanism 20 according to the dismantling of the building 1 can be omitted, and labor saving of the jack down method is achieved. And shortening the construction period. The lifting prevention structure of the present invention can also be used in combination with the load transmission structure 7 and the load transmission beam 8 shown in FIG. 9, and the jackdown construction method can be more safely applied by such a combination. You can also.

こうして本発明の目的である「各柱を基礎部から切り離した多層建築物において柱の降下を妨げることなく柱の浮上りを防止する構造」を提供することができる。   Thus, the object of the present invention can be provided as “a structure for preventing the column from rising without interfering with the descent of the column in a multi-layered building in which each column is separated from the foundation”.

なお、本発明の浮上り防止構造では、図3(A)に示すように楔受け材22と楔材21との間にある程度の遊び(隙間)を設けることが可能であり、地震時等に多層建築物1の安全が確保できる範囲内で柱Pの浮上りを許容する構造とすることもできる。柱Pの浮き上がりを許容することで、建築物1に伝わる地震エネルギー等を低減し、建築物1の部材の破損を小さく抑えると共に、建築物1の耐震性能及び安全性を向上させることが期待できる。   In the lifting prevention structure of the present invention, it is possible to provide a certain amount of play (gap) between the wedge receiving member 22 and the wedge member 21 as shown in FIG. It can also be set as the structure which allows the float of the pillar P within the range which can ensure the safety | security of the multilayer building 1. FIG. By allowing the column P to lift, it is possible to reduce the seismic energy transmitted to the building 1, suppress damage to the members of the building 1, and improve the seismic performance and safety of the building 1. .

図5は、多層建築物1の浮上り柱Pと荷重伝達構造体10との間隙dに配置する楔機構20の他の一例を示す。本実施例では、図1の場合と同様に建築物1の外縁部に基礎部Bから架台構造体12を立ち上げると共に鉛直溝14を設け、その鉛直溝14を設けた架台構造体12のみを荷重伝達躯体10として用いている。図5(A)に示すように、浮上り柱Pには架台構造体12の鉛直溝14内へ嵌入するブラケット15を取り付け、ブラケット15と溝14の両側面との間隙dにそれぞれ楔機構20を配置する。或いは、図5(B)に示すように、ブラケット15に鉛直溝14内へ嵌入する突出部16を設け、その突出部16と溝14の両側面との対向間隙dにそれぞれ楔機構20を配置してもよい。図5(C)では、架台構造体12を建築物1の解体作業階F(v+1)の床梁又は床板3以上の高さとしているが、本実施例では架台構造物14のみで荷重伝達躯体10を構成することができるので、架台構造体12の高さにとくに制限はない。   FIG. 5 shows another example of the wedge mechanism 20 disposed in the gap d between the floating column P of the multilayer building 1 and the load transmission structure 10. In the present embodiment, similarly to the case of FIG. 1, the gantry structure 12 is raised from the base B on the outer edge of the building 1 and the vertical groove 14 is provided, and only the gantry structure 12 provided with the vertical groove 14 is provided. It is used as a load transmission housing 10. As shown in FIG. 5A, a bracket 15 that fits into the vertical groove 14 of the gantry structure 12 is attached to the floating column P, and a wedge mechanism 20 is provided in the gap d between the bracket 15 and both side surfaces of the groove 14, respectively. Place. Alternatively, as shown in FIG. 5B, a protrusion 16 that fits into the vertical groove 14 is provided in the bracket 15, and a wedge mechanism 20 is disposed in the opposing gap d between the protrusion 16 and both side surfaces of the groove 14. May be. In FIG. 5C, the gantry structure 12 has a height higher than the floor beam or floor board 3 of the demolition work floor F (v + 1) of the building 1, but in this embodiment, the load transmission housing is composed of the gantry structure 14 alone. 10, the height of the gantry structure 12 is not particularly limited.

図5(C)に示す楔機構20は、浮上り柱P(又はブラケット15)の間隙対向面に固定した両側テーパ付きの台形型楔受け材22と、基礎部B又は荷重伝達躯体10の間隙対向面(鉛直溝14の両側面)に摩擦係合しつつ対向間隙dに上方から嵌合する一対のテーパ付き楔材21とを有する。図6(A)に示すように、浮上り柱Pに引抜き力が生じていない通常時は、楔材21が楔受け材22と荷重伝達躯体10(鉛直溝14)との間隙dに嵌合して柱Pを荷重伝達躯体10により拘束する。柱Pのジャッキ6を収縮させて建築物1を降下させるときは、図6(B)に示すように、柱Pと共に楔受け材22が降下して楔材21の喰い込み方向と逆向きに移動するので、荷重伝達躯体10による拘束を解除して建築物1をスムーズに降下させ、楔受け材22の降下に応じて楔材21を自重で鉛直溝14の側面に沿って降下させることができる。図6(C)に示すように地震時・強風時等に柱Pに引抜き力が生じたときは、逆に柱Pと共に楔受け材22が持ち上がるので、楔受け材22と荷重伝達躯体10との間隙dに楔材21が喰い込んで柱Pと荷重伝達躯体10とを結合し、荷重伝達躯体10を介して引抜き力を基礎部Bへ伝達して逃がすと共に柱Pを拘束して浮上りを防止する。   The wedge mechanism 20 shown in FIG. 5 (C) includes a trapezoidal wedge receiving material 22 having tapered sides fixed to the gap facing surface of the floating column P (or the bracket 15), and the gap between the base B or the load transmission housing 10. And a pair of tapered wedge members 21 fitted into the opposing gap d from above while frictionally engaging the opposing surfaces (both side surfaces of the vertical groove 14). As shown in FIG. 6 (A), the wedge material 21 is fitted in the gap d between the wedge receiving member 22 and the load transmission housing 10 (vertical groove 14) in a normal state when no pulling force is generated in the floating column P. Then, the column P is restrained by the load transmission housing 10. When the building 6 is lowered by contracting the jack 6 of the pillar P, the wedge receiving member 22 is lowered together with the pillar P in the direction opposite to the biting direction of the wedge member 21 as shown in FIG. Since it moves, the restraint by the load transmission housing 10 is released, the building 1 is lowered smoothly, and the wedge member 21 is lowered along the side surface of the vertical groove 14 by its own weight in accordance with the lowering of the wedge receiving member 22. it can. As shown in FIG. 6C, when a pulling force is generated in the column P during an earthquake or a strong wind, the wedge receiving member 22 is lifted together with the column P. Therefore, the wedge receiving member 22 and the load transmitting housing 10 The wedge material 21 digs into the gap d to connect the column P and the load transmission housing 10, and the pulling force is transmitted to the base B through the load transmission housing 10 to escape, and the column P is restrained and lifted up. To prevent.

図5及び図6の実施例においても、楔材21と楔受け材22との静摩擦係数μ1が大きくなると、楔材21が荷重伝達躯体10の表面(鉛直溝14の表面)上で滑ることがあるため、上述した図4の場合と同様に、楔材21又は楔受け材22のテーパ面(楔材21と楔受け材22との対向面の何れか又は両方)を静摩擦係数μ1の小さな滑り面22aとして滑りを防止することができる。また、上述した(5)式を満たすように、楔材21の楔受け材22との静摩擦係数μ1及び柱Pとの静摩擦係数μ2に応じて楔材21の頭頂角θを選択することにより、荷重伝達躯体10の表面での楔材21の滑りを防止することが望ましい。更に望ましくは、楔受け材22と荷重伝達躯体10との間隙dに嵌合した楔材21が抜け出すことがないように、上述した(6)式を満たすように楔材21と荷重伝達躯体10(鉛直溝14)との静摩擦係数μ1、楔材21と楔受け材22との静摩擦係数μ2、及び楔材21の頭頂角θを選択し、楔機構20に楔材21の抜け出し防止用のセルフロック機能を与える。   5 and 6 also, when the static friction coefficient μ1 between the wedge member 21 and the wedge receiving member 22 is increased, the wedge member 21 may slide on the surface of the load transmission housing 10 (the surface of the vertical groove 14). Therefore, as in the case of FIG. 4 described above, the sliding surface of the wedge member 21 or the wedge receiving member 22 (either or both of the opposing surfaces of the wedge member 21 and the wedge receiving member 22) has a small static friction coefficient μ1. Slip can be prevented as the surface 22a. Further, by selecting the vertex angle θ of the wedge material 21 according to the static friction coefficient μ1 of the wedge material 21 with the wedge receiving material 22 and the static friction coefficient μ2 with the column P so as to satisfy the above-described formula (5), It is desirable to prevent the wedge material 21 from slipping on the surface of the load transmission housing 10. More desirably, the wedge material 21 and the load transmission housing 10 satisfy the above-described expression (6) so that the wedge material 21 fitted in the gap d between the wedge receiver 22 and the load transmission housing 10 does not come out. The static friction coefficient μ1 with the (vertical groove 14), the static friction coefficient μ2 between the wedge material 21 and the wedge receiving material 22, and the top angle θ of the wedge material 21 are selected, and the wedge mechanism 20 is made self-preventing to prevent the wedge material 21 from coming out. Give lock function.

図7及び図8は、図5の楔機構20に、更に楔材21を対向間隙dの上方に落下可能に保持する保持装置25と、建築物1の上部の揺動を検知する感震器37と、感震器37の検知信号に応じて保持装置25による楔材21の保持を解除する解除装置27とを設けた実施例を示す。本実施例の楔機構20の詳細な拡大頂面図を図8(A)に示し、その側面図及び正面図を図8(B)及び(C)に示す。図示例の楔機構20は、例えば図5(B)に示すように、浮上り柱Pのブラケット15の突出部16と荷重伝達躯体10の鉛直溝14との間隙dに配置したものである。図8(A)及び(B)に示すように、ブラケット15の突出部16に両側テーパ付きの楔受け材22を固定すると共に、その突出部16上に設けた保持装置25により一対のテーパ付き楔材21を間隙dの上方に落下可能に保持する。図示例の保持装置25は、図8(C)に示すように、突出部16から鉛直に立ち上げた鉛直部材25aと、その鉛直部材25aの頂端に鉛直溝14の側面と直角方向に配置した中空水平部材25bとを有し、水平部材25bの中空部両端のピン28に係止した一対の吊り下げ索(チェーン等)26にそれぞれ楔材21を吊り下げて突出部16の両側の間隙dの上方に保持している。   7 and 8 show the wedge mechanism 20 shown in FIG. 5, a holding device 25 that holds the wedge material 21 so as to be dropped above the opposing gap d, and a seismic detector that detects the swing of the upper portion of the building 1. 37 and a release device 27 for releasing the holding of the wedge material 21 by the holding device 25 according to the detection signal of the seismic device 37 are shown. A detailed enlarged top view of the wedge mechanism 20 of this embodiment is shown in FIG. 8 (A), and a side view and a front view thereof are shown in FIGS. 8 (B) and 8 (C). The wedge mechanism 20 in the illustrated example is disposed in a gap d between the protruding portion 16 of the bracket 15 of the floating column P and the vertical groove 14 of the load transmission housing 10 as shown in FIG. 5B, for example. As shown in FIGS. 8A and 8B, a wedge receiving material 22 having both sides tapered is fixed to the protruding portion 16 of the bracket 15, and a pair of tapered portions are provided by a holding device 25 provided on the protruding portion 16. The wedge material 21 is held so as to be dropped above the gap d. As shown in FIG. 8C, the holding device 25 in the illustrated example is arranged in a direction perpendicular to the side surface of the vertical groove 14 at the top end of the vertical member 25 a that vertically rises from the protruding portion 16 and the vertical member 25 a. The wedge member 21 is suspended from a pair of suspension ropes (chains or the like) 26 engaged with the pins 28 at both ends of the hollow portion of the horizontal member 25b. Is held above.

図7は、解除装置27による楔材21の保持解除システムの一例を示す。通常時は、同図に実線で示すように、解除装置27のピン28及び保持部材25のリンク機構29(水平部材25bの中空部内に配置されたリンク機構29)を介して吊り下げ索26を係止することにより間隙dの上方に楔材21が保持されており(図8(C)参照)、荷重伝達躯体10の鉛直溝14に沿って柱Pをスムーズに降下させることができる。感震器37が地震を検知すると、その検知信号が非常停止装置36を介して解除装置27に入力され、例えばソレノイド等が駆動されて係止ピン28が移動することにより、リンク機構29から係止ピン28が外れて吊り下げ索26が解放され、楔材21が自重で落下して楔受け材22と鉛直溝14との間隙dを閉塞し(図8(D)参照)、柱Pを荷重伝達躯体10に結合して拘束することにより柱Pの浮上りを防止する。   FIG. 7 shows an example of a holding and releasing system for the wedge material 21 by the releasing device 27. Under normal conditions, as shown by the solid line in FIG. 2, the suspension cord 26 is connected to the pin 28 of the release device 27 and the link mechanism 29 of the holding member 25 (the link mechanism 29 disposed in the hollow portion of the horizontal member 25b). By engaging, the wedge material 21 is held above the gap d (see FIG. 8C), and the column P can be smoothly lowered along the vertical groove 14 of the load transmission housing 10. When the seismic device 37 detects an earthquake, the detection signal is input to the release device 27 via the emergency stop device 36, and for example, when the solenoid or the like is driven to move the locking pin 28, the link mechanism 29 is engaged. The stop pin 28 is removed, the suspension cable 26 is released, the wedge material 21 falls due to its own weight, closes the gap d between the wedge receiver 22 and the vertical groove 14 (see FIG. 8D), and the column P is The column P is prevented from being lifted by being bound to and restrained by the load transmission housing 10.

なお、図7の非常停止装置36には感震器37と共に早期地震警報受信機38及び手動スイッチ39が接続されており、早期地震警報受信機38の受信信号(早期地震警報信号)又は手動スイッチ39の押下信号(スイッチ信号)に応じて保持装置25による楔材21の保持を解除して柱Pを荷重伝達躯体10に結合することもできる。また、楔材21の保持装置25は、図8(E)に示すように、浮上り柱Pのブラケット15に代えて荷重伝達躯体10の鉛直溝14に取り付けることも可能である。例えば荷重伝達躯体10の鉛直溝14の頂部に一対の保持装置25及び解除装置27を取り付け、そこから吊り下げ索26により一対の楔材21を支持して柱Pのブラケット15の突出部16の上方まで吊り下げ、突出部16と溝14の両側面との間隙dに臨ませる。   The emergency stop device 36 shown in FIG. 7 is connected to a seismic device 37 and an early earthquake warning receiver 38 and a manual switch 39. A signal received from the early earthquake warning receiver 38 (early earthquake warning signal) or a manual switch It is also possible to release the holding of the wedge material 21 by the holding device 25 in response to a pressing signal (switch signal) 39 and to couple the column P to the load transmission housing 10. Further, the holding device 25 for the wedge material 21 can be attached to the vertical groove 14 of the load transmission housing 10 in place of the bracket 15 of the floating column P as shown in FIG. For example, a pair of holding devices 25 and a release device 27 are attached to the top of the vertical groove 14 of the load transmission housing 10, and the pair of wedge members 21 are supported by the suspension rope 26 from there, and the projection 16 of the bracket 15 of the column P is formed. It is hung upward and is exposed to the gap d between the protrusion 16 and both side surfaces of the groove 14.

1…多層建築物 2…壁
3…床梁又は床板 5…解体装置
6…ジャッキ 7…荷重伝達構造体(コア壁)
8…荷重伝達梁 9…ジャッキ制御装置
10…荷重伝達躯体 11…連結構造体
12…架台構造体 14…鉛直溝
15…ブラケット 16…突出部
20…楔機構 21…楔材
22…楔受け材 22a…滑り面
23…保持部材 24…弾性部材
25…保持装置 25a…鉛直保持部材
25b…水平保持部材 26…吊り下げ索(チェーン)
27…解除装置 28…係止ピン
29…リンク機構 36…非常停止装置
37…感震器 38…早期地震警報受信器
39…手動スイッチ
B…基礎部 d…所定間隙
L…ジャッキの伸縮ストローク P…柱
θ…頭頂角 μ…摩擦係数
DESCRIPTION OF SYMBOLS 1 ... Multi-layered building 2 ... Wall 3 ... Floor beam or floor board 5 ... Dismantling apparatus 6 ... Jack 7 ... Load transmission structure (core wall)
DESCRIPTION OF SYMBOLS 8 ... Load transmission beam 9 ... Jack control apparatus 10 ... Load transmission housing | casing 11 ... Connection structure 12 ... Mount structure 14 ... Vertical groove 15 ... Bracket 16 ... Protrusion 20 ... Wedge mechanism 21 ... Wedge material 22 ... Wedge receiving material 22a ... Sliding surface 23 ... Holding member 24 ... Elastic member 25 ... Holding device 25a ... Vertical holding member 25b ... Horizontal holding member 26 ... Hanging rope (chain)
27 ... Release device 28 ... Locking pin 29 ... Link mechanism 36 ... Emergency stop device 37 ... Shock absorber 38 ... Early earthquake alarm receiver 39 ... Manual switch B ... Base part d ... Predetermined gap L ... Jack expansion / contraction stroke P ... Column θ ... Vertex angle μ ... Friction coefficient

Claims (9)

多層建築物の各柱の下部を基礎部から切り離し,前記建築物の地震時に浮上り力を受ける柱の側面と前記基礎部又は基礎部に連結した荷重伝達躯体とを所定間隙で対向させ,前記対向間隙に柱の浮上り時に間隙を閉塞し且つ柱の降下時に閉塞を解除する楔機構を設けてなる多層建築物の浮上り防止構造。 The lower part of each column of the multi-layer building is separated from the foundation, and the side surface of the column that receives the lifting force during the earthquake of the building is opposed to the foundation or the load transmission housing connected to the foundation with a predetermined gap, An anti-floating structure for a multi-layered building provided with a wedge mechanism that closes the gap when the column rises in the opposing gap and releases the blockage when the column descends. 請求項1の構造において,前記楔機構に,前記基礎部又は荷重伝達躯体の間隙対向面に固定したテーパ付き楔受け材と,前記柱の間隙対向面に摩擦係合しつつ対向間隙に下方から嵌合するテーパ付き楔材と,前記楔材を基礎部又は荷重伝達躯体に支持しつつ対向間隙の下方に保持する保持部材とを含めてなる多層建築物の浮上り防止構造。 2. The structure according to claim 1, wherein the wedge mechanism includes a tapered wedge receiving material fixed to the gap facing surface of the base portion or the load transmission housing, and a frictional engagement with the gap facing surface of the column from the lower side to the facing gap. A structure for preventing a multi-layered building from being lifted, comprising: a tapered wedge material to be fitted; and a holding member that supports the wedge material on a base portion or a load transmission housing and holds the wedge material below a facing gap. 請求項2の構造において,前記保持部材に,前記楔材を上方へ押圧する弾性部材を含めてなる多層建築物の浮上り防止構造。 The structure according to claim 2, wherein the holding member includes an elastic member that presses the wedge material upward. 請求項2又は3の構造において,前記楔受け材又は楔材の対向面に静摩擦係数の小さな滑り面を設けてなる多層建築物の浮上り防止構造。 The structure according to claim 2 or 3, wherein the wedge receiving member or the wedge member is provided with a sliding surface having a small coefficient of static friction on the opposing surface thereof. 多層建築物の各柱の下部を基礎部から切り離し,前記建築物の地震時に浮上り力を受ける柱と対向する前記基礎部又は基礎部に連結した荷重伝達躯体に鉛直溝を設け,前記柱にその鉛直溝内へ嵌入するブラケットを取り付け,前記鉛直溝の両側面とブラケットとの対向間隙にそれぞれ柱の浮上り時に間隙を閉塞し且つ柱の降下時に閉塞を解除する楔機構を設けてなる多層建築物の浮上り防止構造。 The lower part of each pillar of the multi-layer building is separated from the foundation, and a vertical groove is provided in the foundation or the load transmission housing connected to the foundation that faces the pillar that receives the lifting force during the earthquake of the building. A multi-layered structure in which brackets to be fitted into the vertical grooves are attached, and wedge mechanisms are provided in the gaps between the side surfaces of the vertical grooves and the brackets to close the gaps when the columns are lifted and release the blockages when the columns are lowered. Structure to prevent the building from rising. 請求項の構造において,前記楔機構に,前記柱の間隙対向面に固定したテーパ付き楔受け材と,前記基礎部又は荷重伝達躯体の間隙対向面に摩擦係合しつつ対向間隙に上方から嵌合するテーパ付き楔材とを含めてなる多層建築物の浮上り防止構造。 6. The structure according to claim 5 , wherein the wedge mechanism includes a tapered wedge receiving member fixed to the gap-facing surface of the column, and a frictional engagement with the gap-facing surface of the base portion or load transmission housing from above to the facing gap. An anti-floating structure for a multi-layer building including a tapered wedge material to be fitted. 請求項6の構造において,前記楔機構に,前記楔材を対向間隙の上方に落下可能に保持する保持装置と,前記建築物の上部の揺動又は地震警報信号を検知する感震器と,前記感震器の検知信号に応じて保持装置による楔材の保持を解除する解除装置とを含めてなる多層建築物の浮上り防止構造。 The structure according to claim 6, wherein the wedge mechanism has a holding device that holds the wedge material so that it can fall above the opposing gap, and a seismic device that detects a swing of the upper part of the building or an earthquake alarm signal. A structure for preventing a multi-layered building from being lifted, including a release device for releasing the holding of the wedge material by the holding device in response to a detection signal of the seismic device. 請求項6又は7の構造において,前記楔受け材又は楔材の対向面に静摩擦係数の小さな滑り面を設けてなる多層建築物の浮上り防止構造。 The structure according to claim 6 or 7 , wherein the wedge receiving member or the wedge member is provided with a sliding surface having a small coefficient of static friction on the opposing surface thereof. 請求項1から8の何れかの構造において,前記多層建築物の各柱の切り離した下端に上層各階の荷重を支えるジャッキを介装してなる多層建築物の浮上り防止構造。 The structure according to any one of claims 1 to 8, wherein the multi-layered building is prevented from being lifted by a jack that supports the load of each upper floor on the lower end of each pillar of the multi-layered building.
JP2010022608A 2010-02-03 2010-02-03 Anti-floating structure for multi-layer buildings Active JP5590902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022608A JP5590902B2 (en) 2010-02-03 2010-02-03 Anti-floating structure for multi-layer buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022608A JP5590902B2 (en) 2010-02-03 2010-02-03 Anti-floating structure for multi-layer buildings

