JP5590336B2 - Air conditioning controller - Google Patents

Air conditioning controller Download PDF

Info

Publication number
JP5590336B2
JP5590336B2 JP2011063999A JP2011063999A JP5590336B2 JP 5590336 B2 JP5590336 B2 JP 5590336B2 JP 2011063999 A JP2011063999 A JP 2011063999A JP 2011063999 A JP2011063999 A JP 2011063999A JP 5590336 B2 JP5590336 B2 JP 5590336B2
Authority
JP
Japan
Prior art keywords
power
cooling
heating
usable
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011063999A
Other languages
Japanese (ja)
Other versions
JP2012197062A (en
Inventor
勇 伊東
英樹 橋ヶ谷
裕樹 蓬原
和定 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2011063999A priority Critical patent/JP5590336B2/en
Priority to US13/425,793 priority patent/US20120240608A1/en
Priority to DE102012102438.3A priority patent/DE102012102438B4/en
Priority to CN201210080400.9A priority patent/CN102692065B/en
Publication of JP2012197062A publication Critical patent/JP2012197062A/en
Application granted granted Critical
Publication of JP5590336B2 publication Critical patent/JP5590336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

この発明は、空調制御装置に係り、特に電気自動車(EV)やハイブリッド車両(HEV)等の電動車両における空調制御を行う空調制御装置に関する。   The present invention relates to an air conditioning control device, and more particularly to an air conditioning control device that performs air conditioning control in an electric vehicle such as an electric vehicle (EV) or a hybrid vehicle (HEV).

EV(電気自動車)車両、HEV(ハイブリッド)車両等の電動車両は、バッテリ残量が低下すると、車両走行を優先するため、補助ヒータ(PTC)、電動コンプレッサ等の空調機器の制限が必要とされる。この空調機器の制限が行なわれる場合、車両走行状態、発電状態(HEV車両の場合)に関わらず、暖房、冷房が共に、最低駆動状態(電動コンプレッサは最小(Min)電力値、補助ヒータは最小(Min)電力値)に制限されるため、乗員が操作するパネル状態、外気温度等で決まる冷房、暖房性能に必要とされる電力が異なる場合でも、一律して動作を制限させている。   Since electric vehicles such as EV (electric vehicle) vehicles and HEV (hybrid) vehicles prioritize vehicle travel when the remaining battery level decreases, restrictions on air conditioning equipment such as auxiliary heaters (PTC) and electric compressors are required. The When this air conditioner is restricted, heating and cooling are both in the lowest drive state (minimum (Min) power value for the electric compressor) and auxiliary heater is the minimum regardless of the vehicle running state and the power generation state (in the case of HEV vehicles). Therefore, even if the power required for the cooling and heating performance determined by the panel state operated by the occupant, the outside air temperature, etc. is different, the operation is uniformly restricted.

即ち、電力の制限実行の肯定/否定だけの粗い判断に基づく結果としての空調制御は、空調制御の駆動制御量の通常値を単純制限した値を制限時の駆動制御量とし、条件が異なるあらゆる状態でも一律に行われている。
ところで、空調装置における噴出口を選択するモードが、防曇性(曇り止め性能)を高めるデフロスタモードや、デフロスタ&フットモード(D/Fモード)の場合、空気に含まれる湿気(水蒸気)を凝縮させるために、空調装置の冷房サイクルシステム部を構成する冷房機器を駆動するとともに、この冷房サイクルシステム部によって冷却された空気の温度を目的の噴出温度に上昇させるために、空調装置の暖房機器を駆動するように制御している。
In other words, the air conditioning control as a result based on a rough judgment based only on affirmative / negative execution of power restriction is a simple restriction of the normal value of the drive control amount of the air conditioning control as the drive control amount at the time of restriction. Even in the state is done uniformly.
By the way, when the mode for selecting the jet outlet in the air conditioner is the defroster mode or the defroster & foot mode (D / F mode) that enhances the antifogging property (antifogging performance), moisture (water vapor) contained in the air is condensed. In order to increase the temperature of the air cooled by the cooling cycle system unit to the target ejection temperature, the heating device of the air conditioning unit is It is controlled to drive.

特開1997−76740号公報JP 1997-76740 A 特許第3791234号公報Japanese Patent No. 3791234

特許文献1に係るハイブリッド車両は、駆動用の電気モータに電力を供給するバッテリから冷房ユニットに電力を送って冷房を行うものである。
特許文献2に係るハイブリッド車用空調装置は、室内を設定温度に調整するためにエアコンユニットが必要とする空調必要電力を演算し、車両走行中に、空調必要電力の増加に伴ってバッテリ残量の目標値を高く設定するものである。
The hybrid vehicle according to Patent Document 1 performs cooling by sending electric power from a battery that supplies electric power to a driving electric motor to a cooling unit.
The air conditioner for a hybrid vehicle according to Patent Document 2 calculates the required air conditioning power required by the air conditioner unit to adjust the room to a set temperature, and the remaining battery capacity as the required air conditioning power increases during vehicle travel. Is set to a high target value.

ところが、従来、夏場に、暖房機器である補助ヒータを使用せず、冷房機器である電動コンプレッサのみ必要とする場合でも、最小(Min)電力値でしか駆動させることができず、本来、補助ヒータの駆動電力分を電動コンプレッサ側に加算させることができるにも関わらず、電動コンプレッサは最小(Min)電力値に制限されてしまう。また、バッテリ残量がまだある場合、又は、ハイブリッド(HEV)車両のように発電が可能な場合にも、空調機器の動作を全て停止させる等の制限を行ってしまう不具合があった。
また、デフロスタモードやデフロスタ&フットモード(D/Fモード)の場合、冷房機器の駆動と暖房機器の駆動を同時に行う必要があり、冷房と暖房の両方のシステムに電力を必要とするため、極めて消費電力が多くなる。そして、瞬間的には車両の駆動力に費やす電力に影響を与える可能性があり、長時間にわたれば航続距離を大きく減らすことに繋がるので、車両走行に影響を与える可能性が他のモードに比べ高いといえる。そのため、電力制限によって実質的な機能を損ない易い反面、電力制限によって実質的に機能しなくなると防暑性が下がることになる。走行時の視界確保の観点から、特定の条件下で防暑性が下がることを避け、空調性能を確保したい都合がある。
更に、制限実行の肯定/否定だけの粗い判断に基づく結果としての空調制御では、空調装置の運転条件等の詳細な判断を行っておらず、詳細な判断に基づいて電力配分を変更する空調制御を行っていない。
空調が消費する電力を抑制した分に応じて、航続距離を延ばすことはできるが、航続距離に必要な電力が確保されていても、快適性を著しく損ねてしまう空調制御となってしまうことがあった。
However, conventionally, in the summer, when an auxiliary heater that is a heating device is not used and only an electric compressor that is a cooling device is required, it can be driven only with a minimum (Min) power value. However, the electric compressor is limited to the minimum (Min) electric power value even though the drive electric power can be added to the electric compressor side. In addition, there is a problem in that, for example, the operation of the air-conditioning apparatus is completely stopped even when the remaining amount of the battery is still present or when power generation is possible as in a hybrid (HEV) vehicle.
In the case of the defroster mode and the defroster & foot mode (D / F mode), it is necessary to drive the cooling device and the heating device at the same time, and both the cooling and heating systems require electric power. Power consumption increases. In addition, there is a possibility that the power consumed for the driving force of the vehicle may be instantaneously affected, and the cruising distance will be greatly reduced over a long period of time. Compared to high. Therefore, although it is easy to impair the substantial function due to the power limitation, the heat resistance is lowered when the function is not substantially limited due to the power limitation. From the viewpoint of ensuring visibility during traveling, there is an advantage in that it is desired to ensure that air conditioning performance is avoided while avoiding a decrease in heat resistance under specific conditions.
Further, in the air conditioning control as a result based on a rough judgment of only affirmation / denial of restriction execution, an air conditioning control that does not make a detailed judgment on the operating condition of the air conditioner and changes the power distribution based on the detailed judgment. Not done.
The cruising distance can be extended according to the amount of power consumed by the air conditioning, but even if the necessary power for the cruising distance is secured, the air conditioning control may significantly impair comfort. there were.

そこで、この発明の目的は、空調制限下において乗員の快適性をより向上させるように、空調装置の運転条件等の詳細な判断を行うこと、詳細な判断に基づいて電力配分を変更する等で効率的な空調制御を行うこと、それらによって航続距離の確保と乗員の快適性確保とを両立する空調制御装置を提供することにある。   Accordingly, an object of the present invention is to make a detailed determination of the operating conditions of the air conditioner, change the power distribution based on the detailed determination, etc., so as to further improve passenger comfort under air conditioning restrictions. An object of the present invention is to provide an air-conditioning control device that performs efficient air-conditioning control and thereby ensures both a cruising distance and passenger comfort.

この発明は、車両に搭載されるバッテリと、このバッテリに供給可能な電力あるいはこのバッテリから供給される電力を用いて駆動する空調装置とを備えた車両の空調制御装置であって、前記空調装置の冷房システムを使用する際に電力によって駆動する冷房機器と、前記空調装置の暖房システムを使用する際に電力によって駆動する暖房機器とを備え、少なくとも前記バッテリの充電状態が低い場合に前記空調装置に供給する電力を制限する空調制御装置において、空調使用可能電力量を算出し、前記冷房機器の使用割合を算出するとともに、前記空調使用可能電力量と前記冷房機器の使用割合から前記冷房機器の使用可能電力量を算出する一方、前記暖房機器の使用割合を算出するとともに、前記空調使用可能電力量と前記暖房機器の使用割合から前記暖房機器の使用可能電力量を算出し、目標冷房電力を算出し、この目標冷房電力が前記冷房機器の使用可能電力量以下の場合、前記冷房機器の使用可能電力量と前記目標冷房電力の差分を冷房機器電力差として設定するとともに、前記目標 冷房電力を冷房駆動制限値として駆動し、前記目標冷房電力が前記冷房機器の使用可能電力量を超える場合、前記冷房機器電力差を零とするとともに、前記冷房機器の使用可能電力量と前記暖房機器電力差を冷房駆動制限値として駆動し、目標暖房電力を算出し、この目標暖房電力が前記暖房機器の使用可能電力量以下の場合、前記暖房機器の使用可能電力量と前記目標暖房電力の差分を前記暖房機器電力差として設定するとともに、前記目標暖房電力を暖房駆動制限値として駆動し、前記目標暖房電力が前記暖房機器の使用可能電力量を超える場合、前記暖房機器電力差を零とするとともに、前記暖房機器の使用可能電力量と前記冷房機器電力差を暖房駆動制限値として駆動することを特徴とする。   The present invention is an air conditioning control device for a vehicle comprising a battery mounted on the vehicle, and an air conditioner that is driven using electric power that can be supplied to the battery or electric power that is supplied from the battery. A cooling device that is driven by electric power when using the cooling system and a heating device that is driven by electric power when using the heating system of the air conditioner, and at least when the state of charge of the battery is low In the air conditioning control device that restricts the power supplied to the air conditioner, the air conditioning usable power amount is calculated, the usage rate of the cooling device is calculated, and the air conditioning usable power amount and the usage rate of the cooling device are While calculating the usable electric energy, the usage ratio of the heating equipment is calculated, and the air conditioning usable electric energy and the heating equipment usage are calculated. The amount of usable power of the heating device is calculated from the ratio, the target cooling power is calculated, and when the target cooling power is equal to or less than the amount of usable power of the cooling device, the amount of usable power of the cooling device and the target cooling The difference in power is set as a cooling device power difference, and the target cooling power is driven as a cooling drive limit value.When the target cooling power exceeds the usable power amount of the cooling device, the cooling device power difference is set to zero. When the cooling device is driven by using the cooling device drive power difference as the cooling device drive power difference between the cooling device usable electric energy and the heating appliance power, and the target heating power is equal to or less than the heating appliance usable power amount A difference between the usable electric energy of the heating appliance and the target heating power is set as the heating appliance power difference, and the target heating power is driven as a heating drive limit value. When the target heating power exceeds the usable electric energy of the heating appliance, the heating appliance power difference is set to zero, and the usable electric energy of the heating appliance and the cooling appliance power difference are driven as a heating drive limit value. It is characterized by that.

この発明の空調制御装置は、空調制限下において乗員の快適性をより向上させるように、空調装置の運転条件等の詳細な判断を行い、詳細な判断に基づいて電力配分を変更する等で効率的な空調制御を行い、それらによって航続距離の確保と乗員の快適性確保とを両立できる。   The air conditioning control device according to the present invention makes efficient decisions such as making detailed judgments such as operating conditions of the air conditioning equipment and changing the power distribution based on the detailed judgment so as to further improve passenger comfort under air conditioning restrictions. Air conditioning control can be used to ensure both cruising distance and passenger comfort.

図1は空調制御装置の制御ブロック図である。(実施例)FIG. 1 is a control block diagram of the air conditioning control device. (Example) 図2は車両に搭載される空調装置及び空調制御装置のシステム構成図である。(実施例)FIG. 2 is a system configuration diagram of an air conditioning device and an air conditioning control device mounted on a vehicle. (Example) 図3は自動空調システムの場合の冷房機器の使用割合を示す図である。(実施例)FIG. 3 is a diagram showing the usage ratio of the cooling device in the case of the automatic air conditioning system. (Example) 図4は手動空調システムの場合の冷房機器の使用割合を示す図である。(実施例)FIG. 4 is a diagram showing the usage ratio of the cooling device in the case of a manual air conditioning system. (Example) 図5は冷房機器の使用可能電力量、暖房機器の使用可能電力量を算出するフローチャートである。(実施例)FIG. 5 is a flowchart for calculating the usable electric energy of the cooling device and the usable electric energy of the heating device. (Example) 図6は冷房駆動制限値を算出するフローチャートである。(実施例)FIG. 6 is a flowchart for calculating the cooling drive limit value. (Example) 図7は暖房駆動制限値を算出するフローチャートである。(実施例)FIG. 7 is a flowchart for calculating the heating drive limit value. (Example)

この発明は、空調制限下において乗員の快適性をより向上させるように、空調装置の運転条件等の詳細な判断を行うこと、詳細な判断に基づいて電力配分を変更する等で効率的な空調制御を行うこと、それらによって航続距離の確保と乗員の快適性確保とを両立する目的を、冷房機器及び暖房機器の使用可能割合等を算出して実現するものである。   The present invention provides efficient air conditioning by making detailed judgments such as operating conditions of the air conditioner and changing the power distribution based on the detailed judgments so as to further improve passenger comfort under air conditioning restrictions. The purpose of performing control and thereby ensuring both the cruising distance and the passenger comfort is calculated by calculating the usable ratio of the cooling equipment and the heating equipment.

図1〜図7は、この発明の実施例を示すものである。
図1、図2において、1は電気車両やハイブリッド車両等からなる電動車両(以下「車両」という)、2は車両1のフロントガラス、3は車室である。
車両1には、推進用の駆動モータと変速機とからなるパワートレイン4と、車室3内を空調する空調装置(エアコン)5と、バッテリ6とが搭載される。
空調装置5は、図1に示すように、車室3内の空気温度と相対湿度とに基づいて除湿・冷房・暖房を行って車室3を空調するものであって、空気流通通路7を形成する通路形成体8を備えている。
この通路形成体8には、上流側となる一端で外気導入ダクト9が接続する外気導入口10と内気導入ダクト11が接続する内気導入口12とを切り替えるように内部側に揺動する内外気切替ダンパ13と、この内外気切替ダンパ13を作動する吸込口アクチュエータ14と、下流側となる他端でデフロスタダクト15に接続するデフロスタ吹出口16とベントダクト17に接続するベント吹出口18とを切り替えるように内部側に揺動する第1吹出口切替ダンパ19と、この第1吹出口切替ダンパ19を作動する第1モードアクチュエータ20と、また、下流側となる他端でフットダクト21に接続するフット吹出口22を開閉するように内部側に揺動する第2吹出口切替ダンパ23と、この第2吹出口切替ダンパ23を作動する第2モードアクチュエータ24とが設けられている。なお、第1モードアクチュエータ20と第2モードアクチュエータ24を、一つのアクチュエータとしてリンク機構で繋ぐことによって、同様に構成できる。
1 to 7 show an embodiment of the present invention.
1 and 2, reference numeral 1 denotes an electric vehicle (hereinafter referred to as “vehicle”) such as an electric vehicle or a hybrid vehicle, 2 denotes a windshield of the vehicle 1, and 3 denotes a passenger compartment.
The vehicle 1 is equipped with a power train 4 including a propulsion drive motor and a transmission, an air conditioner (air conditioner) 5 that air-conditions the passenger compartment 3, and a battery 6.
As shown in FIG. 1, the air conditioner 5 air-conditions the passenger compartment 3 by performing dehumidification, cooling and heating based on the air temperature and relative humidity in the passenger compartment 3. A passage forming body 8 to be formed is provided.
The passage forming body 8 includes an inside and outside air that swings inward so as to switch between an outside air introduction port 10 to which the outside air introduction duct 9 is connected and an inside air introduction port 12 to which the inside air introduction duct 11 is connected at one end on the upstream side. A switching damper 13, a suction port actuator 14 for operating the inside / outside air switching damper 13, a defroster outlet 16 connected to the defroster duct 15 at the other end on the downstream side, and a vent outlet 18 connected to the vent duct 17. Connected to the foot duct 21 at the other end on the downstream side, the first air outlet switching damper 19 that swings inwardly to switch, the first mode actuator 20 that operates the first air outlet switching damper 19 A second air outlet switching damper 23 that swings inward so as to open and close the foot air outlet 22 to be opened, and a second mode in which the second air outlet switching damper 23 is operated. And the actuator 24 is provided. In addition, it can comprise similarly by connecting the 1st mode actuator 20 and the 2nd mode actuator 24 by a link mechanism as one actuator.

また、通路形成体8内には、内外気切替ダンパ13の直下流側で送風ファン25と、この送風ファン25よりも下流側でエバポレータ26と、このエバポレータ26よりも下流側でヒータコア27と、このヒータコア27への空気流量を調整するように空気流通通路7内で揺動するエアミックスダンパ28と、このエアミックスダンパ28を作動するAM(自動・手動)アクチュエータ29とが備えられている。
送風ファン25は、この送風ファン25を駆動するファンモータ30を備えて、冷却された空気を車室3内に送給するものである。ヒータコア27は、車室3内を暖房するために駆動されるものである。このヒータコア27の下流近傍には、暖房機器33を構成する補助(PTC)ヒータ34が配置されている。
更に、通路形成体8外には、電気により駆動して車室3内の冷房に用いられる冷房機器31を構成する電動コンプレッサ32が配置されている。
冷房機器31は、空調装置5の冷房システムを使用する際に電力によって駆動する。暖房機器33は、空調装置5の暖房システムを使用する際に電力によって駆動する。
Further, in the passage forming body 8, a blower fan 25 immediately downstream of the inside / outside air switching damper 13, an evaporator 26 downstream of the blower fan 25, and a heater core 27 downstream of the evaporator 26, An air mix damper 28 that swings in the air flow passage 7 so as to adjust the air flow rate to the heater core 27 and an AM (automatic / manual) actuator 29 that operates the air mix damper 28 are provided.
The blower fan 25 includes a fan motor 30 that drives the blower fan 25, and supplies cooled air into the passenger compartment 3. The heater core 27 is driven to heat the interior of the passenger compartment 3. An auxiliary (PTC) heater 34 that constitutes the heating device 33 is disposed in the vicinity of the downstream side of the heater core 27.
Furthermore, an electric compressor 32 that constitutes a cooling device 31 that is driven by electricity and used for cooling the interior of the vehicle compartment 3 is disposed outside the passage forming body 8.
The cooling device 31 is driven by electric power when the cooling system of the air conditioner 5 is used. The heating device 33 is driven by electric power when the heating system of the air conditioner 5 is used.

また、車両1には、図1、図2に示すように、空調装置5を駆動制御する空調制御装置35が搭載される。
空調制御装置35は、バッテリ6に連絡するとともにパワートレイン4を駆動制御するパワートレイン用制御手段36と、自動又は手動で空調装置5を駆動制御する空調用制御手段37と、これらパワートレイン用制御手段36及び空調用制御手段37に連絡した電動車両用空調制御手段(EVコントローラ又はHEVコントローラとなる手段)38とを備えている。
この空調制御装置35は、バッテリ6に供給可能な電力あるいはこのバッテリ6から供給される電力を用いて空調装置5を駆動し、また、少なくともバッテリ6の充電状態が低い場合に空調装置5に供給する電力を制限する。
パワートレイン用制御手段36は、空調使用可能電力量算出部36Aと、空調装置5に供給する電力への制限の有無を判定する制限判定部36Bとを備え、発電制御、電力供給、車両駆動制御、電力消費、バッテリ残量、電力供給等から、空調(冷房、暖房)用システムに割り当てることができる空調使用可能電力量を算出する。
空調用制御手段37は、空調装置5が自動空調システムとして用いられる場合に用いられる自動空調制御手段39、又は、空調装置5が手動空調システムとして用いられる場合に用いられる手動空調制御手段40とからなる。
自動空調制御手段39は、乗員によって操作されるパネル操作部39Aと、外気温度検出センサ41に連絡して目標吹出し温度・吹出し口温度算出部39Bとを備え、(操作パネルは別でも可)にて、乗員が行うパネル操作、外気温度検出センサ41等(他の自動エアコンシステムとして必要とされる一般的なセンサ項目)にて目標吹出し温度、吹出し口(MODE状態)を算出する。
手動空調制御手段40は、乗員によって操作される操作パネル40Aを備え、乗員が行うパネル操作のMODE位置、温度調節位置により、乗員のパネル操作状態を算出する。
Further, as shown in FIGS. 1 and 2, an air conditioning control device 35 that drives and controls the air conditioning device 5 is mounted on the vehicle 1.
The air-conditioning control device 35 communicates with the battery 6 and controls the power train 4 to drive and control the power train 4, the air-conditioning control means 37 to automatically or manually drive and control the air-conditioning device 5, and these power train controls. An electric vehicle air conditioning control means (means serving as an EV controller or HEV controller) 38 communicated with the means 36 and the air conditioning control means 37.
The air-conditioning control device 35 drives the air-conditioning device 5 using electric power that can be supplied to the battery 6 or electric power supplied from the battery 6, and supplies the air-conditioning device 5 at least when the state of charge of the battery 6 is low. Limit the power to be used.
The powertrain control means 36 includes an air conditioning usable power amount calculation unit 36A and a limit determination unit 36B that determines whether there is a limit to the power supplied to the air conditioner 5, and includes power generation control, power supply, and vehicle drive control. From the power consumption, the remaining battery power, the power supply, etc., the air conditioning usable electric energy that can be allocated to the air conditioning (cooling, heating) system is calculated.
The air-conditioning control means 37 includes automatic air-conditioning control means 39 used when the air-conditioning apparatus 5 is used as an automatic air-conditioning system, or manual air-conditioning control means 40 used when the air-conditioning apparatus 5 is used as a manual air-conditioning system. Become.
The automatic air-conditioning control means 39 includes a panel operation unit 39A operated by an occupant and a target outlet temperature / outlet temperature calculator 39B in contact with the outside air temperature detection sensor 41 (the operation panel may be separate). Then, the target air temperature and air outlet (MODE state) are calculated by panel operation performed by the occupant, the outside air temperature detection sensor 41 and the like (general sensor items required for other automatic air conditioner systems).
The manual air-conditioning control means 40 includes an operation panel 40A operated by the occupant, and calculates the occupant's panel operation state based on the MODE position and temperature adjustment position of the panel operation performed by the occupant.

電動車両用空調制御手段38は、図1に示すように、目標冷房電力量及び目標暖房電力量を算出する電力量算出部38Aと、温度調節状態吹出し口(MODE)状態を判定する状態判定部38Bと、冷房機器31の使用割合及び暖房機器33の使用割合を算出する使用割合算出部38Cと、冷房機器31の使用可能電力量及び暖房機器33の使用可能電力量を算出する使用可能電力量算出部38Dとを備える。
そして、電動車両用空調制御手段38は、冷却機器31としての電動コンプレッサ32と、暖房機器33としての補助ヒータ34とに連絡し、エバポレータサーミスタ温度、水温等から算出し、快適となるために必要とされる目標冷房電力量(電動コンプレッサ32の電力量)、目標暖房電力量(補助ヒータ(PTC等)34の電力量)を算出する。
また、この電動車両用空調制御手段38においては、自動空調システムの場合に、自動エアコン制御手段38が算出した目標吹出し温度とMODE(吹出し口)状態から、図3に示す冷房機器の使用割合Xを算出する(Xは、0〜100%間で設定を行う)。ここで、MODEは、デフロスタ(DFR)、D(デフロスタ)/F(フット)時は曇り止めを優先するため、冷房機器31の使用割合を大きめに設定する。一方、手動空調システムの場合は、MODE位置、温度調節位置から、図4に示す冷房機器31の使用割合を算出する(Xは、0〜100%間で設定を行う)。
As shown in FIG. 1, the electric vehicle air conditioning control means 38 includes a power amount calculation unit 38 </ b> A that calculates a target cooling power amount and a target heating power amount, and a state determination unit that determines a temperature adjustment state outlet (MODE) state. 38B, a usage rate calculation unit 38C that calculates the usage rate of the cooling device 31 and the usage rate of the heating device 33, and the available power amount that calculates the available power amount of the cooling device 31 and the available power amount of the heating device 33. And a calculation unit 38D.
The air conditioning control means 38 for the electric vehicle communicates with the electric compressor 32 as the cooling device 31 and the auxiliary heater 34 as the heating device 33, and is calculated from the evaporator thermistor temperature, the water temperature, etc., and is necessary for comfort. The target cooling power amount (the power amount of the electric compressor 32) and the target heating power amount (the power amount of the auxiliary heater (PTC etc.) 34) are calculated.
Further, in the electric vehicle air conditioning control means 38, in the case of an automatic air conditioning system, the usage rate X of the cooling device shown in FIG. 3 is calculated from the target blowout temperature and MODE (blowout port) state calculated by the automatic air conditioning control means 38. (X is set between 0 and 100%). Here, in MODE, since the defroster (DFR) and D (defroster) / F (foot) give priority to anti-fogging, the use ratio of the cooling device 31 is set to be large. On the other hand, in the case of a manual air conditioning system, the usage ratio of the cooling device 31 shown in FIG. 4 is calculated from the MODE position and the temperature adjustment position (X is set between 0 and 100%).

前記暖房機器33の使用割合は、100%から前記算出された冷房機器31の使用割合X%を引いた値で算出する(暖房機器使用割合=100%−X%)。
また、前記算出された空調使用可能電力量は、変動が大きい入力のため、平均処理を設けて、値の変動を抑制する。制限無しの場合には、空調機器の制限が無いため、以下の処理は、制限有りの場合のみ実施する。
この平均処理にて算出された平均空調使用可能電力量から冷房機器31の使用割合、暖房機器33の使用割合を用いて、冷房機器使用可能電力量、暖房機器使用可能電力量を算出する(図5参照)。
そして、前記算出された冷房機器使用可能電力量と前記算出された目標冷房電力量とを比較し、目標冷房電力量>冷房機器使用可能電力量となる場合には、暖房機器33へ提供できる冷房機器電力差を零(0)とし、冷房駆動制限値を、冷房機器使用可能電力量+暖房機器電力差とする(図6参照)。
さらに、この冷房駆動制限値にて、冷房機器31の駆動を行う。目標冷房電力量よりも冷房機器使用電力量が低い場合には、冷房機器使用可能電力の差分を暖房機器33側に提供し、冷房駆動制限値を、制限無しと同様に、目標冷房電力量にて冷房機器31の駆動を行う。この暖房に関しても、冷房機器31と同様に、暖房駆動制限値を確定させる(図7参照)。
The usage rate of the heating device 33 is calculated by subtracting the calculated usage rate X% of the cooling device 31 from 100% (heating device usage rate = 100% −X%).
Moreover, since the calculated air-conditioning usable electric energy has a large fluctuation, an average process is provided to suppress fluctuations in the value. When there is no restriction, there is no restriction on the air conditioning equipment, so the following processing is performed only when there is a restriction.
From the average air conditioning usable electric energy calculated in this averaging process, the cooling device usable electric energy and the heating device usable electric energy are calculated using the usage ratio of the cooling device 31 and the usage ratio of the heating device 33 (FIG. 5).
Then, the calculated cooling device usable power amount is compared with the calculated target cooling power amount, and when the target cooling power amount> the cooling device usable power amount, the cooling that can be provided to the heating device 33. The equipment power difference is set to zero (0), and the cooling drive limit value is set to the cooling equipment usable power amount + the heating equipment power difference (see FIG. 6).
Further, the cooling device 31 is driven with the cooling drive limit value. When the power consumption of the cooling device is lower than the target cooling power amount, the difference between the cooling device usable power is provided to the heating device 33 side, and the cooling drive limit value is set to the target cooling power amount in the same manner as when there is no limit. Then, the cooling device 31 is driven. With respect to this heating as well, the heating drive limit value is determined similarly to the cooling device 31 (see FIG. 7).

