JP5585832B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP5585832B2
JP5585832B2 JP2010203234A JP2010203234A JP5585832B2 JP 5585832 B2 JP5585832 B2 JP 5585832B2 JP 2010203234 A JP2010203234 A JP 2010203234A JP 2010203234 A JP2010203234 A JP 2010203234A JP 5585832 B2 JP5585832 B2 JP 5585832B2
Authority
JP
Japan
Prior art keywords
oil passage
driven shaft
intermediate member
timing control
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010203234A
Other languages
Japanese (ja)
Other versions
JP2012057578A (en
Inventor
一成 安達
祐司 野口
丈雄 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2010203234A priority Critical patent/JP5585832B2/en
Priority to US13/217,486 priority patent/US20120060779A1/en
Priority to EP11179376.6A priority patent/EP2428656B1/en
Priority to CN201110268518.XA priority patent/CN102400728B/en
Publication of JP2012057578A publication Critical patent/JP2012057578A/en
Application granted granted Critical
Publication of JP5585832B2 publication Critical patent/JP5585832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関の駆動軸と同期回転するハウジングと、ハウジングと同軸上に配置され、ハウジングに対して相対回転可能な内部ロータとを備えた弁開閉時期制御装置に関する。   The present invention relates to a valve opening / closing timing control device including a housing that rotates synchronously with a drive shaft of an internal combustion engine, and an internal rotor that is disposed coaxially with the housing and is rotatable relative to the housing.

このような弁開閉時期制御装置として、例えば特許文献1に示されているものがある。特許文献1に記載の弁開閉時期制御装置においては、内部ロータ(文献では「内部本体」)がボルト等の軸芯部材(文献では「締付けねじ」)によってカムシャフトに固定され、内部ロータとカムシャフトとの間に軸方向に離れた通路が2つ形成されている。   An example of such a valve opening / closing timing control device is disclosed in Patent Document 1. In the valve opening / closing timing control apparatus described in Patent Document 1, an internal rotor (in the literature, “internal main body”) is fixed to a camshaft by a shaft core member (in the literature, “clamping screw”), and the internal rotor and cam Two axially separated passages are formed between the shaft and the shaft.

上記構成による弁開閉時期制御装置においては、弁開閉時期制御装置へ供給されるオイルの漏れを抑制すべく、内部ロータと軸芯部材とは同程度の線膨張係数を有する材料にて形成する必要がある。一方、軸芯部材のねじ部分において十分な強度を有していることが必要条件となるため、軸芯部材には一般的に高強度の材料が用いられる。その結果、内部ロータの中心孔に軸芯部材を挿嵌してカムシャフトに螺着する際に、高強度の軸芯部材による内部ロータの損傷を防止する必要がある。従って、内部ロータは軸芯部材と同程度の線膨張係数及び同程度の高強度材で作製される必要がある。   In the valve timing control device having the above-described configuration, the inner rotor and the shaft core member must be formed of a material having a similar linear expansion coefficient in order to suppress leakage of oil supplied to the valve timing control device. There is. On the other hand, since it is a necessary condition that the screw portion of the shaft core member has sufficient strength, a high-strength material is generally used for the shaft core member. As a result, when the shaft core member is inserted into the center hole of the internal rotor and screwed to the camshaft, it is necessary to prevent damage to the internal rotor due to the high-strength shaft core member. Accordingly, the inner rotor needs to be made of a material having the same linear expansion coefficient and the same strength as the shaft core member.

特許第3965051号公報Japanese Patent No. 3965051

しかし、軸芯部材による損傷回避という点を除けば、内部ロータに高強度の必要性はそれほどなく、むしろ高強度材を用いることによって加工し難くなると共に、重量増加、コストアップ等の問題が発生し得るため、この点において改善の余地があった。   However, except for avoiding damage due to the shaft core member, there is not much need for high strength in the internal rotor, rather it becomes difficult to work by using high strength material, and problems such as weight increase and cost increase occur Therefore, there is room for improvement in this respect.

本発明は上記実情に鑑み、内部ロータに高強度材を用いる必要のない弁開閉時期制御装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a valve timing control device that does not require the use of a high-strength material for an internal rotor.

本発明に係る弁開閉時期制御装置の第1特徴構成は、内燃機関の駆動軸と同期回転するハウジングと、前記ハウジングと同軸上に配置され、前記ハウジングに対して相対回転可能な内部ロータと、前記ハウジングと前記内部ロータとの間に形成される進角室および遅角室と、前記内部ロータの回転を伝達する従動軸と、前記内部ロータと前記従動軸との間に配置され、前記内部ロータ及び前記従動軸と同期回転する中間部材と、を備え、記従動軸と前記内部ロータとの間に空間が形成され、前記進角室に連通する第1油路が、前記従動軸の軸芯から前記空間及び前記内部ロータの内部を介して径外方向に延出し、前記遅角室に連通する第2油路が、前記従動軸の軸芯から前記中間部材の内部を介して前記径外方向に延出し、前記第1油路と前記第2油路との間において前記中間部材が前記内部ロータに軸方向で全周に亘って当接する当接部を設け、前記第1油路と前記第2油路とは、前記当接部を前記軸方向で挟むように配置されている点にある。 A first characteristic configuration of the valve timing control device according to the present invention includes a housing that rotates synchronously with a drive shaft of an internal combustion engine, an internal rotor that is disposed coaxially with the housing and is rotatable relative to the housing, An advance angle chamber and a retard angle chamber formed between the housing and the internal rotor, a driven shaft that transmits rotation of the internal rotor, and the internal rotor and the driven shaft are disposed between the internal rotor and the driven shaft. comprising an intermediate member which rotates the rotor and synchronized with the driven shaft, a, it is the space between the inner rotor before and SL driven shaft forming a first oil passage communicating with the advance chamber, of the driven shaft A second oil passage extending from the shaft core in the radially outward direction through the space and the inside of the inner rotor and communicating with the retarding chamber is formed from the shaft core of the driven shaft through the inside of the intermediate member. extending radially outward, said first oil passage Serial wherein between the second oil path intermediate member around the entire circumference in the axial direction in the inner rotor provided abutment portion abutting, said first oil passage and the second oil passage, said abutment It exists in the point arrange | positioned so that a part may be pinched | interposed in the said axial direction .

本構成によると、内部ロータと従動軸との間に中間部材及び第1油路の一部を構成する空間を設けているので、内部ロータが従動軸に接触することがない。従って、従動軸が高強度材であっても、従動軸との接触による損傷を防ぐために内部ロータに高強度材を用いる必要がない。又、第1油路と第2油路との間で中間部材が内部ロータに軸方向で全周に亘って当接する当接部を設けているので、第1油路のオイルと第2油路のオイルとが内部ロータと中間部材との間の隙間で混ざり合うことがなく、弁開閉時期制御装置の制御性を損なうことがない。尚、本構成において、従動軸とはカムシャフトに内部ロータを締結するボルトであっても良いし、カムシャフトそのものであっても良いし、他の部材であっても良い。   According to this structure, since the space which comprises a part of intermediate member and 1st oil path is provided between an internal rotor and a driven shaft, an internal rotor does not contact a driven shaft. Therefore, even if the driven shaft is a high-strength material, it is not necessary to use a high-strength material for the internal rotor in order to prevent damage due to contact with the driven shaft. In addition, since the intermediate member is provided with an abutting portion that abuts the inner rotor over the entire circumference in the axial direction between the first oil passage and the second oil passage, the oil in the first oil passage and the second oil passage The oil in the road is not mixed in the gap between the internal rotor and the intermediate member, and the controllability of the valve timing control device is not impaired. In this configuration, the driven shaft may be a bolt that fastens the internal rotor to the camshaft, the camshaft itself, or another member.

