JP5581396B2 - Method for removing arsenic using a capture catalyst prior to desulfurization - Google Patents

Method for removing arsenic using a capture catalyst prior to desulfurization Download PDF

Info

Publication number
JP5581396B2
JP5581396B2 JP2012541977A JP2012541977A JP5581396B2 JP 5581396 B2 JP5581396 B2 JP 5581396B2 JP 2012541977 A JP2012541977 A JP 2012541977A JP 2012541977 A JP2012541977 A JP 2012541977A JP 5581396 B2 JP5581396 B2 JP 5581396B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
arsenic
naphtha
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012541977A
Other languages
Japanese (ja)
Other versions
JP2013512327A (en
Inventor
ジョン・ピー・グリーリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JP2013512327A publication Critical patent/JP2013512327A/en
Application granted granted Critical
Publication of JP5581396B2 publication Critical patent/JP5581396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、改善された特性を有するナフサ沸点範囲生成物の製造方法に関する。   The present invention relates to a process for producing naphtha boiling range products having improved properties.

分解ナフサの処理のための従来技術の一つは、分解ナフサの選択的水素化脱硫を行うことを含む。選択的水素化脱硫は、反応中に起こるオレフィン飽和の量を最小限にしながら、硫黄がナフサから除去されるプロセスを指す。オレフィン飽和の回避は、それが、より高いオクタン価ナフサ生成物につながるので、価値あるものであり得る。より高いオクタン価の保持により、選択的に水素化脱硫された原料を、改質工程を用いることを必要とせずにナフサ燃料ストックとして使用することが可能になる。   One prior art technique for treating cracked naphtha involves performing selective hydrodesulphurization of cracked naphtha. Selective hydrodesulfurization refers to a process in which sulfur is removed from naphtha while minimizing the amount of olefin saturation that occurs during the reaction. Avoidance of olefin saturation can be valuable as it leads to higher octane naphtha products. Maintaining a higher octane number allows the selectively hydrodesulfurized feedstock to be used as a naphtha fuel stock without the need for a reforming process.

改質することなく使用のための適したオクタン価を有するナフサ原料の種類の一つは、流動接触分解(FCC)プロセスで製造されたナフサ原料である。FCCナフサ原料は、相当量のオレフィンを含有し、選択的水素化脱硫プロセスを魅力的な選択肢とすることができる。しかし、FCCプロセスに供給される原料の種類に依存して、得られるFCCナフサ原料は、相当量のヒ素も含有し得る。ヒ素は、多くの水素化脱硫触媒にとって既知の触媒毒である。   One type of naphtha feedstock having a suitable octane number for use without modification is a naphtha feedstock produced by a fluid catalytic cracking (FCC) process. FCC naphtha feeds contain significant amounts of olefins, making selective hydrodesulfurization processes an attractive option. However, depending on the type of feed supplied to the FCC process, the resulting FCC naphtha feed may also contain a substantial amount of arsenic. Arsenic is a known catalyst poison for many hydrodesulfurization catalysts.

ヒ素捕捉触媒は、原料中の過剰のヒ素の作用を軽減するために市販されている。本発明において、このようなヒ素捕捉触媒は、水素化脱硫プロセスのための触媒床の上部に、またはその近くに充填することができる。ヒ素捕捉触媒は、原料からヒ素を隔離するように機能し、それにより、ヒ素が水素化脱硫触媒に到達し、その後それを毒することを低減し、またはさらに防止することができる。   Arsenic scavenging catalysts are commercially available to mitigate the effects of excess arsenic in the feed. In the present invention, such an arsenic scavenging catalyst can be packed at or near the top of the catalyst bed for the hydrodesulfurization process. The arsenic capture catalyst functions to sequester arsenic from the feedstock, thereby reducing or even preventing arsenic from reaching the hydrodesulfurization catalyst and then poisoning it.

本発明の一の要旨は、ナフサ沸点範囲原料を選択的に水素化処理する方法であって、少なくとも約5重量%のオレフィンおよび少なくとも約1ppbのヒ素を含有するナフサ沸点範囲原料を供給する工程を含む。次いで、選択的水素化脱硫プロセス(又は方法)の連続運転時間および生成物硫黄含有量が特定され得る。さらに、第1の有効な選択的水素化脱硫条件は、第1の体積の水素化脱硫触媒の存在下でナフサ沸点範囲原料を選択的に水素化脱硫するために決定することができ、この第1の有効な条件は、第1の運転開始触媒床温度および第1の空間速度を含む。次いで、ナフサ沸点範囲原料は、ヒ素捕捉触媒と接触させ得る。これに、ナフサ沸点範囲原料を、第1の体積の約95%以下である第2の体積の水素化脱硫触媒と第2の有効な選択的水素化脱硫条件下で接触させることが続くことができ、この第2の有効な選択的水素化脱硫条件は、(i)第1の運転開始触媒床温度より少なくとも約1.5℃高い第2の運転開始触媒床温度および(ii)第1の空間速度より速い第2の空間速度を含む。本発明のこの態様において、ナフサ沸点範囲原料は、第2の体積の水素化脱硫触媒との接触前に、ヒ素捕捉触媒と接触し得る。ナフサ沸点範囲原料と、ヒ素捕捉触媒および第2の体積の水素化脱硫触媒との接触は、水素化脱硫されたナフサ原料中の特定された生成物硫黄含有量を維持しながら、特定された連続運転時間の間、継続させ得る。   One aspect of the present invention is a method for selectively hydrotreating a naphtha boiling range feedstock, comprising the step of supplying a naphtha boiling range feedstock containing at least about 5 wt% olefin and at least about 1 ppb arsenic. Including. The continuous hydrodesulfurization process (or method) continuous run time and product sulfur content can then be identified. Furthermore, a first effective selective hydrodesulfurization condition can be determined for selectively hydrodesulfurizing a naphtha boiling range feedstock in the presence of a first volume of hydrodesulfurization catalyst. One effective condition includes a first start catalyst bed temperature and a first space velocity. The naphtha boiling range feed can then be contacted with an arsenic scavenging catalyst. This may be followed by contacting the naphtha boiling range feed with a second volume of hydrodesulfurization catalyst that is no more than about 95% of the first volume under a second effective hydrodesulfurization condition. This second effective selective hydrodesulfurization condition can include (i) a second start catalyst bed temperature that is at least about 1.5 ° C. higher than the first start catalyst bed temperature and (ii) the first Includes a second space velocity that is faster than the space velocity. In this aspect of the invention, the naphtha boiling range feed can be contacted with the arsenic scavenging catalyst prior to contact with the second volume of hydrodesulfurization catalyst. Contacting the naphtha boiling range feed with the arsenic scavenging catalyst and the second volume of hydrodesulfurization catalyst results in the specified continuous while maintaining the specified product sulfur content in the hydrodesulfurized naphtha feed. It can be continued for hours of operation.

図1は、本発明の実施形態の実施に適した反応器の一例を概略的に示す。FIG. 1 schematically shows an example of a reactor suitable for carrying out embodiments of the present invention.

ある実施形態において、少なくとも同等の、好ましくは改善されたオクタン価を有するナフサ沸点範囲生成物を製造する一方、所望のプロセス連続運転時間を達成する低コストの方法が提供される。この改善されたオクタン価保存は、所望の連続運転時間と適合するAs捕捉触媒の十分な充填と、減少させた水素化脱硫触媒充填との組合せを用いることによって達成することができる。これにより、水素化脱硫反応器をより高い初期温度で運転することが可能となることができ、これは、水素化脱硫プロセスの連続運転時間の初期の部分の間にオクタン価保存を高めることができる。   In certain embodiments, a low cost method is provided that produces a naphtha boiling range product having at least an equivalent, preferably improved octane number, while achieving the desired process continuous run time. This improved octane number storage can be achieved by using a combination of full charge of As capture catalyst compatible with the desired continuous run time and reduced hydrodesulfurization catalyst charge. This can allow the hydrodesulfurization reactor to be operated at a higher initial temperature, which can enhance octane number storage during the initial part of the continuous operation time of the hydrodesulfurization process. .

選択的水素化脱硫プロセスにおいて、触媒充填のサイズ(又は量)および処理温度を選択するために、様々な検討事項を均衡させ得る。低硫黄燃料の現在の要件に対応するレベルに硫黄を除去することがしばしば望ましくあり得る。例えば、約15重量ppm以下、例えば、約10重量ppm以下の硫黄を含むナフサ生成物の製造は、しばしば望ましい。別の検討事項としては、触媒の活性の維持を挙げ得る。典型的には、触媒は、より高い温度の運転の間により急速に失活するはずである。したがって、特に、新しい触媒が水素化処理反応器に加えられた後の初期の処理期間の間に、より低い運転温度が好ましくあり得る。さらに別の検討事項としては、得られたナフサ生成物中のオレフィンの保存を挙げ得る。しばしば、所望の硫黄仕様を満たすために必要な温度より高い温度での原料の処理は、オレフィンのさらなる飽和をもたらし得る。この検討事項は、原料の過剰処理を避けるために、より低い反応温度が好ましいことを示唆しがちである。しかし、触媒の選択性は、温度の上昇とともに増加し得る。ここで、選択性は、オレフィン飽和についての活性に対して水素化脱硫についての相対的活性を指す。したがって、より低いおよびより高い温度の両方の処理に有利に働き得る要因がある。   In a selective hydrodesulfurization process, various considerations can be balanced to select the size (or amount) of catalyst charge and the processing temperature. It may often be desirable to remove sulfur to a level that corresponds to the current requirements for low sulfur fuels. For example, the production of naphtha products containing about 15 ppm by weight or less, such as about 10 ppm by weight or less, is often desirable. Another consideration may include maintaining the activity of the catalyst. Typically, the catalyst should deactivate more rapidly during higher temperature operation. Thus, lower operating temperatures may be preferred, particularly during the initial processing period after new catalyst is added to the hydroprocessing reactor. Yet another consideration may include the preservation of olefins in the resulting naphtha product. Often, treatment of the feedstock at a temperature higher than necessary to meet the desired sulfur specification can result in further saturation of the olefin. This consideration tends to suggest that lower reaction temperatures are preferred to avoid overtreatment of the feedstock. However, the selectivity of the catalyst can increase with increasing temperature. Here, selectivity refers to the relative activity for hydrodesulfurization relative to the activity for olefin saturation. Thus, there are factors that can favor both lower and higher temperature processing.

原料中の混入物質は、検討のための別の一組の課題を提供し得る。ヒ素などの触媒毒は、水素化脱硫プロセスの過程の間に水素化脱硫触媒の活性を低下させ得る。ヒ素はしばしば、触媒を通常予想されるよりも非常に速い速度で失活させ得る。この失活に対抗する方法の一つは、全体の触媒充填を増加させることを含む。実用的な検討のために、約800°F(約427℃)を超える運転終了温度は通常、好ましくなく、好ましくは運転終了温度は、約675°F(約357℃)未満であり得る。水素化脱硫触媒の量の増加は、所与の流量のナフサ原料を有効に水素化脱硫するために必要な温度を低下させ得る。水素化脱硫触媒の量の増加によって、十分より高い活性の触媒を所望の連続運転時間の間に所望の温度より低くとどまらせたままに依然としてさせながら、触媒の一部を失活させ得る。   Contaminants in the raw material can provide another set of issues for consideration. A catalyst poison such as arsenic can reduce the activity of the hydrodesulfurization catalyst during the course of the hydrodesulfurization process. Arsenic can often deactivate the catalyst at a much faster rate than would normally be expected. One way to counteract this deactivation involves increasing the overall catalyst loading. For practical considerations, an end-of-run temperature above about 800 ° F. (about 427 ° C.) is usually not preferred, and preferably the end-of-run temperature may be less than about 675 ° F. (about 357 ° C.). Increasing the amount of hydrodesulfurization catalyst can lower the temperature required to effectively hydrodesulfurize a given flow rate of naphtha feed. By increasing the amount of hydrodesulfurization catalyst, a portion of the catalyst may be deactivated while still allowing the catalyst of sufficiently higher activity to remain below the desired temperature during the desired continuous run time.

従来、増加させた触媒充填は、ヒ素捕捉触媒と併用して使用されてきた。ヒ素捕捉触媒は、原料が、反応器中での水素化脱硫触媒との接触前にヒ素捕捉触媒と接触するように、触媒床中に充填することができる。理論に拘束されることを望むことなしに、水素化脱硫触媒は、処理から通常の失活のみを受け、ヒ素の存在によるより急速な失活を受けないので、水素化脱硫触媒はヒ素と結合し、したがって水素化脱硫触媒に到達するヒ素の量を減少させ、反応器の連続運転時間を延長させると考えられる。   Traditionally, increased catalyst loading has been used in conjunction with arsenic capture catalysts. The arsenic scavenging catalyst can be packed into the catalyst bed so that the feed comes into contact with the arsenic scavenging catalyst prior to contact with the hydrodesulfurization catalyst in the reactor. Without wishing to be bound by theory, the hydrodesulfurization catalyst only undergoes normal deactivation from the process and does not undergo more rapid deactivation due to the presence of arsenic, so the hydrodesulfurization catalyst binds to arsenic. Therefore, it is considered that the amount of arsenic reaching the hydrodesulfurization catalyst is decreased and the continuous operation time of the reactor is extended.

ヒ素捕捉触媒の従来の使用と対照的に、本発明の様々な実施形態は、脱硫ナフサ生成物のオクタン価を維持および好ましくは高めるために、ヒ素捕捉触媒を使用する。これは、用いられる水素化脱硫触媒の量を減少させることによって達成され得る。より少ない触媒を用いることよって、反応のための運転開始温度を上昇させることができ、これは、より大きな保持率を可能にさせ得る。ある実施形態において、ヒ素捕捉触媒の使用は、水素化脱硫触媒の体積が、ヒ素捕捉触媒なしで必要とされる体積の約95%以下、例えば、約90%以下または約85%以下に減少させることを可能にさせ得る。水素化脱硫触媒の体積の減少によって、水素化脱硫触媒と接触する原料の対応する空間速度は、同様の流量の原料をなお処理しながら、増加させ得る。ある実施形態において、ヒ素捕捉触媒の使用は、ヒ素捕捉触媒の使用なしの空間速度より大きい空間速度を可能にさせ得る。好ましくは、ヒ素捕捉触媒有りの空間速度は、ヒ素捕捉触媒なしの空間速度の少なくとも約105%、例えば、ヒ素捕捉触媒なしの空間速度の少なくとも約110%であり得る。   In contrast to the conventional use of arsenic scavenging catalysts, various embodiments of the present invention use arsenic scavenging catalysts to maintain and preferably increase the octane number of the desulfurized naphtha product. This can be achieved by reducing the amount of hydrodesulfurization catalyst used. By using less catalyst, the start-up temperature for the reaction can be increased, which can allow greater retention. In certain embodiments, the use of an arsenic scavenging catalyst reduces the volume of the hydrodesulfurization catalyst to no more than about 95%, such as no more than about 90% or no more than about 85% of the volume required without the arsenic scavenging catalyst. Can make it possible. By reducing the volume of the hydrodesulfurization catalyst, the corresponding space velocity of the raw material in contact with the hydrodesulfurization catalyst can be increased while still processing a similar flow rate of the raw material. In certain embodiments, the use of an arsenic capture catalyst may allow a space velocity greater than the space velocity without the use of an arsenic capture catalyst. Preferably, the space velocity with the arsenic scavenging catalyst may be at least about 105% of the space velocity without the arsenic scavenging catalyst, such as at least about 110% of the space velocity without the arsenic scavenging catalyst.

原料油
様々な実施形態において、選択的水素化脱硫プロセスのための原料油は、ナフサ沸点範囲原料、特にオレフィン系ナフサ沸点範囲原料であり得る。適切な原料油は、典型的には約50°F(約10℃)から約450°F(約232℃)の範囲で沸騰し得る。オレフィン含有量に関して、適切な原料油は、有利には少なくとも約5重量%のオレフィン含有量を有する原料油を含み得る。このような適切な原料油の非限定的な例には、決して限定されるものではないが、流動接触分解装置ナフサ(FCC接触ナフサすなわち接触分解ナフサ)、スチーム分解ナフサ、コーカーナフサ、またはそれらの組合せが含まれ得る。オレフィン系ナフサと非オレフィン系ナフサのブレンドも、そのブレンドが少なくとも約5重量%のオレフィン含有量を有する限り、含まれる。
Feedstock In various embodiments, the feedstock for the selective hydrodesulfurization process can be a naphtha boiling range feed, particularly an olefinic naphtha boiling range feed. Suitable feedstocks can typically boil in the range of about 50 ° F. (about 10 ° C.) to about 450 ° F. (about 232 ° C.). With regard to olefin content, suitable feedstocks may advantageously comprise feedstocks having an olefin content of at least about 5% by weight. Non-limiting examples of such suitable feedstocks include, but are in no way limited to, fluid catalytic cracker naphtha (FCC catalytic naphtha or catalytic cracking naphtha), steam cracking naphtha, coker naphtha, or their Combinations can be included. Blends of olefinic and non-olefinic naphthas are also included as long as the blend has an olefin content of at least about 5% by weight.

オレフィン系ナフサ製油所ストリームは一般に、パラフィン、ナフテン、および芳香族だけでなく、不飽和物、例えば、開鎖および環状オレフィン、ジエン、ならびにオレフィン側鎖を有する環状炭化水素も含有する。オレフィン系ナフサ原料油は、約60重量%以下、例えば、約50重量%以下または約40重量%以下の全体オレフィン濃度を有し得る。さらにまたは代替として、オレフィン濃度は、少なくとも約5重量%、例えば、少なくとも約10重量%または少なくとも約20重量%であり得る。オレフィン系ナフサ原料油は、原料油の全重量に基づいて、最大15重量%、しかしより典型的には約5重量%未満のジエン濃度も有し得る。高ジエン濃度は、通常は望ましくなく、それらが安定性及び色相の不良なガソリン生成物をもたらし得るからである。   Olefinic naphtha refinery streams generally contain not only paraffins, naphthenes, and aromatics, but also unsaturateds such as open and cyclic olefins, dienes, and cyclic hydrocarbons having olefin side chains. The olefinic naphtha feedstock may have a total olefin concentration of about 60 wt% or less, such as about 50 wt% or less, or about 40 wt% or less. Additionally or alternatively, the olefin concentration can be at least about 5 wt%, such as at least about 10 wt% or at least about 20 wt%. The olefinic naphtha feedstock may also have a diene concentration of up to 15 wt%, but more typically less than about 5 wt%, based on the total weight of the feedstock. High diene concentrations are usually undesirable because they can result in gasoline products with poor stability and hue.

オレフィン系ナフサの硫黄含有量は、少なくとも100重量ppm、例えば、少なくとも約500重量ppm、少なくとも1000重量ppm、または少なくとも約1500重量ppmであり得る。さらにまたは代替として、硫黄含有量は、約7000重量ppm以下、例えば、約6000重量ppm以下、約5000重量ppm以下、または約3000重量ppm以下であり得る。硫黄は、典型的には有機的に結合した硫黄、すなわち、硫黄化合物、例えば、単純な脂肪族メルカプタン、ナフテン系メルカプタン、ならびに芳香族メルカプタン、硫化物、二硫化物および多硫化物などとして存在し得る。他の有機的に結合した硫黄化合物には、ヘテロ環状硫黄化合物のクラス、例えば、チオフェンおよびそのより高級な同族体/類似体(ジベンゾジチオフェンなどを含む)が含まれ得る。   The sulfur content of the olefinic naphtha can be at least 100 ppm by weight, such as at least about 500 ppm by weight, at least 1000 ppm by weight, or at least about 1500 ppm by weight. Additionally or alternatively, the sulfur content can be about 7000 ppm by weight or less, such as about 6000 ppm by weight, about 5000 ppm by weight, or about 3000 ppm by weight. Sulfur is typically present as organically bound sulfur, i.e., sulfur compounds such as simple aliphatic mercaptans, naphthenic mercaptans, and aromatic mercaptans, sulfides, disulfides and polysulfides. obtain. Other organically bound sulfur compounds may include a class of heterocyclic sulfur compounds such as thiophene and higher homologues / analogues thereof including dibenzodithiophene and the like.

窒素も原料中に存在し得る。ある実施形態において、窒素の量は、少なくとも約5重量ppm、例えば、少なくとも約10重量ppm、少なくとも約20重量ppm、または少なくとも約40重量ppmであり得る。さらにまたは代替として、窒素含有量は、約250重量ppm以下、例えば、約150重量ppm以下、約100重量ppm以下、または約50重量ppm以下であり得る。   Nitrogen can also be present in the feed. In certain embodiments, the amount of nitrogen can be at least about 5 ppm by weight, such as at least about 10 ppm by weight, at least about 20 ppm by weight, or at least about 40 ppm by weight. Additionally or alternatively, the nitrogen content can be about 250 ppm by weight or less, such as about 150 ppm by weight or less, about 100 ppm by weight or less, or about 50 ppm by weight or less.

ヒ素も原料中に存在し得る。ある実施形態において、ヒ素の量は、少なくとも約1重量ppb、例えば、少なくとも約5重量ppb、少なくとも約10重量ppb、少なくとも約20重量ppb、または少なくとも約40重量ppbであり得る。さらにまたは代替として、ヒ素含有量は、約100重量ppb以下、例えば、約75重量ppb以下または約50重量ppb以下であり得る。   Arsenic may also be present in the raw material. In certain embodiments, the amount of arsenic can be at least about 1 weight ppb, such as at least about 5 weight ppb, at least about 10 weight ppb, at least about 20 weight ppb, or at least about 40 weight ppb. Additionally or alternatively, the arsenic content can be about 100 weight ppb or less, such as about 75 weight ppb or less, or about 50 weight ppb or less.

触媒
選択的水素化脱硫は、オレフィン系ナフサ原料を、水素化脱硫触媒の1つまたは複数の床に有効な選択的水素化脱硫条件下で曝露することによって行われる。ある実施形態において、ヒ素捕捉触媒は、別個の床、例えば、水素化脱硫触媒床の上流にある床において用いることができるか、またはヒ素捕捉触媒は、水素化脱硫触媒も含む床の上部中に充填することもできる。
Catalyst selective hydrodesulfurization is carried out by exposing the olefinic naphtha feed to one or more beds of hydrodesulfurization catalyst under effective selective hydrodesulfurization conditions. In certain embodiments, the arsenic capture catalyst can be used in a separate bed, for example, a bed upstream of the hydrodesulfurization catalyst bed, or the arsenic capture catalyst is in the upper portion of the bed that also includes the hydrodesulfurization catalyst. It can also be filled.

典型的には、ヒ素捕捉触媒は、ヒ素を隔離(吸着)する十分な能力を有するが、その他の点では所望の反応、例えば、水素化脱硫に対して減じたまたは最小限の影響を有する比較的低い触媒活性を有する触媒である。典型的なヒ素捕捉触媒は、比較的低い活性の担持ニッケル系触媒であり得る。例えば、触媒は、アルミナ担体上に約5重量%から約20重量%のNiを含み得る。このようなヒ素捕捉触媒の市販の例には、Haldor Topsoeから市販されているTK−47が含まれる。   Typically, arsenic scavenging catalysts have sufficient ability to sequester (adsorb) arsenic, but otherwise have a reduced or minimal impact on the desired reaction, eg, hydrodesulfurization The catalyst has a low catalytic activity. A typical arsenic scavenging catalyst may be a relatively low activity supported nickel-based catalyst. For example, the catalyst may comprise about 5 wt% to about 20 wt% Ni on an alumina support. Commercial examples of such arsenic scavenging catalysts include TK-47 commercially available from Haldor Topsoe.

ある実施形態において、触媒床中に含ませるヒ素捕捉触媒の量は、原料中に存在するヒ素の量、および所望の連続運転時間に依存し得る。好ましくは、ヒ素捕捉触媒の量は、水素化脱硫触媒との実質的なヒ素の接触を防止するのに十分であり得る。過剰なヒ素捕捉触媒を有することは、ヒ素捕捉触媒が典型的には、水素化脱硫および/またはオレフィン飽和に対する比較的低い活性を有し得るので、水素化脱硫活性および/または選択性への影響を(触媒コストの増加以外に)ほとんどまたはまったく有し得ないことが留意される。   In certain embodiments, the amount of arsenic scavenging catalyst included in the catalyst bed may depend on the amount of arsenic present in the feed and the desired continuous operation time. Preferably, the amount of arsenic scavenging catalyst may be sufficient to prevent substantial arsenic contact with the hydrodesulfurization catalyst. Having an excess of arsenic scavenging catalyst has an impact on hydrodesulfurization activity and / or selectivity as arsenic scavenging catalysts typically may have relatively low activity against hydrodesulfurization and / or olefin saturation. Note that there may be little or no (other than increased catalyst cost).

様々な実施形態において、適切な選択的水素化脱硫触媒には、担体材料、例えば、シリカ、アルミナ、またはそれらの組合せ上の、少なくとも1種の第VIII族金属酸化物、例えば、Coおよび/またはNiの酸化物(好ましくはCoを少なくとも含有する);ならびに少なくとも1種の第VIB族金属酸化物、例えば、Moおよび/またはWの酸化物(好ましくはMoを少なくとも含有する)から構成される触媒が含まれ得る。他の適切な水素化処理触媒には、ゼオライト触媒、および貴金属触媒(例えば、貴金属がPdおよび/またはPtを含む場合)が含まれ得る。2種以上の種類の水素化処理触媒が、同じ反応容器内で使用されることは本発明の範囲内である。選択的水素化脱硫触媒の第VIII族金属酸化物は、約0.1重量%から約20重量%、好ましくは約1重量%から約12%の範囲の量で存在し得る。さらにまたは代替として、第VIB族金属酸化物は、約1重量%から約50重量%、好ましくは約2重量%から約20重量%の範囲の量で存在し得る。金属酸化物重量パーセントのすべては、担体を基準とする。「担体上」によって、パーセントは、担体の重量に基づくことが意味される。例えば、担体が100グラムの重さがある場合、20重量%の第VIII族金属酸化物は、20グラムの第VIII族金属酸化物が担体上にあることを意味する。   In various embodiments, suitable selective hydrodesulfurization catalysts include at least one Group VIII metal oxide such as Co and / or on a support material such as silica, alumina, or combinations thereof. A catalyst composed of an oxide of Ni (preferably containing at least Co); and at least one Group VIB metal oxide, such as an oxide of Mo and / or W (preferably containing at least Mo) Can be included. Other suitable hydrotreating catalysts can include zeolite catalysts and noble metal catalysts (eg, where the noble metal includes Pd and / or Pt). It is within the scope of the present invention that two or more types of hydroprocessing catalysts are used in the same reaction vessel. The Group VIII metal oxide of the selective hydrodesulfurization catalyst may be present in an amount ranging from about 0.1% to about 20%, preferably from about 1% to about 12%. Additionally or alternatively, the Group VIB metal oxide may be present in an amount ranging from about 1% to about 50%, preferably from about 2% to about 20%. All metal oxide weight percents are based on the support. By “on carrier” the percentage is based on the weight of the carrier. For example, if the support weighs 100 grams, 20 wt% Group VIII metal oxide means that 20 grams of Group VIII metal oxide is on the support.

本発明の実施において使用される水素化脱硫触媒は、好ましくは担持触媒であり得る。任意の適切な耐火性(又は難燃性)触媒担体材料、好ましくは無機酸化物担体材料が、本発明の触媒用の担体として使用され得る。適切な担体材料の非限定的な例には、ゼオライト、アルミナ、シリカ、チタニア、酸化カルシウム、酸化ストロンチウム、酸化バリウム、炭素、ジルコニア、マグネシア、珪藻土、ランタニド酸化物(酸化セリウム、酸化ランタン、酸化ネジウム、酸化イットリウム、および酸化プラセオジムを含む)、クロミア、酸化トリウム、ウラニア、ニオビア、タンタラ、酸化チタン、酸化亜鉛、リン酸アルミニウムなど、およびそれらの組合せが含まれ得る。好ましい担体には、アルミナ、シリカ、およびシリカ−アルミナが含まれる。担体材料は、少量の混入物質、例えば、Fe、硫酸塩、シリカ、および/または担体材料の調製の間に導入され得る様々な金属酸化物も含み得ることが理解されるべきである。これらの混入物質は、担体を調製するために用いられる原料中にしばしば存在することができ、好ましくは、担体の全重量に基づいて、約1重量%未満の量で存在することができる。担体材料が、このような混入物質を実質的に含まない(例えば、約0.1重量%以下、好ましくは約0.05重量%以下、約0.01重量%以下、または検出できない量を含有する)ことがより好ましい。さらにまたは代替として、約0重量%から約5重量%、例えば、約0.5重量%から約4重量%、または約1重量%から約3重量%の添加剤が、担体中および/または担体上に存在することができ、この添加剤は、リン、および元素の周期律表(のCASバージョン)の第IA族(アルカリ金属)からの金属または金属酸化物からなる群から選択され得る。   The hydrodesulfurization catalyst used in the practice of the present invention may preferably be a supported catalyst. Any suitable refractory (or flame retardant) catalyst support material, preferably an inorganic oxide support material, can be used as the support for the catalyst of the present invention. Non-limiting examples of suitable support materials include zeolite, alumina, silica, titania, calcium oxide, strontium oxide, barium oxide, carbon, zirconia, magnesia, diatomaceous earth, lanthanide oxides (cerium oxide, lanthanum oxide, nedium oxide , Yttrium oxide, and praseodymium oxide), chromia, thorium oxide, urania, niobia, tantala, titanium oxide, zinc oxide, aluminum phosphate, and the like, and combinations thereof. Preferred supports include alumina, silica, and silica-alumina. It should be understood that the support material can also include small amounts of contaminants, such as Fe, sulfate, silica, and / or various metal oxides that can be introduced during the preparation of the support material. These contaminants can often be present in the raw materials used to prepare the support and are preferably present in an amount of less than about 1% by weight, based on the total weight of the support. The carrier material is substantially free of such contaminants (eg, about 0.1 wt% or less, preferably about 0.05 wt% or less, about 0.01 wt% or less, or an undetectable amount) Is more preferable. Additionally or alternatively, from about 0% to about 5%, such as from about 0.5% to about 4%, or from about 1% to about 3% by weight of additive in the carrier and / or carrier The additive can be present above and can be selected from the group consisting of phosphorus and metals or metal oxides from Group IA (alkali metals) of the Periodic Table of Elements (CAS version).

反応条件および環境
選択的水素化脱硫は、任意の適切な反応系、例えば、そのそれぞれが、同じまたは異なる水素化脱硫触媒の1つまたは複数の触媒床を備え得る、1つまたは複数の固定床反応器で行われ得る。任意選択により、2種以上の種類の触媒が、単一床で使用され得る。他の種類の触媒床を用いることができるが、固定床が好ましい。本発明の実施で使用され得るこのような他の種類の触媒床の非限定的な例には、限定されるものではないが、流動床、沸騰床、スラリー床、移動床など、およびそれらの組合せが含まれ得る。反応器間、または同じ反応器中の触媒床間の段間冷却を一部の実施形態において用いることができるが、一部のオレフィン飽和が起こり得るからであり、かつ脱流のみならずオレフィン飽和は一般に発熱性であるからである。水素化脱硫の間に発生した熱の一部は、例えば、従来の技術によって回収され得る。この熱回収の選択肢が利用できない場合、従来の冷却が、冷却水または空気などの冷却施設によって、および/または水素クエンチストリームを用いて行われ得る。このように、最適反応温度は、より容易に維持され得る。
Reaction Conditions and Environment Selective hydrodesulfurization can be any suitable reaction system, eg, one or more fixed beds, each of which can comprise one or more catalyst beds of the same or different hydrodesulfurization catalysts. It can be carried out in a reactor. Optionally, more than one type of catalyst can be used in a single bed. Other types of catalyst beds can be used, but a fixed bed is preferred. Non-limiting examples of such other types of catalyst beds that can be used in the practice of the present invention include, but are not limited to, fluidized beds, ebullated beds, slurry beds, moving beds, and the like, and their Combinations can be included. Interstage cooling between reactors or between catalyst beds in the same reactor can be used in some embodiments, because some olefin saturation can occur and olefin saturation as well as desulfurization. Is generally exothermic. Some of the heat generated during hydrodesulfurization can be recovered, for example, by conventional techniques. If this heat recovery option is not available, conventional cooling may be performed by a cooling facility such as cooling water or air and / or using a hydrogen quench stream. In this way, the optimal reaction temperature can be more easily maintained.

一般に、選択的水素化脱硫条件は、約425°F(約218℃)から約800°F(約427℃)、好ましくは約500°F(約260℃)から約675°F(約357℃)の温度を含み得る。ある実施形態において、反応運転開始時の温度は、少なくとも約450°F(約232℃)、例えば、少なくとも約475°F(約246℃)、少なくとも約500°F(約260℃)、または少なくとも約510°F(約266℃)であり得る。さらにまたは代替として、運転開始時の温度は、約575°F(約302℃)以下、例えば、540°F(約282℃)以下または約525°F(約274℃)以下であり得る。   Generally, the selective hydrodesulfurization conditions are about 425 ° F. (about 218 ° C.) to about 800 ° F. (about 427 ° C.), preferably about 500 ° F. (about 260 ° C.) to about 675 ° F. (about 357 ° C.). ) Temperature. In certain embodiments, the temperature at the start of the reaction run is at least about 450 ° F. (about 232 ° C.), such as at least about 475 ° F. (about 246 ° C.), at least about 500 ° F. (about 260 ° C.), or at least It may be about 510 ° F. (about 266 ° C.). Additionally or alternatively, the temperature at the start of operation can be about 575 ° F. (about 302 ° C.) or less, such as 540 ° F. (about 282 ° C.) or less, or about 525 ° F. (about 274 ° C.) or less.

独立に、または運転開始温度を記述する実施形態と組み合わせて、処理運転の終了時の温度は、約800°F(約427℃)以下、例えば、約750°F(約399℃)以下、約700°F(約371℃)以下、約675°F(約357℃)以下、または約650°F(約343℃)以下であり得る。さらにまたは代替として、処理運転の終了時の温度は、少なくとも約550°F(約288℃)、例えば、少なくとも約575°F(約302℃)、少なくとも約600°F(約316℃)、または少なくも約625°F(約329℃)であり得る。   Independently or in combination with embodiments describing the starting temperature, the temperature at the end of the processing run is about 800 ° F. (about 427 ° C.) or less, eg, about 750 ° F. (about 399 ° C.) or less, about It can be 700 ° F (about 371 ° C) or less, about 675 ° F (about 357 ° C) or less, or about 650 ° F (about 343 ° C) or less. Additionally or alternatively, the temperature at the end of the processing run is at least about 550 ° F. (about 288 ° C.), such as at least about 575 ° F. (about 302 ° C.), at least about 600 ° F. (about 316 ° C.), or It can be at least about 625 ° F. (about 329 ° C.).

様々な実施形態において、処理運転の終了として選択される温度は、様々な要因に依存し得る。例えば、特定の値未満の温度で反応器および反応系における他の装置を運転することが望ましい。これは、装置の制限、別のアップストリームまたはダウンストリームプロセスにおける所望の温度のため、または他の理由のためであり得る。別の検討事項は、触媒失活の速度であり得る。触媒が失活するにつれて、触媒上の残存する活性部位の数は減少し得る。触媒上の活性部位の多くが失活している場合、触媒を使用するプロセス安定性は低下し得る。これは、例えば、実質的に一定の硫黄レベルを維持するためにより速い速度で温度を上昇させる必要性に反映され得る。さらに、上述したように、一部の種類の触媒は一般に、より高い温度でより急速に失活する。   In various embodiments, the temperature selected as the end of the processing run may depend on various factors. For example, it may be desirable to operate the reactor and other equipment in the reaction system at temperatures below a certain value. This may be due to equipment limitations, the desired temperature in another upstream or downstream process, or for other reasons. Another consideration may be the rate of catalyst deactivation. As the catalyst deactivates, the number of remaining active sites on the catalyst can decrease. If many of the active sites on the catalyst are deactivated, the process stability using the catalyst can be reduced. This can be reflected, for example, in the need to increase the temperature at a faster rate in order to maintain a substantially constant sulfur level. Furthermore, as mentioned above, some types of catalysts generally deactivate more rapidly at higher temperatures.

ある実施形態において、水素化脱硫プロセスの開始とそのプロセスの終了間の温度差は、少なくとも約25°F(約14℃)、例えば、少なくとも約50°F(約28℃)、少なくとも約75°F(約42℃)、または少なくとも約100°F(約56℃)であり得る。さらにまたは代替として、運転の開始と運転の終了間の温度差は、約300°F(約167℃)以下、例えば、約200°F(約111℃)以下、約150°F(約83℃)以下、約100°F(約56℃)以下、または約75°F(約42℃)以下であり得る。   In certain embodiments, the temperature difference between the start of the hydrodesulfurization process and the end of the process is at least about 25 ° F. (eg, about 14 ° C.), such as at least about 50 ° F. (about 28 ° C.), at least about 75 °. F (about 42 ° C.), or at least about 100 ° F. (about 56 ° C.). Additionally or alternatively, the temperature difference between the start and end of operation can be about 300 ° F. (about 167 ° C.) or less, eg, about 200 ° F. (about 111 ° C.) or less, about 150 ° F. (about 83 ° C.). ), About 100 ° F. (about 56 ° C.) or less, or about 75 ° F. (about 42 ° C.) or less.

他の選択的水素化脱硫条件は、約60psig(約400kPag)から約800psig(約5.5MPag)、例えば、約200psig(約1.4MPag)から約500psig(約3.4MPag)または約250psig(約1.7MPag)から約400psig(約2.8MPag)の圧力を含み得る。水素原料速度は、約500scf/b(約84Nm/m)から約6000scf/b(約1000Nm/m)、例えば、約1000scf/b(約170Nm/m)から約3000scf/b(約510Nm/m)であり得る。液空間速度は、約0.5hr−1(又は時間−1)から約15hr−1、例えば、約0.5hr−1から約10hr−1または約1hr−1から約5hr−1であり得る。 Other selective hydrodesulfurization conditions are about 60 psig (about 400 kPag) to about 800 psig (about 5.5 MPag), such as about 200 psig (about 1.4 MPag) to about 500 psig (about 3.4 MPag) or about 250 psig (about 1.7 MPag) to about 400 psig (about 2.8 MPag). Hydrogen feed rate is about 500scf / b (about 84Nm 3 / m 3) to about 6000scf / b (about 1000Nm 3 / m 3), for example, from about 1000 SCF / b (about 170Nm 3 / m 3) to about the 3000scf / b (About 510 Nm 3 / m 3 ). Liquid hourly space velocity may be from about 0.5 hr -1 (or time -1) to about 15hr -1, for example, from about 0.5 hr -1 to about 10 hr -1, or about 1hr -1 to about 5 hr -1.

図1は、本発明の実施形態の実施に適した反応器の一例を概略的に示す。図1において、ヒ素含有ナフサ原料105および水素原料107は、反応器110に導入される。反応器110は、別個のヒ素捕捉触媒床112および別個の水素化脱硫触媒床114を含むものとして示される。代替として、ヒ素捕捉触媒および水素化脱硫触媒は、床の上部に充填されたヒ素捕捉触媒とともに、単一床にあることができる。任意選択により、さらなる水素化脱硫触媒床114も含めることができる。反応器110における処理後、水素化脱硫原料115は、分離器120に送られ得る。図1に示される実施形態において、分離器120は、有利には、H、HS、および別個の脱硫ナフサ原料125の残部からの他の気相生成物を含むストリーム127を除去し得る。 FIG. 1 schematically shows an example of a reactor suitable for carrying out embodiments of the present invention. In FIG. 1, an arsenic-containing naphtha raw material 105 and a hydrogen raw material 107 are introduced into a reactor 110. Reactor 110 is shown as including a separate arsenic capture catalyst bed 112 and a separate hydrodesulfurization catalyst bed 114. Alternatively, the arsenic capture catalyst and hydrodesulfurization catalyst can be in a single bed, with the arsenic capture catalyst packed at the top of the bed. Optionally, an additional hydrodesulfurization catalyst bed 114 can also be included. After treatment in reactor 110, hydrodesulfurization feed 115 can be sent to separator 120. In the embodiment shown in FIG. 1, the separator 120 can advantageously remove a stream 127 containing H 2 , H 2 S, and other gas phase products from the remainder of the separate desulfurized naphtha feed 125. .

生成物特徴づけおよび反応条件の制御
様々な実施形態において、水素化処理ナフサは、ヒ素捕捉触媒を用いない同様のプロセスから形成された水素化処理ナフサと比較して、オクタン価の損失が低下してまたは好ましくはまったく無く生成され得る。減少した量の触媒の使用、およびしたがって、運転開始温度の上昇を可能にすることによって、オレフィン飽和は低下させ得る。これは、得られた水素化処理ナフサについて、走行オクタン価(RON)および/またはモータオクタン価(MON)のより高い価をもたらし得る。
Product Characterization and Control of Reaction Conditions In various embodiments, hydrotreated naphtha has reduced octane loss compared to hydrotreated naphtha formed from a similar process that does not use an arsenic scavenging catalyst. Or preferably it can be produced without any. Olefin saturation can be reduced by allowing the use of a reduced amount of catalyst and thus increasing the start-up temperature. This may result in higher running octane number (RON) and / or motor octane number (MON) for the resulting hydrotreated naphtha.

様々な実施形態において、選択的水素化脱硫プロセスの目標は、硫黄の実質的に一定のレベルを有するナフサ生成物を製造することであり得る。ある実施形態において、硫黄の実質的に一定のレベルは、少なくとも約5重量ppm、例えば、少なくとも約10重量ppm、少なくとも約15重量ppm、少なくとも約20重量ppm、または少なくとも約30重量ppmであり得る。さらにまたは代替として、硫黄の実質的に一定のレベルは、約150重量ppm以下、例えば、約100重量ppm以下、約75重量ppm以下、約50重量ppm以下、または約30重量ppm以下であり得る。本明細書で使用される場合、水素化脱硫生成物中の硫黄の実質的に一定のレベルの維持は、硫黄含有量を目標レベレの約5重量ppm以内に(例えば、約3重量ppm以内に)維持することと定義され得る。   In various embodiments, the goal of the selective hydrodesulfurization process can be to produce a naphtha product having a substantially constant level of sulfur. In certain embodiments, the substantially constant level of sulfur can be at least about 5 ppm by weight, such as at least about 10 ppm by weight, at least about 15 ppm by weight, at least about 20 ppm by weight, or at least about 30 ppm by weight. . Additionally or alternatively, the substantially constant level of sulfur can be about 150 ppm by weight or less, such as about 100 ppm by weight, about 75 ppm by weight, about 50 ppm by weight, or about 30 ppm by weight or less. . As used herein, maintaining a substantially constant level of sulfur in the hydrodesulfurization product can result in a sulfur content within about 5 ppm by weight of the target level (eg, within about 3 ppm by weight). ) Can be defined as maintaining.

様々な理由のために、ナフサ生成物中の硫黄の実質的に一定のレベルを維持することが望ましくあり得る。硫黄の一定レベルの維持は、ガソリン配合者がナフサ生成物の仕様を信頼することができるので、プロセス制御を可能にし得る。この目的のために、実質的に一定の硫黄レベルの維持は、硫黄含有量が増加しないので、有益であり得る。硫黄レベルが低すぎることを防止するために一定の硫黄レベルを与えることも望ましくあり得る。本発明の実施形態のために記載される生成物硫黄レベルにおいて、さらなる硫黄の除去は、反応条件が厳し過ぎてあり得ることを示し得る。より厳しい水素化脱硫条件の使用は、望ましくなくあり得るオレフィン結合の飽和の増加を時にもたらし得る。したがって、より低い硫黄レベルを達成するために用いられる処理が、ナフサ生成物のRONおよびまたはMONをまたさらに低下させ得るので、目標レベルよりも低い硫黄レベルの達成は、一部の場合に実際に有害であり得る。   For various reasons, it may be desirable to maintain a substantially constant level of sulfur in the naphtha product. Maintaining a constant level of sulfur may allow process control because gasoline formulators can rely on naphtha product specifications. For this purpose, maintaining a substantially constant sulfur level can be beneficial because the sulfur content does not increase. It may also be desirable to provide a constant sulfur level to prevent the sulfur level from being too low. At the product sulfur levels described for embodiments of the present invention, further sulfur removal may indicate that the reaction conditions may be too severe. The use of more severe hydrodesulfurization conditions can sometimes lead to increased olefin bond saturation, which may be undesirable. Thus, achieving the sulfur level below the target level is actually in some cases because the treatment used to achieve the lower sulfur level can still further reduce the RON and / or MON of the naphtha product. Can be harmful.

様々な実施形態において、別の目標は、改善されたオクタン価を有するナフサ生成物を提供することであり得る。より高い運転開始温度で、しかし減少した触媒量で(例えば、原料が過剰処理されないように)運転することによって、より少ないオレフィン結合が、原料中で飽和され、および/またはメルカプタンに転化され得る。このようなオレフィンの保存は、水素化脱硫の間のオクタン価ロスの減少をもたらし得る。ある実施形態において、水素化脱硫によるオクタン価ロスは、ヒ素捕捉触媒なしで同様の条件下の水素化脱硫によるオクタン価ロスと比べて、約0.05RON以上、例えば、約0.1RON以上だけ低減させ得る。   In various embodiments, another goal may be to provide a naphtha product with improved octane number. By operating at a higher starting temperature, but with a reduced amount of catalyst (eg, so that the feed is not over-treated), less olefinic bonds can be saturated in the feed and / or converted to mercaptans. Such olefin storage can lead to a reduction in octane loss during hydrodesulfurization. In certain embodiments, octane loss due to hydrodesulfurization may be reduced by about 0.05 RON or more, for example, about 0.1 RON or more, compared to octane loss due to hydrodesulfurization under similar conditions without an arsenic scavenging catalyst. .

上記目標の一方または両方は、本発明によって達成され得るか、さもなければそれらの目標のいずれも達成され得ない。   One or both of the above goals can be achieved by the present invention, or none of those goals can be achieved.

所望の硫黄レベルを維持する方法の一つは、プロセス条件にフィードバックを与える生成物硫黄レベルを使用することであり得る。生成物硫黄レベルを検出するために、様々な方法が利用できる。硫黄レベルをモニターする選択肢の一つは、水素化脱硫ナフサの試料を回収し、その試料を硫黄について分析することであり得る。処理の間の触媒失活に関係する時間尺度のために、ナフサ試料のオフライン分析は、実質的に一定のレベルを維持することを可能にするために十分であり得る。代替として、水素化脱硫ナフサ生成物中の硫黄含有量レベルのインラインモニターリングのための技術も利用でき得る。特定の状況下で生成物硫黄含有量を低減させるためにヒ素捕捉触媒を有する系を使用することが望ましくあり得る一方、他の状況では、生成物硫黄の実質的に一定のレベルが維持され得るように反応条件を調整するために、ナフサ生成物中のイオウ含有量に基づくフィードバックが使用され得る。様々な実施形態において、反応条件の調整は、とりわけ、触媒床の温度(加重平均(又は重量平均)床温度)の調整を含み得る。   One way to maintain the desired sulfur level may be to use a product sulfur level that provides feedback to the process conditions. Various methods are available for detecting product sulfur levels. One option to monitor sulfur levels may be to collect a sample of hydrodesulfurized naphtha and analyze the sample for sulfur. Because of the time scale associated with catalyst deactivation during processing, off-line analysis of naphtha samples may be sufficient to allow to maintain a substantially constant level. Alternatively, techniques for in-line monitoring of the sulfur content level in the hydrodesulfurized naphtha product can also be utilized. While it may be desirable to use a system with an arsenic scavenging catalyst to reduce product sulfur content under certain circumstances, in other situations a substantially constant level of product sulfur may be maintained Thus, feedback based on the sulfur content in the naphtha product can be used to adjust the reaction conditions. In various embodiments, adjusting the reaction conditions may include, among other things, adjusting the temperature of the catalyst bed (weighted average (or weight average) bed temperature).

実施例−ヒ素捕捉の有無による選択的水素化処理のシミュレーション
ヒ素捕捉触媒の使用の利点を示すために、選択的水素化脱硫プロセスのためのプロセスシミュレーションを構築した。シミュレーションの結果を表1に示す。これらのシミュレーションのための条件は、以下のものを含んでいた:約5500バレル/日(約870m/日)のFCCナフサ原料;約4200重量ppmの原料硫黄含有量;約45センチグラム/1グラムの原料臭素価;および約40ppbの原料ヒ素含有量。プロセスの一つの目的は、ほぼ6年の連続運転時間を満たしながら、硫黄含有量を少なくとも120重量ppmに低減させることであった。処理ガス速度は、約72%水素および約10重量ppmのCO(残りは不活性ガス)を有する、約620000scf/hr(約18000Nm/hr)であった。シミュレーションされた触媒は、耐火性担体上の市販のCoMo触媒に相当した。
Example-Simulation of selective hydrotreating with and without arsenic capture To demonstrate the benefits of using an arsenic capture catalyst, a process simulation for a selective hydrodesulfurization process was constructed. The simulation results are shown in Table 1. The conditions for these simulations included: about 5500 barrels / day (about 870 m 3 / day) FCC naphtha feed; about 4200 wt ppm feed sulfur content; about 45 centimeters / 1 Gram raw bromine number; and raw arsenic content of about 40 ppb. One purpose of the process was to reduce the sulfur content to at least 120 ppm by weight while meeting approximately 6 years of continuous operation time. The process gas rate was about 620000 scf / hr (about 18000 Nm 3 / hr) with about 72% hydrogen and about 10 ppm by weight CO (the rest being an inert gas). The simulated catalyst corresponded to a commercial CoMo catalyst on a refractory support.

Figure 0005581396
Figure 0005581396

表1中の第1のデータ列(ヒ素捕捉なし)は、約2043ft(約57.9m)の触媒体積が、ほぼ6年の連続運転時間目的を満たすために必要とされたことを示す。予想された運転開始(SOR:start of run)温度は約502°F(約261℃)であった。第2のデータ列は、約71.5ft(約2.0m)のヒ素捕捉触媒を加えることによって、同じ連続運転時間が、約1716ft(約48.6m)のより低い触媒体積で達成することができた一方、オクタン価ロスを約0.12RON(走行オクタン価)だけ減少させたことを示す。508°F(約264℃)の第2の場合のより高いSOR温度は、メルカプタン形成を減少させ、かつオクタン価ロスを改善するように思われた。より高いSOR温度は通常、より速い失活をもたらすが、これは、ヒ素捕捉触媒の存在によって相殺され、ヒ素に基づく失活を軽減する。第2のデータ列中のヒ素捕捉触媒の量は、ヒ素が主たる触媒床に達することを最小限にするために必要とされる量と概ね等しかったことが留意される。これは、約6.1年の予想ヒ素捕捉連続運転時間によって示された。

本発明のいくつかの態様を以下に示す。
1.
ナフサ沸点範囲原料を選択的に水素化処理する方法であって、
少なくとも約5重量%のオレフィンおよび少なくとも約1ppbのヒ素を含有するナフサ沸点範囲原料を供給する工程;
選択的水素化脱硫プロセスのために連続運転時間および生成物硫黄含有量を特定する工程;
第1の体積の水素化脱硫触媒の存在下で前記ナフサ沸点範囲原料を選択的に水素化脱硫するための第1の有効な選択的水素化脱硫条件を決定する工程であって、前記第1の有効な条件は、第1の運転開始触媒床温度および第1の空間速度を含む工程;
前記ナフサ沸点範囲原料をヒ素捕捉触媒と接触させる工程;および
前記ナフサ沸点範囲原料を、前記第1の体積の約95%以下である第2の体積の水素化脱硫触媒と第2の有効な選択的水素化脱硫条件下で接触させる工程であって、前記第2の有効な選択的水素化脱硫条件は、前記第1の運転開始触媒床温度より少なくとも約1.5℃高い第2の運転開始触媒床温度、および第1の空間速度より大きい第2の空間速度を含む工程;
を含み、
前記ナフサ沸点範囲原料は、前記第2の体積の水素化脱硫触媒との接触前にヒ素捕捉触媒と接触し、さらに前記ナフサ沸点範囲原料と前記ヒ素捕捉触媒および前記第2の体積の水素化脱硫触媒との接触は、水素化脱硫ナフサ原料中の前記特定された生成物硫黄含有量を維持しながら、前記特定された連続運転時間の間、継続される方法。
2.
前記第2の体積の触媒が、前記第1の体積の約90%以下である、上記1に記載の方法。
3.
前記第2の空間速度が、前記第1の空間速度の約105%である、上記1または2に記載の方法。
4.
前記第2の運転開始触媒床温度が、前記第1の運転開始触媒床温度より少なくとも約2.5℃高い、上記1から3のいずれかに記載の方法。
5.
前記特定された生成物硫黄含有量が、約150重量ppm未満である、上記1から4のいずれかに記載の方法。
6.
前記特定された生成物硫黄含有量が、約10重量ppmから約30重量ppmである、上記1から5のいずれかに記載の方法。
7.
前記運転開始触媒床温度が、約450°F(約232℃)から約575°F(約302℃)である、上記1から6のいずれかに記載の方法。
8.
前記水素化脱硫触媒の接触の終了時の加重平均床温度が、約550°F(約288℃)から750°F(約399℃)である、上記1から7のいずれかに記載の方法。
9.
前記第2の有効な選択的水素化脱硫条件が、約60psig(約400kPag)から約800psig(約5.5MPag)の圧力、約500の1バレル当たり標準立方フィート(scf/b)(約84Nm /m )から約6000scf/b(約1000Nm /m )の水素原料速度、および約0.5hr −1 から約15hr −1 の液空間速度を含む、上記1から8のいずれかに記載の方法。
10.
前記第2の有効な選択的水素化脱硫条件が、約200psig(約1.4MPag)から約500psig(約3.4MPag)の圧力、約1000scf/b(約170Nm /m )から約3000scf/b(約510Nm /m )の水素原料速度、および約0.5hr −1 から約10hr −1 の液空間速度を含む、上記1から9のいずれかに記載の方法。
11.
前記ナフサ原料と前記第2の体積の水素化脱硫触媒との、前記第2の有効な水素化脱硫条件下での接触が、前記ナフサ原料と前記第1の体積の水素化脱硫触媒との、前記第1の有効な水素化脱硫条件下での接触による対応するオクタン価のロスより少なくとも0.05RON少ないオクタン価のロスをもたらす、上記1から10のいずれかに記載の方法。
12.
前記ナフサ沸点範囲原料が、少なくとも約10ppbのヒ素、好ましくは少なくとも約20ppbのヒ素を含む、上記1から11のいずれかに記載の方法。
The first data string in Table 1 (without arsenic capture) indicates that a catalyst volume of about 2043 ft 3 (about 57.9 m 3 ) was required to meet the goal of continuous run time of nearly 6 years. . The expected start of run (SOR) temperature was about 502 ° F. (about 261 ° C.). The second data string shows that by adding about 71.5 ft 3 (about 2.0 m 3 ) of arsenic scavenging catalyst, the same continuous running time is at a lower catalyst volume of about 1716 ft 3 (about 48.6 m 3 ) While it could be achieved, it shows that the octane loss was reduced by about 0.12 RON (running octane number). The higher SOR temperature in the second case of 508 ° F. (about 264 ° C.) appeared to reduce mercaptan formation and improve octane loss. Higher SOR temperatures usually result in faster deactivation, but this is offset by the presence of an arsenic scavenging catalyst, reducing arsenic-based deactivation. It is noted that the amount of arsenic capture catalyst in the second data row was approximately equal to the amount required to minimize arsenic reaching the main catalyst bed. This was indicated by an expected arsenic capture continuous operation time of about 6.1 years.

Some embodiments of the present invention are shown below.
1.
A method of selectively hydrotreating a naphtha boiling range raw material,
Supplying a naphtha boiling range feedstock containing at least about 5 wt% olefin and at least about 1 ppb arsenic;
Identifying continuous operation time and product sulfur content for a selective hydrodesulfurization process;
Determining a first effective selective hydrodesulfurization condition for selectively hydrodesulfurizing the naphtha boiling range feedstock in the presence of a first volume of hydrodesulfurization catalyst, wherein Effective conditions include a first start catalyst bed temperature and a first space velocity;
Contacting the naphtha boiling range feedstock with an arsenic capture catalyst; and
Contacting the naphtha boiling range feedstock with a second volume of hydrodesulfurization catalyst that is less than about 95% of the first volume under a second effective hydrodesulfurization condition, comprising: The second effective selective hydrodesulfurization condition includes a second start catalyst bed temperature that is at least about 1.5 ° C. higher than the first start catalyst bed temperature, and a second greater than a first space velocity. Including a space velocity;
Including
The naphtha boiling range feed comes into contact with the arsenic capture catalyst prior to contact with the second volume hydrodesulfurization catalyst, and further the naphtha boiling range feed, the arsenic capture catalyst, and the second volume hydrodesulfurization. The method wherein contact with the catalyst is continued for the specified continuous operating time while maintaining the specified product sulfur content in the hydrodesulfurized naphtha feed.
2.
The method of claim 1, wherein the second volume of catalyst is about 90% or less of the first volume.
3.
The method of claim 1 or 2, wherein the second space velocity is about 105% of the first space velocity.
4).
4. The method of any one of claims 1 to 3, wherein the second start catalyst bed temperature is at least about 2.5 ° C. higher than the first start catalyst bed temperature.
5.
5. The method of any one of 1 to 4 above, wherein the identified product sulfur content is less than about 150 ppm by weight.
6).
6. A method according to any of 1 to 5 above, wherein the identified product sulfur content is from about 10 ppm to about 30 ppm by weight.
7).
7. The method of any one of 1 to 6 above, wherein the starting catalyst bed temperature is from about 450 ° F. (about 232 ° C.) to about 575 ° F. (about 302 ° C.).
8).
8. The method according to any one of 1 to 7 above, wherein the weighted average bed temperature at the end of the contact of the hydrodesulfurization catalyst is about 550 ° F. (about 288 ° C.) to 750 ° F. (about 399 ° C.).
9.
The second effective selective hydrodesulfurization conditions include a pressure of about 60 psig (about 400 kPag) to about 800 psig (about 5.5 MPag), about 500 standard cubic feet per barrel (scf / b) (about 84 Nm 3 / M 3 ) to about 6000 scf / b (about 1000 Nm 3 / m 3 ) hydrogen feed rate and liquid space velocity from about 0.5 hr −1 to about 15 hr −1. the method of.
10.
The second effective selective hydrodesulfurization conditions include a pressure of about 200 psig (about 1.4 MPag) to about 500 psig (about 3.4 MPag), about 1000 scf / b (about 170 Nm 3 / m 3 ) to about 3000 scf / b (approximately 510Nm 3 / m 3) hydrogen feed rate, and from about 0.5 hr -1 liquid hourly space velocity of about 10 hr -1, a method according to any one of the above 1 9.
11.
Contact of the naphtha feed with the second volume of hydrodesulfurization catalyst under the second effective hydrodesulfurization conditions comprises the naphtha feed and the first volume of hydrodesulfurization catalyst. 11. A process according to any of the preceding claims, which results in an octane loss of at least 0.05 RON less than the corresponding octane loss due to contact under the first effective hydrodesulfurization condition.
12
12. A method according to any of 1 to 11 above, wherein the naphtha boiling range feedstock comprises at least about 10 ppb arsenic, preferably at least about 20 ppb arsenic.

Claims (8)

ナフサ沸点範囲原料を選択的に水素化処理する方法であって、
少なくとも重量%のオレフィンおよび少なくともppbのヒ素を含有するナフサ沸点範囲原料を供給する工程;
選択的水素化脱硫プロセスのために連続運転時間および生成物硫黄含有量を特定する工程;
第1の体積の水素化脱硫触媒の存在下で前記ナフサ沸点範囲原料を選択的に水素化脱硫するための第1の有効な選択的水素化脱硫条件を決定する工程であって、前記第1の有効な条件は、第1の運転開始触媒床温度および第1の空間速度を含む工程であり、
その有効な選択的水素化脱硫条件は、60psig(400kPag)から800psig(5.5MPag)の圧力、500scf/b(84Nm /m )から6000scf/b(1000Nm /m )の水素原料速度、及び0.5hr −1 から15hr −1 での液空間速度を含む工程;
前記ナフサ沸点範囲原料をヒ素捕捉触媒と接触させる工程;および
前記ナフサ沸点範囲原料を、前記第1の体積の95%以下である第2の体積の水素化脱硫触媒と第2の有効な選択的水素化脱硫条件下で接触させる工程であって、前記第2の有効な選択的水素化脱硫条件は、前記第1の運転開始触媒床温度より少なくとも1.5℃高い第2の運転開始触媒床温度、および第1の空間速度より大きい第2の空間速度を含む工程であり、
第2の有効な選択的水素化脱硫条件が、60psig(400kPag)から800psig(5.5MPag)の圧力、500の1バレル当たり標準立方フィート(scf/b)(84Nm /m )から6000scf/b(1000Nm /m )の水素原料速度、および0.5hr −1 から15hr −1 の液空間速度を含み、
その運転開始触媒床温度が、450°F(232℃)から575°F(302℃)であり、
その水素化脱硫触媒の接触の終了時の加重平均床温度が、550°F(288℃)から750°F(約399℃)である工程
を含み、
前記ナフサ沸点範囲原料は、前記第2の体積の水素化脱硫触媒との接触前にヒ素捕捉触媒と接触し、さらに前記ナフサ沸点範囲原料と前記ヒ素捕捉触媒および前記第2の体積の水素化脱硫触媒との接触は、水素化脱硫ナフサ原料中の前記特定された生成物硫黄含有量を維持しながら、前記特定された連続運転時間の間、継続され、
前記ナフサ原料と前記第2の体積の水素化脱硫触媒との、前記第2の有効な水素化脱硫条件下での接触が、前記ナフサ原料と前記第1の体積の水素化脱硫触媒との、前記第1の有効な水素化脱硫条件下での接触による対応するオクタン価のロスより少なくとも0.05RON少ないオクタン価のロスをもたらす、方法。
A method of selectively hydrotreating a naphtha boiling range raw material,
Supplying a naphtha boiling range feed containing at least 5 wt% olefin and at least 1 ppb arsenic;
Identifying continuous operation time and product sulfur content for a selective hydrodesulfurization process;
Determining a first effective selective hydrodesulfurization condition for selectively hydrodesulfurizing the naphtha boiling range feedstock in the presence of a first volume of hydrodesulfurization catalyst, wherein The effective condition of is a process comprising a first start catalyst bed temperature and a first space velocity ,
The effective selective hydrodesulfurization conditions are: 60 psig (400 kPag) to 800 psig (5.5 MPag) pressure, 500 scf / b (84 Nm 3 / m 3 ) to 6000 scf / b (1000 Nm 3 / m 3 ) hydrogen feed rate. And including a liquid space velocity at 0.5 hr −1 to 15 hr −1 ;
Contacting the naphtha boiling range feed with an arsenic scavenging catalyst; and a second effective selective hydrofluoric desulfurization catalyst with a second volume of the naphtha boiling range feed that is 95 % or less of the first volume. Contacting under hydrodesulfurization conditions, wherein the second effective selective hydrodesulfurization condition is a second start catalyst bed that is at least 1.5 ° C. higher than the first start catalyst bed temperature. a step including temperature, and the first space velocity greater than the second space velocity,
The second effective selective hydrodesulfurization conditions are 60 psig (400 kPag) to 800 psig (5.5 MPag) pressure, 500 standard cubic feet per barrel (scf / b) (84 Nm 3 / m 3 ) to 6000 scf / a hydrogen feed rate of b ( 1000 Nm 3 / m 3 ) and a liquid space velocity of 0.5 hr −1 to 15 hr −1 ,
The starting catalyst bed temperature is 450 ° F. (232 ° C.) to 575 ° F. (302 ° C.);
A step wherein the weighted average bed temperature at the end of contacting the hydrodesulfurization catalyst is from 550 ° F. (288 ° C.) to 750 ° F. (about 399 ° C.) ;
Including
The naphtha boiling range feed comes into contact with the arsenic capture catalyst prior to contact with the second volume hydrodesulfurization catalyst, and further the naphtha boiling range feed, the arsenic capture catalyst, and the second volume hydrodesulfurization. Contact with the catalyst is continued for the specified continuous operating time while maintaining the specified product sulfur content in the hydrodesulfurized naphtha feed ,
Contact of the naphtha feed with the second volume of hydrodesulfurization catalyst under the second effective hydrodesulfurization conditions comprises the naphtha feed and the first volume of hydrodesulfurization catalyst. A process that results in an octane loss of at least 0.05 RON less than the corresponding octane loss due to contact under said first effective hydrodesulfurization conditions .
前記第2の体積の触媒が、前記第1の体積の90%以下である、請求項1に記載の方法。 The method of claim 1, wherein the second volume of catalyst is 90 % or less of the first volume. 前記第2の空間速度が、前記第1の空間速度の105%である、請求項1または2に記載の方法。 3. A method according to claim 1 or 2, wherein the second space velocity is 105 % of the first space velocity. 前記第2の運転開始触媒床温度が、前記第1の運転開始触媒床温度より少なくとも2.5℃高い、請求項1から3のいずれかに記載の方法。 The method according to any of claims 1 to 3, wherein the second start-up catalyst bed temperature is at least 2.5 ° C higher than the first start-up catalyst bed temperature. 前記特定された生成物硫黄含有量が、150重量ppm未満である、請求項1から4のいずれかに記載の方法。 The method according to any of claims 1 to 4, wherein the specified product sulfur content is less than 150 ppm by weight. 前記特定された生成物硫黄含有量が、10重量ppmから30重量ppmである、請求項1から5のいずれかに記載の方法。 6. A method according to any one of claims 1 to 5, wherein the identified product sulfur content is from 10 ppm to 30 ppm by weight. 前記第2の有効な選択的水素化脱硫条件が、200psig(1.4MPag)から500psig(3.4MPag)の圧力、1000scf/b(170Nm/m)から3000scf/b(510Nm/m)の水素原料速度、および0.5hr−1から10hr−1の液空間速度を含む、請求項1からのいずれかに記載の方法。 The second effective selective hydrodesulfurization conditions include pressures of 200 psig ( 1.4 MPag) to 500 psig ( 3.4 MPag), 1000 scf / b ( 170 Nm 3 / m 3 ) to 3000 scf / hydrogen feed rate of b (510 Nm 3 / m 3 ), and a liquid hourly space velocity of 0.5 hr -1 from 10 hr -1, a method according to any one of claims 1 to 6. 前記ナフサ沸点範囲原料が、少なくとも10ppbのヒ素を含む、請求項1からのいずれかに記載の方法。 The naphtha boiling range feedstock comprises at least 10 ppb of arsenic, the method according to any one of claims 1 to 7.
JP2012541977A 2009-12-01 2009-12-01 Method for removing arsenic using a capture catalyst prior to desulfurization Expired - Fee Related JP5581396B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/006320 WO2011068488A1 (en) 2009-12-01 2009-12-01 Process for removing arsenic with a trap catalyst before desulfurizating it

Publications (2)

Publication Number Publication Date
JP2013512327A JP2013512327A (en) 2013-04-11
JP5581396B2 true JP5581396B2 (en) 2014-08-27

Family

ID=42271853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541977A Expired - Fee Related JP5581396B2 (en) 2009-12-01 2009-12-01 Method for removing arsenic using a capture catalyst prior to desulfurization

Country Status (6)

Country Link
EP (1) EP2507344A1 (en)
JP (1) JP5581396B2 (en)
CN (1) CN102639677A (en)
AU (1) AU2009356146B2 (en)
CA (1) CA2780480C (en)
WO (1) WO2011068488A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650759B1 (en) * 1989-08-08 1991-10-31 Inst Francais Du Petrole NICKEL-BASED CAPTATION MASS FOR THE ELIMINATION OF ARSENIC AND PHOSPHORUS CONTAINED IN LIQUID HYDROCARBON CUTS, ITS PREPARATION AND ITS USE
US6759364B2 (en) * 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
TW200513320A (en) * 2003-06-16 2005-04-16 Shell Int Research A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst
FR2876113B1 (en) * 2004-10-06 2008-12-12 Inst Francais Du Petrole METHOD OF SELECTIVELY CAPTRATING ARSENIC IN ESSENCE RICH IN SULFUR AND OLEFINS
FR2923837B1 (en) * 2007-11-19 2009-11-20 Inst Francais Du Petrole PROCESS FOR TWO-STAGE DESULFURIZATION OF OLEFINIC ESSENCES COMPRISING ARSENIC

Also Published As

Publication number Publication date
AU2009356146B2 (en) 2015-08-20
AU2009356146A1 (en) 2012-06-21
CA2780480C (en) 2017-02-21
JP2013512327A (en) 2013-04-11
CN102639677A (en) 2012-08-15
EP2507344A1 (en) 2012-10-10
CA2780480A1 (en) 2011-06-09
WO2011068488A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4958792B2 (en) Selective hydrodesulfurization and mercaptan cracking processes, including interstage separation
CA2630340C (en) Selective naphtha hydrodesulfurization with high temperature mercaptan decomposition
JP4590259B2 (en) Multistage hydrodesulfurization of cracked naphtha stream in a stacked bed reactor
JP2004513214A (en) Low sulfur fuel
AU2002352577B2 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with interstage fractionation
CA2422813C (en) Catalytic stripping for mercaptan removal
AU2001291009A1 (en) Catalytic stripping for mercaptan removal
JP2005527693A (en) CO reduction to increase naphtha desulfurization
JP5581396B2 (en) Method for removing arsenic using a capture catalyst prior to desulfurization
US8329029B2 (en) Selective desulfurization of naphtha using reaction inhibitors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees