JP5587728B2 - In and Sn recovery methods - Google Patents

In and Sn recovery methods Download PDF

Info

Publication number
JP5587728B2
JP5587728B2 JP2010233030A JP2010233030A JP5587728B2 JP 5587728 B2 JP5587728 B2 JP 5587728B2 JP 2010233030 A JP2010233030 A JP 2010233030A JP 2010233030 A JP2010233030 A JP 2010233030A JP 5587728 B2 JP5587728 B2 JP 5587728B2
Authority
JP
Japan
Prior art keywords
recovering
hydroxide
ito
indium
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010233030A
Other languages
Japanese (ja)
Other versions
JP2012072483A (en
Inventor
康勝 佐々木
博 織田
侑基 田中
禎保 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010233030A priority Critical patent/JP5587728B2/en
Publication of JP2012072483A publication Critical patent/JP2012072483A/en
Application granted granted Critical
Publication of JP5587728B2 publication Critical patent/JP5587728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、インジウム及び錫の回収方法に関し、特に、酸化インジウムを含有する物質、特に酸化インジウム−酸化錫(以下、ITOと略称)ターゲットスクラップなどのインジウム及び錫含有塊状物から、金属インジウム及び錫を回収する方法に関する。  The present invention relates to a method for recovering indium and tin, and in particular, metal indium and tin from indium and tin-containing masses such as indium oxide-containing materials, particularly indium oxide-tin oxide (hereinafter referred to as ITO) target scrap. It is related with the method of collect | recovering.

近年の液晶技術の急速な進展により、液晶の透明導電膜やガスセンサー等として使用されるITO膜の需要は著しく増加しており、このITOの膜の製造原料として使用されるITOターゲット材の需要は増大している。
これに伴い、ITO用のスパッタリングターゲットを用いて透明導電性薄膜を製造する際には、ターゲットの消耗は均一に進行するわけではないため、消耗の激しい部分がパッキングプレートに達する前にスパッタリングを停止しなければならない。このため、ターゲット全量を使いきることは出来ず、かなりの部分がスクラップとなる。
Due to the rapid development of liquid crystal technology in recent years, the demand for ITO films used as liquid crystal transparent conductive films and gas sensors has increased remarkably, and the demand for ITO target materials used as raw materials for the production of ITO films. Is increasing.
Along with this, when manufacturing a transparent conductive thin film using a sputtering target for ITO, the target consumption does not progress uniformly, so the sputtering is stopped before the heavily consumed part reaches the packing plate. Must. For this reason, the entire amount of the target cannot be used up, and a considerable part becomes scrap.