第2特徴構成は、前記中間部材は、前記内部ロータよりも前記従動軸に近い線膨張係数又は前記従動軸と同じ線膨張係数を有する材料からなる点にある。   The second characteristic configuration is that the intermediate member is made of a material having a linear expansion coefficient closer to the driven shaft than the internal rotor or the same linear expansion coefficient as the driven shaft.

組み付け状態における従動軸と中間部材との間の隙間は、従動軸を中間部材に挿嵌することを許容しつつ、この隙間におけるオイルの漏れを最小限に止めるため、極力狭くすることが望ましい。しかし、常温での組み付け時に上記隙間が狭くとも、実際の作動時には弁開閉時期制御装置は高温となるため、両部材の線膨張係数が大きく異なれば、隙間が大きくなってしまう虞がある。そこで、本構成のごとく、中間部材を内部ロータよりも従動軸に近い線膨張係数又は従動軸と同じ線膨張係数を有する材料としておけば、高温環境下においても従動軸と中間部材とが同程度に膨張し、両部材間の隙間が広がることを抑制できる。   It is desirable that the gap between the driven shaft and the intermediate member in the assembled state be as narrow as possible in order to minimize oil leakage in the gap while allowing the driven shaft to be inserted into the intermediate member. However, even if the gap is narrow at the time of assembly at normal temperature, the valve opening / closing timing control device is at a high temperature during actual operation. Therefore, if the linear expansion coefficients of both members are greatly different, the gap may be increased. Therefore, if the intermediate member is made of a material having a linear expansion coefficient closer to the driven shaft than the internal rotor or the same linear expansion coefficient as the driven shaft as in the present configuration, the driven shaft and the intermediate member have the same degree even in a high temperature environment. It can suppress that it expand | swells and the clearance gap between both members spreads.

第3特徴構成は、前記第2油路を流通して前記内部ロータに供給される作動油は、前記従動軸の外周側を通り、前記中間部材を介して供給可能な点にある。   The third characteristic configuration is that the hydraulic oil that flows through the second oil passage and is supplied to the internal rotor passes through the outer peripheral side of the driven shaft and can be supplied via the intermediate member.

本構成によれば、既存の従動軸を変更したり加工したりすることなく、第2油路を経由して内部ロータに作動油を供給することができる。従って、中間部材を新たに設けるに際して、既存の従動軸の利用が可能であり、コストアップの抑制を図ることができる。   According to this configuration, hydraulic oil can be supplied to the internal rotor via the second oil passage without changing or processing an existing driven shaft. Therefore, when the intermediate member is newly provided, the existing driven shaft can be used, and the cost increase can be suppressed.

第4特徴構成は、前記従動軸及び前記中間部材は鉄材からなり、前記内部ロータはアルミ材からなる点にある。   According to a fourth characteristic configuration, the driven shaft and the intermediate member are made of iron, and the inner rotor is made of aluminum.

本構成のごとく、従動軸及び中間部材が鉄材からなる場合、いずれも高強度であり、且つ同様の線膨張係数を有することになるので、従動軸を中間部材に挿嵌する際に従動軸により中間部材が損傷する危険性を回避しつつ、高温環境下においても従動軸と中間部材との間の隙間が広がることを抑制できる。又、内部ロータとしてアルミ材を用いることにより、内部ロータの加工が容易になると共に、軽量化やコストダウンの点においても効果がある。   As in this configuration, when the driven shaft and the intermediate member are made of iron, both have high strength and the same linear expansion coefficient, so when the driven shaft is inserted into the intermediate member, While avoiding the risk of damage to the intermediate member, it is possible to prevent the gap between the driven shaft and the intermediate member from expanding even under a high temperature environment. Further, by using an aluminum material as the internal rotor, it is easy to process the internal rotor, and it is effective in terms of weight reduction and cost reduction.

第5特徴構成は、前記従動軸はカムシャフトであり、前記中間部材は前記カムシャフトに圧入されている点にある。   A fifth characteristic configuration is that the driven shaft is a camshaft, and the intermediate member is press-fitted into the camshaft.

本構成のごとく、従動軸であるカムシャフトに中間部材を圧入すれば、従動軸と中間部材との間に隙間が発生することを回避できるので、この隙間におけるオイルの漏れを防止することができる。   If the intermediate member is press-fitted into the camshaft that is the driven shaft as in this configuration, it is possible to prevent a gap from being generated between the driven shaft and the intermediate member, so that oil leakage in the gap can be prevented. .

第6特徴構成は、前記従動軸はカムシャフトに螺着されるボルトであり、前記ボルトの内部に前記第1油路及び前記第2油路の連通・非連通を切り換える制御弁が収容されている点にある。   According to a sixth characteristic configuration, the driven shaft is a bolt that is screwed onto a camshaft, and a control valve that switches between communication and non-communication of the first oil passage and the second oil passage is housed inside the bolt. There is in point.

本構成のごとく、従動軸であるボルトの内部に第1油路及び第2油路の連通・非連通を切り換える制御弁を収容しておけば、弁開閉時期制御装置の小型化が可能となり、エンジンへの搭載性を向上させることができる。   If the control valve that switches between communication and non-communication of the first oil passage and the second oil passage is housed inside the bolt that is the driven shaft as in this configuration, the valve opening / closing timing control device can be downsized, The mountability to the engine can be improved.

弁開閉時期制御装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a valve timing control apparatus. 図1におけるII−II断面図である。It is II-II sectional drawing in FIG. 進角制御時のOCVの状態を示す詳細図である。It is detail drawing which shows the state of OCV at the time of advance angle control. 遅角制御時のOCVの状態を示す詳細図である。It is detail drawing which shows the state of OCV at the time of retard control. 弁開閉時期制御装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a valve opening / closing timing control apparatus. 別実施形態における弁開閉時期制御装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the valve timing control apparatus in another embodiment.

以下に、自動車用エンジンにおける吸気弁側の弁開閉時期制御装置として本発明を適応した実施形態について、図に基づいて説明する。本実施形態においては、自動車用エンジンが「内燃機関」に相当する。   Hereinafter, an embodiment in which the present invention is applied as a valve opening / closing timing control device on an intake valve side in an automobile engine will be described with reference to the drawings. In the present embodiment, the automobile engine corresponds to an “internal combustion engine”.

〔全体構成〕
この弁開閉時期制御装置は、図1に示すごとく、「駆動軸」としての不図示のクランクシャフトと同期回転するハウジング1と、ハウジング1と同軸上に配置され、ハウジング1に対して相対回転可能な内部ロータ2とを備えている。内部ロータ2と、内部ロータ2の回転を伝達する「従動軸」としてのOCVボルト5との間には、中間部材6が設けられている。カムシャフト101は、エンジンの吸気弁の開閉を制御する不図示のカムの回転軸であり、内部ロータ2、OCVボルト5、及び中間部材6と同期回転する。尚、カムシャフト101は、不図示のエンジンのシリンダヘッドに回転自在に組み付けられている。
〔overall structure〕
As shown in FIG. 1, this valve opening / closing timing control device is disposed coaxially with a housing 1 that rotates synchronously with a crankshaft (not shown) as a “drive shaft”, and is rotatable relative to the housing 1. Internal rotor 2. An intermediate member 6 is provided between the internal rotor 2 and the OCV bolt 5 as a “driven shaft” that transmits the rotation of the internal rotor 2. The camshaft 101 is a rotating shaft of a cam (not shown) that controls opening and closing of the intake valve of the engine, and rotates in synchronization with the internal rotor 2, the OCV bolt 5, and the intermediate member 6. The camshaft 101 is rotatably assembled to a cylinder head of an engine (not shown).

〔ハウジング及び内部ロータ〕
ハウジング1は、カムシャフト101が接続される側とは反対側のフロントプレート11と、内部ロータ2に外装される外部ロータ12と、タイミングスプロケット15を一体的に備えたリアプレート13とを組み付けて構成される。ハウジング1には内部ロータ2が収容され、内部ロータ2と外部ロータ12との間に、後述のごとく流体圧室4が形成される。
[Housing and internal rotor]
The housing 1 is assembled by assembling a front plate 11 opposite to the side to which the camshaft 101 is connected, an external rotor 12 that is externally mounted on the internal rotor 2, and a rear plate 13 that is integrally provided with a timing sprocket 15. Composed. An inner rotor 2 is accommodated in the housing 1, and a fluid pressure chamber 4 is formed between the inner rotor 2 and the outer rotor 12 as described later.

クランクシャフトが回転駆動すると、動力伝達部材102を介してタイミングスプロケット15にその回転駆動力が伝達され、ハウジング1が図2に示す回転方向Sに回転駆動する。ハウジング1の回転駆動に伴い、内部ロータ2が回転方向Sに回転駆動してカムシャフト101が回転し、カムシャフト101に設けられたカムがエンジンの吸気弁を押し下げて開弁させる。   When the crankshaft is rotationally driven, the rotational driving force is transmitted to the timing sprocket 15 via the power transmission member 102, and the housing 1 is rotationally driven in the rotational direction S shown in FIG. As the housing 1 rotates, the internal rotor 2 rotates in the rotational direction S to rotate the camshaft 101, and the cam provided on the camshaft 101 pushes down the intake valve of the engine to open it.

図2に示すごとく、外部ロータ12に、径内方向に突出する複数個の突出部14を回転方向Sに沿って互いに離間させて形成することにより、内部ロータ2と外部ロータ12との間に流体圧室4を形成してある。突出部14は、内部ロータ2の外周面に対するシューとしても機能する。内部ロータ2の外周面のうち流体圧室4に面する部分に、突出部21を形成してある。流体圧室4は、突出部21によって、回転方向Sに沿って進角室41と遅角室42とに仕切られている。尚、本実施形態においては、流体圧室4が4箇所となるよう構成してあるが、これに限られるものではない。   As shown in FIG. 2, a plurality of projecting portions 14 projecting in the radially inward direction are formed on the outer rotor 12 so as to be spaced apart from each other along the rotational direction S, so that the space between the inner rotor 2 and the outer rotor 12 is increased. A fluid pressure chamber 4 is formed. The protruding portion 14 also functions as a shoe for the outer peripheral surface of the inner rotor 2. A protrusion 21 is formed on the outer peripheral surface of the internal rotor 2 on the portion facing the fluid pressure chamber 4. The fluid pressure chamber 4 is divided into an advance chamber 41 and a retard chamber 42 along the rotation direction S by the protrusion 21. In the present embodiment, the fluid pressure chamber 4 is configured to have four locations, but the present invention is not limited to this.

進角室41及び遅角室42にオイルを供給、排出、又はその給排を遮断して、突出部21に油圧を作用させる。このようにして、相対回転位相を進角方向又は遅角方向へ変位させ、或いは、任意の位相に保持する。進角方向とは、進角室41の容積が大きくなる方向であり、図2に矢印S1で示してある。遅角方向S2とは、遅角室42の容積が大きくなる方向であり、図2に矢印S2で示してある。尚、進角室41の容積が最大となった時の相対回転位相が最進角位相であり、遅角室42の容積が最大となった時の相対回転位相が最遅角位相である。   Oil is supplied to and discharged from the advance chamber 41 and the retard chamber 42, or the supply and discharge of the oil is shut off, and hydraulic pressure is applied to the protruding portion 21. In this way, the relative rotational phase is displaced in the advance angle direction or the retard angle direction, or held at an arbitrary phase. The advance direction is a direction in which the volume of the advance chamber 41 is increased, and is indicated by an arrow S1 in FIG. The retarding direction S2 is a direction in which the volume of the retarding chamber 42 increases, and is indicated by an arrow S2 in FIG. The relative rotation phase when the volume of the advance chamber 41 is maximized is the most advanced phase, and the relative rotation phase when the volume of the retard chamber 42 is maximized is the most retarded phase.

〔ロック機構〕
弁開閉時期制御装置は、ハウジング1に対する内部ロータ2の相対回転移動を拘束することにより、ハウジング1に対する内部ロータ2の相対回転位相を最進角位相と最遅角位相との間の所定のロック位相に拘束可能なロック機構8を備えている。エンジン始動直後のオイルの油圧が安定しない状況において、相対回転位相をロック位相に拘束することによって、クランクシャフトの回転位相に対するカムシャフト101の回転位相を適正に維持し、エンジンの安定的な回転を実現することができる。
[Lock mechanism]
The valve opening / closing timing control device restricts the relative rotational movement of the inner rotor 2 with respect to the housing 1, thereby locking the relative rotational phase of the inner rotor 2 with respect to the housing 1 between a most advanced angle phase and a most retarded angle phase. A lock mechanism 8 that can be restricted to the phase is provided. By restraining the relative rotational phase to the lock phase in a situation where the oil pressure of the oil immediately after engine startup is not stable, the rotational phase of the camshaft 101 with respect to the rotational phase of the crankshaft is properly maintained, and stable engine rotation is achieved. Can be realized.

図2に示すごとく、ロック部材81が軸方向に沿って移動可能に構成されており、不図示の付勢部材によりフロントプレート11又はリアプレート13に形成された不図示のロック溝と係合した状態で保持されることにより、ロック状態が維持される。内部ロータ2に形成されたロック油路82は、ロック機構8と進角油路43とを接続しており、進角制御が行われるとロック機構8に油圧を作用させる。その結果、ロック部材81が付勢部材による付勢力に抗してロック溝から退出し、ロック状態が解除される。   As shown in FIG. 2, the lock member 81 is configured to be movable along the axial direction, and is engaged with a lock groove (not shown) formed in the front plate 11 or the rear plate 13 by a biasing member (not shown). By being held in the state, the locked state is maintained. The lock oil passage 82 formed in the internal rotor 2 connects the lock mechanism 8 and the advance oil passage 43, and when the advance angle control is performed, hydraulic pressure is applied to the lock mechanism 8. As a result, the lock member 81 moves out of the lock groove against the urging force of the urging member, and the locked state is released.

〔OCV(オイルコントロールバルブ)〕
図1に示すように、本実施形態においては、「制御弁」としてのOCV51が、カムシャフト101と同軸上に配設されている。OCV51は、スプール52と、スプール52を付勢するスプリング53と、スプール52を駆動する電磁ソレノイド54と、を備えて構成される。電磁ソレノイド54については、公知の技術であるので詳細な説明を省略する。
[OCV (oil control valve)]
As shown in FIG. 1, in this embodiment, an OCV 51 as a “control valve” is disposed coaxially with the camshaft 101. The OCV 51 includes a spool 52, a spring 53 that biases the spool 52, and an electromagnetic solenoid 54 that drives the spool 52. Since the electromagnetic solenoid 54 is a known technique, a detailed description thereof will be omitted.

スプール52は、OCVボルト5の先端部に形成された収容空間5aに収容されており、収容空間5aの内部で軸方向に摺動可能である。OCVボルト5には雄ねじ部5bが形成されており、この雄ねじ部5bがカムシャフト101の雌ねじ部101aに螺着することにより、OCVボルト5がカムシャフト101に対して固定される。   The spool 52 is accommodated in an accommodation space 5a formed at the tip of the OCV bolt 5, and is slidable in the axial direction inside the accommodation space 5a. The OCV bolt 5 is formed with a male screw portion 5 b, and the male screw portion 5 b is screwed to the female screw portion 101 a of the camshaft 101, whereby the OCV bolt 5 is fixed to the camshaft 101.

スプリング53は収容空間5aの奥部に配設されており、スプール52をカムシャフト101と反対の側に常時付勢する。電磁ソレノイド54に給電すると、電磁ソレノイド54に設けられたプッシュピン54aが、スプール52に形成されたロッド部52aを押圧する。その結果、スプール52はスプリング53の付勢力に抗してカムシャフト101の側に摺動する。OCV51は、電磁ソレノイド54に供給する電力のデューティ比の調節により、スプール52の位置調節ができるよう構成されている。電磁ソレノイド54への給電量は、不図示のECU(電子制御ユニット)によって制御される。   The spring 53 is disposed in the inner part of the accommodation space 5 a and constantly urges the spool 52 to the side opposite to the camshaft 101. When power is supplied to the electromagnetic solenoid 54, a push pin 54 a provided on the electromagnetic solenoid 54 presses the rod portion 52 a formed on the spool 52. As a result, the spool 52 slides toward the camshaft 101 against the urging force of the spring 53. The OCV 51 is configured so that the position of the spool 52 can be adjusted by adjusting the duty ratio of the power supplied to the electromagnetic solenoid 54. The amount of power supplied to the electromagnetic solenoid 54 is controlled by an ECU (electronic control unit) (not shown).

〔中間部材及びワッシャー部材〕
図5に示すように、中間部材6は円筒状に形成されており、内部ロータ2のカムシャフト101の側(図中右側)に内装される。内部ロータ2のカムシャフト101と反対の側(図中右側)には、ワッシャー部材7が内装される。内部ロータ2に中間部材6及びワッシャー部材7を内装し、さらに、図5では不図示のハウジング1を内部ロータ2に外装した状態で、OCVボルト5を各部材の中心孔に挿入しカムシャフト101に螺着する。すると、図1に示すように中間部材6と内部ロータ2とが軸方向で全周に亘って当接し、当接部Aが形成される。
[Intermediate member and washer member]
As shown in FIG. 5, the intermediate member 6 is formed in a cylindrical shape and is internally provided on the camshaft 101 side (right side in the drawing) of the internal rotor 2. A washer member 7 is housed on the opposite side (right side in the figure) of the internal rotor 2 to the camshaft 101. In the state where the intermediate member 6 and the washer member 7 are installed in the inner rotor 2 and the housing 1 (not shown in FIG. Screw on. Then, as shown in FIG. 1, the intermediate member 6 and the internal rotor 2 abut on the entire circumference in the axial direction, and the abutting portion A is formed.

尚、ワッシャー部材7は、OCVボルト5のカムシャフト101に対する締結力を増大させる機能を有するが、ワッシャー部材7は本発明においては必須の構成部品ではない。又、同様の機能を有する部材を、他の形状とすることも可能であるし、他の位置に設けることも可能である。   The washer member 7 has a function of increasing the fastening force of the OCV bolt 5 to the camshaft 101, but the washer member 7 is not an essential component in the present invention. In addition, a member having the same function can be formed in another shape, and can be provided in another position.

〔油路構成〕
図1に示すように、オイルパン61に貯留されているオイルは、クランクシャフトの回転駆動力が伝達されることにより駆動する機械式のオイルポンプ62によって汲み上げられ、後述する供給油路45に供給される。そして、OCV51の制御により、進角油路43及び遅角油路44に対するオイルの供給、排出、及び給排の遮断が切り換えられる。
(Oil channel configuration)
As shown in FIG. 1, the oil stored in the oil pan 61 is pumped up by a mechanical oil pump 62 that is driven by transmission of the rotational driving force of the crankshaft, and is supplied to a supply oil passage 45 described later. Is done. Then, the supply of oil to the advance oil passage 43 and the retard oil passage 44, and the shutoff of supply / discharge are switched by the control of the OCV 51.

図1、図2に示すように、各進角室41に接続する「第1油路」としての進角油路43を、OCVボルト5に形成した貫通孔43aと、OCVボルト5と内部ロータ2との間に形成した空間43bと、内部ロータ2に形成した貫通孔43cと、によって構成してある。又、各遅角室42に接続する「第2油路」としての遅角油路44を、OCVボルト5に形成した貫通孔44aと、中間部材6に形成した貫通孔44bと、内部ロータ2に形成した貫通孔44cと、によって構成してある。さらに、進角室41或いは遅角室42にオイルを供給する供給油路45を、カムシャフト101に形成した通路45aと、中間部材6に形成した通路45bと、OCVボルト5に形成した貫通孔45cと、によって構成してある。   As shown in FIGS. 1 and 2, an advance oil passage 43 as a “first oil passage” connected to each advance chamber 41 is provided with a through hole 43 a formed in the OCV bolt 5, the OCV bolt 5 and the internal rotor. 2 and a through hole 43 c formed in the internal rotor 2. Further, a retard oil passage 44 as a “second oil passage” connected to each retard chamber 42 includes a through hole 44 a formed in the OCV bolt 5, a through hole 44 b formed in the intermediate member 6, and the internal rotor 2. And the through-hole 44c formed in. Further, a supply oil passage 45 for supplying oil to the advance chamber 41 or the retard chamber 42 has a passage 45 a formed in the camshaft 101, a passage 45 b formed in the intermediate member 6, and a through hole formed in the OCV bolt 5. 45c.

供給油路45を流通するオイルは、まずスプール52の外周面に形成された環状溝52bに流入する。図1に示すように、環状溝52bが、OCVボルト5に形成した貫通孔43aとも貫通孔44aとも連通しない状態では、進角室41及び遅角室42にはオイルが供給されない。この状態においては、貫通孔43aがスプール52に形成した貫通孔52cと連通しないように構成してあるので、進角室41のオイルが進角油路43、貫通孔52c、収容空間5a、及び排出孔52dを経由して装置外に排出されることはない。同様に、この状態においては、貫通孔44aが収容空間5aと連通しないように構成してあるので、遅角室42のオイルが遅角油路44、収容空間5a、及び排出孔52dを経由して装置外に排出されることもない。即ち、電磁ソレノイド54に所定量の給電を行い、スプール52を図1に示す位置に保持するようにOCV51を制御すると、進角室41及び遅角室42へのオイルの給排が遮断され、相対回転位相が保持される。   The oil flowing through the supply oil passage 45 first flows into an annular groove 52 b formed on the outer peripheral surface of the spool 52. As shown in FIG. 1, when the annular groove 52 b does not communicate with the through hole 43 a and the through hole 44 a formed in the OCV bolt 5, no oil is supplied to the advance chamber 41 and the retard chamber 42. In this state, the through hole 43a is configured not to communicate with the through hole 52c formed in the spool 52, so that the oil in the advance chamber 41 has the advance oil passage 43, the through hole 52c, the accommodation space 5a, and It is not discharged out of the apparatus via the discharge hole 52d. Similarly, in this state, since the through hole 44a is configured not to communicate with the accommodation space 5a, the oil in the retardation chamber 42 passes through the retardation oil passage 44, the accommodation space 5a, and the discharge hole 52d. It is not discharged outside the device. That is, when a predetermined amount of power is supplied to the electromagnetic solenoid 54 and the OCV 51 is controlled so as to hold the spool 52 in the position shown in FIG. 1, the oil supply / discharge to the advance chamber 41 and the retard chamber 42 is interrupted, The relative rotational phase is maintained.

電磁ソレノイド54に給電を行わない場合には、スプリング53の付勢力によりスプール52は図3に示す位置に保持される。この状態においては、スプール52の環状溝52bは、OCVボルト5に形成した貫通孔43aと連通し、貫通孔44aとは連通しない。同時に、貫通孔44aは収容空間5aと連通する。従って、供給油路45に供給されたオイルは進角油路43を経由して進角室41に供給され、遅角室42のオイルは遅角油路44、収容空間5a、及び排出孔52dを経由して装置外に排出される。この時、進角室41に作用する油圧により、相対回転位相が進角方向S1に変位する。   When power is not supplied to the electromagnetic solenoid 54, the spool 52 is held at the position shown in FIG. In this state, the annular groove 52b of the spool 52 communicates with the through hole 43a formed in the OCV bolt 5 and does not communicate with the through hole 44a. At the same time, the through hole 44a communicates with the accommodation space 5a. Therefore, the oil supplied to the supply oil passage 45 is supplied to the advance chamber 41 via the advance oil passage 43, and the oil in the retard chamber 42 is the retard oil passage 44, the accommodating space 5a, and the discharge hole 52d. It is discharged out of the device via At this time, the relative rotation phase is displaced in the advance direction S1 by the hydraulic pressure acting on the advance chamber 41.

電磁ソレノイド54に最大の給電を行うと、スプリング53の付勢力に抗してスプール52は図4に示す位置に保持される。この状態においては、スプール52の環状溝52bは、OCVボルト5に形成した貫通孔44aと連通し、貫通孔43aとは連通しない。同時に、貫通孔43aはスプールに形成した貫通孔52cと連通する。従って、供給油路45に供給されたオイルは遅角油路44を経由して遅角室42に供給され、進角室41のオイルは進角油路43、貫通孔52c、収容空間5a、及び排出孔52dを経由して装置外に排出される。この時、遅角室42に作用する油圧により、相対回転位相が遅角方向S2に変位する。   When maximum power is supplied to the electromagnetic solenoid 54, the spool 52 is held at the position shown in FIG. 4 against the urging force of the spring 53. In this state, the annular groove 52b of the spool 52 communicates with the through hole 44a formed in the OCV bolt 5 and does not communicate with the through hole 43a. At the same time, the through hole 43a communicates with a through hole 52c formed in the spool. Accordingly, the oil supplied to the supply oil passage 45 is supplied to the retard chamber 42 via the retard oil passage 44, and the oil in the advance chamber 41 is the advance oil passage 43, the through hole 52c, the accommodation space 5a, And it is discharged out of the apparatus via the discharge hole 52d. At this time, the relative rotational phase is displaced in the retarding direction S2 by the hydraulic pressure acting on the retarding chamber 42.

〔効果〕
以上のごとく構成した弁開閉時期制御装置においては、OCVボルト5と内部ロータ2との間に中間部材6及び空間43bを設けているので、OCVボルト5が内部ロータ2に接触することがない。従って、OCVボルト5が高強度材であっても、OCVボルト5との接触による損傷を防ぐために内部ロータ2に高強度材を用いる必要がない。例えば、内部ロータ2としてアルミ材を用いることにより、内部ロータ2の加工が容易になると共に、軽量化やコストダウンの点においても効果がある。
〔effect〕
In the valve timing control apparatus configured as described above, since the intermediate member 6 and the space 43b are provided between the OCV bolt 5 and the internal rotor 2, the OCV bolt 5 does not contact the internal rotor 2. Therefore, even if the OCV bolt 5 is a high-strength material, it is not necessary to use a high-strength material for the internal rotor 2 in order to prevent damage due to contact with the OCV bolt 5. For example, using an aluminum material as the internal rotor 2 facilitates processing of the internal rotor 2 and is effective in terms of weight reduction and cost reduction.

又、進角油路43と遅角油路44との間で中間部材6が内部ロータ2に軸方向で全周に亘って当接する当接部Aを設けているので、進角油路43のオイルと遅角油路44のオイルとが内部ロータ2と中間部材6との間の隙間で混ざり合うことがなく、弁開閉時期制御装置の制御性を損なうことがない。   In addition, since the intermediate member 6 is provided between the advance oil passage 43 and the retard oil passage 44, the contact portion A is provided to contact the inner rotor 2 over the entire circumference in the axial direction. And the oil in the retarded oil passage 44 are not mixed in the gap between the internal rotor 2 and the intermediate member 6, and the controllability of the valve opening / closing timing control device is not impaired.

さらに、中間部材6として、OCVボルト5の線膨張係数と同じ又は近い線膨張係数を有する材料を用いれば、高温環境下においてもOCVボルト5と中間部材6とが同程度に膨張し、両部材間の隙間が広がることを抑制できる。その結果、OCVボルト5と中間部材6との間の隙間におけるオイルの漏れを抑制することができ、弁開閉時期制御装置の制御性を維持することができる。例えば、OCVボルト5及び中間部材6をいずれも鉄材から構成すれば、強度の要件を満たしつつ、同様の線膨張係数を有することになるので望ましい。尚、軸方向においてはOCVボルト5によって各部材が締め付けられているので、高温環境下で各部材が膨張したとしても当接部Aにおいては隙間が生じ難い。   Furthermore, if a material having a linear expansion coefficient that is the same as or close to the linear expansion coefficient of the OCV bolt 5 is used as the intermediate member 6, the OCV bolt 5 and the intermediate member 6 expand to the same extent even in a high temperature environment, and both members It can suppress that the clearance gap between them spreads. As a result, oil leakage in the gap between the OCV bolt 5 and the intermediate member 6 can be suppressed, and the controllability of the valve opening / closing timing control device can be maintained. For example, if both the OCV bolt 5 and the intermediate member 6 are made of iron, it is desirable because they have the same linear expansion coefficient while satisfying the strength requirements. In addition, since each member is fastened by the OCV bolt 5 in the axial direction, even if each member expands in a high temperature environment, a gap is hardly generated in the contact portion A.

〔別実施形態〕
本発明の別実施形態について、図6に基づいて説明する。弁開閉時期制御装置としての基本的構成については前実施形態と同様であるので、主に前実施形態との相違点について説明する。尚、前実施形態と同じ部材については、同じ符号を付してある。
[Another embodiment]
Another embodiment of the present invention will be described with reference to FIG. Since the basic configuration of the valve timing control device is the same as that of the previous embodiment, differences from the previous embodiment will be mainly described. In addition, the same code | symbol is attached | subjected about the same member as previous embodiment.

本実施形態においては、カムシャフト101が内部ロータ2の中心孔を軸方向に亘って貫通しており、本発明における「従動軸」として構成される。カムシャフト101の先端部には、ボルト91を挿嵌する内部空間101bが形成される。ボルト91には雄ねじ部91aが形成されており、この雄ねじ部91aがカムシャフト101の雌ねじ部101aに螺着することにより、ハウジング1に内装された内部ロータ2がカムシャフト101に対して固定される。   In the present embodiment, the camshaft 101 passes through the center hole of the inner rotor 2 in the axial direction, and is configured as a “driven shaft” in the present invention. An internal space 101 b into which the bolt 91 is inserted is formed at the tip of the camshaft 101. The bolt 91 has a male threaded portion 91 a formed therein. The male threaded portion 91 a is screwed into the female threaded portion 101 a of the camshaft 101, thereby fixing the internal rotor 2 housed in the housing 1 to the camshaft 101. The

前実施形態とは異なり、OCV51は弁開閉時期制御装置よりもオイルポンプ62の側に配設される。即ち、弁開閉時期制御装置にオイルが流入する前に、OCV51にてオイルを後述する進角油路73及び遅角油路74の何れに供給するかが切り換えられる。本実施形態においては、前実施形態における供給油路が弁開閉時期制御装置に形成されることはない。   Unlike the previous embodiment, the OCV 51 is disposed closer to the oil pump 62 than the valve opening / closing timing control device. That is, before the oil flows into the valve opening / closing timing control device, the OCV 51 is switched to supply the advance oil passage 73 or the retard oil passage 74 to be described later. In the present embodiment, the supply oil passage in the previous embodiment is not formed in the valve opening / closing timing control device.

各進角室に接続する「第1油路」としての進角油路73を、カムシャフト101に形成した通路73aと、カムシャフト101と内部ロータ2との間に形成した空間73bと、内部ロータ2に形成した貫通孔73cと、によって構成してある。又、各遅角室に接続する「第2油路」としての遅角油路74を、カムシャフト101に形成した通路74aと、中間部材6に形成した通路74bと、内部ロータ2に形成した貫通孔74cと、によって構成してある。   An advance oil passage 73 as a “first oil passage” connected to each advance chamber, a passage 73a formed in the camshaft 101, a space 73b formed between the camshaft 101 and the internal rotor 2, and an internal And a through hole 73 c formed in the rotor 2. Further, a retard oil passage 74 as a “second oil passage” connected to each retard chamber is formed in a passage 74 a formed in the camshaft 101, a passage 74 b formed in the intermediate member 6, and the internal rotor 2. And a through hole 74c.

以上のごとく構成した弁開閉時期制御装置においては、カムシャフト101と内部ロータ2との間に中間部材6及び空間73bを設けているので、カムシャフト101が内部ロータ2に接触することがない。従って、カムシャフト101が高強度材であっても、カムシャフト101との接触による損傷を防ぐために内部ロータ2に高強度材を用いる必要がない。又、内部ロータ2と中間部材6とが軸方向で全周に亘って当接する当接部Aを設けているため、進角油路73のオイルと遅角油路74のオイルとが内部ロータ2と中間部材6との間で混ざり合うことがなく、弁開閉時期制御装置の制御性を損なうことがない。   In the valve timing control apparatus configured as described above, since the intermediate member 6 and the space 73b are provided between the camshaft 101 and the internal rotor 2, the camshaft 101 does not contact the internal rotor 2. Therefore, even if the camshaft 101 is a high-strength material, it is not necessary to use a high-strength material for the internal rotor 2 in order to prevent damage due to contact with the camshaft 101. Further, since the contact portion A where the inner rotor 2 and the intermediate member 6 are contacted over the entire circumference in the axial direction is provided, the oil in the advance oil passage 73 and the oil in the retard oil passage 74 are transferred to the inner rotor. 2 and the intermediate member 6 are not mixed with each other, and the controllability of the valve timing control device is not impaired.

中間部材6は、内部ロータ2と軸方向で全周に亘って当接部Aにて当接するだけでなく、カムシャフト101とも軸方向で全周に亘って当接部Bにて当接する。図6に示すように、中間部材6に形成した通路74bを、軸方向においてカムシャフト101に形成した通路74aと接続するように構成すると、中間部材6とカムシャフト101との間に隙間が生じても、進角油路73のオイルと遅角油路74のオイルとが混ざり合うことがないので、弁開閉時期制御装置の制御性を損なうことがない。この場合、中間部材6として、カムシャフト101の線膨張係数と同じ又は近い線膨張係数を有する材料を用いる必要性が少なく、中間部材6の材料を選択する自由度が増す。   The intermediate member 6 not only contacts the inner rotor 2 at the contact portion A over the entire circumference in the axial direction, but also contacts the camshaft 101 at the contact portion B over the entire circumference in the axial direction. As shown in FIG. 6, when the passage 74 b formed in the intermediate member 6 is connected to the passage 74 a formed in the cam shaft 101 in the axial direction, a gap is generated between the intermediate member 6 and the cam shaft 101. However, since the oil in the advance oil passage 73 and the oil in the retard oil passage 74 are not mixed, the controllability of the valve opening / closing timing control device is not impaired. In this case, there is little need to use a material having a linear expansion coefficient that is the same as or close to the linear expansion coefficient of the camshaft 101 as the intermediate member 6, and the degree of freedom in selecting the material of the intermediate member 6 is increased.

又、本実施形態においては、内部ロータ2を組み付ける前に、予め中間部材6をカムシャフト101に圧入しておくことが可能であるので、カムシャフト101と中間部材6との間の隙間をなくすことができる。従って、カムシャフト101と中間部材6との間に隙間が生じると、進角油路73のオイルと遅角油路74のオイルとが混ざり合ってしまうような油路構成としている場合には、中間部材6をカムシャフト101に圧入することにより、弁開閉時期制御装置の制御性が低下することを防止できる。   In the present embodiment, the intermediate member 6 can be press-fitted into the camshaft 101 in advance before assembling the internal rotor 2, thereby eliminating the gap between the camshaft 101 and the intermediate member 6. be able to. Therefore, when a gap is generated between the camshaft 101 and the intermediate member 6, the oil passage configuration is such that the oil in the advance oil passage 73 and the oil in the retard oil passage 74 are mixed. By press-fitting the intermediate member 6 into the camshaft 101, it is possible to prevent the controllability of the valve opening / closing timing control device from being lowered.

〔他の実施形態〕
(1)本発明に係る弁開閉時期制御装置を、排気弁側の弁開閉時期制御装置に適用しても良い。
(2)ロック機構を備えていなくても、或いはロック機構の構成が上記実施形態と異なっていても良い。
(3)油路構成は弁開閉時期制御装置の機能に支障をきたさない範囲で、上記実施形態と異なる構成としても良い。
(4)本発明における「従動軸」は、OCVボルトやカムシャフト以外の部材としても良い。
(5)中間部材の形状や配置が上記実施形態と異なっていてもよい。
Other Embodiment
(1) The valve opening / closing timing control device according to the present invention may be applied to a valve opening / closing timing control device on the exhaust valve side.
(2) The lock mechanism may not be provided, or the configuration of the lock mechanism may be different from that of the above embodiment.
(3) The oil passage configuration may be different from the above embodiment as long as the function of the valve timing control device is not hindered.
(4) The “driven shaft” in the present invention may be a member other than the OCV bolt or the camshaft.
(5) The shape and arrangement of the intermediate member may be different from those in the above embodiment.

本発明は、自動車その他の内燃機関の弁開閉時期制御装置に利用することができる。   The present invention can be used for a valve opening / closing timing control device of an automobile or other internal combustion engine.

1 ハウジング
2 内部ロータ
5 OCVボルト(従動軸)
6 中間部材
43 進角油路(第1油路)
43b 空間(第1油路の一部を構成する空間)
44 遅角油路(第2油路)
44b 貫通孔(第2油路の一部を構成する通路)
51 OCV(制御弁)
73 進角油路(第1油路)
73b 空間(第1油路の一部を構成する空間)
74 遅角油路(第2油路)
74b 通路(第2油路の一部を構成する通路)
101 カムシャフト(従動軸)
A 当接部
1 Housing 2 Internal rotor 5 OCV bolt (driven shaft)
6 Intermediate member 43 Advance oil passage (first oil passage)
43b space (a space constituting a part of the first oil passage)
44 Retardation oil passage (second oil passage)
44b Through hole (passage constituting part of second oil passage)
51 OCV (Control valve)
73 Advance oil passage (first oil passage)
73b space (a space constituting a part of the first oil passage)
74 Retardation oil passage (second oil passage)
74b passage (passage constituting a part of the second oil passage)
101 Camshaft (driven shaft)
A Contact part

Claims (6)

内燃機関の駆動軸と同期回転するハウジングと、
前記ハウジングと同軸上に配置され、前記ハウジングに対して相対回転可能な内部ロータと、
前記ハウジングと前記内部ロータとの間に形成される進角室および遅角室と、
前記内部ロータの回転を伝達する従動軸と、
前記内部ロータと前記従動軸との間に配置され、前記内部ロータ及び前記従動軸と同期回転する中間部材と、を備え、
記従動軸と前記内部ロータとの間に空間が形成され、前記進角室に連通する第1油路が、前記従動軸の軸芯から前記空間及び前記内部ロータの内部を介して径外方向に延出し、前記遅角室に連通する第2油路が、前記従動軸の軸芯から前記中間部材の内部を介して前記径外方向に延出し、前記第1油路と前記第2油路との間において前記中間部材が前記内部ロータに軸方向で全周に亘って当接する当接部を設け
前記第1油路と前記第2油路とは、前記当接部を前記軸方向で挟むように配置されている弁開閉時期制御装置。
A housing that rotates synchronously with the drive shaft of the internal combustion engine;
An inner rotor disposed coaxially with the housing and rotatable relative to the housing;
An advance chamber and a retard chamber formed between the housing and the inner rotor;
A driven shaft for transmitting rotation of the internal rotor;
An intermediate member disposed between the inner rotor and the driven shaft and rotating synchronously with the inner rotor and the driven shaft;
A space is formed between the inner rotor before and SL driven shaft, a first oil passage communicating with the advance chamber, through the interior of the space and the inner rotor from the axis of the driven shaft radially A second oil passage extending in a direction and communicating with the retard chamber extends from the axial center of the driven shaft in the radially outward direction through the inside of the intermediate member , and the first oil passage and the second oil passage A contact portion is provided between the oil passage and the intermediate member that contacts the inner rotor over the entire circumference in the axial direction ;
The first oil passage and the second oil passage are valve opening / closing timing control devices arranged so as to sandwich the contact portion in the axial direction .
前記中間部材は、前記内部ロータよりも前記従動軸に近い線膨張係数又は前記従動軸と同じ線膨張係数を有する材料からなる請求項1に記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to claim 1, wherein the intermediate member is made of a material having a linear expansion coefficient closer to the driven shaft than the internal rotor or the same linear expansion coefficient as the driven shaft. 前記第2油路を流通して前記内部ロータに供給される作動油は、前記従動軸の外周側を通り、前記中間部材を介して供給可能な請求項1又は2に記載の弁開閉時期制御装置。   3. The valve opening / closing timing control according to claim 1, wherein the hydraulic oil that flows through the second oil passage and is supplied to the internal rotor passes through the outer peripheral side of the driven shaft and can be supplied via the intermediate member. apparatus. 前記従動軸及び前記中間部材は鉄材からなり、前記内部ロータはアルミ材からなる請求項1〜3の何れか1項に記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to any one of claims 1 to 3, wherein the driven shaft and the intermediate member are made of an iron material, and the inner rotor is made of an aluminum material. 前記従動軸はカムシャフトであり、前記中間部材は前記カムシャフトに圧入されている請求項1〜4の何れか1項に記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to any one of claims 1 to 4, wherein the driven shaft is a camshaft, and the intermediate member is press-fitted into the camshaft. 前記従動軸はカムシャフトに螺着されるボルトであり、前記ボルトの内部に前記第1油路及び前記第2油路の連通・非連通を切り換える制御弁が収容されている請求項1〜4の何れか1項に記載の弁開閉時期制御装置。   The driven shaft is a bolt that is screwed onto a camshaft, and a control valve that switches between communication and non-communication of the first oil passage and the second oil passage is housed inside the bolt. The valve opening / closing timing control device according to any one of the above.
JP2010203234A 2010-09-10 2010-09-10 Valve timing control device Expired - Fee Related JP5585832B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010203234A JP5585832B2 (en) 2010-09-10 2010-09-10 Valve timing control device
US13/217,486 US20120060779A1 (en) 2010-09-10 2011-08-25 Variable valve timing control apparatus
EP11179376.6A EP2428656B1 (en) 2010-09-10 2011-08-30 Variable valve timing control apparatus
CN201110268518.XA CN102400728B (en) 2010-09-10 2011-09-06 Variable valve timing control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203234A JP5585832B2 (en) 2010-09-10 2010-09-10 Valve timing control device

Publications (2)

Publication Number Publication Date
JP2012057578A JP2012057578A (en) 2012-03-22
JP5585832B2 true JP5585832B2 (en) 2014-09-10

Family

ID=44509062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203234A Expired - Fee Related JP5585832B2 (en) 2010-09-10 2010-09-10 Valve timing control device

Country Status (4)

Country Link
US (1) US20120060779A1 (en)
EP (1) EP2428656B1 (en)
JP (1) JP5585832B2 (en)
CN (1) CN102400728B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321926B2 (en) * 2011-02-18 2013-10-23 アイシン精機株式会社 Valve timing control device
JP5626243B2 (en) * 2012-02-29 2014-11-19 株式会社デンソー Hydraulic valve timing adjustment device
JP5831335B2 (en) * 2012-04-03 2015-12-09 株式会社日本自動車部品総合研究所 Valve timing adjustment device
JP5811358B2 (en) * 2012-05-24 2015-11-11 株式会社デンソー Valve timing adjustment device
DE102012214757A1 (en) * 2012-08-20 2014-02-20 Schaeffler Technologies AG & Co. KG Phaser
JP5991091B2 (en) 2012-09-04 2016-09-14 アイシン精機株式会社 Valve timing control device
CN103174490B (en) * 2013-04-01 2014-10-22 天津大学 Hydraulic pressure variable valve device based on rotor control
DE102013209520A1 (en) * 2013-05-23 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Rotor for a vane positioner of a camshaft adjusting device
JP5817784B2 (en) * 2013-05-24 2015-11-18 株式会社デンソー Hydraulic valve timing adjustment device
JP5979102B2 (en) * 2013-08-28 2016-08-24 アイシン精機株式会社 Valve timing control device
JP2015045282A (en) * 2013-08-28 2015-03-12 アイシン精機株式会社 Valve opening/closing timing control device
JP2015045281A (en) 2013-08-28 2015-03-12 アイシン精機株式会社 Valve opening/closing timing control device
DE102013015675A1 (en) * 2013-09-23 2015-03-26 Gkn Sinter Metals Holding Gmbh Rotor for a camshaft adjuster, parts set for producing a rotor for a camshaft adjuster and method for producing a joined component, preferably a rotor for a phaser
JP6187203B2 (en) * 2013-11-29 2017-08-30 アイシン精機株式会社 Valve timing control device
JP6273801B2 (en) * 2013-11-29 2018-02-07 アイシン精機株式会社 Valve timing control device
DE102013226449B4 (en) 2013-12-18 2020-11-26 Schaeffler Technologies AG & Co. KG Non-cutting oil channels in a split rotor for a hydraulic camshaft adjuster
JP6217438B2 (en) * 2014-02-14 2017-10-25 アイシン精機株式会社 Valve timing control device
JP6295720B2 (en) * 2014-02-27 2018-03-20 アイシン精機株式会社 Valve timing control device
JP6225750B2 (en) * 2014-02-27 2017-11-08 アイシン精機株式会社 Valve timing control device
JP6292083B2 (en) 2014-08-27 2018-03-14 アイシン精機株式会社 Valve timing control device
CN104712387B (en) * 2015-01-28 2017-02-01 宁波太平洋电控***有限公司 Variable valve timing mechanism with middle locking function
JP6721334B2 (en) * 2015-12-28 2020-07-15 株式会社ミクニ Valve timing change device
JP6666715B2 (en) * 2015-12-28 2020-03-18 株式会社ミクニ Valve timing change device
JP6410742B2 (en) * 2016-01-08 2018-10-24 アイシン精機株式会社 Valve timing control device
US10151222B2 (en) * 2016-09-28 2018-12-11 Schaeffler Technologies AG & Co. KG Electric cam phasing system including an activatable lock
JP2018135842A (en) * 2017-02-23 2018-08-30 アイシン精機株式会社 Valve opening/closing timing control device
JP6954764B2 (en) * 2017-05-12 2021-10-27 株式会社デンソー Valve timing adjuster
JP6497430B2 (en) * 2017-11-30 2019-04-10 アイシン精機株式会社 Valve timing control device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091776A (en) * 1974-04-04 1978-05-30 Rockwell International Corporation Fluid actuated timing mechanism
US5592909A (en) * 1994-03-18 1997-01-14 Unisia Jecs Corporation Camshaft phase changing device
JP3744594B2 (en) * 1996-05-15 2006-02-15 アイシン精機株式会社 Valve timing control device
US5836276A (en) * 1996-08-09 1998-11-17 Denso Corporation Rotational phase adjusting apparatus having fluid reservoir
DE19708661B4 (en) * 1997-03-04 2005-06-16 Ina-Schaeffler Kg Device for varying the valve timing of an internal combustion engine, in particular camshaft adjusting device according to the vane cell principle
DE19817319C2 (en) * 1998-04-18 2001-12-06 Daimler Chrysler Ag Camshaft adjuster for internal combustion engines
JP4013364B2 (en) * 1998-10-30 2007-11-28 アイシン精機株式会社 Valve timing control device
DE19944535C1 (en) * 1999-09-17 2001-01-04 Daimler Chrysler Ag Cam shaft adjuster for internal combustion engines has control slider with central return bore and controllable housing connections connectable to supply connection on return side
JP4350861B2 (en) * 2000-02-15 2009-10-21 株式会社日立製作所 Valve timing control device for internal combustion engine
JP2002047906A (en) * 2000-07-31 2002-02-15 Daihatsu Motor Co Ltd Valve timing variable device in internal combustion engine
DE10134320A1 (en) * 2001-07-14 2003-01-23 Ina Schaeffler Kg Device for changing the control times of gas shuttle valves in internal combustion engines comprises a driven unit axially, radially and peripherally locked on a sleeve and screwed in a deformation-free manner on a camshaft
JP2004060591A (en) * 2002-07-31 2004-02-26 Mikuni Corp Valve timing changing device
DE102004035035B4 (en) * 2003-07-24 2022-04-14 Daimler Ag Camshaft adjusters for internal combustion engines
US20050045130A1 (en) * 2003-08-27 2005-03-03 Borgwarner Inc. Camshaft incorporating variable camshaft timing phaser rotor
EP1596040B1 (en) * 2004-05-14 2010-10-13 Schaeffler KG Camshaft phaser
JP3974139B2 (en) * 2005-04-26 2007-09-12 株式会社日立製作所 Valve timing control device for internal combustion engine
DE102006033425A1 (en) * 2006-07-19 2008-02-21 Schaeffler Kg Group of several camshafts with camshaft adjusters
DE102007020526A1 (en) * 2007-05-02 2008-11-06 Schaeffler Kg Camshaft adjuster for an internal combustion engine with improved design of the pressure chambers
DE102008029692B4 (en) * 2008-06-24 2016-02-11 Hilite Germany Gmbh Built camshaft with a vane positioner and manufacturing process
DE102008030057B4 (en) * 2008-06-27 2018-01-25 Hilite Germany Gmbh Camshaft adjustment device
DE102008050134B4 (en) * 2008-10-04 2017-06-29 Schaeffler Technologies AG & Co. KG Camshaft adjustment device for an internal combustion engine
DE102008057492A1 (en) * 2008-11-15 2010-05-20 Daimler Ag Camshaft adjuster for phase shifting rotations of crankshaft and camshaft, has fastening unit for rotating around axis during fastening process, and fluid guiding groove arranged at radial inner side of fluid guiding unit
JP4640510B2 (en) * 2009-01-14 2011-03-02 株式会社デンソー Valve timing adjustment device
JP2010059979A (en) * 2009-12-18 2010-03-18 Aisin Seiki Co Ltd Valve opening and closing timing control device
JP5146550B2 (en) * 2011-01-14 2013-02-20 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
CN102400728A (en) 2012-04-04
CN102400728B (en) 2015-05-13
EP2428656A1 (en) 2012-03-14
JP2012057578A (en) 2012-03-22
US20120060779A1 (en) 2012-03-15
EP2428656B1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5585832B2 (en) Valve timing control device
JP5360511B2 (en) Valve timing control device
JP5403341B2 (en) Valve timing control device
JP5500350B2 (en) Valve timing control device
EP2343438B1 (en) Camshaft phasing device
JP2000130118A (en) Valve opening and closing time control device
US8555837B2 (en) Stepped rotor for camshaft phaser
CN108474274B (en) Valve timing changing device
US10337363B2 (en) Valve opening and closing timing control apparatus
JP2015045281A (en) Valve opening/closing timing control device
EP1500796B1 (en) Camshaft phasing device
JP5136852B2 (en) Valve timing control device
JP2015045282A (en) Valve opening/closing timing control device
JP5979102B2 (en) Valve timing control device
JP2009180148A (en) Valve timing adjusting device
JP5793107B2 (en) Variable valve operating device for internal combustion engine
CN108368755B (en) Valve timing changing device
JP4304878B2 (en) Valve timing adjustment device
JP2010031821A (en) Valve opening and closing timing control device
JPH11311109A (en) Valve on-off timing controller
JPH10339114A (en) Valve opening/closing timing controller
JP2000170508A (en) Valve timing controller for internal combustion engine
JP2001227308A (en) Valve timing control device of internal combustion engine
JP5897993B2 (en) Variable valve operating device for internal combustion engine
JP5022327B2 (en) Variable valve timing mechanism for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R151 Written notification of patent or utility model registration

Ref document number: 5585832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees