JP5583362B2 - Simultaneous analysis method for multi-element components in soil - Google Patents

Simultaneous analysis method for multi-element components in soil Download PDF

Info

Publication number
JP5583362B2
JP5583362B2 JP2009124564A JP2009124564A JP5583362B2 JP 5583362 B2 JP5583362 B2 JP 5583362B2 JP 2009124564 A JP2009124564 A JP 2009124564A JP 2009124564 A JP2009124564 A JP 2009124564A JP 5583362 B2 JP5583362 B2 JP 5583362B2
Authority
JP
Japan
Prior art keywords
soil
analysis
soil extract
ray
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009124564A
Other languages
Japanese (ja)
Other versions
JP2010271247A (en
Inventor
眞吾 糸永
真一 熱田
静枝 稲垣
Original Assignee
株式会社アサノ大成基礎エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサノ大成基礎エンジニアリング filed Critical 株式会社アサノ大成基礎エンジニアリング
Priority to JP2009124564A priority Critical patent/JP5583362B2/en
Publication of JP2010271247A publication Critical patent/JP2010271247A/en
Application granted granted Critical
Publication of JP5583362B2 publication Critical patent/JP5583362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、重金属等の土壌中に含有される多元素成分の同時分析方法に関し、不溶化濃縮技術を用いて、エネルギー分散型の蛍光X線分析装置による多元素成分の同時分析を可能とするものである。 The present invention relates to a method for simultaneous analysis of multi-element components contained in soil such as heavy metals, and enables simultaneous analysis of multi-element components using an energy dispersive X-ray fluorescence analyzer using an insolubilizing concentration technique. It is.

土壌汚染調査においては、一般的に公定分析法(平成15年環境省告示第18号、同19号、平成3年環境省告示46号)により試料の前処理および機器分析がおこなわれるが、分析結果が得られるまでに長時間を要し、また高コストであるところから、近時その簡易でしかも低コストの分析手法の開発が望まれている。   In soil contamination surveys, sample pretreatment and instrumental analysis are generally performed by official analysis methods (2003 Ministry of the Environment Notification No. 18, 19 and 1991 Ministry of the Environment Notification No. 46). Since it takes a long time to obtain a result and the cost is high, the development of a simple and low-cost analysis method has recently been desired.

土壌汚染調査においては、一般的に公定分析法による溶液の分析がおこなわれており、溶液を対象として蛍光X線を用いて直接または全反射分析法で測定することも可能であるが、分析感度が足りず、再現性が良くないことから公定分析法の溶液を対象とする濃縮手法の開発が望まれている。   In soil contamination surveys, solutions are generally analyzed by official analysis methods, and it is possible to measure the solution directly or by total reflection analysis using fluorescent X-rays. In view of the lack of reproducibility, the development of a concentration method for official analysis solutions is desired.

またJIS K 0470による場合においても、エネルギー分散型蛍光X線による分析をおこなう場合には鉄のサムピークの影響が鉛のピークに影響を与えるところから二次フィルターの検討がおこなわれている。   Also in the case of JIS K 0470, in the case of performing analysis by energy dispersive X-ray fluorescence, the secondary filter has been studied since the influence of the iron sum peak affects the lead peak.

このような状況の中で、従来蛍光X線分析をおこなう場合に、イオン交換膜様の液体吸収材を用い、これに目的元素をより効率的に、かつ強固に吸着・濃縮させて提供することが提案されている(特開2005−134277号公報参照)。またキレート高分子剤により測定対象元素を濃縮させるようにしたものも提案されている(特開2004−294329号公報および特開2006−29864号公報参照)。   Under such circumstances, when performing conventional X-ray fluorescence analysis, use an ion exchange membrane-like liquid absorbent material, and provide the target element more efficiently and firmly adsorbed and concentrated to it. Has been proposed (see JP 2005-134277 A). In addition, an element in which an element to be measured is concentrated by a chelate polymer agent has been proposed (see Japanese Patent Application Laid-Open Nos. 2004-294329 and 2006-29864).

さらに汚染された土壌中より対象元素を抽出するに際して、未風乾土壌の含水率を測定するとともに秤量した土壌に有機溶媒を加えて混合し、約1分間振とうした後約30分間静置し、その後遠心分離してフィルターで濾過した濾液を溶出検液とし、簡易分析法、イオン電極法、吸光光度法、原子吸光分析法、ICP発光分析法又は蛍光X線分析法等にて液中の重金属などを定量測定する方法も提案されている(特開2005−331409号公報参照)。   Further, when extracting the target element from the contaminated soil, the moisture content of the undried soil is measured and the organic solvent is added to and mixed with the weighed soil, shaken for about 1 minute, and left to stand for about 30 minutes. After that, the filtrate that has been centrifuged and filtered through a filter is used as the elution test solution, and heavy metals in the solution are obtained by simple analysis, ion electrode method, absorptiometry, atomic absorption analysis, ICP emission analysis, or fluorescent X-ray analysis. A method for quantitatively measuring the above has also been proposed (see JP 2005-331409 A).

またマイラー膜やポリプロピレン膜等の有機高分子膜表面に疎水剤を塗布することにより有機高分子膜の疎水性を高め、この有機高分子膜上に検液を滴下し、それを乾燥固化後に対象物質を小範囲に濃縮する方法なども提案されている(特開2007−163360号公報参照)。   In addition, the hydrophobicity of the organic polymer film is increased by applying a hydrophobic agent to the surface of the organic polymer film such as Mylar film or polypropylene film, and the test solution is dropped on the organic polymer film, and then dried and solidified. A method of concentrating substances in a small range has also been proposed (see Japanese Patent Application Laid-Open No. 2007-163360).

特開2005−134277号公報JP 2005-134277 A 特開2004−294329号公報JP 2004-294329 A 特開2006−29864号公報JP 2006-29864 A 特開2005−331409号公報JP 2005-331409 A 特開2007−163360号公報JP 2007-163360 A

しかしながら、上記した引用文献1のものでは、溶液中に分析対象元素に近い性質の多量のイオンが存在した場合に、分析対象元素の液体吸収材への吸着が妨害されることで、分析対象元素の一部が液体吸収材に捕集されずに通過してしまいやすく、正確な定量値が得られない。このように試験溶液中に含まれる重金属を陽イオンまたは陰イオン交換性のフィルターを用いた場合においては、本発明者らの実験結果によると、検量線の直線性は良いものの重金属を捕集する際のpH値如何により重金属の回収率に変動を生じやすい。   However, in the above cited reference 1, in the case where a large amount of ions having properties close to the analysis target element exists in the solution, the adsorption of the analysis target element to the liquid absorbent is hindered. A part of the sample tends to pass through without being collected by the liquid absorbent, and an accurate quantitative value cannot be obtained. As described above, when a cation or anion exchange filter is used for the heavy metal contained in the test solution, according to the experiment results of the present inventors, the heavy metal is collected although the linearity of the calibration curve is good. The recovery rate of heavy metals is likely to vary depending on the pH value at the time.