Publications (2)

Publication Number Publication Date
JP2011157791A JP2011157791A (en) 2011-08-18
JP5590902B2 true JP5590902B2 (en) 2014-09-17

Family

ID=44589968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022608A Active JP5590902B2 (en) 2010-02-03 2010-02-03 Anti-floating structure for multi-layer buildings

Country Status (1)

Country Link
JP (1) JP5590902B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992218B2 (en) * 2012-06-15 2016-09-14 株式会社竹中工務店 Structure demolition method
CN110409455A (en) * 2019-08-12 2019-11-05 中交隧道工程局有限公司 A kind of underwater bottom concrete structure of shearing resistance foundation pit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035850B2 (en) * 2008-05-15 2012-09-26 鹿島建設株式会社 Horizontal support method and support structure for multi-story building

Also Published As

Publication number Publication date
JP2011157791A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
KR101755263B1 (en) Fire-fighting apparatus for high rise building
KR100820363B1 (en) Gang-form support device
CN210735903U (en) Building construction hoisting device
KR101193724B1 (en) A curtain wall system and construction method thereof
JP2013019195A (en) Brake equipment for scaffold lift
JP5590902B2 (en) Anti-floating structure for multi-layer buildings
CN210655745U (en) Safety protection device for construction elevator
KR101139352B1 (en) The footboard apparatus of a lift
CN210239086U (en) Protective device for suspended operating platform in tall space
GB2533142A (en) Hook arrangement
CN216583666U (en) Construction elevator of downward installation
KR101403660B1 (en) Building structure for improving seismic performance
KR102340628B1 (en) Safety equipments for lifter used in construction
JP5035850B2 (en) Horizontal support method and support structure for multi-story building
JP2014205525A (en) Fall prevention structure of structural member
KR102024881B1 (en) Equipment for installing top-down type segmental ladder and top-down type segmental ladder
KR200198526Y1 (en) Suspensor for dust protector wherein construction works
KR101250709B1 (en) Guide rail system for climbing gang forms
KR20200100306A (en) Safety devices for preventing fall of gang form
JP6174436B2 (en) High-rise building demolished material transfer method and transfer equipment
WO2019204834A2 (en) Hoisting system for on-site firefighting and rescue for high-rise buildings
KR102639113B1 (en) Apparatus for escaping fire and disaster in a structure
JP6418825B2 (en) Jack reaction force support member and building dismantling method using the reaction force support member
JP6438081B2 (en) High-rise building demolished material transfer method and transfer equipment
KR101306590B1 (en) Apparatus for guiding and climbing profile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5590902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250