この実施例に係る空調制御装置35は、図1に示すように、電動車両用空調制御手段38と乗員が操作を行う操作パネル(手動エアコン制御の車両の場合は操作パネルのみ接続)、冷房、暖房を行う空調機器としての電動コンプレッサ32、補助ヒータ(PTC等)34、バッテリ状態の管理、車両の駆動制御、電動コンプレッサ32、補助ヒータ34の制御を行うものであって、バッテリ6、車両駆動状態により算出される空調システムに割り当てることができる電力量を、乗員が要求する状態に応じて冷房(電動コンプレッサ32の駆動電力)と暖房(補助ヒータ34の駆動電力)とに分割し、電力制限中も必要とされる暖房、冷房を最大限使用するものである。
具体的に説明すると、空調使用可能電力量を算出するとともに冷房機器31の使用割合を算出した場合に、この空調使用可能電力量と冷房機器31の使用割合とから冷房機器31の使用可能電力量を算出する。また、暖房機器33の使用割合を算出し、空調使用可能電力量と暖房機器33の使用割合とから暖房機器33の使用可能電力量を算出する。
また、冷房機器31の使用割合を、目標噴出温度又はそれに相当する物理量と噴出口選択モードとに基づいて設定する。この場合、暖房機器33の使用割合を、全体1、すなわち100%から冷房機器31の使用割合を差し引いた差分とする。
更に、デフロスタを含む噴出口選択モード、すなわち、デフロスタモードやデフロスタ&フットモード(D/Fモード)では、冷房機器31の使用割合を他の噴出口選択モードより大きく設定する。
更にまた、目標冷房電力を算出し、この目標冷房電力が冷房機器31の使用可能電力量以下の場合、冷房機器31の使用可能電力量と目標冷房電力との差分を冷房機器電力差として設定するとともに、目標冷房電力を冷房駆動制限値として駆動する。一方、目標冷房電力が冷房機器31の使用可能電力量を超える場合には、冷房機器電力差を零(0)とするとともに、冷房機器31の使用可能電力量と暖房機器電力差を冷房駆動制限値として駆動する。暖房機器電力差があれば、それを冷房機器の使用可能電力量に上乗せして冷房駆動制限値として駆動する。
また、目標暖房電力を算出し、この目標暖房電力が暖房機器33の使用可能電力量以下の場合には、暖房機器33の使用可能電力量と目標暖房電力の差分を暖房機器電力差として設定するとともに、目標暖房電力を暖房駆動制限値として駆動する。一方、目標暖房電力が暖房機器33の使用可能電力量を超える場合には、暖房機器電力差を零(0)とするとともに、暖房機器33の使用可能電力量と冷房機器電力差を暖房駆動制限値として駆動する。冷房機器電力差があれば、それを暖房機器33の使用可能電力量に上乗せして暖房駆動制限値として駆動する。
As shown in FIG. 1, the air-conditioning control device 35 according to this embodiment includes an electric vehicle air-conditioning control means 38 and an operation panel operated by an occupant (in the case of a vehicle with manual air-conditioning control, only the operation panel is connected), cooling, Electric compressor 32, auxiliary heater (PTC, etc.) 34 as air conditioning equipment for heating, battery state management, vehicle drive control, electric compressor 32, control of auxiliary heater 34, battery 6, vehicle drive The amount of power that can be allocated to the air conditioning system calculated according to the state is divided into cooling (driving power of the electric compressor 32) and heating (driving power of the auxiliary heater 34) according to the state requested by the occupant, and power limitation It uses the maximum amount of heating and cooling required.
More specifically, when the air conditioning usable power amount is calculated and the usage rate of the cooling device 31 is calculated, the usable energy amount of the cooling device 31 is calculated from the air conditioning usable power amount and the usage rate of the cooling device 31. Is calculated. In addition, the usage rate of the heating device 33 is calculated, and the available power amount of the heating device 33 is calculated from the air conditioning usable power amount and the usage rate of the heating device 33.
Moreover, the usage rate of the cooling device 31 is set based on the target ejection temperature or a physical quantity corresponding to the target ejection temperature and the ejection port selection mode. In this case, the usage rate of the heating device 33 is the difference obtained by subtracting the usage rate of the cooling device 31 from the total 1, that is, 100%.
Furthermore, in the outlet selection mode including the defroster, that is, in the defroster mode and the defroster & foot mode (D / F mode), the use ratio of the cooling device 31 is set larger than that in the other outlet selection modes.
Furthermore, the target cooling power is calculated, and when the target cooling power is equal to or less than the usable power amount of the cooling device 31, the difference between the usable power amount of the cooling device 31 and the target cooling power is set as the cooling device power difference. At the same time, the target cooling power is driven as the cooling drive limit value. On the other hand, when the target cooling power exceeds the usable power amount of the cooling device 31, the cooling device power difference is set to zero (0), and the usable power amount of the cooling device 31 and the heating device power difference are limited to the cooling drive. Drive as value. If there is a heating device power difference, it is added to the usable power amount of the cooling device and driven as a cooling drive limit value.
Moreover, the target heating power is calculated, and when the target heating power is equal to or less than the usable power amount of the heating device 33, the difference between the usable power amount of the heating device 33 and the target heating power is set as the heating device power difference. At the same time, the target heating power is driven as the heating drive limit value. On the other hand, when the target heating power exceeds the usable power amount of the heating device 33, the heating device power difference is set to zero (0), and the usable power amount of the heating device 33 and the cooling device power difference are limited to the heating drive. Drive as value. If there is a cooling device power difference, it is added to the usable power amount of the heating device 33 and driven as a heating drive limit value.

次いで、冷房機器31の使用可能電力量及び暖房機器33の使用可能電力量の算出について、図5にフローチャートに基づいて説明する。
図5に示すように、プログラムがスタートすると(ステップA01)、先ず、空調装置5に供給する電力に制限が有るかどうかを判断し(ステップA02)、このステップA02がNOの場合には、この判断を継続する。
このステップA02がYESの場合には、空調使用可能電力量を算出し(ステップA03)、フィルタ処理によるなまし平均空調使用可能電力量を算出し(ステップA04)、冷房機器31の使用割合X%を算出し(ステップA05)、暖房機器33の使用割合を、100%−X%で算出する(ステップA06)。
その後、冷房機器31の使用可能電力量を、平均空調使用可能電力量×冷房機器31の使用割合X%で算出し(ステップA07)、そして、暖房機器33の使用可能電力量を、平均空調使用可能電力量×暖房機器33の使用割合(100%−X%)で算出し(ステップA08)、プログラムをリターンする(ステップA09)。
Next, calculation of the usable electric energy of the cooling device 31 and the usable electric energy of the heating device 33 will be described based on a flowchart in FIG.
As shown in FIG. 5, when the program is started (step A01), first, it is determined whether or not there is a limit to the power supplied to the air conditioner 5 (step A02). Continue judgment.
When this step A02 is YES, the air conditioning usable electric energy is calculated (step A03), the averaged air conditioning usable electric energy by filtering is calculated (step A04), and the usage ratio X% of the cooling device 31 is calculated. Is calculated (step A05), and the usage rate of the heating device 33 is calculated as 100% -X% (step A06).
Thereafter, the usable electric energy of the cooling equipment 31 is calculated by the average air conditioning usable electric energy × usage ratio X% of the cooling equipment 31 (step A07), and the usable electric energy of the heating equipment 33 is calculated using the average air conditioning usage. It is calculated by the amount of available power x the usage rate of heating equipment 33 (100% -X%) (step A08), and the program is returned (step A09).

次に、冷房駆動制限値の算出について、図6にフローチャートに基づいて説明する。
図6に示すように、プログラムがスタートすると(ステップB01)、先ず、空調装置5に供給する電力に制限が有るかどうかを判断する(ステップB02)。
このステップB02がYESの場合には、目標冷房電力量を算出し(ステップB03)、目標冷房電力量が冷房機器31の使用可能電力量を超えているかどうかを判断する(ステップB04)。
このステップB04がYESの場合には、冷房機器電力差を零(0)とし(ステップB05)、冷房機器31の使用可能電力量+暖房機器電力差を、冷房駆動制限値とし(ステップB06)、制限有りとする(ステップB07)。
一方、前記ステップB04がNOの場合には、冷房機器電力差を、冷房機器31の使用可能電力量−目標冷房電力量で算出する(ステップB08)。
このステップB08の処理後、又は、前記ステップB02がNOの場合には、冷房駆動制限値を算出し(ステップB09)、制限無しとする(ステップB10)。
前記ステップB07の処理後、又は、前記ステップB10の処理後は、プログラムをリターンする(ステップB11)。
Next, the calculation of the cooling drive limit value will be described based on the flowchart in FIG.
As shown in FIG. 6, when the program starts (step B01), it is first determined whether or not there is a limit to the power supplied to the air conditioner 5 (step B02).
If this step B02 is YES, the target cooling electric energy is calculated (step B03), and it is determined whether the target cooling electric energy exceeds the usable electric energy of the cooling device 31 (step B04).
If this step B04 is YES, the cooling device power difference is set to zero (0) (step B05), the usable power amount of the cooling device 31 + the heating device power difference is set as the cooling drive limit value (step B06), It is assumed that there is a limit (step B07).
On the other hand, when the step B04 is NO, the cooling device power difference is calculated from the usable power amount of the cooling device 31 minus the target cooling power amount (step B08).
After the process of step B08 or when the step B02 is NO, a cooling drive limit value is calculated (step B09), and no limit is set (step B10).
After the process of Step B07 or after the process of Step B10, the program is returned (Step B11).

次に、暖房駆動制限値の算出について、図7にフローチャートに基づいて説明する。
図7に示すように、プログラムがスタートすると(ステップC01)、先ず、空調装置5に供給する電力に制限が有るかどうかを判断する(ステップC02)。
このステップC02がYESの場合には、目標暖房電力量を算出し(ステップC03)、目標暖房電力量が暖房機器33の使用可能電力量を超えているかどうかを判断する(ステップC04)。
このステップC04がYESの場合には、暖房機器電力差を零(0)とし(ステップC05)、暖房機器33の使用可能電力量+冷房機器電力差を、暖房駆動制限値とし(ステップC06)、制限有りとする(ステップC07)。
一方、前記ステップC04がNOの場合には、暖房機器電力差を、暖房機器33の使用可能電力量−目標暖房電力量で算出する(ステップC08)。
このステップC08の処理後、又は、前記ステップC02がNOの場合には、暖房駆動制限値を算出し(ステップC09)、制限無しとする(ステップC10)。
前記ステップC07の処理後、又は、前記ステップC10の処理後は、プログラムをリターンする(ステップC11)。
Next, the calculation of the heating drive limit value will be described based on the flowchart in FIG.
As shown in FIG. 7, when the program starts (step C01), it is first determined whether or not there is a limit to the power supplied to the air conditioner 5 (step C02).
If this step C02 is YES, the target heating power amount is calculated (step C03), and it is determined whether the target heating power amount exceeds the usable power amount of the heating device 33 (step C04).
When this step C04 is YES, the heating appliance power difference is set to zero (0) (step C05), the usable power amount of the heating appliance 33 + the cooling appliance power difference is set as the heating drive limit value (step C06), It is assumed that there is a limit (step C07).
On the other hand, when the said step C04 is NO, a heating appliance power difference is calculated by the amount of electric power of the heating appliance 33 which can be used-target heating electric energy (step C08).
After the process of step C08 or when the step C02 is NO, a heating drive limit value is calculated (step C09), and no limit is set (step C10).
After the process of step C07 or after the process of step C10, the program is returned (step C11).

以上、この発明の実施例について説明してきたが、上述の実施例の構成を請求項毎に当てはめて説明する。
先ず、請求項1に記載の発明は、空調使用可能電力量(の平均値)を算出し、冷房機器31の使用割合を算出するとともに、空調使用可能電力量と冷房機器31の使用割合から冷房機器31の使用可能電力量を算出する一方、暖房機器33の使用割合を算出するとともに、前記空調使用可能電力量と暖房機器33の使用割合から暖房機器33の使用可能電力量を算出し、目標冷房電力を算出する。
また、前記目標冷房電力が冷房機器31の使用可能電力量以下の場合、冷房機器31の使用可能電力量と前記目標冷房電力の差分を冷房機器電力差として設定するとともに、前記目標冷房電力を冷房駆動制限値として駆動し、前記目標冷房電力が冷房機器31の使用可能電力量を超える場合、冷房機器電力差を零とするとともに、冷房機器31の使用可能電力量と暖房機器電力差を冷房駆動制限値として駆動し、目標暖房電力を算出する。
更に、前記目標暖房電力が暖房機器33の使用可能電力量以下の場合、暖房機器33の使用可能電力量と前記目標暖房電力の差分を前記暖房機器電力差として設定するとともに、前記目標暖房電力を暖房駆動制限値として駆動し、前記目標暖房電力が暖房機器33の使用可能電力量を超える場合、前記暖房機器電力差を零とするとともに、暖房機器33の使用可能電力量と前記冷房機器電力差を暖房駆動制限値として駆動する。
これにより、空調装置5に使用できる電力が制限される電力制限下において、暖房と冷房とに使用する電力配分を最適な配分ないしそれに近い状態の配分に近づけることができる。また、暖房と冷房とのうち目標電力に対して余裕のある一方の電力(電力差)を他方の電力にまわすことができ、電力制限下であっても、空調装置5の能力をより高く確保できるので、快適性や視界を確保できる。
Although the embodiments of the present invention have been described above, the configuration of the above-described embodiments will be described for each claim.
First, the invention according to claim 1 calculates the air conditioning usable electric energy (average value thereof), calculates the usage rate of the cooling device 31, and cools from the air conditioning usable electric energy and the usage rate of the cooling device 31. While calculating the useable electric energy of the equipment 31, while calculating the use ratio of the heating equipment 33, the useable electric energy of the heating equipment 33 is calculated from the above-mentioned air conditioning useable electric energy and the use ratio of the heating equipment 33, and the target Calculate the cooling power.
When the target cooling power is equal to or less than the usable power amount of the cooling device 31, the difference between the usable power amount of the cooling device 31 and the target cooling power is set as a cooling device power difference, and the target cooling power is When driving as a drive limit value and the target cooling power exceeds the usable power amount of the cooling device 31, the cooling device power difference is set to zero, and the usable power amount of the cooling device 31 and the heating device power difference are cooled. It drives as a limit value and calculates target heating power.
Furthermore, when the target heating power is equal to or less than the usable power amount of the heating device 33, the difference between the usable power amount of the heating device 33 and the target heating power is set as the heating device power difference, and the target heating power is set to When driving as a heating drive limit value and the target heating power exceeds the usable power amount of the heating device 33, the heating device power difference is set to zero, and the usable power amount of the heating device 33 and the cooling device power difference are set. Is driven as the heating drive limit value.
Thereby, under the power restriction in which the power that can be used for the air conditioner 5 is restricted, the power distribution used for heating and cooling can be brought close to the optimal distribution or the distribution in a state close thereto. In addition, one of the heating power and cooling power (power difference) that has a margin with respect to the target power can be turned to the other power, and the capacity of the air conditioner 5 can be secured even under power restrictions. Because it can, you can ensure comfort and visibility.

また、請求項2に記載の発明は、冷房機器31の使用割合を、目標噴出温度又はこの目標噴出温度に相当する物理量と、噴出口選択モードとに基づいて設定する一方、暖房機器33の使用割合を全体1から冷房機器31の使用割合を差し引いた差分とする。
これにより、目標噴出温度、又はそれに相当する物理量である温度調節位置と、噴出口選択モードとに基づくので、自動、手動を問わずに冷房機器31及び暖房機器33の使用割合を設定して、電力配分を最適ないしそれに近い状態に設定できる。
The invention according to claim 2 sets the usage rate of the cooling device 31 based on the target ejection temperature or a physical quantity corresponding to the target ejection temperature and the ejection port selection mode, while using the heating device 33. The ratio is a difference obtained by subtracting the usage ratio of the cooling device 31 from the whole 1.
Thereby, since it is based on the target ejection temperature or a temperature adjustment position that is a physical quantity corresponding to the target ejection temperature and the ejection port selection mode, the usage ratio of the cooling device 31 and the heating device 33 is set regardless of automatic or manual operation, The power distribution can be set optimally or close to it.

更に、請求項3に記載の発明は、デフロスタを含む噴出口選択モードでは、冷房機器31の使用割合を他の噴出口選択モードよりも大きく設定する。
これにより、噴出口選択モードに応じて、防暑性を確保できるように設定することができる。
Further, according to the third aspect of the present invention, in the jet outlet selection mode including the defroster, the use ratio of the cooling device 31 is set larger than in the other jet nozzle selection modes.
Thereby, according to the jet nozzle selection mode, it can set so that heat resistance can be ensured.

なお、この発明においては、曇り止めを優先とし、乗員がDFR(デフロスタモード)を選択した場合には、別マップで冷房機器使用割合(電動コンプレッサの駆動割合)100%という設定も可能とする。
また、上記の実施例の制御を使用するか否かの乗員選択スイッチ等を設けて、従来通り、一律最低駆動にする空調機器の動作を止める等を選択できるようにすることも可能である。
In the present invention, when anti-fogging is given priority and the occupant selects DFR (defroster mode), a setting of 100% for the cooling equipment use rate (drive ratio of the electric compressor) can be made in another map.
It is also possible to provide an occupant selection switch for determining whether or not to use the control of the above-described embodiment, and to select to stop the operation of the air-conditioning equipment that is uniformly driven at a minimum as usual.

この発明に係る空調制御装置を、電気自動車やハイブリッド車等の電動車両や、各種車両に適用可能である。ハイブリッド車の場合、車両のパワートレインには、内燃機関を備え、冷却水等の熱を空調装置に補助的に利用してもよい。   The air conditioning control device according to the present invention can be applied to electric vehicles such as electric vehicles and hybrid vehicles, and various vehicles. In the case of a hybrid vehicle, the power train of the vehicle may include an internal combustion engine, and heat such as cooling water may be supplementarily used for the air conditioner.

1 車両
4 パワートレイン
5 空調装置
6 バッテリ
31 冷房機器
32 電動コンプレッサ
33 暖房機器
34 補助ヒータ
35 空調制御装置
36 パワートレイン用制御手段
37 空調用制御手段
38 電動車両用空調制御手段
41 外気温度検出センサ
DESCRIPTION OF SYMBOLS 1 Vehicle 4 Powertrain 5 Air conditioner 6 Battery 31 Cooling equipment 32 Electric compressor 33 Heating equipment 34 Auxiliary heater 35 Air conditioning control device 36 Powertrain control means 37 Air conditioning control means 38 Electric vehicle air conditioning control means 41 Outside air temperature detection sensor 41

Claims (3)

車両に搭載されるバッテリと、このバッテリに供給可能な電力あるいはこのバッテリから供給される電力を用いて駆動する空調装置とを備えた車両の空調制御装置であって、前記空調装置の冷房システムを使用する際に電力によって駆動する冷房機器と、前記空調装置の暖房システムを使用する際に電力によって駆動する暖房機器とを備え、少なくとも前記バッテリの充電状態が低い場合に前記空調装置に供給する電力を制限する空調制御装置において、空調使用可能電力量を算出し、前記冷房機器の使用割合を算出するとともに、前記空調使用可能電力量と前記冷房機器の使用割合から前記冷房機器の使用可能電力量を算出する一方、前記暖房機器の使用割合を算出するとともに、前記空調使用可能電力量と前記暖房機器の使用割合から前記暖房機器の使用可能電力量を算出し、目標冷房電力を算出し、この目標冷房電力が前記冷房機器の使用可能電力量以下の場合、前記冷房機器の使用可能電力量と前記目標冷房電力の差分を冷房機器電力差として設定するとともに、前記目標冷房電力を冷房駆動制限値として駆動し、前記目標冷房電力が前記冷房機器の使用可能電力量を超える場合、前記冷房機器電力差を零とするとともに、前記冷房機器の使用可能電力量と暖房機器電力差を冷房駆動制限値として駆動し、目標暖房電力を算出し、この目標暖房電力が前記暖房機器の使用可能電力量以下の場合、前記暖房機器の使用可能電力量と前記目標暖房電力の差分を前記暖房機器電力差として設定するとともに、前記目標暖房電力を暖房駆動制限値として駆動し、前記目標暖房電力が前記暖房機器の使用可能電力量を超える場合、前記暖房機器電力差を零とするとともに、前記暖房機器の使用可能電力量と前記冷房機器電力差を暖房駆動制限値として駆動することを特徴とする空調制御装置。   An air conditioning control device for a vehicle comprising: a battery mounted on the vehicle; and an air conditioner that is driven using electric power that can be supplied to the battery or electric power that is supplied from the battery. Electric power supplied to the air conditioner at least when the battery is in a low charge state, comprising a cooling device driven by electric power when used and a heating device driven by electric power when using the heating system of the air conditioner In the air conditioning control device that restricts the air conditioning, the air conditioning usable electric energy is calculated, the usage rate of the cooling equipment is calculated, and the usable electrical energy of the cooling equipment is calculated from the air conditioning usable power amount and the usage ratio of the cooling equipment. While calculating the usage rate of the heating device, the air conditioning usable electric energy and the usage rate of the heating device Calculate the available power amount of the heating device, calculate the target cooling power, and if this target cooling power is less than or equal to the usable power amount of the cooling device, the difference between the usable power amount of the cooling device and the target cooling power Is set as a cooling device power difference, and the target cooling power is driven as a cooling drive limit value, and when the target cooling power exceeds the usable power amount of the cooling device, the cooling device power difference is set to zero. Driving the difference between the usable electric energy of the cooling device and the heating device power as the cooling drive limit value, calculating the target heating power, and when the target heating power is equal to or less than the usable electric energy of the heating device, the heating device Is set as the heating appliance power difference, the target heating power is driven as a heating drive limit value, and the target heating power is When exceeding the usable electric energy of the heating device, the heating device power difference is set to zero, and the usable electric energy of the heating device and the cooling device power difference are driven as a heating drive limit value. Air conditioning control device. 前記冷房機器の使用割合を、目標噴出温度又はこの目標噴出温度に相当する物理量と、噴出口選択モードとに基づいて設定する一方、前記暖房機器の使用割合を全体1から前記冷房機器の使用割合を差し引いた差分とすることを特徴とする請求項1に記載の空調制御装置。   The usage rate of the cooling device is set based on the target ejection temperature or a physical quantity corresponding to the target ejection temperature and the ejection port selection mode, while the usage rate of the heating device is changed from 1 to the usage rate of the cooling device. The air conditioning control device according to claim 1, wherein the difference is obtained by subtracting. デフロスタを含む噴出口選択モードでは、前記冷房機器の使用割合を他の噴出口選択モードよりも大きく設定することを特徴とする請求項2に記載の空調制御装置。   The air-conditioning control apparatus according to claim 2, wherein in the jet selection mode including a defroster, the use ratio of the cooling device is set larger than in other jet selection modes.
JP2011063999A 2011-03-23 2011-03-23 Air conditioning controller Active JP5590336B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011063999A JP5590336B2 (en) 2011-03-23 2011-03-23 Air conditioning controller
US13/425,793 US20120240608A1 (en) 2011-03-23 2012-03-21 Air-conditioning control apparatus
DE102012102438.3A DE102012102438B4 (en) 2011-03-23 2012-03-22 Air conditioning control method using an air conditioning control device
CN201210080400.9A CN102692065B (en) 2011-03-23 2012-03-23 Air-conditioning control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063999A JP5590336B2 (en) 2011-03-23 2011-03-23 Air conditioning controller

Publications (2)

Publication Number Publication Date
JP2012197062A JP2012197062A (en) 2012-10-18
JP5590336B2 true JP5590336B2 (en) 2014-09-17

Family

ID=46831813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063999A Active JP5590336B2 (en) 2011-03-23 2011-03-23 Air conditioning controller

Country Status (4)

Country Link
US (1) US20120240608A1 (en)
JP (1) JP5590336B2 (en)
CN (1) CN102692065B (en)
DE (1) DE102012102438B4 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733331B2 (en) * 2013-03-26 2015-06-10 トヨタ自動車株式会社 Vehicle control system
JP6125312B2 (en) * 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6351301B2 (en) * 2014-02-27 2018-07-04 ダイハツ工業株式会社 Vehicle control device
US11260749B2 (en) * 2016-09-26 2022-03-01 Transportation Ip Holdings, Llc Cooling control systems
US10124651B2 (en) * 2017-01-25 2018-11-13 Ford Global Technologies, Llc Systems and methods for controlling electrically powered heating devices within electrified vehicles
JP6458079B2 (en) * 2017-05-19 2019-01-23 本田技研工業株式会社 Air conditioner
WO2018226857A1 (en) 2017-06-07 2018-12-13 Carrier Corporation Transport refrigeration unit control with an energy storage device
ES2927186T3 (en) 2017-06-07 2022-11-03 Carrier Corp Transport refrigeration unit system and a method of operation of a transport refrigeration unit system
FR3077531B1 (en) * 2018-02-08 2020-01-03 Psa Automobiles Sa METHOD FOR PREDICTING A MINIMUM LOAD OF AN ENERGY STORAGE ELEMENT GUARANTEEING ACTIVATION OF A THERMISTOR
JP7231371B2 (en) * 2018-10-02 2023-03-01 株式会社Subaru VEHICLE POWER CONTROL DEVICE AND POWER CONTROL METHOD
JP6835141B2 (en) * 2019-05-31 2021-02-24 ダイキン工業株式会社 Air conditioning system
CN112959869A (en) * 2021-03-15 2021-06-15 北京车和家信息技术有限公司 Vehicle air conditioner control method, device, equipment, storage medium and vehicle
CN114407615B (en) * 2022-02-23 2024-04-12 广汽埃安新能源汽车有限公司 Control method and device for external heater

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976740A (en) 1995-09-08 1997-03-25 Aqueous Res:Kk Hybrid vehicle
JP3305974B2 (en) * 1997-03-05 2002-07-24 トヨタ自動車株式会社 Air conditioning controller for hybrid vehicles
JP3791234B2 (en) 1999-03-17 2006-06-28 株式会社デンソー Air conditioner for hybrid vehicles.
JP3736437B2 (en) * 2000-12-28 2006-01-18 株式会社デンソー Air conditioner for hybrid vehicles
JP2003326959A (en) * 2002-05-09 2003-11-19 Denso Corp Vehicle air conditioner
US7150159B1 (en) * 2004-09-29 2006-12-19 Scs Frigette Hybrid auxiliary power unit for truck
JP2009046115A (en) * 2007-07-20 2009-03-05 Denso It Laboratory Inc Vehicular air conditioner and control method for vehicular air conditioner
JP5125766B2 (en) * 2008-05-28 2013-01-23 株式会社デンソー Air conditioner for vehicles
JP4784633B2 (en) * 2008-10-15 2011-10-05 三菱自動車工業株式会社 Air conditioner for electric vehicle and control method for air conditioner
CN101876471B (en) * 2009-04-30 2012-11-21 比亚迪股份有限公司 Control method for air conditioning refrigerating system of automobile

Also Published As

Publication number Publication date
CN102692065A (en) 2012-09-26
DE102012102438B4 (en) 2022-03-24
JP2012197062A (en) 2012-10-18
CN102692065B (en) 2014-07-09
DE102012102438A1 (en) 2012-09-27
US20120240608A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5590336B2 (en) Air conditioning controller
JP5447486B2 (en) Air conditioner for vehicles
EP2580076B1 (en) Vehicle air conditioning system
WO2011148736A1 (en) Automotive air conditioning device
JP4923859B2 (en) Vehicle air conditioner and program
US20140144998A1 (en) Air conditioner for vehicle
JP5125766B2 (en) Air conditioner for vehicles
JP5310875B2 (en) Electric drive vehicle
US20150097041A1 (en) Vehicle comprising air conditioning apparatus
JP2013184562A (en) System and method for cooling high-voltage equipment of electric vehicle
JP2008013115A (en) Vehicular air conditioner
JP5928225B2 (en) Air conditioner for vehicles
CN113165472A (en) Air conditioner for vehicle
JP2006151270A (en) Battery cooling device
JP6136799B2 (en) Air conditioning control device for vehicles
JP6156004B2 (en) Air conditioning control device for vehicles
KR101600300B1 (en) Air conditioning system for electric vehicle
JP2013079035A (en) Vehicle air-conditioning device
JP5482754B2 (en) Air conditioner for vehicles
WO2012157049A1 (en) Air conditioner control device
JP5556770B2 (en) Air conditioner for vehicles
JP2021195036A (en) Vehicle control device
JP6079525B2 (en) Air conditioning control device for vehicles
JP2013224105A (en) Vehicle battery cooling device
JP2013049311A (en) Vehicular air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R151 Written notification of patent or utility model registration

Ref document number: 5590336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151