また多成分同時分析をおこなう場合においては、目的とする金属成分により最適pH値の範囲が異なるところから一定のpH環境下において多成分が同時に良好な回収率が得られない可能性がある。また目的成分のイオン種如何により陽イオンおよび陰イオン交換フィルターを使い分ける煩わしさがある。また砒素についてはキレート樹脂と同様に燐酸イオンなどの妨害に起因して回収率の低下が見られた。またキレート高分子剤を用いて対象元素の濃縮をおこなう引用文献2および引用文献3のものにあっては、数十μg/Lまでの定量下限値が確認されてはいるが、土壌溶出量の基準値(数μg/L)については明らかでない。   In the case of performing multi-component simultaneous analysis, there is a possibility that a good recovery rate cannot be obtained simultaneously for the multi-component under a certain pH environment because the range of the optimum pH value varies depending on the target metal component. In addition, there are bothersome uses of cation and anion exchange filters depending on the ionic species of the target component. As for the arsenic, similar to the chelate resin, the recovery rate was reduced due to interference of phosphate ions and the like. In the case of Cited Document 2 and Cited Document 3 in which the target element is concentrated using a chelating polymer agent, the lower limit of quantification up to several tens of μg / L has been confirmed. The reference value (several μg / L) is not clear.

またこの場合に、溶出試験液にキレート繊維を添加し、攪拌により重金属成分をキレート繊維に吸着捕集させるとともに、重金属を含むキレート樹脂を濾過により回収・乾燥させたもの、あるいはキレート樹脂によるミニカラムに重金属成分を捕集させたものを蛍光X線分析法により測定した場合においては鉛と砒素との検量線の直線性が良く環境基準値レベルの測定が一応可能ではあるが、試料の砒素については溶出試験液中に共存する燐酸イオンやフッ素イオンなどがキレート樹脂の吸着を阻害して砒素の回収率を阻害・低下させることが報告されている(森田博和・伊東治・加瀬和夫(2006):土壌・地下水の現場分析技術、地下水・土壌汚染とその防止対策に関する研究集会、第12回講演集、p6-10 )。   Also, in this case, chelate fibers are added to the dissolution test solution, and the heavy metal components are adsorbed and collected on the chelate fibers by stirring, and the chelate resin containing heavy metals is collected and dried by filtration, or in a mini column made of chelate resin. When the collected heavy metal components are measured by X-ray fluorescence analysis, the calibration curve of lead and arsenic has good linearity and the environmental standard value level can be measured. It has been reported that phosphate ions and fluorine ions coexisting in the dissolution test solution inhibit the adsorption of chelating resin and inhibit or reduce the recovery rate of arsenic (Hiroka Morita, Osamu Ito, Kazuo Kase (2006) : Soil / groundwater on-site analysis technology, groundwater / soil contamination and its prevention workshop, 12th Lecture, p6-10).

このように前処理による妨害物質である燐酸の除去などの必要性は認められるものの具体的な解決策は示されておらず、とくに砒素については水溶液中に砒酸イオンと亜砒酸イオン、有機体砒素という形で存在するものを酸化処理によりすべて砒酸イオンとして吸着捕集する必要がある。   Although there is a need for removal of phosphoric acid, which is a disturbing substance by pretreatment, no specific solution has been shown. Especially, arsenic is called arsenate ion, arsenite ion, organic arsenic in aqueous solution. It is necessary to adsorb and collect all arsenate ions by oxidation treatment.

さらに引用文献4のものでは、土壌から対象元素を抽出する際に、有機溶媒を用いることから多量の有害な廃液が出るために環境上において好ましくない。X線分析法/公定分析法の同一試料分析値比の報告(高橋知克・大橋優子・奥村興平(2004):ポータブル蛍光X線分析装置を用いた土壌中重金属等の簡易分析方法の検討、地下水・土壌汚染とその防止対策に関する研究集会、第10回講演集、p614-61 参照)でおこなわれた実験においては、紙おむつ等に用いられるアクリル酸ポリマーに土壌溶出液を吸水させ、乾燥・粉砕した後に蛍光X線分析し、アクリル酸塩素系高吸水ポリマー5gに溶出試験液250ml、含有量試験溶液15mlを吸水させて分析した場合、溶出試験では250ml水分相当量を蒸発させる必要があり、大変手間がかかる。   Furthermore, the thing of the cited reference 4 is unpreferable on the environment in order to extract a lot of harmful waste liquid from using an organic solvent when extracting a target element from soil. Report of the ratio of the same sample analysis values of X-ray analysis method / official analysis method (Tomokatsu Takahashi, Yuko Ohashi, Kohei Okumura (2004): Examination of simple analysis method of heavy metals in soil using portable X-ray fluorescence analyzer, In an experiment conducted at the Research Meeting on Groundwater and Soil Contamination and Countermeasures, see the 10th Lecture Collection, p614-61), the acrylic acid polymer used in paper diapers and the like absorbs the soil eluate and dries and grinds it. After that, when X-ray fluorescence analysis was performed and 250 ml of dissolution test solution and 15 ml of content test solution were absorbed into 5 g of chlorine acrylate superabsorbent polymer, it was necessary to evaporate the equivalent of 250 ml of water in the dissolution test. It takes time and effort.

さらにX線分析法/公定分析法の同一試料分析値比の報告(高橋知克・大橋優子・奥村興平(2004)においては、鉛溶出66〜311%、砒素溶出63〜270%、鉛含有59〜131%、砒素含有83〜1553%と、得られたデータに大きなばらつきが生じている。   Furthermore, reports of the same sample analysis value ratio of X-ray analysis method / official analysis method (in Chikataka Takahashi, Yuko Ohashi, Kohei Okumura (2004), lead elution 66-311%, arsenic elution 63-270%, lead-containing 59 There is a large variation in the obtained data, ˜131% and arsenic content 83˜1553%.

またこの場合に別途おこなわれた実験(丸茂克美・氏家亨・小野木由佳(2007):小型エネルギー分散型蛍光X線分析装置を用いた汚染土壌地の現場迅速分析事例、X線分析の進歩、38 p235-247 参照)によっても、アクリル酸ナトリウムポリマーを用いて鉛と砒素の溶出試験液の分析を試みているが、蛍光X線分析法/公定分析法の同一試料による分析値比は約60%にとどまることが確認されており実際的ではない。   In addition, experiments conducted separately in this case (Katsumi Marumo, Ujiie Uji, and Yuka Onoki (2007): Examples of rapid analysis of contaminated soil sites using small energy dispersive X-ray fluorescence analyzers, advances in X-ray analysis, 38 p235-247) also attempts to analyze lead and arsenic elution test solutions using sodium acrylate polymer, but the analysis value ratio of the same sample for XRF / official analysis is about 60%. It has been confirmed that it is not practical.

さらに引用文献5のものにあっては、その疎水性に起因して乾燥中に転がり落ちやすく使い勝手があまりよくない。なお含有量試験溶液(30μl)をマイラーシート(厚さ:2.5μm)上に滴下し、乾燥させて砒素と鉛の分析をおこなったところ、公定分析法と良い相関を示したとの報告(丸茂克美・氏家亨・小野木有佳 (2007) :小型エネルギー分散型蛍光X線分析装置を用いた汚染土壌地の現場迅速分析事例、X線分析の進歩、38 p235-247 参照)もあるが、この場合に、蛍光X線分析法/公定分析法の同一試料分析値比では砒素で30%、鉛で10%、それぞれ高めであった。   Furthermore, in the thing of the cited reference 5, it is easy to roll down during drying due to the hydrophobicity, and its usability is not so good. In addition, when the content test solution (30 μl) was dropped onto a Mylar sheet (thickness: 2.5 μm) and dried to analyze arsenic and lead, a report showed that it showed a good correlation with the official analysis method (Marushige Katsumi, Ujiie, and Yuka Onoki (2007): Examples of rapid analysis of contaminated soil using a small energy dispersive X-ray fluorescence spectrometer, progress in X-ray analysis, see page 235-247) In the case of the same sample analysis value ratio of the X-ray fluorescence analysis method / official analysis method, it was 30% higher for arsenic and 10% higher for lead.

またこの場合に溶出試験溶液については何ら報告されておらず、滴下量だけでは蛍光X線分析装置の感度が不足し、十分な定量下限値を確保することが困難であると考える。本発明者らの実験によってもこの場合における低濃度の分析は困難で、また高濃度においても分析データの異常値が出る確率が高く、滴下した試験溶液がマイラーシート上で均一に乾燥しないこと、また励起X線が測定対象のピンポイントに的確に当たらない場合が多いこと、などにより実用化が困難と判断せざるを得なかった。   In this case, no elution test solution has been reported, and it is considered that the sensitivity of the X-ray fluorescence analyzer is insufficient with only the drop amount, and it is difficult to secure a sufficient lower limit of quantification. According to the experiments of the present inventors, it is difficult to analyze at a low concentration in this case, and there is a high probability that an abnormal value of analysis data is generated even at a high concentration, and the dropped test solution does not dry uniformly on the Mylar sheet, Moreover, it has been judged that it is difficult to put it to practical use because the excited X-rays often do not accurately hit the pinpoint of the measurement target.

上記の課題を解決するために、本発明においては土壌溶出量・含有量の分析について、公定分析法により作成した試験溶液を、蛍光X線分析法により簡単に、しかも既述した環境省告示第18号、同19号による分析能力と同等の分析精度が得られ、また第2種特定有害物質についてオンサイトにて多元素同時に分析可能とすることを特徴とするものである。   In order to solve the above-mentioned problems, in the present invention, the test solution prepared by the official analysis method for the analysis of the amount and content of soil elution is simplified by the fluorescent X-ray analysis method, and the Ministry of the Environment notification described above. Analytical accuracy equivalent to the analytical ability according to No. 18 and No. 19 is obtained, and the second type specific hazardous substance can be simultaneously analyzed on-site with multiple elements.

すなわち本発明は、採取した土壌試料に水または塩酸を混合して遠心分離することにより得られた土壌抽出液に、酸化剤を混合して加熱することにより酸化処理を施す工程と、酸化処理が施された土壌抽出液についてpH調整した後、pH調整された土壌抽出液に鉄系の凝集剤を加えて攪拌することにより不溶化土壌抽出液を得る工程と、不溶化土壌抽出液を濾紙に通過させることにより濃縮して、濃縮土壌抽出成分を捕集する工程と、鉄のサムピークの影響を抑制する二次フィルターを備えるエネルギー分散型の蛍光X線分析装置を用いて、捕集した濃縮土壌抽出成分を蛍光X線分析することにより含有多元素を同時分析する工程と、を有することを特徴とする土壌中における含有多元素成分同時分析方法に関する。 That is, the present invention includes a step of subjecting a soil extract obtained by mixing water or hydrochloric acid to a collected soil sample and centrifuging to an oxidation treatment by mixing an oxidizing agent and heating, and an oxidation treatment. After adjusting the pH of the applied soil extract, a step of obtaining an insolubilized soil extract by adding an iron-based flocculant to the pH-adjusted soil extract and stirring, and passing the insolubilized soil extract through a filter paper Concentrated soil extract components collected using an energy dispersive X-ray fluorescence spectrometer equipped with a step of collecting concentrated soil extract components and a secondary filter that suppresses the effects of iron thumb peaks and a step of simultaneously analyzing containing multielement by fluorescent X-ray analysis, relates to a multi-element component simultaneous analysis method comprising the soil, characterized in that it comprises a.

本発明は上記したように、蛍光X線分析前の前処理段階で分析対象となる鉛、カドミウム、砒素などを含む土壌抽出液(測定検液)に酸化剤を混合して加熱し酸化処理するために、亜砒酸イオンをすべて砒酸イオンとすることができ、また酸化処理した土壌抽出液についてpH調整を行なうことで不溶化を促進し、さらにこれに不溶化剤を加えて攪拌し懸濁沈殿物を生長生成させることにより、対象元素を100%回収することができる。   In the present invention, as described above, an oxidizing agent is mixed with a soil extract (measuring test solution) containing lead, cadmium, arsenic and the like to be analyzed in a pretreatment stage before fluorescent X-ray analysis, and heated to oxidize. Therefore, all the arsenite ions can be converted into arsenate ions, and the insolubilization is promoted by adjusting the pH of the oxidized soil extract. By generating the target element, 100% of the target element can be recovered.

また不溶化後に土壌抽出液を濃縮するために、土壌溶出量試験の濃度レベル(溶出量は基準値の約半分)までの分析が可能になるほか、不溶化濃縮により懸濁沈殿物と液体に分離し、濾紙通過後の液体には鉛、カドミウム、砒素が含まれず、しかも土壌抽出に際しての廃液量が少ない。さらに不溶化した懸濁沈殿物の濾過に、たとえば蛍光X線分析装置の分析範囲(Φ10mm程度)をカバーできる大きさ(例えばΦ25mm程度のもの)を用いると、再現性が良好(変動係数10%以内)であることが既に明らかとなっており、しかも作業中における試料の零れ落ちがない。   In addition, in order to concentrate the soil extract after insolubilization, analysis up to the concentration level of the soil elution test (elution amount is about half of the standard value) is possible, as well as separation into suspended sediment and liquid by insolubilization concentration. The liquid after passing through the filter paper does not contain lead, cadmium and arsenic, and the amount of waste liquid during soil extraction is small. Furthermore, when the insolubilized suspended sediment is filtered using, for example, a size (for example, about Φ25 mm) that can cover the analysis range of the fluorescent X-ray analyzer (for example, about Φ25 mm), the reproducibility is good (variation coefficient within 10%). It is already clear that the sample is not spilled during operation.

さらに、蛍光X線分析に先立って土壌抽出液を不溶化濃縮する際において、鉄系の凝集剤を用いるにあたってエネルギー分散型の蛍光X線分析装置の二次フィルターの材質としてアルミニウム薄膜を用いることにより、鉄のサムピークの影響をなくすことができ、鉛のピーク(Lβ)を効率よく分離させることが可能となる。
Furthermore, in the time of insoluble concentrating the soil extract prior to X-ray fluorescence analysis, when Ru with ferrous flocculants, Ru using an aluminum thin film as a material of the secondary filter energy dispersive X-ray fluorescence spectrometer Thus, the influence of the iron thumb peak can be eliminated, and the lead peak (Lβ) can be efficiently separated.

本発明の一実施例であるところの、土壌抽出液中の重金属等を不溶化したものを捕集するための濾過工程図。The filtration process figure for collecting what insolubilized the heavy metal etc. in a soil extract which is one Example of this invention. 本発明の土壌中における重金属等多元素同時分析の一連の過程を説明するための分析フロー。The analysis flow for demonstrating a series of processes of simultaneous multielement analysis, such as heavy metals, in the soil of this invention. 実施例1における土壌汚染対策法の溶出基準値をみるために、不溶化濃縮した標準液を蛍光X線装置により測定して得られたX線強度と濃度との相関図(検量線)。In order to see the elution reference value of the soil contamination countermeasure method in Example 1, the correlation diagram (calibration curve) of the X-ray intensity and density | concentration obtained by measuring the insolubilized and concentrated standard solution with a fluorescent X-ray apparatus. 実施例1における土壌汚染対策法の含有基準値をみるために、不溶化濃縮した標準液を蛍光X線装置により測定して得られたX線強度と濃度との相関図(検量線)。FIG. 3 is a correlation diagram (calibration curve) between the X-ray intensity and the concentration obtained by measuring the insolubilized and concentrated standard solution with a fluorescent X-ray apparatus in order to see the content standard value of the soil contamination countermeasure method in Example 1. FIG. 実施例4における不溶化濃縮した土壌試料を蛍光X線装置により測定して得られたX線強度と濃度との相関図。The correlation figure of the X-ray intensity and density | concentration obtained by measuring the insolubilized and concentrated soil sample in Example 4 with a fluorescent X-ray apparatus. 実施例4における不溶化濃縮した土壌試料を蛍光X線装置により測定して得られたX線強度と濃度との相関図。The correlation figure of the X-ray intensity and density | concentration obtained by measuring the insolubilized and concentrated soil sample in Example 4 with a fluorescent X-ray apparatus.

以下、本発明の土壌中に含まれる重金属等成分溶出量の分析方法及びこれに用いられる分析装置、並びにこれに用いる試料の一実施の形態を図面を参照しながら説明する。本発明の土壌中における重金属等溶出量および含有量分析は、土壌から作成した検液中の重金属等を、不溶化材を用いて濃縮した後、この濃縮後の重金属等成分濃度を蛍光X線分析装置により分析する技術である。   Hereinafter, an analysis method of an elution amount of components such as heavy metals contained in soil of the present invention, an analysis apparatus used therefor, and an embodiment of a sample used therewith will be described with reference to the drawings. The elution amount and content analysis of heavy metals and the like in the soil of the present invention are carried out by concentrating the heavy metals and the like in the test solution prepared from the soil using an insolubilizing material, and then analyzing the concentration of the heavy metals and the like after the concentration by fluorescent X-ray analysis It is a technology that analyzes with a device.

なお、ここで「検液」とは、平成3年環境庁告示第46号「土壌の汚染に係る環境基準(溶出量)」または平成15年環境省告示第19号付表に掲げる方法にしたがって作成した液のことである。また、本発明における測定対象物質である重金属等とは、主として鉛、カドミウム、砒素等が代表例として挙げられるが、これら以外にも、例えば、ニッケルや銅等といった、不溶化材により凝集沈殿が可能で、なおかつ蛍光X線分析装置で分析可能な元素であれば、全て本発明の溶出量分析の測定対象物質としての重金属等の概念に含まれる。 “Test solution” is prepared in accordance with the method listed in the Environmental Agency Notification No. 46 “Environmental Standards on Soil Contamination (Elution Amount)” or the 2003 Ministry of the Environment Notification No. 19 Appendix. It is the liquid. In addition, typical examples of the heavy metal that is a measurement target substance in the present invention include lead, cadmium, arsenic, and the like. In addition to these, coagulation precipitation is possible with an insolubilizing material such as nickel or copper. Any element that can be analyzed by a fluorescent X-ray analyzer is included in the concept of heavy metal as a measurement target substance of the elution amount analysis of the present invention.

また、本発明は、主に、各種工場の敷地(又は跡地)や自然界の土地の土壌に含まれる汚染物質濃度の調査を目的とした溶出量測定や、汚染物質を浄化処理(不溶化処理)した処理土の品質管理を目的とした溶出量測定に適用されるものであるが、これら以外の場合であっても、土壌中の上記測定対象物質の溶出量及び含有量を測定する場合には、適用可能である。本発明における土壌抽出液とは、平成3年環境庁告示第46号「土壌の汚染に係る環境基準(溶出量)」または平成15年環境省告示第19号付表に掲げる方法にしたがって作成した液のことである。 In addition, the present invention mainly measures the amount of elution for the purpose of investigating the concentration of pollutants contained in the premises (or ruins) of various factories and the soil of natural land, and purifies (insolubilizes) the pollutants. Although applied to the measurement of the amount of dissolution for the purpose of quality control of the treated soil, even in cases other than these, when measuring the dissolution amount and content of the above-mentioned measurement target substance in the soil, Applicable. The soil extract in the present invention is a liquid prepared according to the method listed in the 1991 Environment Agency Notification No. 46 “Environmental Standards on Soil Contamination (Elution Amount)” or 2003 Ministry of the Environment Notification No. 19 Appendix. That is.

〔酸化処理〕
上記した土壌抽出液の酸化工程は、土壌抽出液を硝酸、硫酸、塩酸などの酸により酸性化した後、酸化剤(例えば過マンガン酸カリウムなど)を加えて沸騰水浴中で加熱することにより有機物を分解し、亜砒酸を砒酸に酸化する。
[Oxidation treatment]
In the above-mentioned oxidation step of the soil extract, the soil extract is acidified with an acid such as nitric acid, sulfuric acid, hydrochloric acid, etc., and then added with an oxidizing agent (for example, potassium permanganate) and heated in a boiling water bath. And arsenous acid is oxidized to arsenic acid.

〔pH調整〕
pH調整は、酸化処理した土壌抽出液を放冷した後、水酸化ナトリウムなどのアルカリ及び緩衝液(例えば炭酸−重炭酸緩衝液など)によりpHを9〜10程度に調整する。
[PH adjustment]
In the pH adjustment, after the oxidatively treated soil extract is allowed to cool, the pH is adjusted to about 9 to 10 with an alkali such as sodium hydroxide and a buffer solution (for example, a carbonate-bicarbonate buffer solution).

〔不溶化〕
不溶化工程は、pH調整した土壌抽出液に鉄系凝集剤を加えて緩速攪拌し目的元素を含む沈殿物を生成させる。
[Insolubilization]
In the insolubilization step, an iron-based flocculant is added to the pH-adjusted soil extract, and the mixture is gently stirred to produce a precipitate containing the target element.

〔濃縮〕
土壌抽出液を濃縮する工程は、不溶化工程で生成した沈殿物を吸引濾過により濾紙上に捕集する通水濃縮の実施による。図1は本発明における重金属等成分を捕集するための濾過装置の一例を示し、さらに同図において(A)〜(C)は採取した土壌抽出液から含有重金属等を濾紙上に捕集する工程を表している。図1(A)において濾過瓶4のフィルターハウジング2に濾紙3を装着する。図1(B)においてファンネル1に容器6内に入れた試料溶液を入れ、これを濾過瓶4の吸引口5から吸引濾過し、これによって濾紙3上に不溶化工程で生成した重金属成分などの濾過濃縮物質を捕集する。
〔concentrated〕
The step of concentrating the soil extract is performed by concentration of water passing through the precipitate generated in the insolubilization step, which is collected on a filter paper by suction filtration. FIG. 1 shows an example of a filtration device for collecting components such as heavy metals in the present invention. In the same figure, (A) to (C) collect contained heavy metals and the like from the collected soil extract on filter paper. It represents a process. In FIG. 1A, the filter paper 3 is mounted on the filter housing 2 of the filter bottle 4. In FIG. 1 (B), the sample solution put in the container 6 is put into the funnel 1, and this is suction filtered from the suction port 5 of the filter bottle 4, thereby filtering heavy metal components and the like generated on the filter paper 3 in the insolubilization process. Collect concentrated material.

図1(C)において重金属等成分が捕集された濾紙3を取り出す。取り出した濾紙3は乾燥する。なおこの場合に、陽イオンまたは陰イオン交換膜を通過させイオン交換膜により濃縮する場合は、不溶化濃縮とは異なり酸化工程、pH調整、不溶化工程を省略し、重金属等の捕集効率を高めるためにコンディショニングを行った後、土壌抽出液をそのまま吸引濾過することによりイオン交換膜を通過させることで濃縮し、対象とする成分によっては、不溶化法より有利に濃縮処理できる。 In FIG. 1C, the filter paper 3 on which components such as heavy metals are collected is taken out. The taken out filter paper 3 is dried. In this case, when passing through a cation or anion exchange membrane and concentrating with an ion exchange membrane, unlike the insolubilization concentration, the oxidation step, pH adjustment, and insolubilization step are omitted to increase the collection efficiency of heavy metals and the like. After conditioning, the soil extract is concentrated by passing through the ion exchange membrane by suction filtration as it is, and depending on the target component, it can be concentrated more advantageously than the insolubilization method.

また鉄系の凝集剤を用いて不溶化凝集をおこなう場合においては、鉄系の凝集剤を使用するところで蛍光X線分析にとっては不利要因となりうる。蛍光X線分析によるところの鉄の値は、サムピークの2倍にピークの位置が鉛ピーク位置と重なりあることによる定量値に影響を与える。そこで本発明では蛍光X線分析の特性に鑑み、二次フィルターを工夫することにより鉄の妨害を除去した測定を実施するようにした。   In addition, when insoluble aggregation is performed using an iron-based flocculant, the use of the iron-based flocculant may be a disadvantageous factor for fluorescent X-ray analysis. The value of iron by X-ray fluorescence analysis affects the quantitative value due to the peak position overlapping the lead peak position twice as much as the sum peak. Therefore, in the present invention, in consideration of the characteristics of the fluorescent X-ray analysis, the secondary filter is devised to carry out the measurement with the iron interference removed.

〔乾燥〕
蛍光X線分析による濃縮土壌抽出成分の分析においては、蛍光X線分析前に濃縮された土壌抽出液を乾燥させる必要があり、またこの乾燥工程で、フィルター面に凝集した元素を通水濃縮するために、測定面表面を平滑にすることが必要である。測定面表面の平滑化については、具体的には、試料の凝集沈殿の状態に応じて段階通水し、測定面を平滑させることにより行なう。
[Dry]
In the analysis of concentrated soil extract components by fluorescent X-ray analysis, it is necessary to dry the concentrated soil extract before fluorescent X-ray analysis, and in this drying process, the elements condensed on the filter surface are concentrated with water. Therefore, it is necessary to smooth the surface of the measurement surface. Specifically, the measurement surface is smoothed by passing water stepwise according to the state of aggregation and precipitation of the sample to smooth the measurement surface.

〔分析〕
重金属等濃縮土壌抽出成分の分析は蛍光X線分析装置を用いておこなう。蛍光X線装置としては例えば、エネルギー分散型の蛍光X線分析装置ED-05S(株式会社X線技術研究所製)などを用いて実施する。上記した土壌抽出液(測定検液)の採取から分析・測定に至る一連の概略工程についての概略は図2にあらわした通りであり、また具体的な分析手法については以下の実施例1〜4に示す通りである。
〔analysis〕
Analysis of concentrated soil extract components such as heavy metals is performed using a fluorescent X-ray analyzer. As the fluorescent X-ray apparatus, for example, an energy dispersive fluorescent X-ray analyzer ED-05S (manufactured by X-ray Technology Laboratory Co., Ltd.) is used. The outline of a series of schematic steps from collection of the above-described soil extract (measurement test solution) to analysis / measurement is as shown in FIG. 2, and specific analysis methods are described in Examples 1 to 4 below. As shown in

〔検量線の作成〕
鉛、カドミウム、砒素の標準液(原子吸光用金属標準液)の混合液を適宜希釈し、不溶化濃縮操作を施した後、エネルギー分散型蛍光X線分析装置に供し、蛍光X線強度と各元素濃度の関係線を求め検量線を作成した。(図3、図4参照)。この場合に溶出量は溶液のX軸を溶液の濃度で示している。また含有量は以下のように単位換算している。

含有量(mg/kg)=標準液濃度(mg/L)×希釈倍率(10)×100/3

当該結果から、蛍光X線強度と各元素濃度の間には極めて良好な直線関係が認められた。溶出量、含有量ともに土壌汚染対策法の指定基準(以下、基準値)を含む範囲で直線性が確保できており、基準値の評価に用いることができる。
(Create a calibration curve)
A mixture of lead, cadmium, and arsenic standard solutions (metal standard solution for atomic absorption) is appropriately diluted and subjected to insolubilization and concentration, and then subjected to an energy dispersive X-ray fluorescence analyzer. A calibration curve was prepared by determining the relationship line of concentration. (See Figures 3 and 4). In this case, the elution amount is indicated by the concentration of the solution on the X axis of the solution. The content is converted in units as follows.

Content (mg / kg) = standard solution concentration (mg / L) x dilution factor (10) x 100/3

From the result, a very good linear relationship was recognized between the fluorescent X-ray intensity and the concentration of each element. Linearity can be secured within a range that includes both the elution amount and the content specified by the Soil Contamination Countermeasures Law (hereinafter referred to as “standard value”), and can be used for evaluation of the standard value.

〔定量下限値〕
蛍光X線分析における検出下限は、JIS K 0470に従い、検量線に使用した最小濃度の10回繰返し試験結果の標準偏差σの3倍とした。また、定量下限はJIS K
0470に示されるように、他の分析手法と同様、検出下限の3倍程度と考えられることから、検出下限を3σ,定量下限を10σと定義した。検量線に使用した最小濃度の10回繰返し試験結果を表1に示す。
[Lower limit of quantification]
The lower limit of detection in the fluorescent X-ray analysis was set to 3 times the standard deviation σ of the 10 times repeated test result of the minimum concentration used for the calibration curve according to JIS K 0470. The lower limit of quantification is JIS K
As shown in 0470, it was considered to be about 3 times the lower limit of detection as in other analysis methods, so the lower limit of detection was defined as 3σ and the lower limit of quantification was defined as 10σ. Table 1 shows the results of 10 repeated tests of the minimum concentration used in the calibration curve.

Figure 0005583362
Figure 0005583362

上記繰返し試験結果から得られた蛍光X線強度の10σを図3、図4から算出された検量線に代入して得られた定量下限値を表2に示す。当該結果から、溶出量では基準値の2分の1、含有量では基準値の10分の1以下まで定量可能であることが証明された。なおこの場合の定量上限については、検量線の最高濃度とするが、溶出量、含有量ともに、高濃度の場合は希釈して測定するため、実質上の上限値はない。   Table 2 shows the lower limit of quantification obtained by substituting 10σ of the fluorescent X-ray intensity obtained from the above repeated test results into the calibration curve calculated from FIG. 3 and FIG. From the results, it was proved that the elution amount can be quantified to one-half of the reference value and the content to one-tenth or less of the reference value. Note that the upper limit of quantification in this case is the maximum concentration of the calibration curve, but there is no practical upper limit because both the elution amount and the content are diluted and measured when the concentration is high.



Figure 0005583362
Figure 0005583362

〔再現性〕
本分析法は、不溶化濃縮する工程と蛍光X線測定する工程の2つに分けられる。それぞれの工程の再現性を分けて評価するため、各操作のみの10回繰返し試験を実施した。まず、不溶化濃縮操作の再現性を確認するため、実汚染土から平成15年環告18号および19号に従って検液を作成し、一つの検液に対して不溶化濃縮操作を10回行い、得られた濾紙を蛍光X線分析装置で測定し、変動係数を求めた。(表 3参照)。
〔Reproducibility〕
This analysis method can be divided into two steps: insolubilization and concentration and fluorescent X-ray measurement. In order to evaluate the reproducibility of each process separately, 10 repetition tests of only each operation were performed. First, in order to confirm the reproducibility of the insolubilization concentration operation, a test solution was prepared from actual contaminated soil according to 2003 notifications 18 and 19, and the insolubilization concentration operation was performed 10 times for one test solution. The obtained filter paper was measured with a fluorescent X-ray analyzer, and the coefficient of variation was determined. (See Table 3).

Figure 0005583362
Figure 0005583362

鉛溶出量の変動係数は6.7%、鉛含有量は3.3%であり、不溶化濃縮操作の再現性は十分に確保された。蛍光X線装置による測定操作を10回繰返し、変動係数を求めたところ、表4に示すとおり、鉛溶出量の変動係数は5.0%、鉛含有量は1.8%であり、蛍光X線測定による再現性は十分に確保された。   The variation coefficient of lead elution amount was 6.7%, and the lead content was 3.3%, and the reproducibility of the insolubilization concentration operation was sufficiently ensured. The measurement operation with the X-ray fluorescence apparatus was repeated 10 times, and the coefficient of variation was calculated. As shown in Table 4, the coefficient of variation of the lead elution amount was 5.0% and the lead content was 1.8%. Sex was sufficiently secured.

Figure 0005583362
Figure 0005583362

〔公定法との比較〕
複数サイトの実汚染土(粘土,シルト,砂等)および模擬試料を用いて公定法(ICP-MSまたはAAS)との比較を行った。模擬試料は自然地盤のロームおよび市販の黒土に硝酸塩を添加して作成した。実汚染土および模擬試料から平成15年環告18号および19号に従って検液を作成し、この検液について実施例1と同様の操作を行い、実施例1で得られた検量線を用いて定量結果を算出した。
[Comparison with the official method]
Comparison with the official method (ICP-MS or AAS) was performed using actual contaminated soil (clay, silt, sand, etc.) and simulated samples at multiple sites. Simulated samples were made by adding nitrate to natural ground loam and commercially available black soil. A test solution was prepared from the actual contaminated soil and the simulated sample in accordance with 2003 notification No. 18 and No. 19, and this test solution was operated in the same manner as in Example 1, and the calibration curve obtained in Example 1 was used. Quantitative results were calculated.

これと同じ検液を用いて公定法による分析を実施し、両者の相関関係を求めたところ図5、図6に示した通りである。この結果から得られた各項目の相関係数と傾きを表 5に示す。表5からみて相関係数は溶出量分析で0.97 以上、含有量分析で0.98 以上であり、本発明による分析結果と公定法分析の間には極めて良好な相関関係が認められた。両方法間での相関性が良いことより公定法に準じた多元素成分同時迅速分析手法として十分実用的に使用可能である。 The analysis by the official method was carried out using the same test solution, and the correlation between the two was determined as shown in FIG. 5 and FIG. Table 5 shows the correlation coefficient and slope of each item obtained from this result. As seen from Table 5, the correlation coefficient was 0.97 or more in the elution analysis and 0.98 or more in the content analysis, and a very good correlation was recognized between the analysis result of the present invention and the official method analysis. Since the correlation between the two methods is good, it can be used practically enough as a simultaneous rapid analysis method for multi-element components according to the official method.

Figure 0005583362
Figure 0005583362

また、実試料の分析において従来法のように砒素が燐酸イオンなどにより、成分濃縮の妨害となるような現象は見られず、測定妨害物質の影響はない。以上の結果より、本発明による分析方法を用いれば、簡易・迅速に公定法と同等の分析結果を得られることが証明された。   Further, in the analysis of actual samples, the phenomenon that arsenic interferes with the concentration of components due to phosphate ions or the like as in the conventional method is not observed, and there is no influence of measurement interfering substances. From the above results, it was proved that the analysis result equivalent to the official method can be obtained easily and quickly by using the analysis method according to the present invention.

本発明により、蛍光X線分析装置で溶液試料中の重金属等含有元素成分を高精度に定量分析することが可能となる。これによって、一般的に溶液試料中の元素の定量分析に用いられているICP質量分析法や原子吸光分析法などに比べ簡便に溶液試料中の元素の定量分析結果を得ることができる。定量下限値は公定法分析法の溶出量試験の環境基準値の1/2までの分析が可能である。
また、実試料の分析において従来法のように砒素が燐酸イオンなどにより、成分濃縮の妨害となるような現象は見られず、この点からも多元素成分同時迅速分析法として実用的な方法である。本発明による分析方法を用いれば、簡易・迅速に公定法と同等の分析結果を得られる。
According to the present invention, it is possible to quantitatively analyze elemental components such as heavy metals in a solution sample with a fluorescent X-ray analyzer. Thereby, the quantitative analysis result of the element in the solution sample can be easily obtained as compared with the ICP mass spectrometry method or the atomic absorption spectrometry method generally used for the quantitative analysis of the element in the solution sample. The lower limit of quantification can be analyzed up to 1/2 of the environmental standard value of the elution amount test of the official method.
In addition, in the analysis of actual samples, the phenomenon that arsenic interferes with the concentration of components due to phosphate ions, etc., as in the conventional method is not observed. is there. By using the analysis method according to the present invention, an analysis result equivalent to the official method can be obtained easily and quickly.

1 ファンネル
2 ベース
3 フィルター
4 濾過瓶
5 吸引口
6 容器(測定対象重金属を不溶化した土壌抽出液入)
1 Funnel 2 Base 3 Filter 4 Filter bottle 5 Suction port 6 Container (with soil extract solution insolubilized heavy metal to be measured)

Claims (2)

採取した土壌試料に水または塩酸を混合して遠心分離することにより得られた土壌抽出液に、酸化剤を混合して加熱することにより酸化処理を施す工程と、
酸化処理が施された土壌抽出液についてpH調整した後、pH調整された土壌抽出液に鉄系の凝集剤を加えて攪拌することにより不溶化土壌抽出液を得る工程と、
不溶化土壌抽出液を濾紙に通過させることにより濃縮して、濃縮土壌抽出成分を捕集する工程と、
鉄のサムピークの影響を抑制する二次フィルターを備えるエネルギー分散型の蛍光X線分析装置を用いて、捕集した濃縮土壌抽出成分を蛍光X線分析することにより含有多元素を同時分析する工程と、を有することを特徴とする土壌中における含有多元素成分同時分析方法。
A step of subjecting a soil extract obtained by mixing water or hydrochloric acid to a collected soil sample and centrifuging to an oxidation treatment by mixing and heating an oxidant;
After adjusting the pH of the soil extract subjected to oxidation treatment, adding an iron-based flocculant to the pH-adjusted soil extract and stirring to obtain an insolubilized soil extract;
A process of concentrating the insolubilized soil extract by passing it through filter paper and collecting the concentrated soil extract components;
A step of simultaneously analyzing multi-elements contained by X-ray fluorescence analysis of the collected concentrated soil extract components using an energy dispersive X-ray fluorescence analyzer equipped with a secondary filter that suppresses the influence of the iron sum peak ; A method for simultaneous analysis of contained multi-element components in soil , characterized by comprising :
前記二次フィルターは、アルミニウム薄膜により形成されていることを特徴とする請求項1に記載の土壌中における含有多元素成分同時分析方法。 The said secondary filter is formed with the aluminum thin film , The containing multi-element component simultaneous analysis method in the soil of Claim 1 characterized by the above-mentioned .
JP2009124564A 2009-05-22 2009-05-22 Simultaneous analysis method for multi-element components in soil Active JP5583362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124564A JP5583362B2 (en) 2009-05-22 2009-05-22 Simultaneous analysis method for multi-element components in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124564A JP5583362B2 (en) 2009-05-22 2009-05-22 Simultaneous analysis method for multi-element components in soil

Publications (2)

Publication Number Publication Date
JP2010271247A JP2010271247A (en) 2010-12-02
JP5583362B2 true JP5583362B2 (en) 2014-09-03

Family

ID=43419375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124564A Active JP5583362B2 (en) 2009-05-22 2009-05-22 Simultaneous analysis method for multi-element components in soil

Country Status (1)

Country Link
JP (1) JP5583362B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807872B2 (en) * 2011-07-12 2015-11-10 国立研究開発法人産業技術総合研究所 Method for estimating the amount of natural heavy metal elements dissolved in water
JP6351012B2 (en) * 2014-09-22 2018-07-04 Jxtgエネルギー株式会社 Soil analysis method
CN107238649A (en) * 2016-04-10 2017-10-10 深圳多元拓展环保科技有限公司 Farmland soil heavy metals in situ detection and chelating trapping controlling device and its application
RU2623194C1 (en) * 2016-06-28 2017-06-22 Федеральное государственное бюджетное образовательное высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Method of x-ray functional determination of microelements with concentration by method of coprecipitation
CN109902406B (en) * 2019-03-06 2022-11-18 苏州市环境科学研究所 Method for detecting heavy metal content in soil based on deep learning and application
CN111948167A (en) * 2020-08-18 2020-11-17 天津大学 Method for quickly quantifying concentration of polystyrene microspheres and tetracycline in water
CN112284867A (en) * 2020-09-23 2021-01-29 西北农林科技大学 Method for separating and extracting soil residual micro-plastic
CN112710729A (en) * 2020-12-18 2021-04-27 核工业北京地质研究院 Ore formation information detection method by measuring trace elements in soil condensate
CN114062649B (en) * 2021-10-27 2022-09-23 生态环境部南京环境科学研究所 Soil pollution trend analysis method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880547A (en) * 1981-11-07 1983-05-14 Toshiba Corp Pretreatment for measuring heavy metal in sample water
JP3614568B2 (en) * 1995-06-26 2005-01-26 株式会社住化分析センター Soil analysis method
JP2004093272A (en) * 2002-08-30 2004-03-25 Taisei Kiso Sekkei Kk Analytical measuring method of heavy metal components contained in liquid, and shape analysis method for heavy metals
JP2004294329A (en) * 2003-03-27 2004-10-21 Hitachi Constr Mach Co Ltd Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
JP2005283356A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Mining Co Ltd Method, mechanism, and apparatus for centrifuging and filtering soil content examination test liquid
JP2005331409A (en) * 2004-05-20 2005-12-02 Tokyo Soil Research Co Ltd Simplified soil elution test method for heavy metal or the like
JP4956037B2 (en) * 2006-04-12 2012-06-20 セントラル科学株式会社 Simple test method for leaching amount of harmful substances in soil
JP2008309767A (en) * 2007-05-11 2008-12-25 Horiba Ltd Method for decomposing solid sample and method for determining quantity of chrome using the same

Also Published As

Publication number Publication date
JP2010271247A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5583362B2 (en) Simultaneous analysis method for multi-element components in soil
Soylak et al. Separation/preconcentration of silver (I) and lead (II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations
Liang et al. Speciation of As (III) and As (V) in water samples by dispersive liquid-liquid microextraction separation and determination by graphite furnace atomic absorption spectrometry
Marguí et al. Analytical capabilities of laboratory, benchtop and handheld X-ray fluorescence systems for detection of metals in aqueous samples pre-concentrated with solid-phase extraction disks
Radke et al. Analysis of arsenic species in environmental samples
Baig et al. A novel strategy for chromium speciation at ultra-trace level by microsample injection flame atomic absorption spectrophotometry
Shamsipur et al. Determination of ultra traces of lead in water samples after combined solid-phase extraction–dispersive liquid–liquid microextraction by graphite furnace atomic absorption spectrometry
Dimpe et al. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge
Naeemullah et al. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples
Fontàs et al. Novel and selective procedure for Cr (VI) determination by X-ray fluorescence analysis after membrane concentration
Grotti et al. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods
Zheng et al. Determination of trace amounts of Pb, Cd, Ni and Co by wavelength-dispersive X-ray fluorescence spectrometry after preconcentration with dithizone functionalized graphene
JP2004294329A (en) Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
Sun et al. Rapid determination of molybdate in natural waters by coprecipitation and neutron activation analysis
CN102967591A (en) Method for detecting hexavalent chromium in water sample
JP2005331409A (en) Simplified soil elution test method for heavy metal or the like
Chen et al. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF
Shao et al. Determination of phosphorus in water using iron hydroxide assisted laser-induced breakdown spectroscopy
Bakircioglu et al. A novel preconcentration method for determination of iron and lead using Chromosorb-103 and flame atomic absorption spectrometry
Seval et al. Silica nanoparticle-covered Graphene Oxide as solid-phase extraction sorbent coupled with FAAS for the determination of some of heavy metals in water sample
Kilic et al. The method development for elimination of matrix interferences in seawater monitoring to determine elements by ICP-MS
JP3614568B2 (en) Soil analysis method
JP5425864B2 (en) Simple test method for content of harmful substances in soil
JP4956037B2 (en) Simple test method for leaching amount of harmful substances in soil
Yamini et al. Solid-phase extraction of copper with cupron on octadecyl silica cartridge and its determination with atomic absorption spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250