JP5590228B2 - Preparation method of nanoparticles of Benidipine hydrochloride - Google Patents

Preparation method of nanoparticles of Benidipine hydrochloride Download PDF

Info

Publication number
JP5590228B2
JP5590228B2 JP2013510496A JP2013510496A JP5590228B2 JP 5590228 B2 JP5590228 B2 JP 5590228B2 JP 2013510496 A JP2013510496 A JP 2013510496A JP 2013510496 A JP2013510496 A JP 2013510496A JP 5590228 B2 JP5590228 B2 JP 5590228B2
Authority
JP
Japan
Prior art keywords
benidipine hydrochloride
added
nanoparticles
dissolution
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013510496A
Other languages
Japanese (ja)
Other versions
JP2013520520A (en
Inventor
ツァン,ツェン
ヨー,ジャンツォン
チェン,ジャンミン
ツァン,ツァオヨン
ユエ,リクン
チェン,クゥイオン
Original Assignee
ヘフェイ ベイニ メディカル テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110096848.5A external-priority patent/CN102746216B/en
Application filed by ヘフェイ ベイニ メディカル テクノロジー カンパニー リミテッド filed Critical ヘフェイ ベイニ メディカル テクノロジー カンパニー リミテッド
Publication of JP2013520520A publication Critical patent/JP2013520520A/en
Application granted granted Critical
Publication of JP5590228B2 publication Critical patent/JP5590228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、医薬の分野、特に、ベニジピン塩酸塩((±)−(R*)−1,4−ジヒドロ−2,6−ジメチル−4−(3−ニトロフェニル)−3,5−ピリジンジカルボン酸塩[(R*)−1−ベンジル−3−ピペリジンアルコールエステル])のナノ粒子の調製方法に関する。 The present invention relates to the field of medicine, in particular to benidipine hydrochloride ((±)-(R *)-1,4-dihydro-2,6-dimethyl-4- (3-nitrophenyl) -3,5-pyridinedicarboxylic acid). salt [(R *) - 1- benzyl-3-piperidine alcohol ester]) relates to the preparation how nanoparticles.

ジヒドロピリジンカルシウムチャンネル遮断薬は、安全で効果的であって、今日、臨床的に広く使用されている。とりわけ、ベニジピン塩酸塩は三つのチャンネルに対するユニークな抑制作用と、細胞膜に対する高い親和性、血管選択性を有し、腎臓保護作用を有する。従って、それは高血圧、腎実質性高血圧、アンギーナ等の治療に有用な、理想的で安全かつ効果的な薬剤である。   Dihydropyridine calcium channel blockers are safe and effective and are widely used clinically today. In particular, benidipine hydrochloride has a unique inhibitory action on three channels, a high affinity for cell membranes, blood vessel selectivity, and a renal protective action. Therefore, it is an ideal safe and effective drug useful for the treatment of hypertension, renal parenchymal hypertension, angina and the like.

ベニジピン塩酸塩は非常に溶解性が低いので、溶媒中において迅速に溶解するには、ベニジピン塩酸塩はしばしばナノ粒子に粉砕される。特許文献1は、ベニジピン塩酸塩を1.0〜50.0μmの粒子へ砕く方法を提供した。この物理的粉砕方法は、大きな粒子の結晶を所望の小さな結晶へと粉砕することによって行われる。この方法は多量のエネルギーと時間を消費し、結晶粒子サイズのばらつきが大きくなる。   Because benidipine hydrochloride is very poorly soluble, benidipine hydrochloride is often ground into nanoparticles for rapid dissolution in a solvent. Patent Document 1 provided a method for crushing benidipine hydrochloride into particles of 1.0 to 50.0 μm. This physical comminution method is performed by comminuting large particle crystals into the desired small crystals. This method consumes a large amount of energy and time, and the variation in crystal grain size increases.

本発明者は、超音波結晶技術によって所望サイズのベニジピン塩酸塩ナノ粒子を得ることができるという驚くべき発見をした。特許文献1の方法と異なり、本発明による方法では、小サイズから大サイズの結晶が得られる。溶媒が溶液中において急速かつ確実に結晶化することから、本発明の方法における粒子サイズの分布範囲は比較的狭い。全体として、本発明は、時間とエネルギーの節約を可能にし、調製が容易である。   The inventor has made the surprising discovery that the desired size of benidipine hydrochloride nanoparticles can be obtained by ultrasonic crystal technology. Unlike the method of Patent Document 1, with the method according to the present invention, crystals of a small size to a large size can be obtained. Since the solvent crystallizes rapidly and reliably in solution, the particle size distribution range in the method of the present invention is relatively narrow. Overall, the present invention allows for time and energy savings and is easy to prepare.