従来、ITOターゲットスクラップなどのインジウム含有物からインジウムを回収する方法としては、粉砕後、酸溶解法や溶媒抽出、イオン交換法などの湿式精錬による方法の組み合わせが一般的である。
例えば、ITOスクラップの研磨粉を塩酸溶液にて洗浄及び粉砕後、硝酸に溶解後、溶解液に硫化水素を通じて、亜鉛、錫、鉛、銅など不純物を硫化して沈殿除去した後、これらにアンモニアを加えて中和し、水酸化インジウムとして回収する方法である。
更に、他の方法では、特許第4210715号(特許文献1)のように、導電性のある酸化物スクラップを、極性を周期的に反転して電解して、水酸化物を回収することを記載している。 非常に簡便で原料純度を維持したままの有望な方法である。
また、近年の環境問題にも対応した粉砕を介さない処理としても有効な方法ともなっている。
しかし、生成する金属水酸化物は該金属酸化物と異なり導電性がない。そのため、系内に生成した水酸化物がある一定以上増加すると電解に不具合を生じる問題がある。バッチ処理することで回避できるが、生産性が悪くなる欠点がある。
更に、ITOの端材をバスケット形状の構造体電極に、追い入れしないといけない。また、ITOの端材に電流を流すため、電極(Pt線)が劣化する。更には、上記バスケット電解であるため、電槽内、電極内での電流バラツキが大きい。等の問題があった。
特許文献2では、溶媒抽出法を利用した方法の記載があるが、この方法は、ITOターゲット屑を硝酸に溶解して硝酸インジウムとし、これからアルキルエステル系抽出剤を用いてインジウムイオンを溶媒抽出し、抽出剤を代えて抽出および逆抽出を繰り返すため工程が煩雑になり、処理時間が長引く欠点がある。
別の方法としては、例えばITOスクラップの研磨粉を洗浄及び粉砕後、硝酸に溶解し、溶解液に硫化水素を通じて、亜鉛、錫、鉛、銅など不純物を硫化して沈殿除去した後、これらにアンモニアを加えて中和し、水酸化インジウムとして回収する方法である。しかし、この方法によって得られた水酸化インジウムは濾過性が悪く操作に長時間を要し、Si、Al等の不純物が多く、また生成する水酸化インジウムはその中和条件及び熟成条件等により、粒度や粒度分布が変動するため、その後ITOターゲットを製造する際に、ITOターゲットの特性を安定して維持できないという問題があった。
また、特許文献3においては、ITOスクラップ研磨粉を塩酸により溶解後pHを調整し、溶解液中に含まれる錫を水酸化錫として回収する方法があるが、工程が増え設備が大きくなり処理時間が長くなるという欠点がある。
その他にも、上記の方法はいずれも工程が多く、また、操作も複雑であるという問題があった。本発明の目的は、酸化インジウムと酸化錫を含有する物質から容易にかつ高純度のインジウム、及び錫を回収する方法を開発することである。
特許第4210715号 特開平8−91838号 特開2002−69684
Conventionally, as a method for recovering indium from an indium-containing material such as an ITO target scrap, a combination of methods such as acid dissolution method, solvent extraction, ion exchange method and the like after pulverization is generally used.
For example, after polishing and grinding ITO scrap polishing powder with hydrochloric acid solution, dissolving in nitric acid, hydrogen sulfide is passed through the solution, and impurities such as zinc, tin, lead, copper are sulfidized and removed, and then ammonia is added to these. Is neutralized and recovered as indium hydroxide.
Furthermore, in another method, as disclosed in Japanese Patent No. 4210715 (Patent Document 1), a conductive oxide scrap is electrolyzed by periodically reversing the polarity to collect hydroxide. doing. This is a promising method that is very simple and maintains raw material purity.
Moreover, it is also an effective method as a treatment not involving pulverization that can cope with recent environmental problems.
However, unlike the metal oxide, the generated metal hydroxide is not electrically conductive. For this reason, there is a problem that a problem occurs in electrolysis when the amount of hydroxide generated in the system increases beyond a certain level. Although it can be avoided by batch processing, there is a drawback that productivity is deteriorated.
Furthermore, the end material of ITO must be driven into the basket-shaped structure electrode. In addition, since current flows through the ITO end material, the electrode (Pt line) deteriorates. Furthermore, because of the basket electrolysis, there is a large current variation in the battery case and the electrode. There was a problem such as.
In Patent Document 2, there is a description of a method using a solvent extraction method. In this method, ITO target waste is dissolved in nitric acid to form indium nitrate, and then indium ions are solvent extracted using an alkyl ester-based extractant. However, since the extraction and the reverse extraction are repeated by replacing the extractant, there are disadvantages that the process becomes complicated and the processing time is prolonged.
As another method, for example, after cleaning and pulverizing the ITO scrap polishing powder, it is dissolved in nitric acid, hydrogen sulfide is passed through the solution, and impurities such as zinc, tin, lead, copper are sulfided and removed by precipitation. In this method, ammonia is added to neutralize and recover as indium hydroxide. However, indium hydroxide obtained by this method has poor filterability and takes a long time to operate, and there are many impurities such as Si, Al, etc., and indium hydroxide to be produced depends on its neutralization conditions and aging conditions, etc. Since the particle size and the particle size distribution fluctuate, there is a problem that the characteristics of the ITO target cannot be stably maintained when the ITO target is manufactured thereafter.
In Patent Document 3, there is a method of adjusting the pH after dissolving the ITO scrap polishing powder with hydrochloric acid and recovering tin contained in the solution as tin hydroxide. Has the disadvantage of becoming longer.
In addition, each of the above methods has many problems and complicated operations. An object of the present invention is to develop a method for easily recovering high-purity indium and tin from a substance containing indium oxide and tin oxide.
Japanese Patent No. 4210715 JP-A-8-91838 JP 2002-69684 A

しかし、この方法の場合、ITOターゲットスクラップを粉砕する工程や粉状物を取り扱うため、作業環境が悪く、吸引すると人体に悪影響を及ぼす。また、粉状物を取り扱うことによって得られた水酸化インジウムはろ過性が悪く、操作に時間を要し、Si、Al等の不純物が多く、又、生成する水酸化インジウムはその中和条件及び熟成条件等により、粒径、粒度分布等が変動するため、その後、ITOを製造する際にITOの特性を完全に均一化できないという問題があった。更に、ITO中に含有する錫は回収されず、産業廃棄物として委託処理するため、コストを要していた。その他にも、上記の方法はいずれも工程が多く、また、操作も複雑であるという問題があった。本発明の目的は、酸化インジウムと酸化錫を含有する物質から容易にかつ高純度のインジウム、及び粗錫を回収する方法を開発することである。  However, in the case of this method, since the ITO target scrap is pulverized and a powdery material is handled, the working environment is bad, and if it is sucked, the human body is adversely affected. Further, indium hydroxide obtained by handling the powdery substance has poor filterability and requires time for operation, and there are many impurities such as Si, Al, etc. In addition, the indium hydroxide to be produced has its neutralization conditions and Since the particle size, particle size distribution, etc. fluctuate depending on the aging conditions and the like, there has been a problem that the properties of ITO cannot be completely uniformed when manufacturing ITO thereafter. Furthermore, since the tin contained in the ITO is not recovered and is consigned as industrial waste, costs are required. In addition, each of the above methods has many problems and complicated operations. An object of the present invention is to develop a method for easily recovering high purity indium and crude tin from a material containing indium oxide and tin oxide.

本発明者等は、上記の課題を解決したものであり、
(1)ITOスクラップ研磨粉を塩酸で溶解し、インジウムとスズの大部分をろ液に溶解し、該溶液をろ過し、
その後、苛性ソーダ濃度2〜3mol/Lになるよう苛性ソーダを添加し、Inを水酸化Inとして中和することにより、前記浸出液をpH14以上とした後のろ過により、Inを水酸化Inとして残渣中に回収し、残りのスズを液中に再溶解し、ITO中のInとSnを分離するIn及びSnの回収方法。
(2)上記(1)に記載のIn及びSnの回収方法において、水酸化Inの粒径が、平均1μmかつ標準偏差が0.2〜0.25であるIn及びSnの回収方法。
)上記(1)または(2)に記載のIn及びSnの回収方法において、pH14以上とした後のろ過にて、水酸化Inを残渣として回収した後のろ液に、ITOからのSnの多くを含むIn及びSnの回収方法。
(4)(1)〜(3)のいずれかに記載のIn及びSnの回収方法において、前記苛性ソーダ添加による中和を、液温60〜80℃にて行うことを特徴とするIn及びSnの回収方法。
を提供する。
The inventors have solved the above problems,
(1) Dissolve ITO scrap polishing powder with hydrochloric acid, dissolve most of indium and tin in the filtrate, filter the solution,
Thereafter, caustic soda is added to a concentration of 2 to 3 mol / L, and by neutralizing In as hydroxide In, the leaching solution is adjusted to pH 14 or higher, and filtration is performed to make In as hydroxide In and into the residue. A method for recovering In and Sn, in which the remaining tin is redissolved in a liquid and In and Sn in ITO are separated.
(2 ) The method for recovering In and Sn according to the above (1 ), wherein the particle size of In hydroxide is 1 μm on average and the standard deviation is 0.2 to 0.25.
( 3 ) In the method for recovering In and Sn as described in (1) or (2) above, the filtrate after recovering In hydroxide as a residue by filtration after adjusting the pH to 14 or higher is added to Sn from ITO. Recovery method for In and Sn containing a large amount of
(4) In the method for recovering In and Sn according to any one of (1) to (3), neutralization by addition of the caustic soda is performed at a liquid temperature of 60 to 80 ° C. Collection method.
I will provide a.

本発明によれば、以下の効果を得ることができる。
(1)容易にITO中のInとSnが分離できる。
(2)平均粒径が、小さくかつ粒径がそろっている為、水酸化Inが、ろ過し易くかつ再溶解し易い。
According to the present invention, the following effects can be obtained.
(1) In and Sn in ITO can be easily separated.
(2) Since the average particle diameter is small and the particle diameters are uniform, In hydroxide is easy to filter and redissolve easily.

本発明の一態様であるITOスクラップ研磨粉の処理フローシート。The processing flow sheet of the ITO scrap polishing powder which is 1 aspect of this invention.

本発明にする原料の酸化インジウムと酸化インジウムを含有する物質として、特に限定するものはないが、例えば、ITOターゲットスクラップなどのような、酸化錫を7〜20%程度含んだ酸化インジウム−酸化錫塊状物が用いられる。  The material containing indium oxide and indium oxide as raw materials according to the present invention is not particularly limited. For example, indium oxide-tin oxide containing about 7 to 20% of tin oxide such as ITO target scrap. A lump is used.

次に、未粉砕のITOターゲット屑を解砕した。解砕には、クラッシァーミル、ボールミル等が使用される。 該粉砕により、溶解可能な粒度に粉砕する。
その粒度は、50μm以下が好ましい。溶解がスムーズになされるからである。
Next, unground ITO target scraps were crushed. For crushing, a crusher mill, a ball mill or the like is used. By this pulverization, it is pulverized to a soluble particle size.
The particle size is preferably 50 μm or less. This is because dissolution is performed smoothly.

(塩酸溶解)
粉砕した、この粉末を塩酸により溶解する。 塩酸の濃度は、4から8mol/Lである。
In,Snの溶解が、好ましく出来るからである。 より好ましくは、5.5から6.5mol/Lである。 塩酸と上記粉末との割合は、05から0.2ITO粉砕粉kg/塩酸Lである。
粉砕粉を塩酸溶液に投入し、50から80℃に加温する。加温後、2から8時間攪拌をしつつ、行う。
溶解が十分された後、ろ過機等により、固液分離する。
ほとんどのインジウム、スズが、溶解された。
残渣中には、未溶解部分が、多少存在した。
(Hydrochloric acid dissolution)
The ground powder is dissolved with hydrochloric acid. The concentration of hydrochloric acid is 4 to 8 mol / L.
This is because dissolution of In and Sn can be preferably performed. More preferably, it is 5.5 to 6.5 mol / L. The ratio of hydrochloric acid to the above powder is 05 to 0.2 ITO ground powder kg / hydrochloric acid L.
The ground powder is put into a hydrochloric acid solution and heated to 50 to 80 ° C. After warming, it is carried out with stirring for 2 to 8 hours.
After dissolution is sufficient, solid-liquid separation is performed with a filter or the like.
Most indium and tin were dissolved.
There were some undissolved parts in the residue.

(アルカリ中和)
上記、浸出液をアルカリ中和する。
強アルカリにより、中和するpH=14以上である。 アルカリ剤としては、苛性ソーダ、水酸化カルシウム等を使用する。 例えば、苛性ソーダであれば、その濃度は、2〜3mol/Lになるようにする。
上記浸出液をろ過し、ろ液と残渣をえる。
この際、液温度は、60〜80℃とする。反応を促進するためである。
残渣には、インジウムが、水酸化Inとして回収される。
ろ液中には、錫は90%以上が液に再浸出する。
その時の水酸化Inの平均粒径は、1.0μm前後と極めて、細かい粒度であり、ろ過性が極めて良い。
(Alkali neutralization)
The leachate is neutralized with alkali.
The pH to be neutralized by strong alkali is 14 or more. As the alkaline agent, caustic soda, calcium hydroxide or the like is used. For example, in the case of caustic soda, the concentration is set to 2 to 3 mol / L.
The leachate is filtered to obtain filtrate and residue.
At this time, the liquid temperature is set to 60 to 80 ° C. This is to promote the reaction.
In the residue, indium is recovered as In hydroxide.
In the filtrate, 90% or more of tin re-leaches into the liquid.
At that time, the average particle diameter of In hydroxide is as fine as about 1.0 μm, and the filterability is very good.

以下、実施例について、説明する。Examples will be described below.

未粉砕のITOターゲット屑を解砕した後に、粉砕して50μm以下に粉砕して粉末を得た。
(塩酸溶解)
この粉末、75kgを塩酸6mol/Lの溶液700Lに装入して、60℃に加温して、5時間攪拌した後、固液分離した。
In濃度82g/L、Sn濃度6.8g/Lの浸出液670Lと、未浸出残渣3kg−wetを回収した。
(アルカリ中和)
上記浸出液をアルカリで、pH=14以上で中和した。
この浸出液中のInは、水酸化Inとして残渣中に回収した。
錫は90%以上が液に、再浸出するまで、水酸化ナトリウムを添加して60〜80℃の温度範囲内でアルカリ中和した。
その後、濾過を行い、水酸化In92kg−wetの残渣と、Sn濃度4g/Lのアルカリ中和濾液1050L回収した。
その時の水酸化Inの平均粒径は1.072μm、標準偏差0.238だった。
After crushing uncrushed ITO target waste, it was pulverized to 50 μm or less to obtain a powder.
(Hydrochloric acid dissolution)
75 kg of this powder was charged into 700 L of a 6 mol / L hydrochloric acid solution, heated to 60 ° C., stirred for 5 hours, and then solid-liquid separated.
A leachate 670L having an In concentration of 82 g / L and a Sn concentration of 6.8 g / L and an unleached residue of 3 kg-wet were recovered.
(Alkali neutralization)
The leachate was neutralized with alkali at pH = 14 or higher.
In in the leachate was recovered in the residue as Indium hydroxide.
Sodium hydroxide was alkali neutralized within a temperature range of 60 to 80 ° C. until 90% or more of the tin was re-leached into the liquid.
Thereafter, filtration was performed to recover 1050 L of a residue of hydroxylated In92 kg-wet and an alkali neutralized filtrate having an Sn concentration of 4 g / L.
At that time, the average particle diameter of In hydroxide was 1.072 μm, and the standard deviation was 0.238.

(比較例1)
上記浸出液をpH10.0で中和したところ、アルカリ中和濾液中のSn濃度199mg/L、水酸化Inの平均粒径は5.138μm、標準偏差は0.427だった。
粒度が粗く、ろ過性が極めて悪かった。
又、アルカリろ液中のスズが、高く、インジウムとの分離が極めて悪かった。
(Comparative Example 1)
When the leachate was neutralized at pH 10.0, the Sn concentration in the alkali neutralized filtrate was 199 mg / L, the average particle size of In hydroxide was 5.138 μm, and the standard deviation was 0.427.
The particle size was coarse and the filterability was extremely poor.
Further, tin in the alkaline filtrate was high, and separation from indium was extremely poor.

Claims (4)

ITOスクラップ研磨粉を塩酸で溶解し、インジウムとスズの大部分をろ液に溶解し、該溶液をろ過し、
その後、苛性ソーダ濃度2〜3mol/Lになるよう苛性ソーダを添加し、Inを水酸化Inとして中和することにより、前記浸出液をpH14以上とした後のろ過により、Inを水酸化Inとして残渣中に回収し、残りのスズを液中に再溶解し、ITO中のInとSnを分離することを特徴とするIn及びSnの回収方法。
Dissolve the ITO scrap polishing powder with hydrochloric acid, dissolve most of indium and tin in the filtrate, filter the solution,
Thereafter, caustic soda is added to a concentration of 2 to 3 mol / L, and by neutralizing In as hydroxide In, the leaching solution is adjusted to pH 14 or higher, and filtration is performed to make In as hydroxide In and into the residue. A method for recovering In and Sn, comprising recovering and re-dissolving the remaining tin in the liquid to separate In and Sn in the ITO.
請求項1に記載のIn及びSnの回収方法において、水酸化Inの粒径が、平均1μmかつ標準偏差が0.2〜0.25であること特徴とするIn及びSnの回収方法。 In the method of recovering In and Sn according to claim 1, the particle size of the hydroxide In the method for recovering In and Sn, wherein the average 1μm and a standard deviation of 0.2 to 0.25. 請求項1または2に記載のIn及びSnの回収方法において、pH14以上とした後のろ過にて、水酸化Inを残渣として回収した後のろ液に、ITOからのSnの多くを含むことを特徴とするIn及びSnの回収方法。 The method for recovering In and Sn according to claim 1 or 2 , wherein the filtrate after recovering In hydroxide as a residue by filtration after adjusting the pH to 14 or more contains a large amount of Sn from ITO. A characteristic method for recovering In and Sn. 請求項1〜3のいずれか一項に記載のIn及びSnの回収方法において、前記苛性ソーダ添加による中和を、液温60〜80℃にて行うことを特徴とするIn及びSnの回収方法。The method for recovering In and Sn according to any one of claims 1 to 3, wherein the neutralization by addition of the caustic soda is performed at a liquid temperature of 60 to 80 ° C.
JP2010233030A 2010-09-29 2010-09-29 In and Sn recovery methods Expired - Fee Related JP5587728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233030A JP5587728B2 (en) 2010-09-29 2010-09-29 In and Sn recovery methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233030A JP5587728B2 (en) 2010-09-29 2010-09-29 In and Sn recovery methods

Publications (2)

Publication Number Publication Date
JP2012072483A JP2012072483A (en) 2012-04-12
JP5587728B2 true JP5587728B2 (en) 2014-09-10

Family

ID=46168952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233030A Expired - Fee Related JP5587728B2 (en) 2010-09-29 2010-09-29 In and Sn recovery methods

Country Status (1)

Country Link
JP (1) JP5587728B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039798A (en) * 2005-06-30 2007-02-15 Mitsubishi Materials Corp Method for recovering indium, and its use
JP2009035808A (en) * 2007-07-12 2009-02-19 Mitsubishi Materials Corp Method for separating tin from coexistence metal
JP5791884B2 (en) * 2010-09-27 2015-10-07 Jx日鉱日石金属株式会社 Method for recovering indium and tin

Also Published As

Publication number Publication date
JP2012072483A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5071700B2 (en) Indium recovery method
CA2666230C (en) Method for collection of valuable metal from ito scrap
US8308934B2 (en) Method of recovering valuable metals from IZO scrap
JP5913639B2 (en) Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture
US20150233004A1 (en) Method of selective recovery of valuable metals from mixed metal oxides
JP4999058B2 (en) Method for recovering indium from indium-containing material
JP5217480B2 (en) Recovery method of crude indium
KR101054840B1 (en) Method for preparing tin oxide powder recycled indium tin oxide waste scrap
KR101528598B1 (en) A selectively recovery method for indium & gallium from the mixed indium, gallium and znic scraps
JP2011208216A (en) Method of recovering indium and tin
JP5791884B2 (en) Method for recovering indium and tin
JP5283403B2 (en) Indium recovery method
JP5587728B2 (en) In and Sn recovery methods
JP5339762B2 (en) Method for producing indium metal
JP5219968B2 (en) Method for electrolysis of scrap containing conductive metal oxide
KR101232745B1 (en) Method for recycling indium
JP5453068B2 (en) Rare metal production method
JP2001040436A (en) Method for recovering and refining indium
JP5177471B2 (en) Method for recovering indium hydroxide or indium
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP4914975B2 (en) Manufacturing method of high purity indium metal
KR20170027588A (en) Production of High-purity Indium Oxide from Indium Scrape
JP2012153985A (en) Electrolytic pulverization method for scrap containing conductive metal oxide
JP2001040435A (en) Method for recovering and refining indium
JP2012158822A (en) METHOD FOR RECOVERING In

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5587728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees