JP5587593B2 - Method for producing copper alloy - Google Patents

Method for producing copper alloy Download PDF

Info

Publication number
JP5587593B2
JP5587593B2 JP2009257557A JP2009257557A JP5587593B2 JP 5587593 B2 JP5587593 B2 JP 5587593B2 JP 2009257557 A JP2009257557 A JP 2009257557A JP 2009257557 A JP2009257557 A JP 2009257557A JP 5587593 B2 JP5587593 B2 JP 5587593B2
Authority
JP
Japan
Prior art keywords
copper alloy
sample
heat treatment
hot rolling
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009257557A
Other languages
Japanese (ja)
Other versions
JP2011102416A (en
Inventor
直太 樋上
維林 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2009257557A priority Critical patent/JP5587593B2/en
Publication of JP2011102416A publication Critical patent/JP2011102416A/en
Application granted granted Critical
Publication of JP5587593B2 publication Critical patent/JP5587593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、例えばリードフレームやコネクター等の電気・電子機器用部品に用いられる熱間加工性に優れた銅合金の製造方法に関する。   The present invention relates to a method for producing a copper alloy having excellent hot workability used for parts for electrical and electronic equipment such as lead frames and connectors.

近年の電気・電子機器の高性能化・高密度化に伴い、例えばリードフレームやコネクター等の部品に用いられる銅合金条には、より優れた導電性と強度が必要とされており、この要求に応え得る合金として、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料が知られている。   With the recent increase in performance and density of electrical and electronic equipment, for example, copper alloy strips used in parts such as lead frames and connectors are required to have better conductivity and strength. 0.01-5 mass of at least one element selected from Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag A copper alloy material containing 0.5% and the balance being Cu and inevitable impurities is known.

一方、一般に銅および銅合金には中間温度脆性と呼ばれるものが存在し、中高温域において、残留している水素等のガスの影響により、延性が著しく低下して加工が困難となり、粒界割れを起こし易くなる現象が知られている。例えばCu−Ni−Si系銅合金ではこの現象が特に顕著であり、銅合金の製造における熱間圧延に先立つ加熱過程において粒界割れを起こし、後工程である焼鈍等の熱処理によって銅合金表面にフクレ等の不良が発生し、製造歩留まりが低下してしまう恐れがある。   On the other hand, copper and copper alloys generally have a so-called brittleness at intermediate temperature, and in the middle and high temperature range, due to the effect of residual gas such as hydrogen, the ductility is remarkably lowered, making it difficult to process and intergranular cracking. There is a known phenomenon that makes it easy to cause. For example, this phenomenon is particularly prominent in Cu-Ni-Si based copper alloys, causing intergranular cracking in the heating process prior to hot rolling in the production of copper alloys, and on the surface of the copper alloy by heat treatment such as annealing, which is a subsequent process. There is a risk that defects such as blisters occur and the manufacturing yield decreases.

そこで特許文献1には、銅合金材料を溶解し、この溶湯中に含まれる水素等のガスを不活性ガスで置換することで脱ガス処理を行い、中間温度脆性を抑制する銅合金の製造方法が開示されている。   Therefore, Patent Document 1 discloses a method for producing a copper alloy that melts a copper alloy material and performs degassing treatment by substituting an inert gas for a gas such as hydrogen contained in the molten metal, thereby suppressing intermediate temperature brittleness. Is disclosed.

特開2001−73045号公報JP 2001-73045 A

しかしながら、上記特許文献1に記載の銅合金の製造方法では、粒界割れの原因となる水素等のガスの脱ガス処理を、銅合金材料を溶解させた溶湯の状態で行うか、あるいは、熱間圧延の前に銅合金材料を融点程度の温度まで加熱しなくてはならず、エネルギー効率の面で効率的でないという問題点があった。   However, in the method for producing a copper alloy described in Patent Document 1, the degassing treatment of a gas such as hydrogen that causes grain boundary cracking is performed in a molten state in which a copper alloy material is dissolved, or heat Prior to hot rolling, the copper alloy material must be heated to a temperature around the melting point, which is inefficient in terms of energy efficiency.

そこで、上記問題点に鑑み本発明の目的は、エネルギー効率よく比較的低温でもって脱ガス熱処理を効率的に行い、後工程での粒界割れの発生する恐れがないような銅合金の製造方法を提供することにある。   Accordingly, in view of the above problems, an object of the present invention is to provide a copper alloy manufacturing method that efficiently performs degassing heat treatment at a relatively low temperature with high energy efficiency and does not cause the occurrence of intergranular cracking in the subsequent process. Is to provide.

上記目的を達成するため、本発明によれば、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を合計で0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料を形成し、前記銅合金材料を300℃〜700℃で1〜3時間保持することで脱ガス熱処理を行い、脱ガス熱処理後の銅合金材料に熱間圧延、冷間圧延、熱処理を施すことによって銅合金を得る、銅合金の製造方法が提供される。
In order to achieve the above object, according to the present invention, at least one element of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag is used. Is formed in a total amount of 0.01 to 5% by mass, and the balance is Cu and an inevitable impurity copper alloy material, and the copper alloy material is held at 300 ° C. to 700 ° C. for 1 to 3 hours for degassing heat treatment A copper alloy manufacturing method is provided in which a copper alloy is obtained by performing hot rolling, cold rolling, and heat treatment on the copper alloy material after the degassing heat treatment.

また、別な観点からの本発明によれば、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を合計で0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料を形成し、前記銅合金材料を400℃〜600℃で1〜2時間保持することで脱ガス熱処理を行い、脱ガス熱処理後の銅合金材料に熱間圧延、冷間圧延、熱処理を施すことによって銅合金を得る、銅合金の製造方法が提供される。 According to another aspect of the present invention, at least one element of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag Degassing heat treatment by forming a copper alloy material containing 0.01 to 5 mass% in total , the balance being Cu and inevitable impurities, and holding the copper alloy material at 400 ° C to 600 ° C for 1 to 2 hours A copper alloy manufacturing method is provided in which a copper alloy is obtained by performing hot rolling, cold rolling, and heat treatment on the copper alloy material after the degassing heat treatment.

本発明によれば、エネルギー効率よく比較的低温でもって脱ガス熱処理を効率的に行い、後工程での粒界割れの発生する恐れがないような銅合金の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a copper alloy which performs degassing heat processing efficiently and comparatively low temperature efficiently, and does not have a possibility of generating a grain boundary crack in a post process is provided.

(a)銅合金材料の脱ガス熱処理における水素放出速度と加熱温度の関係を示すグラフである。 (b)銅合金材料の脱ガス熱処理における水素放出量と加熱温度の関係を示すグラフである。(A) It is a graph which shows the relationship between the hydrogen discharge | release rate and heating temperature in the degassing heat processing of copper alloy material. (B) It is a graph which shows the relationship between the amount of hydrogen discharge | release in the degassing heat processing of copper alloy material, and heating temperature. (a)銅合金材料の脱ガス熱処理における水素放出速度と加熱時間の関係を示すグラフである。 (b)銅合金材料の脱ガス熱処理における水素放出量と加熱時間の関係を示すグラフである。(A) It is a graph which shows the relationship between the hydrogen discharge | release rate and heating time in the degassing heat processing of copper alloy material. (B) It is a graph which shows the relationship between the amount of hydrogen discharge | release in the degassing heat processing of copper alloy material, and heating time.

以下、本発明の実施の形態について説明する。前述したように、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料には中間温度脆性と呼ばれるものが存在し、熱間圧延工程等の中高温域において、残留している水素等のガスの影響により、延性が著しく低下して加工が困難となり、粒界割れを起こし易くなる現象が知られている。また、通常、熱間圧延工程の後に、冷間圧延および熱処理の繰り返しで銅合金板材を作製するが、この熱処理後にフクレ不良の発生がみられ歩留まりを低下させることがある。   Embodiments of the present invention will be described below. As described above, 0.01 to 5% by mass of at least one element of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag. Copper alloy materials that contain Cu and inevitable impurities in the balance contain what is called intermediate temperature brittleness, and in the middle and high temperature range such as hot rolling process, due to the effect of residual gas such as hydrogen, ductility It is known that the phenomenon of remarkably lowering makes processing difficult, and easily causes grain boundary cracking. Usually, after the hot rolling process, a copper alloy sheet is produced by repeating cold rolling and heat treatment. However, after this heat treatment, the occurrence of blister defects may occur and the yield may be lowered.

従来、粒界割れやフクレ不良発生の原因となる水素等の脱ガスを行うためには、銅合金材料を融点以上の温度まで加熱し、溶解させた状態で脱ガス処理を行うことが必要とされていた。しかしながら、本発明者らは、鋭意研究の結果、銅合金材料を熱間圧延する前に、その融点温度より低い温度である300℃〜700℃、好ましくは400℃〜600℃の条件下で1〜3時間もしくは1〜2時間程度保持しておく工程を行うことによって、銅合金材料に十分な脱ガス処理が施されることを発見し、本発明の実現に至った。なお、以下では銅合金材料を、その融点温度より低い温度で保持する工程を脱ガス熱処理と呼称する。   Conventionally, in order to perform degassing such as hydrogen, which causes grain boundary cracking and blister failure, it is necessary to heat the copper alloy material to a temperature equal to or higher than the melting point and perform degassing treatment in a dissolved state. It had been. However, as a result of intensive studies, the present inventors have found that before hot rolling the copper alloy material, the temperature is lower than the melting point of 300 ° C. to 700 ° C., preferably 400 ° C. to 600 ° C. It was discovered that a sufficient degassing treatment was performed on the copper alloy material by performing the step of holding for about 3 hours or about 1 to 2 hours, thereby realizing the present invention. Hereinafter, the process of holding the copper alloy material at a temperature lower than its melting point temperature is referred to as degassing heat treatment.

図1は、本発明者らが知見した銅合金材料の脱ガス熱処理における水素放出速度と加熱温度の関係(図1(a))および水素放出量と加熱温度の関係(図1(b))を示すグラフである。なお、図1は室温から900℃まで5℃/minおよび10℃/minの昇温速度でもって昇温する条件下で銅合金材料を加熱した場合の水素放出速度および水素放出量を測定することで得られたデータである。   FIG. 1 shows the relationship between the hydrogen release rate and the heating temperature in the degassing heat treatment of the copper alloy material discovered by the present inventors (FIG. 1 (a)) and the relationship between the hydrogen release amount and the heating temperature (FIG. 1 (b)). It is a graph which shows. In addition, FIG. 1 measures the hydrogen release rate and the amount of hydrogen release when the copper alloy material is heated from room temperature to 900 ° C. at a temperature increase rate of 5 ° C./min and 10 ° C./min. It is the data obtained by.

図1(a)に示すように、加熱時の銅合金材料からの水素放出は、約200℃〜300℃に加熱した状態殻始まり、約500℃付近でピークとなり、約700℃で水素の放出は終了する。また、昇温速度が5℃/minの場合と10℃/minの場合を比較すると、水素放出速度のピーク値は5℃/minの時が10℃/minの場合に比べ半分程度の値であり、ピーク値に対応する材料の温度が約30℃程度低温側へシフトする。また、図1(b)に示すように、約700℃まで銅合金材料を加熱していくと昇温速度が5℃/minの場合も10℃/minの場合もほぼ同じ水素放出量(図1(b)中に示すように3.2wtppm)となる。また、ここで測定された約700℃まで昇温した時の水素放出量は、同じ銅合金材料の水素放出量を例えば溶解法で測定した場合の水素放出量と同等の値であることから、昇温させることによって銅合金材料から放出された水素の量は、銅合金材料に含有される水素のほぼ全量であることが推定される。   As shown in FIG. 1 (a), hydrogen release from the copper alloy material during heating starts from a shell heated to about 200 ° C. to 300 ° C., peaks at about 500 ° C., and releases hydrogen at about 700 ° C. Ends. Further, comparing the case where the temperature rising rate is 5 ° C./min and the case where it is 10 ° C./min, the peak value of the hydrogen release rate is about half of the value when the rate of 5 ° C./min is 10 ° C./min. Yes, the temperature of the material corresponding to the peak value shifts to the low temperature side by about 30 ° C. Further, as shown in FIG. 1 (b), when the copper alloy material is heated to about 700 ° C., almost the same hydrogen release amount is obtained regardless of whether the rate of temperature increase is 5 ° C./min or 10 ° C./min. 1 (b), which is 3.2 wtppm). In addition, the amount of hydrogen released when the temperature is increased to about 700 ° C. measured here is a value equivalent to the amount of hydrogen released when the amount of hydrogen released from the same copper alloy material is measured by, for example, the dissolution method. It is estimated that the amount of hydrogen released from the copper alloy material by raising the temperature is almost the total amount of hydrogen contained in the copper alloy material.

また、図2は銅合金材料の脱ガス熱処理における水素放出速度と加熱時間の関係(図2(a))および水素放出量と加熱時間の関係(図2(b))を示すグラフである。なお、図2は室温から900℃まで5℃/minおよび10℃/minの昇温速度でもって昇温する条件下で銅合金材料を異なる加熱時間でもって加熱した場合の水素放出速度および水素放出量を測定することで得られたデータである。   FIG. 2 is a graph showing the relationship between the hydrogen release rate and the heating time in the degassing heat treatment of the copper alloy material (FIG. 2A) and the relationship between the hydrogen release amount and the heating time (FIG. 2B). FIG. 2 shows the hydrogen release rate and hydrogen release when the copper alloy material is heated with different heating times under conditions where the temperature is raised from room temperature to 900 ° C. at a rate of 5 ° C./min and 10 ° C./min. It is the data obtained by measuring the quantity.

図2(a)に示すように、昇温速度が増加した場合(図2(a)中では5℃/min→10℃/min)、水素放出速度は速くなる(図2(a)中では約2倍)。また、図2(b)に示すように、昇温速度が増加した場合、水素放出速度が速くなるため水素放出終了時間については約半分程度に短縮されているが、最終的に法尾出される水素放出量は5℃/minの場合も10℃/minの場合も同程度の量となっている。   As shown in FIG. 2A, when the rate of temperature increase increases (5 ° C./min→10° C./min in FIG. 2A), the hydrogen release rate increases (in FIG. 2A). About twice). In addition, as shown in FIG. 2B, when the temperature increase rate is increased, the hydrogen release rate is increased, so that the hydrogen release end time is shortened to about half, but it is finally calculated. The amount of hydrogen released is the same in both cases of 5 ° C./min and 10 ° C./min.

即ち、図1および図2に示されるデータから昇温速度が異なる場合、水素放出終了時間は異なるものの、約750℃以上の温度域に到達すれば、昇温温度によらず、全水素放出量はほぼ同等の量となる。   That is, when the rate of temperature rise is different from the data shown in FIG. 1 and FIG. 2, although the hydrogen release end time is different, if the temperature reaches about 750 ° C. or higher, the total hydrogen release amount is independent of the temperature rise temperature. Are almost the same amount.

以上説明した知見に基づき、以下のような方法でもって、脱ガス熱処理が効率的に行われ後工程での粒界割れやフクレ不良の発生する恐れがないような銅合金が製造される。先ず、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金の原料を準備し、これらの原料を溶解させた後、鋳造を行い銅合金材料を形成する。次いで鋳造後の銅合金材料に上述した知見から得られた条件である300℃〜700℃で1〜3時間保持を行う、脱ガス熱処理を施して水素量1wtppm未満の銅合金材料が得られる。その後熱間圧延、冷間圧延と熱処理の繰り返し(ただし、熱処理とは再結晶焼鈍、低温焼鈍、溶体化処理、時効処理等を指す)を順次行うことによって水素量1wtppm未満の製品である銅合金が得られる。なお、ここでの脱ガス熱処理の条件は水素の放出が十分に行われる条件であれば適宜変更可能であり、例えば銅合金材料を400℃〜600℃の条件下で1〜2時間程度保持するような脱ガス熱処理を行うこととしても良い。   Based on the knowledge described above, a copper alloy is manufactured by the following method so that the degassing heat treatment is efficiently performed and there is no risk of occurrence of grain boundary cracking or blister failure in the subsequent process. First, it contains 0.01 to 5% by mass of at least one element of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag, After preparing the raw material of the copper alloy whose remainder is Cu and inevitable impurities and dissolving these raw materials, casting is performed to form a copper alloy material. Next, a copper alloy material having a hydrogen content of less than 1 wtppm is obtained by subjecting the copper alloy material after casting to a degassing heat treatment that is maintained for 1 to 3 hours at 300 ° C. to 700 ° C., which is the condition obtained from the above-described knowledge. Thereafter, a copper alloy that is a product with a hydrogen content of less than 1 wtppm by sequentially performing hot rolling, cold rolling and heat treatment (however, heat treatment means recrystallization annealing, low temperature annealing, solution treatment, aging treatment, etc.) Is obtained. Note that the degassing heat treatment conditions here can be appropriately changed as long as hydrogen is sufficiently released. For example, the copper alloy material is held at 400 ° C. to 600 ° C. for about 1 to 2 hours. Such degassing heat treatment may be performed.

ここで、本発明における脱ガス熱処理によって、中間脆性の発生が抑制される理由としては、従来のように900℃まで急速加熱した場合は、中間脆性温度域で鋳造中に生じた圧縮応力部に水素が集まり粒界割れを生じるが、上述したように、300℃〜700℃で1〜3時間保持した場合はこの圧縮応力部が緩和されるために水素中間脆性を抑制できると考えられる。   Here, the reason why the generation of intermediate brittleness is suppressed by the degassing heat treatment in the present invention is that, when heated rapidly to 900 ° C. as in the prior art, the compressive stress portion generated during casting in the intermediate brittle temperature range. Although hydrogen gathers and causes intergranular cracking, as described above, it is considered that when held at 300 ° C. to 700 ° C. for 1 to 3 hours, this compressive stress portion is relaxed, so that hydrogen intermediate brittleness can be suppressed.

脱ガス熱処理を行うことで製造された銅合金は上記知見から明らかなように、脱ガス熱処理時に銅合金材料に含有される水素のほぼ全量が放出されているため、後工程の熱処理時に銅合金(材料)表面にフクレ等の不良が発生してしまう恐れが軽減される。そのため、製品として良質な銅合金を得ることが可能となる。また、従来行われていた、銅合金材料を溶解させた溶湯の状態で脱ガス熱処理を行う場合に比べ、本実施の形態では約300℃〜700℃の低温で銅合金材料を溶解させずに脱ガス熱処理を行うため、エネルギー効率の面で非常に優れている。また、従来のように溶湯状態での脱ガス熱処理を十分に行うためには、ある程度の真空雰囲気で行う必要があるため、設備コストの面でコスト高であり、本実施の形態で行う脱ガス熱処理はコストの面でも従来の方法に比べ優れている。
なお、脱ガス熱処理温度までの昇温、脱ガス熱処理から熱間圧延温度までの昇温については通常2〜50℃/min程度であるが特に規定する必要はない。
As is clear from the above knowledge, the copper alloy produced by performing the degassing heat treatment releases almost all of the hydrogen contained in the copper alloy material during the degassing heat treatment. (Material) The risk of defects such as blistering on the surface is reduced. Therefore, it becomes possible to obtain a high-quality copper alloy as a product. Moreover, compared with the case where the degassing heat treatment is performed in the state of the molten metal in which the copper alloy material is dissolved, which is conventionally performed, the present embodiment does not dissolve the copper alloy material at a low temperature of about 300 ° C. to 700 ° C. Since degassing heat treatment is performed, it is very excellent in terms of energy efficiency. In addition, in order to sufficiently perform the degassing heat treatment in the molten state as in the prior art, it is necessary to perform in a certain vacuum atmosphere, which is expensive in terms of equipment cost, and degassing performed in this embodiment Heat treatment is superior to conventional methods in terms of cost.
The temperature rise to the degassing heat treatment temperature and the temperature rise from the degassing heat treatment to the hot rolling temperature are usually about 2 to 50 ° C./min, but need not be specified.

本発明の脱ガス処理による銅合金の製造方法は、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料に適用される。
合金系としては、Ni−Si系銅合金(コルソン合金)、Fe−P系銅合金、Fe−Mg−P系銅合金、Mg−P系銅合金、ベリリウム銅、チタン銅、Cr−Zr系銅合金などが好ましい。これらの合金系の元素に加えて合計で5質量%を超えない添加元素が加わっても良い。
上記合金は、コネクタやリードフレームなどの電子材料用途として使用されるが、Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素が0.1質量%未満であると、強度やばね性などが電子材料として低すぎるおそれがある。また、5質量%を超えると導電率や熱伝導率が低下が大きく、上記電子材料用途として使用される範囲が限られる。Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を0.5〜5質量%含有することがさらに好ましい
The method for producing a copper alloy by degassing treatment of the present invention comprises at least one of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag. It is applied to a copper alloy material containing 0.01 to 5% by mass of elements and the balance being Cu and inevitable impurities.
Alloys include Ni-Si copper alloy (Corson alloy), Fe-P copper alloy, Fe-Mg-P copper alloy, Mg-P copper alloy, beryllium copper, titanium copper, Cr-Zr copper Alloys are preferred. In addition to these alloy elements, additional elements not exceeding 5 mass% in total may be added.
The above alloys are used for electronic materials such as connectors and lead frames. Among these, Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, Ag If at least one element is less than 0.1% by mass, the strength and springiness may be too low as an electronic material. On the other hand, if it exceeds 5% by mass, the electrical conductivity and thermal conductivity are greatly reduced, and the range used for the electronic material is limited. It further contains 0.5 to 5% by mass of at least one element selected from Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag. preferable

以上、本発明の実施の形態の一例を説明したが、本発明は上記の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to said form. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

質量%で組成が1.6%Ni−0.4%Si−0.5%Sn−0.4%Zn−残部Cuである銅合金材料を溶解鋳造した後、鋳塊を寸法30mm×50mm×50mmに切り出し、以下の温度保持条件で脱ガス熱処理を行った。そして脱ガス熱処理後の水素濃度を、鋳塊の中心部(約5mm角)を切り出して熱伝導度法(堀場製作所製 EMGA621W型)で測定した。   After melting and casting a copper alloy material having a composition of 1.6% Ni-0.4% Si-0.5% Sn-0.4% Zn-remainder Cu in mass%, the ingot is dimensioned to 30 mm × 50 mm × It cut out to 50 mm and degassed heat processing was performed on the following temperature holding conditions. Then, the hydrogen concentration after the degassing heat treatment was measured by a thermal conductivity method (EMGA621W type manufactured by Horiba, Ltd.) by cutting out the center part (about 5 mm square) of the ingot.

(実施例1)
試料(上記鋳塊)を室温の状態から10℃/minの昇温速度でもって500℃まで昇温させ、その500℃の状態で試料を60min保持することで脱ガス熱処理を行った。そして脱ガス熱処理後の試料を3.3℃/minで900℃まで昇温させ、次いで熱間圧延機で30mmから10mmまで圧延した。以上述べた工程を経た試料の水素濃度を測定した結果0.6wtppmであった。
その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。なお、脱ガス熱処理後、熱間圧延を行わずに水冷した試料を作製して水素濃度を測定したが、上記熱間圧延後とほとんど(0.5wtppm)変わらなかった。
Example 1
The sample (the above ingot) was heated from a room temperature state to 500 ° C. at a temperature increase rate of 10 ° C./min, and the sample was held at the 500 ° C. for 60 minutes to perform degassing heat treatment. The sample after the degassing heat treatment was heated to 900 ° C. at 3.3 ° C./min, and then rolled from 30 mm to 10 mm with a hot rolling mill. It was 0.6 wtppm as a result of measuring the hydrogen concentration of the sample which passed through the process described above.
Thereafter, it was rolled to 0.2 mm by repeating cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment. Note that, after the degassing heat treatment, a water-cooled sample was prepared without performing hot rolling, and the hydrogen concentration was measured. However, the hydrogen concentration was almost the same as that after the hot rolling (0.5 wtppm).

(実施例2)
試料(上記鋳塊)を室温の状態から10℃/minの昇温速度でもって500℃まで昇温させ、その500℃の状態で試料を120min保持することで脱ガス熱処理を行った。そして脱ガス熱処理後の試料を5℃/minで900℃まで昇温させ、次いで熱間圧延機で30mmから10mmまで圧延した。以上述べた工程を経た試料の水素濃度を測定した結果0.5wtppmであった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。なお、脱ガス熱処理後、熱間圧延を行わずに水冷した試料を作製して水素濃度を測定したが、上記熱間圧延後とほとんど(0.5wtppm)変わらなかった。
(Example 2)
The sample (the above ingot) was heated from a room temperature state to 500 ° C. at a rate of temperature increase of 10 ° C./min, and degassing heat treatment was performed by holding the sample at the 500 ° C. state for 120 min. The sample after the degassing heat treatment was heated to 900 ° C. at 5 ° C./min, and then rolled from 30 mm to 10 mm with a hot rolling mill. It was 0.5 wtppm as a result of measuring the hydrogen concentration of the sample which passed through the process described above.
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment. Note that, after the degassing heat treatment, a water-cooled sample was prepared without performing hot rolling, and the hydrogen concentration was measured. However, the hydrogen concentration was almost the same as that after the hot rolling (0.5 wtppm).

(比較例1)
比較例1として、脱ガス熱処理等を行う前の試料(上記鋳塊)の水素濃度を測定した結果、1.4wtppmであった。
この試料を室温の状態から10℃/minの昇温速度でもって900℃まで昇温させ、次いで熱間圧延機で30mmから10mmまで圧延したところ、熱間圧延で試料全面に割れが発生した。以上述べた工程を経た試料(熱間圧延後)の水素濃度を測定した結果1.0wtppmであった。
(Comparative Example 1)
As a comparative example 1, as a result of measuring the hydrogen concentration of the sample (the above ingot) before performing the degassing heat treatment or the like, it was 1.4 wtppm.
When this sample was heated from room temperature to 900 ° C. at a temperature increase rate of 10 ° C./min and then rolled from 30 mm to 10 mm with a hot rolling mill, cracking occurred on the entire surface of the sample by hot rolling. It was 1.0 wtppm as a result of measuring the hydrogen concentration of the sample (after hot rolling) which passed through the above-mentioned process.

(比較例2)
比較例2として、試料(上記鋳塊)を室温の状態から10℃/minの昇温速度でもって900℃まで昇温させ3時間保持した後(すなわち途中の温度での保持することなしで、高温で脱ガス熱処理を行った。)、次いでこの試料を熱間圧延機で30mmから10mmまで圧延したところ、熱間圧延で圧延方向に周期的な割れが発生した。以上述べた工程を経た試料の水素濃度を測定した結果0.5wtppmであった。
(Comparative Example 2)
As Comparative Example 2, the sample (the above ingot) was heated from a room temperature state to 900 ° C. at a heating rate of 10 ° C./min and held for 3 hours (that is, without holding at an intermediate temperature) Degassing heat treatment was performed at a high temperature.) Then, when this sample was rolled from 30 mm to 10 mm with a hot rolling mill, periodic cracks occurred in the rolling direction by hot rolling. It was 0.5 wtppm as a result of measuring the hydrogen concentration of the sample which passed through the process described above.

(実施例3)
質量%で組成が1.9%Be−0.4%Co−残部Cuである銅合金原料を溶解鋳造して銅合金材を得、650℃で2時間保持する以外は実施例2と同様の方法で脱ガス熱処理を行った。そして脱ガス熱処理後の試料を5℃/minで900℃まで昇温させ、次いで熱間圧延機で30mmから10mmまで圧延した。以上述べた工程を経た試料の水素濃度を測定した結果0.5wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 3)
A copper alloy material having a composition of 1.9% Be-0.4% Co-remainder Cu by mass is cast by melting to obtain a copper alloy material, which is the same as in Example 2 except that it is held at 650 ° C for 2 hours. The degassing heat treatment was performed by this method. The sample after the degassing heat treatment was heated to 900 ° C. at 5 ° C./min, and then rolled from 30 mm to 10 mm with a hot rolling mill. It was 0.5 wtppm (sample center part) as a result of measuring the hydrogen concentration of the sample which passed through the process described above.
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例4)
質量%で組成が0.4%Be−1.9%Ni−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.6wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
Example 4
A sample after hot rolling was produced in the same manner as in Example 3 except that a copper alloy material having a composition of 0.4% Be-1.9% Ni-remainder Cu was melt cast. The hydrogen concentration of this sample was measured and found to be 0.6 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例5)
質量%で組成が0.3%Be−2.0%Ni−0.5%Al−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.7wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 5)
Except for melting and casting a copper alloy material having a composition of 0.3% Be-2.0% Ni-0.5% Al-remainder Cu in mass%, it was subjected to hot rolling in the same manner as in Example 3. A sample was prepared. As a result of measuring the hydrogen concentration of this sample, it was 0.7 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例6)
質量%で組成が2.3%Fe−0.03%P−残部Cuである銅合金原料を溶解鋳造して銅合金材料を得、400℃で2時間保持する以外は、実施例2と同様の方法で脱ガス熱処理を行った。そして脱ガス熱処理後の試料を5℃/minで900℃まで昇温させ、次いで熱間圧延機で30mmから10mmまで圧延した。以上述べた工程を経た試料の水素濃度を測定した結果0.5wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 6)
A copper alloy material having a composition of 2.3% Fe-0.03% P-remainder Cu in mass% is melt-cast to obtain a copper alloy material, which is the same as Example 2 except that the material is held at 400 ° C. for 2 hours. The degassing heat treatment was performed by the method described above. The sample after the degassing heat treatment was heated to 900 ° C. at 5 ° C./min, and then rolled from 30 mm to 10 mm with a hot rolling mill. It was 0.5 wtppm (sample center part) as a result of measuring the hydrogen concentration of the sample which passed through the process described above.
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例7)
質量%で組成が1.8%Ni−0.5%Si−0.5%Sn−1.0%Zn−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.6wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 7)
The same method as in Example 3 except that a copper alloy material having a composition of 1.8% Ni-0.5% Si-0.5% Sn-1.0% Zn-remainder Cu was melt cast. A sample after hot rolling was prepared. The hydrogen concentration of this sample was measured and found to be 0.6 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例8)
質量%で組成が2.7%Ni−0.7%Si−0.5%Sn−0.5%Zn−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.7wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 8)
The same method as in Example 3 except that a copper alloy material having a composition of 2.7% Ni-0.7% Si-0.5% Sn-0.5% Zn-remainder Cu was melt cast. A sample after hot rolling was prepared. As a result of measuring the hydrogen concentration of this sample, it was 0.7 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例9)
質量%で組成が1.8%Ni−0.4%Si−0.1%Sn−1.1%Zn−0.01%Mg−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.6wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
Example 9
Except for melting and casting a copper alloy material having a composition of 1.8% Ni-0.4% Si-0.1% Sn-1.1% Zn-0.01% Mg-remainder Cu in mass%. A sample after hot rolling was produced in the same manner as in Example 3. The hydrogen concentration of this sample was measured and found to be 0.6 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例10)
質量%で組成が0.22%Fe−0.13%Mg−0.10%P−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.6wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 10)
Except for melting and casting a copper alloy material having a composition of 0.22% Fe-0.13% Mg-0.10% P-remainder Cu in mass%, it was subjected to hot rolling in the same manner as in Example 3. A sample was prepared. The hydrogen concentration of this sample was measured and found to be 0.6 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例11)
質量%で組成が0.7%Mg−0.005%P−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.6wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 11)
A sample after hot rolling was produced in the same manner as in Example 3 except that a copper alloy material having a composition of 0.7% Mg-0.005% P-remainder Cu was melt cast. The hydrogen concentration of this sample was measured and found to be 0.6 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例12)
質量%で組成が3.2%Ti−0.2%Fe−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.8wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 12)
A sample after hot rolling was prepared in the same manner as in Example 3 except that a copper alloy material having a composition of 3.2% Ti-0.2% Fe-remainder Cu was melt cast. The hydrogen concentration of this sample was measured and found to be 0.8 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例13)
質量%で組成が0.3%Cr−0.25%Sn−0.2%Zn−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.7wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 13)
Except for melting and casting a copper alloy material having a composition of 0.3% Cr-0.25% Sn-0.2% Zn-remainder Cu in mass%, it was subjected to hot rolling in the same manner as in Example 3. A sample was prepared. As a result of measuring the hydrogen concentration of this sample, it was 0.7 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例14)
質量%で組成が0.5%Cr−0.1%Ag−0.08%Fe−0.06%Ti−0.03%Si−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.8wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 14)
Except for melting and casting a copper alloy material having a composition of 0.5% Cr-0.1% Ag-0.08% Fe-0.06% Ti-0.03% Si-remainder Cu in mass% A sample after hot rolling was produced in the same manner as in Example 3. The hydrogen concentration of this sample was measured and found to be 0.8 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例15)
質量%で組成が0.3%Cr−0.15%Zr−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.8wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 15)
A sample after hot rolling was produced in the same manner as in Example 3 except that a copper alloy material having a composition of 0.3% Cr-0.15% Zr-remainder Cu was melt cast. The hydrogen concentration of this sample was measured and found to be 0.8 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例16)
質量%で組成が0.15%Zr−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.9wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 16)
A sample after hot rolling was produced in the same manner as in Example 3 except that a copper alloy material having a composition of 0.15% by mass and 0.15% Zr-remainder Cu was melt cast. As a result of measuring the hydrogen concentration of this sample, it was 0.9 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(実施例17)
質量%で組成が0.3%Cr−0.3Sn−0.2%Zn−残部Cuである銅合金材料を溶解鋳造した以外は、実施例3と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果0.5wtppm(試料中心部)であった。
この試料を、その後冷間圧延と熱処理(焼鈍)の繰り返しにより0.2mmまで圧延した。このとき熱間圧延で割れは発生せず、また熱処理後もフクレの発生はみられなかった。
(Example 17)
A sample after hot rolling was prepared in the same manner as in Example 3 except that a copper alloy material having a composition of 0.3% Cr-0.3Sn-0.2% Zn-remainder Cu was melt cast. Produced. The hydrogen concentration of this sample was measured and found to be 0.5 wtppm (sample center).
This sample was then rolled to 0.2 mm by repeated cold rolling and heat treatment (annealing). At this time, no crack was generated by hot rolling, and no blistering was observed after the heat treatment.

(比較例3)
実施例3の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果3.0wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 3)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 3 was used. The hydrogen concentration of this sample was measured and found to be 3.0 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

(比較例4)
実施例6の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果2.8wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 4)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 6 was used. The hydrogen concentration of this sample was measured and found to be 2.8 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

(比較例5)
実施例7の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果2.9wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 5)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 7 was used. The hydrogen concentration of this sample was measured and found to be 2.9 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

(比較例6)
実施例10の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果2.9wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 6)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 10 was used. The hydrogen concentration of this sample was measured and found to be 2.9 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

(比較例7)
実施例12の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果3.0wtppm(試料中心部)であった。
この試料を熱間圧延機で30mmから10mmまで圧延したところ、熱間圧延で割れが発生した。
(Comparative Example 7)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 12 was used. The hydrogen concentration of this sample was measured and found to be 3.0 wtppm (sample center).
When this sample was rolled from 30 mm to 10 mm with a hot rolling mill, cracks occurred during hot rolling.

(比較例8)
実施例13の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果3.1wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 8)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 13 was used. The hydrogen concentration of this sample was measured and found to be 3.1 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

(比較例9)
実施例15の合金組成である以外は比較例1と同様の方法で熱間圧延後の試料を作製した。この試料の水素濃度を測定した結果2.9wtppm(試料中心部)であった。また、熱間圧延で割れが発生した。
(Comparative Example 9)
A sample after hot rolling was produced in the same manner as in Comparative Example 1 except that the alloy composition of Example 15 was used. The hydrogen concentration of this sample was measured and found to be 2.9 wtppm (sample center). Moreover, the crack generate | occur | produced by hot rolling.

上記各実施例の測定結果と各比較例との比較により本発明にかかる脱ガス熱処理によって、試料からの十分な水素ガスの放出が実現されていることが分かった。   From the comparison of the measurement results of the above examples and the comparative examples, it was found that sufficient hydrogen gas was released from the sample by the degassing heat treatment according to the present invention.

本発明は、例えばリードフレームやコネクター等の電気・電子機器用部品に用いられる熱間加工性に優れた銅合金の製造方法に適用できる。   The present invention can be applied to a method for producing a copper alloy having excellent hot workability used for parts for electrical and electronic equipment such as lead frames and connectors.

Claims (2)

Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を合計で0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料を形成し、
前記銅合金材料を300℃〜700℃で1〜3時間保持することで脱ガス熱処理を行い、
脱ガス熱処理後の銅合金材料に熱間圧延、冷間圧延、熱処理を施すことによって銅合金を得る、銅合金の製造方法。
Containing at least one element of at least one of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag in a total amount of 0.01 to 5 mass%, Forming a copper alloy material with the balance being inevitable impurities with Cu,
Degassing heat treatment is performed by holding the copper alloy material at 300 ° C. to 700 ° C. for 1 to 3 hours,
The manufacturing method of a copper alloy which obtains a copper alloy by performing hot rolling, cold rolling, and heat processing to the copper alloy material after degassing heat processing.
Ni、Si、Fe、Co、Ti、Be、P、Mg、Sn、Zn、Al、Mn、Cr、Zr、Agの内少なくとも1種以上の元素を合計で0.01〜5質量%含有し、残部がCuと不可避不純物である銅合金材料を形成し、
前記銅合金材料を400℃〜600℃で1〜2時間保持することで脱ガス熱処理を行い、
脱ガス熱処理後の銅合金材料に熱間圧延、冷間圧延、熱処理を施すことによって銅合金を得る、銅合金の製造方法。
Containing at least one element of at least one of Ni, Si, Fe, Co, Ti, Be, P, Mg, Sn, Zn, Al, Mn, Cr, Zr, and Ag in a total amount of 0.01 to 5 mass%, Forming a copper alloy material with the balance being inevitable impurities with Cu,
A degassing heat treatment is performed by holding the copper alloy material at 400 ° C. to 600 ° C. for 1 to 2 hours,
The manufacturing method of a copper alloy which obtains a copper alloy by performing hot rolling, cold rolling, and heat processing to the copper alloy material after degassing heat processing.
JP2009257557A 2009-11-10 2009-11-10 Method for producing copper alloy Active JP5587593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257557A JP5587593B2 (en) 2009-11-10 2009-11-10 Method for producing copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257557A JP5587593B2 (en) 2009-11-10 2009-11-10 Method for producing copper alloy

Publications (2)

Publication Number Publication Date
JP2011102416A JP2011102416A (en) 2011-05-26
JP5587593B2 true JP5587593B2 (en) 2014-09-10

Family

ID=44192866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257557A Active JP5587593B2 (en) 2009-11-10 2009-11-10 Method for producing copper alloy

Country Status (1)

Country Link
JP (1) JP5587593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404292A (en) * 2014-11-13 2015-03-11 无锡信大气象传感网科技有限公司 High-strength copper alloy material for sensor and manufacture method
CN109022897A (en) * 2018-10-14 2018-12-18 广州宇智科技有限公司 The figure of buddha imitative billon for having proof gold gloss under a kind of marine environment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG185024A1 (en) 2010-05-14 2012-12-28 Mitsubishi Materials Corp Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP5903832B2 (en) * 2011-10-28 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5903838B2 (en) 2011-11-07 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903842B2 (en) 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
CN103498070A (en) * 2013-09-29 2014-01-08 苏州市凯业金属制品有限公司 Aluminum bronze alloy metal pipe
CN103526067B (en) * 2013-10-13 2015-07-08 蒋荣 Preparation method of high-strength rare earth doped copper alloy
CN103667771A (en) * 2013-12-03 2014-03-26 江苏帕齐尼铜业有限公司 Copper-magnesium alloy and preparation method thereof
JP6354275B2 (en) * 2014-04-14 2018-07-11 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy stranded wire and automotive electric wire
WO2020196792A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy strip and method for manufacturing same, resistor resistance material using same, and resistor
CN114941085A (en) * 2021-03-08 2022-08-26 苏州列治埃盟新材料技术转移有限公司 Copper alloy material for motor equipment and preparation method thereof
CN115233032B (en) * 2022-08-01 2023-06-27 河南云锦空天特导新材料有限公司 Copper alloy wire and preparation method and application thereof
CN115369280A (en) * 2022-08-20 2022-11-22 国工恒昌新材料沧州有限公司 C17460 alloy and preparation process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073045A (en) * 1999-09-02 2001-03-21 Hitachi Cable Ltd Production of high strength copper alloy cast ingot
JP4567906B2 (en) * 2001-03-30 2010-10-27 株式会社神戸製鋼所 Copper alloy plate or strip for electronic and electrical parts and method for producing the same
US20080190523A1 (en) * 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP5135496B2 (en) * 2007-06-01 2013-02-06 Dowaメタルテック株式会社 Cu-Be based copper alloy sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404292A (en) * 2014-11-13 2015-03-11 无锡信大气象传感网科技有限公司 High-strength copper alloy material for sensor and manufacture method
CN109022897A (en) * 2018-10-14 2018-12-18 广州宇智科技有限公司 The figure of buddha imitative billon for having proof gold gloss under a kind of marine environment

Also Published As

Publication number Publication date
JP2011102416A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5587593B2 (en) Method for producing copper alloy
JP4950584B2 (en) Copper alloy with high strength and heat resistance
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP5712585B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR20120130342A (en) Cu-ni-si alloy for electronic material
JP2007126739A (en) Copper alloy for electronic material
JP5910004B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP4164517B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
JP5045782B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP4721067B2 (en) Manufacturing method of copper alloy material for electric and electronic parts
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6294766B2 (en) Copper alloy material and method for producing the same
JP5088385B2 (en) High strength and high conductivity copper alloy
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP2011190469A (en) Copper alloy material, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5587593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250