中国特許公開第1794993号公報Chinese Patent Publication No. 1794993

本発明は、超音波技術によってベニジピン塩酸塩のナノ粒子を調製する方法を提供する。   The present invention provides a method of preparing nanoparticles of benidipine hydrochloride by ultrasonic techniques.

従来式の溶液の結晶化は、通常、温度を下げ静置することによって行われるが、これはゆっくりとした長時間かかる手続きである。しかしながら、本発明の超音波法は、まず、温度、溶媒極性を変化させることによって、又は、低溶解度溶媒(inferior solvent)等を添加することによって、ベニジピン塩酸塩の飽和又は過飽和溶液を形成し、次に、超音波を適用することによって適当なサイズのナノ粒子を得るものである。溶液の超音波結晶化は迅速に、かつ、平衡状態で行われる。結晶化溶液、結晶化態様、結晶成長速度、分子間の結合態様、の違いによって必然的に、分子結晶形状とサイズが異なるものとなる。   Conventional solution crystallization is usually carried out by lowering the temperature and allowing it to stand, which is a slow and time-consuming procedure. However, the ultrasonic method of the present invention first forms a saturated or supersaturated solution of benidipine hydrochloride by changing the temperature, solvent polarity, or by adding a low solubility solvent or the like, Next, nanoparticles of an appropriate size are obtained by applying ultrasonic waves. Ultrasonic crystallization of the solution takes place rapidly and in equilibrium. Depending on the difference in the crystallization solution, the crystallization mode, the crystal growth rate, and the bonding mode between molecules, the molecular crystal shape and size are inevitably different.

本発明においてベニジピン塩酸塩ナノ粒子を調製する場合、ベニジピン塩酸塩を良好な(good)溶媒中で溶解させ、その後、温度、溶媒極性を変化させることによって、又は、低溶解度溶媒(inferior solvent)等を添加することによって、ベニジピン塩酸塩の飽和又は過飽和溶液を形成し、その後に、超音波を当てて溶液の結晶化を促進する。その後に、フィルタリング(真空でのフィルタリング)、洗浄、又は乾燥などの従来の作業によって高度に精製されたベニジピン塩酸塩ナノ粒子を得ることができる。   When preparing benidipine hydrochloride nanoparticles in the present invention, benidipine hydrochloride is dissolved in a good solvent, and then the temperature, the solvent polarity is changed, or the low solubility solvent is used. Is added to form a saturated or supersaturated solution of benidipine hydrochloride, followed by sonication to promote crystallization of the solution. Thereafter, highly purified benidipine hydrochloride nanoparticles can be obtained by conventional operations such as filtering (filtering in vacuum), washing, or drying.

ベニジピン塩酸塩ナノ粒子の溶解および/又は形成に使用される高溶解度又は低溶解度溶媒としては、典型的には、低炭素数ケトン、低炭素数アルコール、低炭素数エーテル、低炭素数エステル、アセトニトリル、ジクロロメタン、クロロホルム、無水酢酸、その他の一般的に使用される小分子溶媒がある。好適な溶媒は、アセトン、エタノール、メタノール、N,N−ジメチルホルムアミド、アセトニトリル、ジエチルエーテル、ジクロロメタン、ジメチル・スルホキシド(DMSO)、水、の単体、又は、上述の溶媒の二種類以上の混合物、である。エタノールとアセトニトリルとが好適な単体溶媒であり、エタノール−アセトン、DMF−水、アセトニトリル−水、アセトニトリル−アセトン、エタノール−水、エタノール−アセトン−水が好適な混合溶媒である。それらの中で、エタノールとアセトンとの比率は0〜100%:100〜0%である。DMFと水との比率は、0〜100%:100〜0%である。DMFとアセトンとの比率は、0〜100%:100〜0%である。アセトニトリルと水との比率は100〜0%:0〜100%である。アセトニトリルとアセトンとの比率は100〜0%:0〜100%である。エタノールと水との比率は100〜0%:0〜100%である。エタノールとアセトンと水との比率は1〜5:1〜5:0.1〜500である。   High or low solubility solvents used to dissolve and / or form benidipine hydrochloride nanoparticles typically include low carbon ketones, low carbon alcohols, low carbon ethers, low carbon esters, acetonitrile , Dichloromethane, chloroform, acetic anhydride, and other commonly used small molecule solvents. Suitable solvents are acetone, ethanol, methanol, N, N-dimethylformamide, acetonitrile, diethyl ether, dichloromethane, dimethyl sulfoxide (DMSO), water alone, or a mixture of two or more of the above solvents. is there. Ethanol and acetonitrile are suitable simple solvents, and ethanol-acetone, DMF-water, acetonitrile-water, acetonitrile-acetone, ethanol-water, and ethanol-acetone-water are suitable mixed solvents. Among them, the ratio of ethanol to acetone is 0 to 100%: 100 to 0%. The ratio of DMF to water is 0 to 100%: 100 to 0%. The ratio of DMF to acetone is 0 to 100%: 100 to 0%. The ratio of acetonitrile to water is 100-0%: 0-100%. The ratio of acetonitrile to acetone is 100-0%: 0-100%. The ratio of ethanol to water is 100-0%: 0-100%. The ratio of ethanol, acetone and water is 1-5: 1 to 5: 0.1-500.

超音波結晶化の周波数は、20kHz〜500kHz、好ましくは、20kHz〜100kHzである。超音波の出力は、1mW〜5000W、好ましくは、1W〜500Wである。強度は0.1mW/cm〜500W/cm、好ましくは、0.1W/cm〜50W/cmであり、超音波時間は1分間〜24時間、好ましくは、3分間〜120分間である。超音波結晶化温度は、−78℃〜100℃、好ましくは、−5℃〜30℃である。ベニジピン塩酸塩ナノ粒子の大きさは、20nm〜2000nm、であり、その中央値は300nm〜1500nmである。 The frequency of ultrasonic crystallization is 20 kHz to 500 kHz, preferably 20 kHz to 100 kHz. The output of ultrasonic waves is 1 mW to 5000 W, preferably 1 W to 500 W. The intensity is 0.1 mW / cm 2 to 500 W / cm 2 , preferably 0.1 W / cm 2 to 50 W / cm 2 , and the ultrasonic time is 1 minute to 24 hours, preferably 3 minutes to 120 minutes. is there. The ultrasonic crystallization temperature is −78 ° C. to 100 ° C., preferably −5 ° C. to 30 ° C. The size of the benidipine hydrochloride nanoparticles is 20 nm to 2000 nm, and the median value is 300 nm to 1500 nm.

434.3nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystal | crystallization nanoparticle which has an average particle diameter of 434.3 nm. 447.2nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystalline nanoparticle which has an average particle diameter of 447.2 nm. 677.8nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystalline nanoparticle which has an average particle diameter of 677.8 nm. 710.8nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystal | crystallization nanoparticle which has an average particle diameter of 710.8 nm. 1159.0nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystalline nanoparticle which has an average particle diameter of 1159.0 nm. 1220.0nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystalline nanoparticle which has an average particle diameter of 1220.0 nm. 1492.0nmの平均粒径を有する結晶ナノ粒子を示す図である。It is a figure which shows the crystalline nanoparticle which has an average particle diameter of 1492.0 nm.

具体的な作業は以下の通りである。   The specific work is as follows.

原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍の低炭素数アルコールを添加し、溶解のために還流させながら加熱し、その後、結晶化を補助するために温度を下げて超音波処理を行う。   To add 0.1 to 40 times the low carbon number alcohol to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heat while refluxing for dissolution, and then assist crystallization The temperature is lowered to sonication.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍の低炭素数アルコールを添加し、溶解のために還流させながら加熱し、その後、0.01〜100倍の水を加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 40 times lower carbon number alcohol is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 0.01 to Add 100 times water and sonicate at lower temperature to aid crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍の低炭素数アルコールを添加し、溶解のために還流させながら加熱し、その後、1/100倍の水を加え、結晶化のため水を滴下しながら超音波処理を行う。   Alternatively, 0.1 to 40 times the low carbon number alcohol is added to the primary crystal of a suitable amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 1/100 times Then, ultrasonic treatment is performed while dropping water for crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍の低炭素数アルコールを添加し、溶解のために還流させながら加熱し、その後、0.01〜100倍のアセトンを加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 40 times lower carbon number alcohol is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 0.01 to Add 100 times acetone and sonicate at lower temperature to aid crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍の低炭素数アルコールを添加し、溶解のために還流させながら加熱し、その後、超音波処理行いながら1/10倍のアセトンを加え、結晶の析出が始まった時に、アセトンの添加を停止し、その後、更なる超音波処理を行う(60分間未満)。   Alternatively, 0.1 to 40 times lower carbon number alcohol is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and then sonicated. While adding 1/10 times the acetone, and when the precipitation of crystals begins, the addition of acetone is stopped and then further sonication is performed (less than 60 minutes).

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜15倍のN,N−ジメチルホルムアミド(DMF)を添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍の水を加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 15 times as much N, N-dimethylformamide (DMF) is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, and heated while refluxing for dissolution, and then Then, 0.1 to 100 times as much water is added and sonication is performed at a reduced temperature to assist crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜15倍のDMFを添加し、溶解のために還流させながら加熱し、その後、1/100倍の水を加え、結晶化のために水を滴下しながら超音波処理を行う。   Alternatively, 0.1 to 15 times as much DMF is added to the primary crystal of a suitable amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 1/100 times as much water is added. In addition, ultrasonic treatment is performed while dropping water for crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜15倍のDMFを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍のアセトンを加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 15 times of DMF is added to the primary crystal of a suitable amount of benidipine hydrochloride as a raw material, and heated while refluxing for dissolution, and then 0.1 to 100 times. Acetone is added and sonicated at a lower temperature to aid crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜15倍のDMSOを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍の水を加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 15 times DMSO is added to the appropriate amount of the primary crystal of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 0.1 to 100 times Add water and sonicate at lower temperature to aid crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜15倍のDMFを添加し、溶解のために還流させながら加熱し、その後、超音波処理行いながら0.1〜100倍のアセトンを加え、結晶の析出が開始した時に、アセトンの添加を停止し、その後、更なる超音波処理を行う(60分間未満)。   Alternatively, 0.1 to 15 times as much DMF is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then subjected to ultrasonic treatment while performing sonication. Add 1 to 100 times more acetone, stop the addition of acetone when crystal precipitation begins, then perform further sonication (less than 60 minutes).

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 40 times acetonitrile is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and the temperature is adjusted to assist crystallization. Lower and perform sonication.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍の水を加え、結晶化のために水を滴下しながら超音波処理を行う。   Alternatively, 0.1 to 40 times acetonitrile is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and then 0.1 to 100 times Add water and sonicate while dropping water for crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、その後、1/100倍の水を加え、結晶化のために水を滴下しながら超音波処理を行う。   Alternatively, 0.1 to 40 times as much acetonitrile is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then 1/100 times as much water is added. In addition, ultrasonic treatment is performed while dropping water for crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍のアセトンを加え、結晶化を補助するために温度を下げて超音波処理を行う。   Alternatively, 0.1 to 40 times acetonitrile is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and then 0.1 to 100 times Acetone is added and sonicated at a lower temperature to aid crystallization.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、その後、超音波処理を行いながら0.1倍のアセトンを添加し、結晶の析出が開始した時に、アセトンの添加を停止し、その後、更なる超音波処理を行う(60分間未満)。   Alternatively, 0.1 to 40 times as much acetonitrile is added to the primary crystal of an appropriate amount of benidipine hydrochloride as a raw material, heated while refluxing for dissolution, and then subjected to sonication and 0 Add 1x acetone and stop adding acetone when crystal precipitation begins, then perform further sonication (less than 60 minutes).

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のエタノールを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍のアセトンを添加し、超音波処理し、結晶が出現し始めた時に、0.1〜1000倍の水を添加し、その後、1〜60分間、更なる超音波処理を行う。   Alternatively, 0.1 to 40 times ethanol is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and then 0.1 to 100 times Acetone is added and sonicated, and when crystals begin to appear, 0.1 to 1000 times the water is added, followed by further sonication for 1 to 60 minutes.

或いは、原料としての適当な量のベニジピン塩酸塩の初晶に対して、0.1〜40倍のアセトニトリルを添加し、溶解のために還流させながら加熱し、その後、0.1〜100倍のアセトンを添加し、ゆっくりと0.1〜1000倍の水を添加し、その後、1〜60分間超音波処理を行う。   Alternatively, 0.1 to 40 times acetonitrile is added to the appropriate amount of benidipine hydrochloride primary crystal as a raw material, heated while refluxing for dissolution, and then 0.1 to 100 times Add acetone, slowly add 0.1 to 1000 times the water, and then sonicate for 1 to 60 minutes.

以下、本発明について下記の実験例とともにより詳細に記載する。   Hereinafter, the present invention will be described in more detail together with the following experimental examples.

〔例1〕
原料としての10gのベニジピン塩酸塩の初晶を10mLの無水エタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、その後、氷浴によって冷却し、結晶化を補助するために150Wで10分間の超音波処理を行い、その後、真空中でフィルタリングすることによって淡黄色の結晶としての生成物を得た。この結晶体のサイズを図1に示す。
[Example 1]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of absolute ethanol. The reaction mixture is heated at reflux for dissolution, then cooled by an ice bath, sonicated at 150 W for 10 minutes to aid crystallization, and then lightly filtered by vacuum. The product was obtained as yellow crystals. The size of this crystal is shown in FIG.

〔例2〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLのメタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、その後、氷浴によって冷却し、結晶化を補助するために150Wで10分間の超音波処理を行い、その後、真空中でフィルタリングすることによって淡黄色の結晶としての生成物を得た。
[Example 2]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of methanol. The reaction mixture is heated at reflux for dissolution, then cooled by an ice bath, sonicated at 150 W for 10 minutes to aid crystallization, and then lightly filtered by vacuum. The product was obtained as yellow crystals.

〔例3〕
原料としての10.2gのベニジピン塩酸塩の初晶を12mLの無水エタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに12mlの水を添加した。その反応混合物を氷浴によって冷却し150Wで超音波処理し、結晶が出現した時に、2分間更に超音波処理を行った。
[Example 3]
The primary crystal of 10.2 g of benidipine hydrochloride as a raw material was added to 12 mL of absolute ethanol. The reaction mixture was heated at reflux for dissolution, to which 12 ml of water was added. The reaction mixture was cooled in an ice bath and sonicated at 150 W and further sonicated for 2 minutes when crystals appeared.

〔例4〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのメタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、その後、20mlの水を添加した。その反応混合物を氷浴によって冷却し150Wで超音波処理し、結晶が出現した時に、70分間連続で超音波処理を行った。
[Example 4]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of methanol. The reaction mixture was heated at reflux for dissolution, after which 20 ml of water was added. The reaction mixture was cooled in an ice bath and sonicated at 150 W and sonicated continuously for 70 minutes when crystals appeared.

〔例5〕
原料としての10gのベニジピン塩酸塩の初晶を12mLの無水エタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlの水を添加した。その反応混合物を150Wで超音波処理し、これに、結晶化が完了するまで水を滴下によって添加した。
[Example 5]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 12 mL of absolute ethanol. The reaction mixture was heated at reflux for dissolution, to which 3 ml of water was added. The reaction mixture was sonicated at 150 W and water was added dropwise thereto until crystallization was complete.

〔例6〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのメタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlの水を添加した。その反応混合物を150Wで超音波処理し、これに、結晶化が完了するまで水を滴下によって添加した。
[Example 6]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of methanol. The reaction mixture was heated at reflux for dissolution, to which 3 ml of water was added. The reaction mixture was sonicated at 150 W and water was added dropwise thereto until crystallization was complete.

〔例7〕
原料としての10.3gのベニジピン塩酸塩の初晶を11mLの無水エタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに11mlのアセトンを添加した。その反応混合物を氷浴によって冷却し、結晶化を補助するために200Wで超音波処理した。
[Example 7]
The primary crystal of 10.3 g of benidipine hydrochloride as a raw material was added to 11 mL of absolute ethanol. The reaction mixture was heated at reflux for dissolution, to which 11 ml of acetone was added. The reaction mixture was cooled with an ice bath and sonicated at 200 W to aid crystallization.

〔例8〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLのメタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに10mlのアセトンを添加した。その反応混合物を氷浴によって冷却し、結晶化を補助するために200Wで超音波処理した。
[Example 8]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of methanol. The reaction mixture was heated at reflux for dissolution, to which 10 ml of acetone was added. The reaction mixture was cooled with an ice bath and sonicated at 200 W to aid crystallization.

〔例9〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLの無水エタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlのアセトンを添加した。その反応混合物を200Wで超音波処理し、これに、結晶が出現し始めるまでアセトンを滴下によって添加し、更に、3分間、超音波処理を行った。
[Example 9]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of absolute ethanol. The reaction mixture was heated at reflux for dissolution, to which 3 ml of acetone was added. The reaction mixture was sonicated at 200 W, acetone was added dropwise thereto until crystals began to appear, and sonicated for an additional 3 minutes.

〔例10〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのメタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlのアセトンを添加した。その反応混合物を200Wで超音波処理し、これに、結晶が出現し始めるまでアセトンを滴下によって添加し、更に、3分間、超音波処理を行った。
[Example 10]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of methanol. The reaction mixture was heated at reflux for dissolution, to which 3 ml of acetone was added. The reaction mixture was sonicated at 200 W, acetone was added dropwise thereto until crystals began to appear, and sonicated for an additional 3 minutes.

〔例11〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLのDMFに添加した。この反応混合物を溶解のために還流しながら加熱し、これに10mlの水を添加した。その反応混合物を、結晶化を補助するために200Wで超音波処理した。
[Example 11]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of DMF. The reaction mixture was heated at reflux for dissolution, to which 10 ml of water was added. The reaction mixture was sonicated at 200 W to aid crystallization.

〔例12〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのDMFに添加した。この反応混合物を溶解のために還流しながら加熱し、これに5mlの水を添加した。その反応混合物を150Wで超音波処理し、これに、結晶化が完了するまで水を滴下によって添加した。
[Example 12]
10 g of benidipine hydrochloride primary crystal as raw material was added to 10 mL of DMF. The reaction mixture was heated at reflux for dissolution, to which 5 ml of water was added. The reaction mixture was sonicated at 150 W and water was added dropwise thereto until crystallization was complete.

〔例13〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのDMFに添加した。この反応混合物を溶解のために還流しながら加熱し、これに10mlのアセトンを添加した。その反応混合物を氷浴によって冷却し、結晶化を補助するために200Wで超音波処理した。
[Example 13]
10 g of benidipine hydrochloride primary crystal as raw material was added to 10 mL of DMF. The reaction mixture was heated at reflux for dissolution, to which 10 ml of acetone was added. The reaction mixture was cooled with an ice bath and sonicated at 200 W to aid crystallization.

〔例14〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのDMFに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlのアセトンを添加した。その反応混合物を200Wで超音波処理し、これに、結晶が出現し始めるまでアセトンを滴下によって添加し、更に、4分間、超音波処理を行った。
[Example 14]
10 g of benidipine hydrochloride primary crystal as raw material was added to 10 mL of DMF. The reaction mixture was heated at reflux for dissolution, to which 3 ml of acetone was added. The reaction mixture was sonicated at 200 W, to which acetone was added dropwise until crystals began to appear, and further sonicated for 4 minutes.

〔例15〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのアセトニトリルに添加した。この反応混合物を溶解のために還流しながら加熱し、氷浴によって冷却し、結晶化を補助するために150Wで超音波処理した。
[Example 15]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of acetonitrile. The reaction mixture was heated at reflux for dissolution, cooled by an ice bath and sonicated at 150 W to aid crystallization.

〔例16〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLのアセトニトリルに添加した。この反応混合物を溶解のために還流しながら加熱し、これに10mlの水を添加した。その反応混合を氷浴によって冷却し、結晶化を補助するために150Wで超音波処理した。
[Example 16]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of acetonitrile. The reaction mixture was heated at reflux for dissolution, to which 10 ml of water was added. The reaction mixture was cooled with an ice bath and sonicated at 150 W to aid crystallization.

〔例17〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのアセトニトリルに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlの水を添加した。その反応混合を150Wで超音波処理し、これに、結晶化が完了するまで水を滴下によって添加した。
[Example 17]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of acetonitrile. The reaction mixture was heated at reflux for dissolution, to which 3 ml of water was added. The reaction mixture was sonicated at 150 W and water was added dropwise thereto until crystallization was complete.

〔例18〕
原料としての10.1gのベニジピン塩酸塩の初晶を11mLのアセトニトリルに添加した。この反応混合物を溶解のために還流しながら加熱し、これに10mlのアセトンを添加した。その反応混合を氷浴によって冷却し、結晶化を補助するために200Wで超音波処理した。
[Example 18]
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 11 mL of acetonitrile. The reaction mixture was heated at reflux for dissolution, to which 10 ml of acetone was added. The reaction mixture was cooled with an ice bath and sonicated at 200 W to aid crystallization.

〔例19〕
原料としての10.1gのベニジピン塩酸塩の初晶を10mLのアセトニトリルに添加した。この反応混合物を溶解のために還流しながら加熱し、これに3mlのアセトンを添加した。その反応混合物を200Wで超音波処理し、これに、結晶が出現し始めるまでアセトンを滴下によって添加し、更に、3分間、超音波処理を行った。
Example 19
The primary crystal of 10.1 g of benidipine hydrochloride as a raw material was added to 10 mL of acetonitrile. The reaction mixture was heated at reflux for dissolution, to which 3 ml of acetone was added. The reaction mixture was sonicated at 200 W, acetone was added dropwise thereto until crystals began to appear, and sonicated for an additional 3 minutes.

〔例20〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのエタノールに添加した。この反応混合物を溶解のために還流しながら加熱し、これに20mlのアセトンを添加した。その反応混合物を200Wで超音波処理し、少量の結晶が出現し始めた時に、20ml以上の水を添加し、大量の結晶が出現し始め、その後、更に、3分間、超音波処理を行った。
[Example 20]
The primary crystal of 10 g of benidipine hydrochloride as a raw material was added to 10 mL of ethanol. The reaction mixture was heated at reflux for dissolution, to which 20 ml of acetone was added. The reaction mixture was sonicated at 200 W and when a small amount of crystals began to appear, 20 ml or more of water was added and a large amount of crystals began to appear, followed by sonication for an additional 3 minutes. .

〔例21〕
原料としての10gのベニジピン塩酸塩の初晶を10mLのDMSOに添加した。この反応混合物を溶解のために還流しながら加熱し、これに30mlの水を添加した。この反応混合物を、結晶化を補助するために200Wで超音波処理した。
[Example 21]
10 g of benidipine hydrochloride primary crystal as raw material was added to 10 mL of DMSO. The reaction mixture was heated at reflux for dissolution, to which 30 ml of water was added. The reaction mixture was sonicated at 200 W to aid crystallization.

Claims (7)

超音波技術によってベニジピン塩酸塩のナノ粒子を調製する方法であって、
まず、温度、溶媒極性を変化させることによって、又は、低溶解度溶媒(inferiorsolvent)を添加することによって、ベニジピン塩酸塩の飽和又は過飽和溶液を形成し、次に、超音波処理によって適当なサイズのナノ粒子を得る、ベニジピン塩酸塩のナノ粒子の調製方法
A method of preparing benidipine hydrochloride nanoparticles by ultrasonic technology , comprising:
First, a saturated or supersaturated solution of benidipine hydrochloride is formed by changing the temperature, solvent polarity, or by adding a low solubility solvent, and then sonicated to the appropriate size of the nano-sized solution. A method for preparing nanoparticles of benidipine hydrochloride to obtain particles .
超音波処理によってベニジピン塩酸塩を調製する前記温度は、−78℃〜100℃である、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The method for preparing nanoparticles of benidipine hydrochloride according to claim 1 , wherein the temperature for preparing benidipine hydrochloride by sonication is -78 ° C to 100 ° C. 超音波処理によってベニジピン塩酸塩を調製する前記溶媒は、低炭素数ケトン、低炭素数アルコール、低炭素数エーテル、低炭素数酸、低炭素数エステル、ジクロロメタン、クロロホルム、無水酢酸、又は、上述の溶媒の二種類以上の混合物である、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The solvent for preparing the benidipine hydrochloride salt by sonication, low carbon number ketones, low carbon number alcohol, low carbon number ether, low-carbon acid number, low carbon number esters, dichloromethane, chloroform, acetic anhydride, also, above which is a mixture of two or more solvents, a process for the preparation of nanoparticles of benidipine hydrochloride as claimed in claim 1. 前記超音波の周波数は、20kHz〜500kHzである、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The method of preparing nanoparticles of benidipine hydrochloride according to claim 1 , wherein the ultrasonic frequency is 20 kHz to 500 kHz. 前記超音波の出力は、1mW〜5000Wである、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The method for preparing nanoparticles of benidipine hydrochloride according to claim 1 , wherein an output of the ultrasonic wave is 1 mW to 5000 W. 前記超音波の強度は、0.1mW/cm2〜500W/cm2である、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The method for preparing nanoparticles of benidipine hydrochloride according to claim 1 , wherein the intensity of the ultrasonic wave is 0.1 mW / cm 2 to 500 W / cm 2 . 前記超音波の期間は、1分間〜24時間である、請求項に記載のベニジピン塩酸塩のナノ粒子の調製方法。 The method for preparing nanoparticles of benidipine hydrochloride according to claim 1 , wherein the period of the ultrasonic waves is 1 minute to 24 hours.
JP2013510496A 2011-04-18 2011-09-28 Preparation method of nanoparticles of Benidipine hydrochloride Expired - Fee Related JP5590228B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110096848.5A CN102746216B (en) 2011-04-18 A kind of Benidipine hydrochloride nanoparticle and preparation method thereof
CN201110096848.5 2011-04-18
PCT/CN2011/080294 WO2012142816A1 (en) 2011-04-18 2011-09-28 Benidipine hydrochloride nanoparticles and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2013520520A JP2013520520A (en) 2013-06-06
JP5590228B2 true JP5590228B2 (en) 2014-09-17

Family

ID=47026772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013510496A Expired - Fee Related JP5590228B2 (en) 2011-04-18 2011-09-28 Preparation method of nanoparticles of Benidipine hydrochloride

Country Status (2)

Country Link
JP (1) JP5590228B2 (en)
WO (1) WO2012142816A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511867A (en) * 2011-04-18 2014-05-19 合肥貝霓医薬科技有限公司 Purification of dihydropyridine calcium channel blocker and method for preparing nanoparticles thereof
JP2014511881A (en) * 2011-04-18 2014-05-19 ヘフェイ ベイニ メディカル テクノロジー カンパニー リミテッド Method for preparing high-purity benidipine hydrochloride

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786576B2 (en) * 2011-09-14 2015-09-30 コニカミノルタ株式会社 Method for producing water vapor barrier film
JP5825016B2 (en) * 2011-09-29 2015-12-02 コニカミノルタ株式会社 Barrier film manufacturing method
JP6416242B2 (en) * 2013-06-12 2018-10-31 サーモディクス,インコーポレイティド Solvent method for preparing crystalline macrolide microparticles, composition, and article comprising microparticles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225162A (en) * 1983-06-03 1984-12-18 Kyowa Hakko Kogyo Co Ltd 1,4-dihydropyridine derivative
JPS59137461A (en) * 1983-01-27 1984-08-07 Kyowa Hakko Kogyo Co Ltd 1,4-dihydropyridine derivative
JPS5970667A (en) * 1982-10-15 1984-04-21 Kyowa Hakko Kogyo Co Ltd 1,4-dihydropyridine derivative
WO2004110448A1 (en) * 2003-06-17 2004-12-23 Kyowa Hakko Kogyo Co., Ltd. Medicinal composition containing benidipine hydrochloride
JP4606258B2 (en) * 2003-06-17 2011-01-05 協和発酵キリン株式会社 Pharmaceutical composition containing benidipine hydrochloride
WO2006133045A1 (en) * 2005-06-03 2006-12-14 Elan Pharma International, Limited Nanoparticulate benidipine compositions
JP3763538B1 (en) * 2005-06-28 2006-04-05 ダイト株式会社 Industrial production method of high-purity benidipine hydrochloride
TWI437007B (en) * 2008-07-24 2014-05-11 Food Industry Res & Dev Inst Process for preparing nanoparticles of chitosan in water phase
JP2010082776A (en) * 2008-10-01 2010-04-15 Tohoku Univ Nano-particle synthetic method by organic solvent sono-chemistry
BR112012003817A2 (en) * 2009-08-21 2016-03-22 Lubrizol Advanced Mat Inc hydrolytically stable polyester-polyurethane nanocomposite, aqueous dispersion thereof, and process for preparing aqueous dispersion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511867A (en) * 2011-04-18 2014-05-19 合肥貝霓医薬科技有限公司 Purification of dihydropyridine calcium channel blocker and method for preparing nanoparticles thereof
JP2014511881A (en) * 2011-04-18 2014-05-19 ヘフェイ ベイニ メディカル テクノロジー カンパニー リミテッド Method for preparing high-purity benidipine hydrochloride

Also Published As

Publication number Publication date
WO2012142816A1 (en) 2012-10-26
JP2013520520A (en) 2013-06-06
CN102746216A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5590228B2 (en) Preparation method of nanoparticles of Benidipine hydrochloride
WO2011007633A1 (en) Crystals of pyrroloquinolinequinone sodium salts
JP4298212B2 (en) Method for producing high melting point type epinastine hydrochloride
BRPI1015936B1 (en) FORM I CRYSTAL OF 2-{4-[N-(5,6-DIFENYLPIRAZIN-2-YL)-N-ISOPRO PILAMINO]BUTYLOXY}-N (METHYLSULPHONYL)ACETAMIDE AND PHARMACEUTICAL COMPOSITION
JP5878975B2 (en) Method for preparing high-purity benidipine hydrochloride
WO2017202341A1 (en) Preparation process for high-purity dabigatran etexilate
JP5768131B2 (en) Method for producing crystalline 5-aminosalicylic acid
JP2014511867A (en) Purification of dihydropyridine calcium channel blocker and method for preparing nanoparticles thereof
EP4215538A1 (en) Method for purifying sucralose
WO2012077134A1 (en) Process for preparing aripiprazole polymorphs
WO2006120701A1 (en) An improved process for the manufacture of rabeprazole sodium
Malpani et al. Photoinduced phase transition of azobenzene-coupled benzenetricarboxamide
JP6130701B2 (en) Industrial production method of (2RS) -1-dimethylamino-3- {2- [2- (3-methoxyphenyl) ethyl] phenoxy} propan-2-yl hydrogen succinate hydrochloride
EP2035400A1 (en) Methods for the preparation of salts of 2-[2-(4-dibenzo[b,f][1,4]thiazepin-11-yl-1-piperazinyl)ethoxyl]ethanol (quetiapine) and for the purification thereof
CN102603757A (en) Method for extracting and separating camptothecin from Nothapodytes pittosporoides (Oliv.) Sleum.
CN105687140B (en) A kind of preparation method of vinpocetine micro mist
JP2010518145A5 (en)
CN103588700A (en) Method for resolving barnidipine mother nucleus by using glucosamine as resolving agent
JP2012136465A (en) Pyrroloquinoline quinone potassium salt
CN102746217B (en) A kind of purification dihydropyridine calcium channel blocker the method preparing its nanometer
JP7498147B2 (en) Method for Purifying Apixaban
CN103030642B (en) Preparation method of pemetrexed or pemetrexed salt
CN102993145B (en) Lovastatin extraction and purification method
EP3170816A1 (en) Supersaturated compositions of benzimidazole compounds
CN106349179A (en) Refining method of valsartan

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5590228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees