JP5586562B2 - Centrifugal electric blower - Google Patents

Centrifugal electric blower Download PDF

Info

Publication number
JP5586562B2
JP5586562B2 JP2011238890A JP2011238890A JP5586562B2 JP 5586562 B2 JP5586562 B2 JP 5586562B2 JP 2011238890 A JP2011238890 A JP 2011238890A JP 2011238890 A JP2011238890 A JP 2011238890A JP 5586562 B2 JP5586562 B2 JP 5586562B2
Authority
JP
Japan
Prior art keywords
centrifugal impeller
working fluid
flow rate
centrifugal
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011238890A
Other languages
Japanese (ja)
Other versions
JP2013096284A (en
Inventor
啓宇 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011238890A priority Critical patent/JP5586562B2/en
Publication of JP2013096284A publication Critical patent/JP2013096284A/en
Application granted granted Critical
Publication of JP5586562B2 publication Critical patent/JP5586562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、遠心式羽根車を有する遠心式電動送風機に関するものである。   The present invention relates to a centrifugal electric blower having a centrifugal impeller.

電動送風機の流量を検出する装置としては、送風機の給気又は排気流路に流速計を設けて、流速と流路断面積の乗算により求めるものと、電動送風機そのものの特性値と流量との関係を予め把握しておき、運転中の特性値を計測して、一般流体における相似則に基づいた比例関係により流量を求めるものがある(例えば、特許文献1参照)。
これらの装置で検出した流量は、目標流量と一致するように電動機の出力を調整して、例えば、居室の換気量を配管圧損によらず一定に保ったり、あるいは燃焼用送風機として、燃焼の最適化を図ったりするのに用いられている。
As a device for detecting the flow rate of the electric blower, a flowmeter is provided in the air supply or exhaust flow path of the blower, and the relationship between the characteristic value of the electric blower itself and the flow rate is obtained by multiplying the flow velocity by the flow path cross-sectional area. Is obtained in advance, the characteristic value during operation is measured, and the flow rate is obtained by the proportional relationship based on the similarity law in the general fluid (for example, see Patent Document 1).
Adjust the output of the motor so that the flow rate detected by these devices matches the target flow rate, for example, to keep the ventilation volume in the room constant regardless of pipe pressure loss, or as a combustion blower, optimal combustion It is used to make it easier.

特開2002−165477号公報(要約書、図1)JP 2002-165477 A (abstract, FIG. 1)

一般流体における相似則に基づいたものは、流速計を用いる方法に比べ、流路に流速計を設ける必要がないために、流速計への埃の付着に対する保守が不要で、小型化に適しているが、いろいろな圧損条件での2つの比例定数を試験により求めて、その比例定数の関係を便宜上近似関数に置き換えて、近似関数計算を行うことで流量を求めるといったものである。この技術では、羽根車の細部形状が加味されておらず、また、作動流体の密度の変化も加味されていないために、精度の高いものではなかった。   Compared to the method using a velocimeter, the method based on the similarity law for general fluids does not require a velocimeter in the flow path, so maintenance for dust adhesion to the velocimeter is unnecessary and suitable for downsizing. However, two proportional constants under various pressure loss conditions are obtained by a test, and the flow rate is obtained by replacing the relation between the proportional constants with an approximate function for convenience and performing an approximate function calculation. In this technique, the details of the impeller are not taken into account, and the density of the working fluid is not taken into account, so that the accuracy is not high.

本発明は、前記のような課題を解決するためになされたもので、遠心式羽根車を用いた電動送風機の流量を流速計は用いずに精度よく検出できる遠心式電動送風機を提供することを目的とする。   The present invention was made to solve the above-described problems, and provides a centrifugal electric blower that can accurately detect the flow rate of an electric blower using a centrifugal impeller without using a flowmeter. Objective.

本発明に係る遠心式電動送風機は、電動機と、電動機の回転軸に装着された遠心式羽根車と、給気口及び排気口を有し、遠心式羽根車の周囲を覆うケーシングと、電動機の回転軸により遠心式羽根車へ伝達される負荷トルクの大きさを検出し、トルクフィードバック値を出力するトルク検出器と、電動機の回転速度を検出し、回転速度フィードバック値を出力する回転速度検出器と、ケーシングの給気口又は排気口より給気又は排気される作動流体から作動流体の密度に関係する物性値を測定する作動流体状態検出器と、作動流体状態検出器により測定された物性値から作動流体密度を算出し、作動流体密度フィードバック値を出力する作動流体密度演算器と、トルクフィードバック値をT、回転速度フィードバック値をωr、作動流体密度フィードバック値をρ、遠心式羽根車の直径をD、遠心式羽根車に形成された軸心方向の出口幅をb、遠心式羽根車の周速度の方向と接線方向速度の方向とでなす相対流出角をβとして、流量Qを演算式「Q=π ×D ×b×tanβ×ωr+((π ×D ×b×tanβ×ωr) −(2×π×b×tanβ)×T/ρ) 1/2 」で算出し、流量検出値として出力する流量演算器とを備えたものである。 A centrifugal electric blower according to the present invention includes an electric motor, a centrifugal impeller mounted on a rotating shaft of the electric motor, a casing that has an air supply port and an exhaust port, and covers the periphery of the centrifugal impeller. A torque detector that detects the magnitude of the load torque transmitted to the centrifugal impeller by the rotation shaft and outputs a torque feedback value, and a rotation speed detector that detects the rotation speed of the motor and outputs the rotation speed feedback value A working fluid state detector for measuring a physical property value related to the density of the working fluid from a working fluid supplied or exhausted from an air supply port or an exhaust port of the casing, and a physical property value measured by the working fluid state detector ωr to calculate the working fluid density, and the working fluid density calculator for outputting the working fluid density feedback value, torque feedback value T, the rotational speed feedback value from the working fluid density The fed back value [rho, relative forming in the diameter of the centrifugal impeller D, and centrifugal impeller formed axial direction of the outlet width b, or the direction of the peripheral speed of the direction and the tangential velocity of the centrifugal impeller The outflow angle is β, and the flow rate Q is calculated by the equation “Q = π 2 × D 2 × b × tan β × ωr + ((π 2 × D 2 × b × tan β × ωr) 2 − (2 × π × b × tan β) × calculated in T / ρ) 1/2 ", in which a flow rate calculator for outputting a flow quantity sensing value.

本発明によれば、トルクフィードバック値及び回転速度フィードバック値の他に、作動流体密度フィードバック値を用いて流量を算出するようにしているので、流速計を用いることなく、精度の良い流量検出を行うことができる。   According to the present invention, since the flow rate is calculated using the working fluid density feedback value in addition to the torque feedback value and the rotation speed feedback value, the flow rate is accurately detected without using a flowmeter. be able to.

実施の形態に係る遠心式電動送風機の流量検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the flow volume detection apparatus of the centrifugal electric blower which concerns on embodiment. 実施の形態に係る遠心式電動送風機の遠心式羽根車の断面を示す図である。It is a figure which shows the cross section of the centrifugal impeller of the centrifugal electric blower which concerns on embodiment.

以下に、本発明に係る遠心式電動送風機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a centrifugal electric blower according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は実施の形態に係る遠心式電動送風機の流量検出装置の構成を示すブロック図である。
図において、遠心式電動送風機は、電動機1と、電動機の回転軸に装着された遠心式羽根車2と、給気口3a及び排気口3bを有し、遠心式羽根車2の周囲を覆うケーシング3とを備えている。
FIG. 1 is a block diagram showing a configuration of a flow rate detection device for a centrifugal electric blower according to an embodiment.
In the figure, the centrifugal electric blower includes a motor 1, a centrifugal impeller 2 mounted on a rotating shaft of the electric motor, a supply port 3 a and an exhaust port 3 b, and a casing covering the periphery of the centrifugal impeller 2. 3 is provided.

電動機1は、電源9から電力の供給を受けると回転力を発生し、電動機1の回転軸に装着された遠心式羽根車2を回転させる。この時、遠心式羽根車2の回転による遠心力により、遠心式羽根車2の側面に形成された排出口2b(出口幅b)から作動流体が放出され、遠心式羽根車2の排出口2bから放出された作動流体は、ケーシング3の排気口3bから排出される。その結果、遠心式羽根車2の吸引口2a近傍は負圧となり、ケーシング3の給気口3aを経由して遠心式羽根車2の吸引口2aから作動流体が吸引される。   When the electric motor 1 is supplied with electric power from the power source 9, the electric motor 1 generates a rotational force, and rotates the centrifugal impeller 2 mounted on the rotating shaft of the electric motor 1. At this time, the working fluid is discharged from the discharge port 2b (exit width b) formed on the side surface of the centrifugal impeller 2 by the centrifugal force generated by the rotation of the centrifugal impeller 2, and the discharge port 2b of the centrifugal impeller 2 is discharged. The working fluid discharged from is discharged from the exhaust port 3 b of the casing 3. As a result, the vicinity of the suction port 2 a of the centrifugal impeller 2 becomes negative pressure, and the working fluid is sucked from the suction port 2 a of the centrifugal impeller 2 via the air supply port 3 a of the casing 3.

また、遠心式電動送風機には、トルク検出器4と、回転速度検出器5と、作動流体状態検出器6と、作動流体密度演算器7と、流量演算器8とで構成される流量検出装置を備ええている。   The centrifugal electric blower includes a torque detector 4, a rotational speed detector 5, a working fluid state detector 6, a working fluid density calculator 7, and a flow rate calculator 8. Is equipped.

トルク検出器4は、電動機1から遠心式羽根車2へ回転軸を通じて伝えられる負荷トルクの大きさを検出し、トルクフィードバック値Tfとして流量演算器8へ出力する。回転速度検出器5は、電動機1の回転速度を検出し、回転速度フィードバック値ωrfとして、流量演算器8へ出力する。作動流体状態検出器6は、ケーシング3の給気口3a又は排気口3bより給気又は排気される作動流体から作動流体の密度に関係する物性値、例えば温度や気圧、湿度などの物性値を測定する。作動流体密度演算器7は、作動流体状態検出器6により測定された物性値から作動流体密度を算出し、作動流体密度フィードバック値ρfとして、流量演算器8へ出力する。   The torque detector 4 detects the magnitude of the load torque transmitted from the electric motor 1 to the centrifugal impeller 2 through the rotating shaft, and outputs it to the flow rate calculator 8 as a torque feedback value Tf. The rotation speed detector 5 detects the rotation speed of the electric motor 1 and outputs it to the flow rate calculator 8 as a rotation speed feedback value ωrf. The working fluid state detector 6 has physical property values related to the density of the working fluid from the working fluid supplied or exhausted from the air supply port 3a or the exhaust port 3b of the casing 3, for example, physical property values such as temperature, atmospheric pressure, and humidity. taking measurement. The working fluid density calculator 7 calculates the working fluid density from the physical property value measured by the working fluid state detector 6 and outputs it to the flow rate calculator 8 as the working fluid density feedback value ρf.

次に、流量演算器8の動作について説明する。
まず、図2を用いて遠心式電動送風機の流量と負荷トルクとの関係について説明する。図2は実施の形態に係る遠心式電動送風機の遠心式羽根車の断面を示す図である。
図において、遠心式羽根車2に作用する負荷トルクTは、作動流体の密度ρと、体積流量Qと、遠心式羽根車2の直径Dと、絶対流速cの旋回速度成分cθとを用いて、以下の式(1)のように表すことができる。
Next, the operation of the flow rate calculator 8 will be described.
First, the relationship between the flow rate of the centrifugal electric blower and the load torque will be described with reference to FIG. Drawing 2 is a figure showing the section of the centrifugal impeller of the centrifugal electric blower concerning an embodiment.
In the figure, the load torque T acting on the centrifugal impeller 2 uses the density ρ of the working fluid, the volume flow rate Q, the diameter D of the centrifugal impeller 2, and the turning speed component cθ of the absolute flow velocity c. The following equation (1) can be expressed.

T=ρ×Q×D×cθ/2 …(1)     T = ρ × Q × D × cθ / 2 (1)

ここで、まず、羽根の枚数が無限で、羽根車を通る流れが流動損失がなく、軸方向および周方向に変化がない理想的な場合を考えると、羽根車出口(排出口2b)の周速度uと、周速度uの方向と接線方向速度wの方向とでなす相対流出角βと、回転速度ωrと、羽根車出口での径方向速度crと、羽根車の出口幅b(排出口2b)とを用いることにより、幾何学的に、絶対流速の旋回速度成分cθを式(2)で、羽根車出口の周速度uを式(3)で、羽根車出口での径方向速度crを式(4)で、それぞれ表すことができる。これにより、式(1)に示す負荷トルクTを式(5)のように表すことができる。   Here, considering the ideal case where the number of blades is infinite, the flow through the impeller has no flow loss, and there is no change in the axial direction and the circumferential direction, the circumference of the impeller outlet (discharge port 2b) is considered. The relative outflow angle β formed by the speed u, the direction of the circumferential speed u and the direction of the tangential speed w, the rotational speed ωr, the radial speed cr at the impeller outlet, and the outlet width b of the impeller (discharge port) 2b), geometrically, the swirl velocity component cθ of the absolute flow velocity is expressed by Equation (2), the peripheral velocity u of the impeller outlet is expressed by Equation (3), and the radial velocity cr at the impeller outlet is expressed by Equation (2). Can be represented by Formula (4), respectively. Thereby, the load torque T shown to Formula (1) can be represented like Formula (5).

cθ=u−cr/tanβ …(2)
u=π×D×ωr …(3)
cr=Q/(π×D×b) …(4)
T=ρ×(π×D2 ×Q×ωr−Q2 /(π×b))/(2×tanβ)…(5)
式(5)は流量Qの2次方程式なので、流量Qについて解くと、式(6)のようになる。なお、下記の式において(A)1/2 は、Aの平方根を示すものとする。
Q=π2 ×D2 ×b×tanβ×ωr+((π2 ×D2 ×b×tanβ×ωr)2 −(
2×π×b×tanβ)×T/ρ)1/2 …(6)
即ち、流量Qと、負荷トルクTと、回転速度ωrと、作動流体密度ρとの間には式(6)の関係が成り立っていることになる。
cθ = u−cr / tan β (2)
u = π × D × ωr (3)
cr = Q / (π × D × b) (4)
T = ρ × (π × D 2 × Q × ωr−Q 2 / (π × b)) / (2 × tan β) (5)
Since equation (5) is a quadratic equation of flow rate Q, solving for flow rate Q yields equation (6). In the following formula, (A) 1/2 represents the square root of A.
Q = π 2 × D 2 × b × tan β × ωr + ((π 2 × D 2 × b × tan β × ωr) 2 − (
2 × π × b × tan β) × T / ρ) 1/2 (6)
That is, the relationship of the formula (6) is established among the flow rate Q, the load torque T, the rotational speed ωr, and the working fluid density ρ.

前記式(6)は、理想的な場合について展開しているので現実へ補正するために、羽根車の直径D、相対流出角β、出口幅bについてはそれぞれ補正係数kd、kβ、kbを乗じたものを改めて羽根車の直径の相当値D、相対流出角の相当値β、出口幅の相当値bと置き換える。さらに、流動損失の影響を式全体に係数ηとして乗じて、実際の状態へ補正する。補正係数kd、kβ、kbおよび流動損失の係数ηは、実機で圧損および回転速度を変化させて流量を測定した結果から求める。そして、式(6)の負荷トルクT、回転速度ωr、作動流体密度ρに、それぞれトルクフィードバック値Tf、回転速度フィードバック値ωrf、作動流体密度フィードバック値ρfを代入することにより得られる式(7)に基づいて、流量Qをその検出値Qfとして流量演算器8にて演算を行い、出力する。   Since the equation (6) is developed in an ideal case, in order to correct it to reality, the impeller diameter D, relative outflow angle β, and outlet width b are multiplied by correction coefficients kd, kβ, and kb, respectively. This is replaced with the equivalent value D of the impeller diameter, the equivalent value β of the relative outflow angle, and the equivalent value b of the outlet width. Furthermore, the effect of the flow loss is multiplied by the coefficient η to correct the actual state. The correction coefficients kd, kβ, kb and the flow loss coefficient η are obtained from the result of measuring the flow rate by changing the pressure loss and the rotational speed with an actual machine. Expression (7) obtained by substituting torque feedback value Tf, rotation speed feedback value ωrf, and working fluid density feedback value ρf into load torque T, rotation speed ωr, and working fluid density ρ in Expression (6), respectively. Based on the above, the flow rate calculator 8 calculates the flow rate Q as the detected value Qf and outputs it.

Qf=η(π2 ×D2 ×b×tanβ×ωrf+((π2 ×D2 ×b×tanβ×ωr
f)2 −(2×π×b×tanβ)×Tf/ρf))1/2 …(7)
Qf = η (π 2 × D 2 × b × tan β × ωrf + ((π 2 × D 2 × b × tan β × ωr
f) 2 − (2 × π × b × tan β) × Tf / ρf)) 1/2 (7)

以上説明したように、本実施の形態では、トルク検出器4により負荷トルクの大きさを検出し、トルクフィードバック値Tfとして流量演算器8へ出力し、回転速度検出器5により電動機1の回転速度を検出し、回転速度フィードバック値ωrfとして流量演算器8へ出力する。また、作動流体状態検出器6によりケーシング3の給気口3a又は排気口3bより給気又は排気される作動流体から作動流体の密度に関係する物性値を測定し、作動流体密度演算器7により、作動流体状態検出器6から得た物性値を基に作動流体の密度を算出して、作動流体密度フィードバック値ρfとして流量演算器8へ出力する。そして、流量演算器8により羽根車の形状にて決まる所定式(7)に、これらフィードバック値Tf、ωrf、ρfを変数として代入して演算により流量を算出し、目標流量値と比較するための流量検出値Qfとして出力することとした。これにより、遠心式羽根車2の形状に則し、また、作動流体の密度変化も加味して演算を行うので、流速計を用いることなく、精度のよい流量検出を行うことができる。   As described above, in this embodiment, the magnitude of the load torque is detected by the torque detector 4 and output to the flow rate calculator 8 as the torque feedback value Tf, and the rotational speed of the electric motor 1 is detected by the rotational speed detector 5. Is output to the flow rate calculator 8 as a rotational speed feedback value ωrf. Further, a physical property value related to the density of the working fluid is measured from the working fluid supplied or exhausted from the air supply port 3 a or the exhaust port 3 b of the casing 3 by the working fluid state detector 6, and the working fluid density calculator 7 Then, the density of the working fluid is calculated based on the physical property value obtained from the working fluid state detector 6, and is output to the flow rate calculator 8 as the working fluid density feedback value ρf. The flow rate calculator 8 calculates the flow rate by substituting these feedback values Tf, ωrf, and ρf as variables into the predetermined formula (7) determined by the shape of the impeller, and compares it with the target flow rate value. The flow rate detection value Qf is output. Thereby, the calculation is performed in accordance with the shape of the centrifugal impeller 2 and taking into account the density change of the working fluid, so that it is possible to detect the flow rate with high accuracy without using the velocimeter.

なお、トルク検出器4としては、電動機1と遠心式羽根車2とを連結する回転軸に軸のねじれ応力を計測する装置を用いる以外に、永久磁石を界磁とするブラシ付きDCモーターやブラシレスDCモーターのような電動機の場合には、電機子電流が発生トルクに比例するため、軸ロスを無視して負荷トルクと発生トルクを等しいとみなして電機子電流から負荷トルクを検出する構成としてもよい。   The torque detector 4 may be a DC motor with a brush or a brushless having a permanent magnet as a field, in addition to using a device for measuring the torsional stress of the shaft on the rotating shaft connecting the electric motor 1 and the centrifugal impeller 2. In the case of an electric motor such as a DC motor, the armature current is proportional to the generated torque. Therefore, the load torque can be detected from the armature current by ignoring the shaft loss and assuming that the generated torque is equal to the generated torque. Good.

また、誘導電動機をベクトル制御している場合には、例えば特公平5−46794号公報に記載の式12(Te=p×M/Lr×iqes×λder)により求められる発生トルクを用いて、永久磁石界磁電動機と同じように、負荷トルクは発生トルクと一致するとみなした負荷トルク検出器でもよい。   Further, when the induction motor is controlled in vector, for example, the generated torque obtained by the equation 12 (Te = p × M / Lr × iqes × λder) described in Japanese Patent Publication No. 5-46794 is used for permanent control. Similar to the magnet field motor, the load torque may be a load torque detector that is considered to coincide with the generated torque.

また、負荷トルクには遠心式羽根車2の送風のために必要なトルク以外に、回転速度が変動する場合の加減速トルクも含まれるため、回転速度の変化から加減速トルクを算出して、検出トルク(トルクフィードバック値Tf)から差し引くか、加減速が無いか、又は、小さいときの検出トルクを用いる必要がある。   Further, since the load torque includes the acceleration / deceleration torque when the rotational speed fluctuates in addition to the torque necessary for the air flow of the centrifugal impeller 2, calculate the acceleration / deceleration torque from the change in the rotational speed, It is necessary to subtract from the detected torque (torque feedback value Tf), or to use the detected torque when there is no acceleration / deceleration or is small.

また、回転速度検出器5は、一般的には電動機1の回転軸に連結したロータリーエンコーダーやタコジェネレーターがあるが、ブラシレスDCモーターの位相制御のために使われる磁極位置検出器から得られる回転速度情報を用いてもよく、また、誘導電動機の場合には速度センサレス制御にて得られる速度情報を用いてもよく、電動機の回転速度に関する情報が得られれば、その検出手段を問わない。   The rotational speed detector 5 is generally a rotary encoder or tachometer connected to the rotational shaft of the electric motor 1, but the rotational speed obtained from the magnetic pole position detector used for phase control of the brushless DC motor. Information may be used, and in the case of an induction motor, speed information obtained by speed sensorless control may be used, and any detection means may be used as long as information on the rotational speed of the motor is obtained.

また、本実施の形態では、作動流体の密度変動による検出流量の精度への影響が少ない場合や無視できる場合には、式(7)の演算において作動流体密度フィードバック値ρfに固定値を用いてもよく、その場合には作動流体状態検出器6及び作動流体密度演算器7を省略することができる。   Further, in this embodiment, when the influence on the accuracy of the detected flow rate due to the fluctuation of the working fluid density is small or negligible, a fixed value is used for the working fluid density feedback value ρf in the calculation of Expression (7). In this case, the working fluid state detector 6 and the working fluid density calculator 7 can be omitted.

上記で説明した遠心式電動送風機の流量検出装置は、流量検出精度のよい流量検出器として有用である。   The flow rate detection device for the centrifugal electric blower described above is useful as a flow rate detector with good flow rate detection accuracy.

1 電動機、2 遠心式羽根車、2a 遠心式羽根車2の吸引口、2b 遠心式羽根車2の排出口、3 ケーシング、3a ケーシング3の給気口、3b ケーシング3の排気口、4 トルク検出器、5 回転速度検出器、6 作動流体状態検出器、7 作動流体密度演算器、8 流量演算器、9 電源、T 負荷トルク、Tf トルクフィードバック値、ωr 回転速度、ωrf 回転速度フィードバック値、ρ 作動流体密度、ρf 作動流体密度フィードバック値、Q 流量、Qf 流量検出値。   DESCRIPTION OF SYMBOLS 1 Electric motor, 2 Centrifugal impeller, 2a Suction port of centrifugal impeller 2, 2b Exhaust port of centrifugal impeller 2, 3 Casing, 3a Inlet of casing 3, 3b Exhaust of casing 3, 4 Torque detection , 5 Rotational speed detector, 6 Working fluid state detector, 7 Working fluid density calculator, 8 Flow rate calculator, 9 Power supply, T Load torque, Tf Torque feedback value, ωr Rotational speed, ωrf Rotational speed feedback value, ρ Working fluid density, ρf Working fluid density feedback value, Q flow rate, Qf flow rate detection value.

Claims (5)

電動機と、
前記電動機の回転軸に装着された遠心式羽根車と、
給気口及び排気口を有し、前記遠心式羽根車の周囲を覆うケーシングと、
前記電動機の回転軸により前記遠心式羽根車へ伝達される負荷トルクの大きさを検出し、トルクフィードバック値を出力するトルク検出器と、
前記電動機の回転速度を検出し、回転速度フィードバック値を出力する回転速度検出器と、
前記ケーシングの給気口又は排気口より給気又は排気される作動流体から当該作動流体の密度に関係する物性値を測定する作動流体状態検出器と、
前記作動流体状態検出器により測定された物性値から作動流体密度を算出し、作動流体密度フィードバック値を出力する作動流体密度演算器と、
前記トルクフィードバック値をT、前記回転速度フィードバック値をωr、前記作動流体密度フィードバック値をρ、前記遠心式羽根車の直径をD、前記遠心式羽根車に形成された軸心方向の出口幅をb、前記遠心式羽根車の周速度の方向と接線方向速度の方向とでなす相対流出角をβとして、流量Qを演算式「Q=π ×D ×b×tanβ×ωr+((π ×D ×b×tanβ×ωr) −(2×π×b×tanβ)×T/ρ) 1/2 」で算出し、流量検出値として出力する流量演算器と
を備えたことを特徴とする遠心式電動送風機。
An electric motor,
A centrifugal impeller mounted on a rotating shaft of the electric motor;
A casing having an air supply port and an exhaust port and covering the periphery of the centrifugal impeller;
A torque detector that detects the magnitude of load torque transmitted to the centrifugal impeller by the rotating shaft of the electric motor, and outputs a torque feedback value;
A rotational speed detector that detects the rotational speed of the electric motor and outputs a rotational speed feedback value;
A working fluid state detector for measuring a physical property value related to the density of the working fluid from the working fluid supplied or exhausted from the air supply port or the exhaust port of the casing;
A working fluid density calculator that calculates a working fluid density from the physical property value measured by the working fluid state detector and outputs a working fluid density feedback value;
T is the torque feedback value , ωr is the rotational speed feedback value , ρ is the working fluid density feedback value , D is the diameter of the centrifugal impeller, and the axial exit width formed in the centrifugal impeller is b, where β is a relative outflow angle formed between the direction of the peripheral speed of the centrifugal impeller and the direction of the tangential speed, and the flow rate Q is expressed by an equation “Q = π 2 × D 2 × b × tan β × ωr + ((π 2 × D 2 × b × tanβ × ωr) 2 - (2 × π × b × tanβ) × T / ρ) is calculated at 1/2 ", further comprising a flow rate computation unit for outputting a flow quantity sensing value Centrifugal electric blower characterized by
電動機と、
前記電動機の回転軸に装着された遠心式羽根車と、
給気口及び排気口を有し、前記遠心式羽根車の周囲を覆うケーシングと、
前記電動機の回転軸により前記遠心式羽根車へ伝達される負荷トルクの大きさを検出し、トルクフィードバック値を出力するトルク検出器と、
前記電動機の回転速度を検出し、回転速度フィードバック値を出力する回転速度検出器と、
前記ケーシングの給気口又は排気口より給気又は排気される作動流体の物性値から得られた作動流体密度値ρ予めデータとして有し、前記トルクフィードバック値をT、前記回転速度フィードバック値をωr、前記遠心式羽根車の直径をD、前記遠心式羽根車に形成された軸心方向の出口幅をb、前記遠心式羽根車の周速度の方向と接線方向速度の方向とでなす相対流出角をβとして、流量Qを演算式「Q=π ×D ×b×tanβ×ωr+((π ×D ×b×tanβ×ωr) −(2×π×b×tanβ)×T/ρ) 1/2 」で算出し、流量検出値として出力する流量演算器と
を備えたことを特徴とする遠心式電動送風機。
An electric motor,
A centrifugal impeller mounted on a rotating shaft of the electric motor;
A casing having an air supply port and an exhaust port and covering the periphery of the centrifugal impeller;
A torque detector that detects the magnitude of load torque transmitted to the centrifugal impeller by the rotating shaft of the electric motor, and outputs a torque feedback value;
A rotational speed detector that detects the rotational speed of the electric motor and outputs a rotational speed feedback value;
The working fluid density value ρ obtained from the physical property value of the working fluid supplied or exhausted from the air supply port or the exhaust port of the casing is previously stored as data, the torque feedback value is T , and the rotational speed feedback value is ωr, D is the diameter of the centrifugal impeller, b is the outlet width in the axial direction formed in the centrifugal impeller, and the relative direction is the circumferential speed direction and the tangential speed direction of the centrifugal impeller. The outflow angle is β, and the flow rate Q is calculated by the equation “Q = π 2 × D 2 × b × tan β × ωr + ((π 2 × D 2 × b × tan β × ωr) 2 − (2 × π × b × tan β) × T / ρ) 1/2 is calculated by "centrifugal electric blower, characterized in that a flow rate calculator for outputting a flow quantity sensing value.
前記流量演算器は、流量を算出する際に、前記遠心式羽根車の形状に則して補正された前記遠心式羽根車の直径の相当値、前記遠心式羽根車に形成された軸心方向の出口幅の相当値、及び前記遠心式羽根車の周速度の方向と接線方向速度の方向とでなす相対流出角の相当値を用いることを特徴とする請求項1又は2記載の遠心式電動送風機。   The flow rate calculator, when calculating the flow rate, the equivalent value of the diameter of the centrifugal impeller corrected according to the shape of the centrifugal impeller, the axial direction formed in the centrifugal impeller 3. The centrifugal electric motor according to claim 1, wherein an equivalent value of an outlet width of the centrifugal impeller and an equivalent value of a relative outflow angle formed by a circumferential speed direction and a tangential speed direction of the centrifugal impeller are used. Blower. 前記流量演算器は、流量を算出する際に、流体の流動損失の影響を補正する係数を用いることを特徴とする請求項1乃至3の何れか一項に記載の遠心式電動送風機。   The centrifugal electric blower according to any one of claims 1 to 3, wherein the flow rate calculator uses a coefficient for correcting an influence of a fluid flow loss when calculating the flow rate. 前記流量演算器は、回転速度フィードバック値が変化すると、その回転速度フィードバック値の変化から加減速トルクを算出し、かつ算出した加減速トルクと前記トルクフィードバック値との差を求め、その差を負荷トルクとして流量の算出に用いることを特徴とする請求項1乃至4の何れか一項に記載の遠心式電動送風機。   When the rotational speed feedback value changes, the flow rate calculator calculates an acceleration / deceleration torque from the change in the rotational speed feedback value, calculates a difference between the calculated acceleration / deceleration torque and the torque feedback value, and loads the difference. The centrifugal electric blower according to any one of claims 1 to 4, wherein the centrifugal electric blower is used for calculating a flow rate as torque.
JP2011238890A 2011-10-31 2011-10-31 Centrifugal electric blower Active JP5586562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238890A JP5586562B2 (en) 2011-10-31 2011-10-31 Centrifugal electric blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238890A JP5586562B2 (en) 2011-10-31 2011-10-31 Centrifugal electric blower

Publications (2)

Publication Number Publication Date
JP2013096284A JP2013096284A (en) 2013-05-20
JP5586562B2 true JP5586562B2 (en) 2014-09-10

Family

ID=48618519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238890A Active JP5586562B2 (en) 2011-10-31 2011-10-31 Centrifugal electric blower

Country Status (1)

Country Link
JP (1) JP5586562B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005974B (en) * 2014-05-20 2016-07-13 北京工业大学 A kind of Coal Mine Ventilator flow-measuring method based on pressure correlation method
DE102019208640B3 (en) 2019-06-13 2020-10-01 Ziehl-Abegg Se Fan and method for determining a media flow moving through the fan
US20220316744A1 (en) * 2021-04-06 2022-10-06 Regal Beloit America, Inc. Systems and methods for controlling an electric blower motor in a fluid moving system
CN113389749B (en) * 2021-06-25 2022-02-22 广东鑫钻节能科技股份有限公司 Low pressure air-blower thing networking remote control system
CN115371741B (en) * 2022-10-24 2023-01-17 华东交通大学 System and method for detecting thrust, rotating speed and torque of propulsion motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145622B2 (en) * 1995-09-08 2001-03-12 株式会社荏原製作所 Fluid machinery with variable guide vanes
JP3738685B2 (en) * 2000-11-21 2006-01-25 三菱電機株式会社 Inverter device and blower device
JP4597556B2 (en) * 2004-03-19 2010-12-15 パナソニック株式会社 Air flow measuring device and air flow measuring method
JP4726424B2 (en) * 2004-03-25 2011-07-20 富士工業株式会社 Blower air volume control method

Also Published As

Publication number Publication date
JP2013096284A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5586562B2 (en) Centrifugal electric blower
CN109974849B (en) Blade vibration online monitoring method based on blade tip timing technology under condition of no reference signal
JP3822565B2 (en) Servo control device
CN107762954B (en) Volume flow control method for ventilator
JP5277787B2 (en) Synchronous motor drive control device
JP6667076B2 (en) Motor control device and method of correcting torque constant in motor control device
CN110192036A (en) Method for detecting the abnormal operating condition of pumping unit
CN105143684A (en) Methods and systems for antisurge control of turbo compressors with side stream
JP5418805B2 (en) Method and apparatus for calculating unbalance amount of rotating body
JP6232852B2 (en) Motor control device and turbo molecular pump
KR20150013598A (en) Exhaust-gas turbocharger
US11953054B2 (en) Bearing condition monitoring device, turbocharger, and bearing condition monitoring method
JP5660292B2 (en) Balance correction apparatus and method
JP2009131150A5 (en)
CN109075736A (en) The control system of motor
JP2004328822A (en) Motor controller, motor device, vacuum pump, correction current value measuring device, and motor controlling method
KR20150076737A (en) Apparatus for estimating wind power speed of wind power turbine and method for estimating wind power speed thereof
CN100387937C (en) Electronic turbine flowmeter for gas
JP5459533B2 (en) Unbalance measurement method and apparatus
JP5459595B2 (en) Unbalance measurement method
JP5831689B2 (en) Rotation angle detection device and method
JP2002106364A (en) Method for estimating turbine inlet temperature for gas turbine engine
JP6579944B2 (en) Flow control device
JPWO2017042871A1 (en) Rotational speed estimation device, multi-cylinder internal combustion engine, and control device for multi-cylinder internal combustion engine
JP6577359B2 (en) Flow control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250