JP5581058B2 - Catalyst for producing ethylene oxide and method for producing ethylene oxide - Google Patents

Catalyst for producing ethylene oxide and method for producing ethylene oxide Download PDF

Info

Publication number
JP5581058B2
JP5581058B2 JP2009548948A JP2009548948A JP5581058B2 JP 5581058 B2 JP5581058 B2 JP 5581058B2 JP 2009548948 A JP2009548948 A JP 2009548948A JP 2009548948 A JP2009548948 A JP 2009548948A JP 5581058 B2 JP5581058 B2 JP 5581058B2
Authority
JP
Japan
Prior art keywords
catalyst
ethylene oxide
carrier
temperature
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009548948A
Other languages
Japanese (ja)
Other versions
JPWO2009088040A1 (en
Inventor
高明 橋本
昌秀 島
準 仙頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009548948A priority Critical patent/JP5581058B2/en
Publication of JPWO2009088040A1 publication Critical patent/JPWO2009088040A1/en
Application granted granted Critical
Publication of JP5581058B2 publication Critical patent/JP5581058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、エチレンオキシド製造用触媒およびエチレンオキシドの製造方法に関する。詳細には、本発明は、触媒活性、選択性および触媒寿命に優れ、長期に亘って高い選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法に関する。   The present invention relates to a catalyst for producing ethylene oxide and a method for producing ethylene oxide. Specifically, the present invention relates to a catalyst that is excellent in catalyst activity, selectivity, and catalyst life, and can produce ethylene oxide with high selectivity over a long period of time, and a method for producing ethylene oxide using the catalyst.

エチレンを銀触媒の存在下で分子状酸素含有ガスにより接触気相酸化してエチレンオキシドを製造することは工業的に広く行われている。この接触気相酸化に用いる銀触媒については、その担体、担持方法、反応促進剤の種類やその添加量などに関し、多くの技術が提案されている。   It is widely used industrially to produce ethylene oxide by catalytic vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. With regard to the silver catalyst used for this catalytic gas phase oxidation, many techniques have been proposed with respect to the carrier, the loading method, the type of reaction accelerator, the amount added, and the like.

ここで、反応促進剤としては、アルカリ金属が有効であることが知られている。例えば、特開昭63−126552号公報(実施例1)、特開平9−150058号公報、特開2003−320255号公報には、アルカリ金属とレニウムとを併用することにより、触媒の選択性を向上させる技術が開示されている。   Here, it is known that an alkali metal is effective as the reaction accelerator. For example, in Japanese Patent Application Laid-Open No. 63-126552 (Example 1), Japanese Patent Application Laid-Open No. 9-150058, and Japanese Patent Application Laid-Open No. 2003-320255, the selectivity of the catalyst is improved by using an alkali metal and rhenium in combination. Techniques for improving are disclosed.

具体的には、特開昭63−126552号公報には、銀、レニウム、セシウムを含有する触媒が開示されており、初期選択性の向上が示されている。しかしながら、長期間に亘って選択性が向上する旨の開示はない。   Specifically, JP-A-63-126552 discloses a catalyst containing silver, rhenium and cesium, and shows an improvement in initial selectivity. However, there is no disclosure that the selectivity is improved over a long period of time.

また、特開平9−150058号公報には、アルカリ金属化合物(リチウム化合物)とセシウム化合物を含有する溶液で担体を前処理し、次いで銀化合物およびセシウム化合物を含有する溶液を含浸させた後に加熱処理して触媒を製造する技術が開示されており、活性および選択率の向上が示されている。しかしながら、やはり長期間に亘って選択性が向上する旨の開示はない。   Japanese Patent Laid-Open No. 9-150058 discloses pretreatment of a carrier with a solution containing an alkali metal compound (lithium compound) and a cesium compound, followed by impregnation with a solution containing a silver compound and a cesium compound, followed by heat treatment. Thus, a technique for producing a catalyst is disclosed, which shows improved activity and selectivity. However, there is no disclosure that the selectivity is improved over a long period of time.

さらに、特開2003−320255号公報には、ハロゲン、銀、アルカリ金属およびレニウムを含む活性成分を担体に担持した触媒が開示されており、かような構成とすることで高い選択性を長期間維持することができるとしている。しかしながら、具体的にどの程度の期間に亘って高い選択性が維持されたかについての記載がなく、その耐久性は十分とは言い難い。   Furthermore, Japanese Patent Application Laid-Open No. 2003-320255 discloses a catalyst in which an active component containing halogen, silver, alkali metal and rhenium is supported on a carrier. It can be maintained. However, there is no description about how long the high selectivity was maintained over a specific period, and the durability is not sufficient.

銀触媒の触媒活性、選択性および触媒寿命はすでに高いレベルに達しているが、なおこれらの物性の向上が求められている。例えば選択率を例にとれば、エチレンオキシドの生産規模は大きいことから、選択率が僅か1%向上するだけでも、原料エチレンの使用量が著しく節約され、その経済的効果は大きい。このような事情から、より優れた触媒性能を有する銀触媒の開発が当該技術分野の研究者の継続的なテーマとなっている。   Although the catalytic activity, selectivity and catalyst life of silver catalysts have already reached a high level, improvement of these physical properties is still required. For example, if the selectivity is taken as an example, the production scale of ethylene oxide is large, and even if the selectivity is improved by only 1%, the amount of raw material ethylene used is remarkably saved, and its economic effect is great. Under such circumstances, the development of silver catalysts having better catalytic performance has been a continuous theme for researchers in the technical field.

本発明は、上述した従来技術の技術およびその問題点に鑑みてなされたものであり、優れた触媒性能を有し、長期に亘って高選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned prior art and its problems, and has a catalyst performance that can produce ethylene oxide with a high selectivity over a long period of time and uses this catalyst. It is an object of the present invention to provide a method for producing ethylene oxide.

本発明者らは、上述した課題を解決すべく鋭意研究を行った。その結果、酸素昇温脱離(O−Temperature Programmed Desorption)法(以下、単に「O−TPD法」とも称する)により観測される2つの脱離ピーク温度が所定の関係を満足するような触媒を採用することで、エチレンに対する活性が高く、かつエチレンオキシドを高選択率で製造可能なエチレンオキシド製造用触媒が提供されうることを見出し、本発明を完成させるに至った。The present inventors have conducted intensive research to solve the above-described problems. As a result, the two desorption peak temperatures observed by the oxygen temperature-programmed desorption (O 2 -Temperature Programmed Desorption) method (hereinafter also simply referred to as “O 2 -TPD method”) satisfy a predetermined relationship. By employing the catalyst, it was found that an ethylene oxide production catalyst having high activity against ethylene and capable of producing ethylene oxide with high selectivity can be provided, and the present invention has been completed.

すなわち、本発明の一形態は、α−アルミナを主成分とする担体と、前記担体に担持されてなる、銀ならびにアルカリ金属および/またはレニウムを含む触媒成分とを含むエチレンオキシド製造用触媒であって、(1)O−TPD法により150〜250℃の温度領域に観測される第1脱離ピーク温度(T1[℃])が215℃未満であり;(2)O−TPD法により250〜400℃の温度領域に観測される第2脱離ピーク温度(T2[℃])の前記T1に対する比(T2/T1)が1.7未満であることを特徴とする、エチレンオキシド製造用触媒である。That is, one aspect of the present invention is an ethylene oxide production catalyst comprising a carrier mainly composed of α-alumina and a catalyst component containing silver and an alkali metal and / or rhenium supported on the carrier. (1) The first desorption peak temperature (T1 [° C.]) observed in the temperature range of 150 to 250 ° C. by the O 2 -TPD method is less than 215 ° C .; (2) 250 by the O 2 -TPD method. A catalyst for producing ethylene oxide, characterized in that the ratio (T2 / T1) of the second desorption peak temperature (T2 [° C]) observed in the temperature range of ˜400 ° C. to T1 is less than 1.7. is there.

本発明によれば、優れた触媒性能を有し、長期に亘って高選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法が提供されうる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding catalyst performance, The catalyst which can manufacture ethylene oxide with high selectivity over a long period of time, and the manufacturing method of ethylene oxide using this catalyst can be provided.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の一形態は、α−アルミナを主成分とする担体と、前記担体に担持されてなる、銀ならびにアルカリ金属および/またはレニウムを含む触媒成分とを含むエチレンオキシド製造用触媒であって、(1)O−TPD法により150〜250℃の温度領域に観測される第1脱離ピーク温度(T1[℃])が215℃未満であり;(2)O−TPD法により250〜400℃の温度領域に観測される第2脱離ピーク温度(T2[℃])の前記T1に対する比(T2/T1)が1.7未満であることを特徴とする、エチレンオキシド製造用触媒である。One aspect of the present invention is a catalyst for producing ethylene oxide, comprising: a support mainly composed of α-alumina; and a catalyst component containing silver and an alkali metal and / or rhenium supported on the support, 1) The first desorption peak temperature (T1 [° C.]) observed in the temperature range of 150 to 250 ° C. by the O 2 -TPD method is less than 215 ° C .; (2) 250 to 400 by the O 2 -TPD method. A catalyst for producing ethylene oxide, characterized in that the ratio (T2 / T1) of the second desorption peak temperature (T2 [° C]) observed in the temperature range of ° C to T1 is less than 1.7.

本発明のエチレンオキシド製造用触媒は、上述した通り、触媒のO−TPD法により観測される2つの脱離ピーク温度が所定の関係を満足するものであればよく、その他の形態(担体の形状や触媒成分の具体的な形態など)は特に制限されない。As described above, the catalyst for producing ethylene oxide of the present invention may be any catalyst as long as the two desorption peak temperatures observed by the O 2 -TPD method of the catalyst satisfy a predetermined relationship. And the specific form of the catalyst component) are not particularly limited.

昇温脱離法(TPD法)とは、試料に特定の分子(原子)を吸着させた後に加熱し、これにより脱離してくる分子(原子)を温度の関数として測定する手法である。TPD法は通常、試料における上記特定の分子(原子)の吸着状態(吸着エネルギー、吸着量など)や試料表面での反応を解析する目的で用いられる。   The temperature-programmed desorption method (TPD method) is a method in which a specific molecule (atom) is adsorbed on a sample and then heated, and the molecule (atom) desorbed thereby is measured as a function of temperature. The TPD method is usually used for the purpose of analyzing the adsorption state (adsorption energy, adsorption amount, etc.) of the specific molecule (atom) in the sample and the reaction on the sample surface.

詳細には、O−TPD法では、試料に上記特定の分子(原子)としての酸素分子(O)を吸着させた後、試料を入れたフロー型セルにヘリウムガスなどの純キャリアガスを流通させる。そして、試料を一定の昇温速度で加熱する。すると、吸着していたOが加熱によりキャリアガス中へ脱離してくる。この脱離特性を、熱伝導度検出器(TCD;Thermal Conductivity Detector)およびセル内の温度計(熱電対)を用いてモニターする。そして最終的には、O脱離の信号強度(縦軸)を試料温度(横軸)に対してプロットすることで、熱脱離スペクトルが得られるのである。本発明における脱離ピーク温度とは、この熱脱離スペクトルにおけるピーク温度を意味する。なお、熱脱離スペクトルを得るためのO−TPD法の具体的な手法としては、後述する実施例に記載の手法を採用するものとする。Specifically, in the O 2 -TPD method, after adsorbing oxygen molecules (O 2 ) as the specific molecules (atoms) to the sample, a pure carrier gas such as helium gas is introduced into the flow type cell containing the sample. Circulate. Then, the sample is heated at a constant temperature increase rate. Then, the adsorbed O 2 is desorbed into the carrier gas by heating. This desorption characteristic is monitored using a thermal conductivity detector (TCD) and a thermometer (thermocouple) in the cell. Finally, a thermal desorption spectrum is obtained by plotting the signal intensity (vertical axis) of O 2 desorption against the sample temperature (horizontal axis). The desorption peak temperature in the present invention means a peak temperature in this thermal desorption spectrum. In addition, as a specific method of the O 2 -TPD method for obtaining a thermal desorption spectrum, the method described in Examples described later is adopted.

本発明のような、α−アルミナを主成分とする担体に銀ならびにアルカリ金属および/またはレニウムを含む触媒成分が担持されてなる触媒の熱脱離スペクトルにおいては、150〜250℃の温度領域に1つ目のピークが観測され(第1ピーク脱離温度)、250〜400℃の温度領域に2つ目のピークが観測される(第2ピーク脱離温度)。   In the thermal desorption spectrum of a catalyst in which a catalyst component containing silver and alkali metal and / or rhenium is supported on a carrier mainly composed of α-alumina as in the present invention, the temperature is in the range of 150 to 250 ° C. The first peak is observed (first peak desorption temperature), and the second peak is observed in the temperature range of 250 to 400 ° C. (second peak desorption temperature).

そして、本発明の触媒においては、第1ピーク脱離温度(T1[℃])は215℃未満であり、好ましくは213℃未満であり、より好ましくは210℃未満である。T1が215℃以上であると、エチレンオキシドの製造において長期に亘って高選択率を維持するという本発明の作用効果が得られなくなってしまう。なお、第1ピーク脱離温度の下限値について特に制限はないが、一般的には180℃以上であり、より好ましくは185℃以上である。   In the catalyst of the present invention, the first peak desorption temperature (T1 [° C.]) is less than 215 ° C., preferably less than 213 ° C., more preferably less than 210 ° C. When T1 is 215 ° C. or higher, the effect of the present invention that maintains a high selectivity over a long period in the production of ethylene oxide cannot be obtained. In addition, although there is no restriction | limiting in particular about the lower limit of 1st peak desorption temperature, Generally it is 180 degreeC or more, More preferably, it is 185 degreeC or more.

また、本発明の触媒において、T2のT1に対する比(T2/T1)は1.7未満であり、好ましくは1.68未満であり、より好ましくは1.65未満である。T2のT1に対する比(T2/T1)が1.7以上であると、エチレンオキシドの製造において長期に亘って高選択率を維持するという本発明の作用効果が得られなくなってしまう。なお、T2のT1に対する比(T2/T1)の下限値について特に制限はないが、一般的には1.3以上であり、より好ましくは1.4以上である。   In the catalyst of the present invention, the ratio of T2 to T1 (T2 / T1) is less than 1.7, preferably less than 1.68, and more preferably less than 1.65. When the ratio of T2 to T1 (T2 / T1) is 1.7 or more, the effect of the present invention that maintains a high selectivity over a long period in the production of ethylene oxide cannot be obtained. The lower limit of the ratio of T2 to T1 (T2 / T1) is not particularly limited, but is generally 1.3 or more, more preferably 1.4 or more.

なお、第2ピーク脱離温度(T2[℃])の絶対値についても特に制限はなく、T1およびT2/T1が上述した数値範囲を満足するような値であればよい。一例を挙げると、T2は、好ましくは270〜380℃であり、より好ましくは280〜370℃であり、さらに好ましくは290〜360℃である。T2がかような範囲内の値であれば、エチレンオキシドの製造において長期に亘って高選択率を維持するという本発明の作用効果がより一層顕著に発揮されうる。   The absolute value of the second peak desorption temperature (T2 [° C.]) is not particularly limited as long as T1 and T2 / T1 satisfy the numerical range described above. As an example, T2 is preferably 270 to 380 ° C, more preferably 280 to 370 ° C, and further preferably 290 to 360 ° C. If T2 is a value within such a range, the effect of the present invention of maintaining a high selectivity over a long period in the production of ethylene oxide can be exhibited more remarkably.

続いて、本発明の触媒の具体的な構成について説明する。ただし、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下に記載する具体的な形態のみに制限されることはない。   Then, the specific structure of the catalyst of this invention is demonstrated. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited only to the specific modes described below.

まず、担体の組成について、α−アルミナを主成分とすること以外は特に制限されない。ここで、担体が「α−アルミナを主成分とする」とは、担体におけるα−アルミナの含有量が、担体の全質量100質量%に対して90質量%以上であることを意味する。担体におけるα−アルミナの含有量は、好ましくは95質量%以上であり、より好ましくは98質量%以上である。α−アルミナを主成分とするものであればその他の組成は特に制限されないが、担体は、例えばアルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。これらの含有量についても特に制限はないが、アルカリ金属またはアルカリ土類金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜3質量%である。   First, the composition of the carrier is not particularly limited except that α-alumina is the main component. Here, the carrier “having α-alumina as a main component” means that the content of α-alumina in the carrier is 90% by mass or more with respect to 100% by mass of the total mass of the carrier. The content of α-alumina in the carrier is preferably 95% by mass or more, more preferably 98% by mass or more. The other composition is not particularly limited as long as it has α-alumina as a main component, but the support can contain, for example, an oxide of an alkali metal or alkaline earth metal or an oxide of a transition metal. Although there is no restriction | limiting in particular also about these content, Preferably content of the oxide of an alkali metal or alkaline-earth metal is 0-5 mass% in conversion of an oxide, More preferably, it is 0.01-4 mass %. The content of the transition metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass in terms of oxide.

担体はまた、シリカ(酸化ケイ素)を通常含有する。担体におけるシリカの含有量についても特に制限はないが、好ましくは0.1〜5質量%であり、より好ましくは0.3〜3質量%である。   The support also usually contains silica (silicon oxide). Although there is no restriction | limiting in particular about content of the silica in a support | carrier, Preferably it is 0.1-5 mass%, More preferably, it is 0.3-3 mass%.

なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ペレット状のほか、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均直径)についても特に制限はなく、好ましくは3〜20mmであり、より好ましくは5〜10mmである。   The shape of the carrier is not particularly limited, and conventionally known knowledge can be appropriately referred to in addition to a ring shape, a spherical shape, a cylindrical shape, and a pellet shape. Moreover, there is no restriction | limiting in particular also about the size (average diameter) of a support | carrier, Preferably it is 3-20 mm, More preferably, it is 5-10 mm.

担体の粒径に関しても特に制限はないが、担体の一次粒子径は、好ましくは0.01〜100μmであり、より好ましくは0.1〜20μmであり、さらに好ましくは0.5〜10μmであり、特に好ましくは1〜5μmである。また、担体の二次粒子径は、好ましくは0.1〜1,000μmであり、より好ましくは1〜500μmであり、さらに好ましくは10〜200μmであり、特に好ましくは30〜100μmである。   The particle size of the carrier is not particularly limited, but the primary particle size of the carrier is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm, and further preferably 0.5 to 10 μm. Especially preferably, it is 1-5 micrometers. The secondary particle size of the carrier is preferably 0.1 to 1,000 μm, more preferably 1 to 500 μm, still more preferably 10 to 200 μm, and particularly preferably 30 to 100 μm.

担体の比表面積についても特に制限はないが、好ましくは0.03〜10m/gであり、より好ましくは0.5〜5.0m/gであり、さらに好ましくは1.0〜3.0m/gである。担体の比表面積が0.03m/g以上であれば、吸水率が充分に確保され、触媒成分の担持が容易となる。一方、担体の比表面積が10m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いたエチレンオキシド製造時のエチレンオキシドの逐次酸化が抑制されうる。なお、担体の比表面積の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。There is no particular restriction on the specific surface area of the support is preferably 0.03~10m 2 / g, more preferably 0.5~5.0m 2 / g, more preferably from 1.0 to 3. 0 m 2 / g. When the specific surface area of the support is 0.03 m 2 / g or more, the water absorption is sufficiently secured and the catalyst component can be easily supported. On the other hand, when the specific surface area of the carrier is 10 m 2 / g or less, the pore diameter of the carrier is maintained at a certain value, and the sequential oxidation of ethylene oxide during the production of ethylene oxide using the produced catalyst can be suppressed. In addition, as a value of the specific surface area of a support | carrier, the value obtained by the method as described in the Example mentioned later shall be employ | adopted.

担体の細孔容積も特に制限されないが、好ましくは0.2〜0.6mL/gであり、より好ましくは0.3〜0.5mL/gであり、さらに好ましくは0.35〜0.45mL/gである。担体の細孔容積が0.2mL/g以上であれば、触媒成分の担持が容易となるという点で好ましい。一方、担体の細孔容積が0.6mL/g以下であれば、担体の強度が実用的な程度に確保されうるという点で好ましい。なお、担体の細孔容積の値としては、水銀圧入法により、200℃にて少なくとも30分間脱気した担体をサンプルとし、測定装置としてオートポアIII9420W(株式会社島津製作所製)を用い、1.0〜60,000psiaの圧力範囲及び60個の測定ポイントで測定される値を採用するものとする。   The pore volume of the carrier is not particularly limited, but is preferably 0.2 to 0.6 mL / g, more preferably 0.3 to 0.5 mL / g, and further preferably 0.35 to 0.45 mL. / G. If the pore volume of the carrier is 0.2 mL / g or more, it is preferable in that the catalyst component can be easily supported. On the other hand, if the pore volume of the carrier is 0.6 mL / g or less, it is preferable in that the strength of the carrier can be ensured to a practical level. As the pore volume value of the carrier, a carrier deaerated at 200 ° C. for at least 30 minutes by a mercury intrusion method is used as a sample, and Autopore III9420W (manufactured by Shimadzu Corporation) is used as a measuring device. A value measured at a pressure range of ˜60,000 psia and 60 measurement points shall be adopted.

担体の有する細孔のサイズも特に制限されないが、平均細孔直径は、好ましくは0.1〜10μmであり、より好ましくは0.2〜4.0μmであり、さらに好ましくは0.3〜3.0μmである。平均細孔直径が0.1μm以上であれば、エチレンオキシド製造時の生成ガスの滞留に伴うエチレンオキシドの逐次酸化が抑制されうる。一方、平均細孔直径が10μm以下であれば、担体の強度が実用的な程度に確保されうる。なお、平均細孔直径の値としては、担体の細孔容積の測定方法として上述した手法(水銀圧入法)と同様の手法により測定される値を採用するものとする。   The size of the pores of the carrier is not particularly limited, but the average pore diameter is preferably 0.1 to 10 μm, more preferably 0.2 to 4.0 μm, and further preferably 0.3 to 3 μm. 0.0 μm. If the average pore diameter is 0.1 μm or more, the sequential oxidation of ethylene oxide accompanying the retention of the product gas during the production of ethylene oxide can be suppressed. On the other hand, if the average pore diameter is 10 μm or less, the strength of the carrier can be ensured to a practical level. As the value of the average pore diameter, a value measured by a method similar to the method (mercury intrusion method) described above as a method for measuring the pore volume of the carrier is adopted.

担体の吸水率についても特に制限はないが、好ましくは10〜70%であり、より好ましくは20〜60%であり、さらに好ましくは30〜50%である。担体の吸水率が10%以上であれば、触媒成分の担持が容易となる。一方、担体の吸水率が70%以下であれば、担体の強度が実用的な程度に確保されうる。なお、担体の吸水率の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   Although there is no restriction | limiting in particular also about the water absorption rate of a support | carrier, Preferably it is 10 to 70%, More preferably, it is 20 to 60%, More preferably, it is 30 to 50%. If the water absorption rate of the carrier is 10% or more, the catalyst component can be easily supported. On the other hand, if the water absorption rate of the carrier is 70% or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of the water absorption rate of the carrier, a value obtained by a method described in Examples described later is adopted.

本発明の触媒は、上述した担体に触媒成分が担持されてなる構成を有する。そして、本発明の触媒は、まず、触媒成分として銀を必須に含有する。そして、銀に加えて、一般に反応促進剤として用いられる触媒成分であるアルカリ金属およびレニウムの少なくとも一方をさらに必須に含有する。アルカリ金属として具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。これらのアルカリ金属および/またはレニウム(反応促進剤)は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらのうち、本発明においては、反応促進剤としてセシウム、レニウムが好適に用いられる。なお、上述した以外の従来公知の触媒成分がさらに用いられてもよい。   The catalyst of the present invention has a configuration in which a catalyst component is supported on the carrier described above. And the catalyst of this invention contains silver essential as a catalyst component first. In addition to silver, at least one of an alkali metal and rhenium, which is a catalyst component generally used as a reaction accelerator, is further essential. Specific examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. These alkali metals and / or rhenium (reaction accelerator) may be used alone or in combination of two or more. Of these, in the present invention, cesium and rhenium are preferably used as the reaction accelerator. In addition, conventionally known catalyst components other than those described above may be further used.

銀や反応促進剤の担持量については特に制限はなく、エチレンオキシドの製造に有効な量で担持すればよい。例えば、銀の場合、その担持量はエチレンオキシド製造用触媒の質量基準で1〜30質量%であり、好ましくは5〜20質量%である。また、反応促進剤の担持量は、エチレンオキシド製造用触媒の質量基準で、通常0.001〜2質量%であり、好ましくは0.01〜1質量%であり、より好ましくは0.1〜0.7質量%である。より詳細には、本発明の作用効果をより一層発揮させるという観点から、触媒成分としてアルカリ金属が用いられる場合のアルカリ金属の担持量(2種以上のアルカリ金属が用いられる場合の合計担持量)は、触媒の質量基準で、好ましくは0.03〜1.0質量%であり、より好ましくは0.05〜0.5質量%である。また、触媒成分としてレニウムが用いられる場合のレニウムの担持量は、触媒の質量基準で、好ましくは0.002〜0.2質量%であり、より好ましくは0.01〜0.1質量%である。   There is no particular limitation on the amount of silver or reaction accelerator supported, and it may be supported in an amount effective for the production of ethylene oxide. For example, in the case of silver, the supported amount is 1 to 30% by mass, preferably 5 to 20% by mass, based on the mass of the catalyst for producing ethylene oxide. The amount of the reaction accelerator supported is usually 0.001 to 2% by mass, preferably 0.01 to 1% by mass, more preferably 0.1 to 0%, based on the mass of the catalyst for producing ethylene oxide. 0.7% by mass. More specifically, from the viewpoint of further exerting the effects of the present invention, the amount of alkali metal supported when an alkali metal is used as the catalyst component (the total amount supported when two or more alkali metals are used). Is preferably 0.03 to 1.0 mass%, more preferably 0.05 to 0.5 mass%, based on the mass of the catalyst. The amount of rhenium supported when rhenium is used as the catalyst component is preferably 0.002 to 0.2% by mass, more preferably 0.01 to 0.1% by mass, based on the mass of the catalyst. is there.

本発明のエチレンオキシド製造用触媒は、触媒のO−TPD法により観測される脱離ピーク温度が上述した規定を満足するように調節される点を除けば、従来公知のエチレンオキシド製造用触媒の製造方法に従って調製されうる。The catalyst for producing ethylene oxide of the present invention is the production of a conventionally known catalyst for producing ethylene oxide, except that the desorption peak temperature observed by the O 2 -TPD method of the catalyst is adjusted so as to satisfy the above-mentioned regulations. May be prepared according to methods.

以下、本発明のエチレンオキシド製造用触媒を製造する手法の一例を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、下記の手法のみに限定されるわけではない。   Hereinafter, an example of a method for producing the catalyst for producing ethylene oxide of the present invention will be described. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is limited only to the following method. Do not mean.

まず、担体を準備する。担体の調製方法としては、次のような調製方法を採用することで、担体の物性が制御されうることが知られている。すなわち、1)α−アルミナを主成分とする母粉体に、所望のサイズおよび量の気孔形成剤を添加する方法、2)物性の異なる少なくとも2種の母粉体を所望の混合比で調合する方法、3)担体を所望の温度にて所望の時間焼成する方法、などが知られており、これらを組み合わせた手法も知られている。これらの調製方法については、例えば、「多孔質体の性質とその応用技術」竹内雍監修、株式会社フジ・テクノシステム発行(1999年)に記載されている。また、特開平5−329368号公報、特開2001−62291号公報、特開2002−136868号公報、特許第2983740号公報、特許第3256237号公報、特許第3295433号公報なども参照されうる。   First, a carrier is prepared. As a method for preparing the carrier, it is known that the physical properties of the carrier can be controlled by adopting the following method. That is, 1) a method of adding a pore-forming agent having a desired size and amount to a mother powder mainly composed of α-alumina, and 2) preparing at least two kinds of mother powders having different physical properties at a desired mixing ratio. 3) a method of firing the carrier at a desired temperature for a desired time, and the like, and a method combining these methods is also known. These preparation methods are described in, for example, “Characteristics of Porous Materials and Their Application Technologies”, supervised by Satoshi Takeuchi, published by Fuji Techno System Co., Ltd. (1999). Reference can also be made to JP-A-5-329368, JP-A-2001-62291, JP-A-2002-136868, JP-A-2984740, JP-A-3256237, JP-A-3295433, and the like.

次いで、担体に触媒成分(銀並びにアルカリ金属および/またはレニウム)を担持させるための溶液を調製する。具体的には、銀化合物と、アルカリ金属を含有する化合物および/またはレニウム含有化合物とを、水などの溶媒に添加する。この際、必要に応じて、錯体を形成するための錯化剤をさらに溶媒に添加してもよい。銀化合物としては、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。また、アルカリ金属を含有する化合物としては、アルカリ金属の硝酸塩、炭酸塩、シュウ酸塩、ハロゲン化物、酢酸塩、硫酸塩などが挙げられ、レニウム含有化合物としては、過レニウム酸アンモニウム、過レニウム酸ナトリウム、過レニウム酸カリウム、過レニウム酸、塩化レニウム、酸化レニウムなどが挙げられる。さらに、錯化剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどが挙げられる。これらの各種化合物や錯化剤は、それぞれ、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Next, a solution for supporting the catalyst component (silver and alkali metal and / or rhenium) on the support is prepared. Specifically, a silver compound and a compound containing an alkali metal and / or a rhenium-containing compound are added to a solvent such as water. At this time, if necessary, a complexing agent for forming a complex may be further added to the solvent. Examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, and silver neodecanoate. Examples of the alkali metal-containing compound include alkali metal nitrates, carbonates, oxalates, halides, acetates, sulfates, etc., and rhenium-containing compounds include ammonium perrhenate and perrhenic acid. Examples include sodium, potassium perrhenate, perrhenic acid, rhenium chloride, and rhenium oxide. Furthermore, examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine. Each of these various compounds and complexing agents may be used alone or in combination of two or more.

次いで、上記で得られた溶液を、同じく上記で準備した担体に含浸させる。この際、反応促進剤は、上述したように銀イオンが溶解した水溶液に同様に溶解させて銀と同時に担体に含浸させてもよいし、銀を担持する前または銀を担持した後に担体に担持してもよい。銀とは別に担持させる場合には、担持用の溶液(例えば、水溶液)を別途準備し、これに担体を担持させればよい。   Next, the carrier prepared above is impregnated with the solution obtained above. At this time, the reaction accelerator may be dissolved in the aqueous solution in which silver ions are dissolved as described above and impregnated on the support at the same time as silver, or may be supported on the support before or after supporting silver. May be. In the case of supporting separately from silver, a supporting solution (for example, an aqueous solution) may be separately prepared and a carrier may be supported on this.

続いて、上記担体を乾燥し、焼成する。乾燥は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、80〜120℃の温度で行うことが好ましい。また、焼成は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、150〜700℃の温度で、好ましくは200〜600℃の温度で0.1〜100時間程度行うことが好ましい。なお、焼成は、1段階のみ行われてもよいし、2段階以上行われてもよい。好ましい焼成条件としては、1段階目の焼成を空気雰囲気中で150〜250℃にて0.1〜10時間行い、2段階目の焼成を空気雰囲気中で250〜450℃にて0.1〜10時間行う条件が挙げられる。さらに好ましくは、かような空気雰囲気中での焼成後にさらに、不活性ガス(例えば、窒素、ヘリウム、アルゴンなど)雰囲気中で450〜700℃にて0.1〜10時間、焼成を行うとよい。   Subsequently, the carrier is dried and fired. Drying is preferably performed at a temperature of 80 to 120 ° C. in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). The firing is performed in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen) at a temperature of 150 to 700 ° C., preferably at a temperature of 200 to 600 ° C. for about 0.1 to 100 hours. preferable. In addition, baking may be performed only in one step or may be performed in two or more steps. As preferable firing conditions, the first stage firing is performed in an air atmosphere at 150 to 250 ° C. for 0.1 to 10 hours, and the second stage firing is performed in an air atmosphere at 250 to 450 ° C. for 0.1 to 10 hours. The conditions for 10 hours are mentioned. More preferably, after firing in such an air atmosphere, firing may be performed at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas (eg, nitrogen, helium, argon, etc.) atmosphere. .

本発明の他の形態によれば、本発明のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法が提供される。   According to another aspect of the present invention, there is provided a method for producing ethylene oxide, comprising the step of vapor-phase oxidizing ethylene with a molecular oxygen-containing gas in the presence of the catalyst for producing ethylene oxide of the present invention.

本発明のエチレンオキシドの製造方法は、触媒として本発明のエチレンオキシド製造用触媒を使用する点を除けば、常法に従って行われうる。   The method for producing ethylene oxide of the present invention can be carried out according to a conventional method except that the catalyst for producing ethylene oxide of the present invention is used as a catalyst.

例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜300℃、好ましくは180〜280℃、反応圧力2〜40kg/cmG、好ましくは10〜30kg/cmG、反応温度150〜300℃、好ましくは180〜280℃、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス5〜30容量%、残部の窒素、アルゴン、水蒸気等の不活性ガスおよびメタン、エタン等の低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニル等のハロゲン化物を0.1〜10容量ppm含有するものが挙げられる。本発明の製造方法において使用される分子状酸素含有ガスとしては、空気、酸素および富化空気が挙げられる。For example, general conditions in an industrial production scale, that is, reaction temperature 150 to 300 ° C., preferably 180 to 280 ° C., reaction pressure 2 to 40 kg / cm 2 G, preferably 10 to 30 kg / cm 2 G, reaction temperature 150 ˜300 ° C., preferably 180˜280 ° C., space velocity 1,000˜30,000 hr −1 (STP), preferably 3,000˜8,000 hr −1 (STP) is employed. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 5 to 30% by volume of carbon dioxide, the remaining inert gas such as nitrogen, argon and water vapor, methane, ethane and the like And those containing 0.1 to 10 ppm by volume of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the production method of the present invention include air, oxygen, and enriched air.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、本実施例において、担体の各種パラメータの測定は以下の手法により行われた。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In this example, various parameters of the carrier were measured by the following method.

<担体の比表面積の測定>
担体を粉砕した後、0.85〜1.2mmの粒径に分級したもの約0.2gを正確に秤量した。秤量したサンプルを200℃にて少なくとも30分間脱気し、BET(Brunauer−Emmet−Teller)法により測定した。
<Measurement of specific surface area of carrier>
After pulverizing the carrier, about 0.2 g classified to a particle size of 0.85 to 1.2 mm was accurately weighed. The weighed sample was deaerated at 200 ° C. for at least 30 minutes and measured by the BET (Brunauer-Emmet-Teller) method.

<担体中のシリカ含有量の測定>
蛍光X線分析法により測定した。
<Measurement of silica content in carrier>
Measured by fluorescent X-ray analysis.

<担体の吸水率の測定>
日本工業規格(JIS R 2205(1998年度))に記載の方法に準拠して、以下の手法により測定した。
<Measurement of water absorption rate of carrier>
In accordance with the method described in Japanese Industrial Standard (JIS R 2205 (1998)), the measurement was performed by the following method.

a)破砕前の担体を、120℃に保温した乾燥機中に入れ、恒量に達した際の質量を秤量した(乾燥質量:W1(g))。   a) The carrier before crushing was placed in a drier kept at 120 ° C., and the mass when reaching a constant weight was weighed (dry mass: W1 (g)).

b)上記a)で秤量した担体を水中に沈めて30分間以上煮沸した後、室温の水中にて冷却し、飽水サンプルとした。   b) The carrier weighed in a) above was submerged in water and boiled for 30 minutes or more, and then cooled in room temperature water to obtain a saturated sample.

c)上記b)で得た飽水サンプルを水中から取り出し、湿布ですばやく表面を拭い、水滴を除去した後に秤量した(飽水サンプル質量:W2(g))。   c) The saturated sample obtained in the above b) was taken out from the water, and the surface was quickly wiped with a compress, and after removing water droplets, weighed (saturated sample mass: W2 (g)).

d)上記で得られたW1およびW2を用い、下記数式1に従って、吸水率を算出した。   d) The water absorption was calculated according to the following formula 1 using W1 and W2 obtained above.

Figure 0005581058
Figure 0005581058

(実施例1)
シュウ酸銀14.6g、硝酸セシウム0.1444g、過レニウム酸アンモニウム0.0246gを約14mlの水に溶解し、さらにエチレンジアミン6.8mlを添加した。この溶液をα−アルミナ担体(比表面積1.5m/g、シリカ含有量0.7質量%、吸水率41.7%)52gに含浸した後、空気気流中300℃で0.25時間、熱処理を施した。次いでさらに窒素気流中550℃で3時間、熱処理を施し、触媒Aを得た。触媒Aにおけるセシウムおよびレニウムの含有量は、触媒の質量基準でそれぞれ0.158質量%および0.025質量%であった。
Example 1
14.6 g of silver oxalate, 0.1444 g of cesium nitrate and 0.0246 g of ammonium perrhenate were dissolved in about 14 ml of water, and 6.8 ml of ethylenediamine was further added. This solution was impregnated in 52 g of an α-alumina carrier (specific surface area 1.5 m 2 / g, silica content 0.7 mass%, water absorption 41.7%), and then in an air stream at 300 ° C. for 0.25 hours, Heat treatment was applied. Next, heat treatment was further performed in a nitrogen stream at 550 ° C. for 3 hours to obtain Catalyst A. The contents of cesium and rhenium in catalyst A were 0.158% by mass and 0.025% by mass, respectively, based on the mass of the catalyst.

(実施例2)
シュウ酸銀14.6g、硝酸セシウム0.1313g、過レニウム酸アンモニウム0.0246gを約14mlの水に溶解し、さらにエチレンジアミン6.8mlを添加した。この溶液をα−アルミナ担体(比表面積1.5m/g、シリカ含有量0.7質量%、吸水率41.7%)52gに含浸した後、空気気流中300℃で0.25時間、熱処理を施した。次いでさらに窒素気流中550℃で3時間、熱処理を施し、触媒Bを得た。触媒Bにおけるセシウムおよびレニウムの含有量は、触媒の質量基準でそれぞれ0.143質量%および0.025質量%であった。
(Example 2)
14.6 g of silver oxalate, 0.1313 g of cesium nitrate, and 0.0246 g of ammonium perrhenate were dissolved in about 14 ml of water, and 6.8 ml of ethylenediamine was further added. This solution was impregnated in 52 g of an α-alumina carrier (specific surface area 1.5 m 2 / g, silica content 0.7 mass%, water absorption 41.7%), and then in an air stream at 300 ° C. for 0.25 hours, Heat treatment was applied. Next, heat treatment was further performed in a nitrogen stream at 550 ° C. for 3 hours to obtain Catalyst B. The contents of cesium and rhenium in catalyst B were 0.143% by mass and 0.025% by mass, respectively, based on the mass of the catalyst.

(実施例3)
シュウ酸銀14.6g、硝酸セシウム0.0844g、過レニウム酸アンモニウム0.0246gを約14mlの水に溶解し、さらにエチレンジアミン6.8mlを添加した。この溶液をα−アルミナ担体(比表面積1.5m/g、シリカ含有量0.7質量%、吸水率41.7%)52gに含浸した後、空気気流中300℃で0.25時間、熱処理を施し、触媒Cを得た。触媒Cにおけるセシウムおよびレニウムの含有量は、触媒の質量基準でそれぞれ0.092質量%および0.025質量%であった。
Example 3
14.6 g of silver oxalate, 0.0844 g of cesium nitrate, and 0.0246 g of ammonium perrhenate were dissolved in about 14 ml of water, and 6.8 ml of ethylenediamine was further added. This solution was impregnated in 52 g of an α-alumina carrier (specific surface area 1.5 m 2 / g, silica content 0.7 mass%, water absorption 41.7%), and then in an air stream at 300 ° C. for 0.25 hours, Heat treatment was performed to obtain Catalyst C. The contents of cesium and rhenium in catalyst C were 0.092% by mass and 0.025% by mass, respectively, based on the mass of the catalyst.

(比較例1)
シュウ酸銀14.6g、硝酸セシウム0.0938g、過レニウム酸アンモニウム0.0246gを約14mlの水に溶解し、さらにエチレンジアミン6.8mlを添加した。この溶液をα−アルミナ担体(比表面積1.5m/g、シリカ含有量0.7質量%、吸水率41.7%)52gに含浸した後、空気気流中300℃で0.25時間、熱処理を施した。次いでさらに窒素気流中550℃で3時間、熱処理を施し、触媒Dを得た。触媒Dにおけるセシウムおよびレニウムの含有量は、触媒の質量基準でそれぞれ0.102質量%および0.025質量%であった。
(Comparative Example 1)
14.6 g of silver oxalate, 0.0938 g of cesium nitrate, and 0.0246 g of ammonium perrhenate were dissolved in about 14 ml of water, and 6.8 ml of ethylenediamine was further added. This solution was impregnated in 52 g of an α-alumina carrier (specific surface area 1.5 m 2 / g, silica content 0.7 mass%, water absorption 41.7%), and then in an air stream at 300 ° C. for 0.25 hours, Heat treatment was applied. Subsequently, a heat treatment was further performed in a nitrogen stream at 550 ° C. for 3 hours to obtain Catalyst D. The contents of cesium and rhenium in catalyst D were 0.102% by mass and 0.025% by mass, respectively, based on the mass of the catalyst.

(比較例2)
シュウ酸銀14.6g、硝酸セシウム0.1876g、過レニウム酸アンモニウム0.0315gを約14mlの水に溶解し、さらにエチレンジアミン6.8mlを添加した。この溶液をα−アルミナ担体(比表面積1.5m/g、シリカ含有量0.7質量%、吸水率41.7%)52gに含浸した後、空気気流中300℃で0.25時間、熱処理を施した。次いでさらに窒素気流中550℃で3時間、熱処理を施し、触媒Eを得た。触媒Eにおけるセシウムおよびレニウムの含有量は、触媒の質量基準でそれぞれ0.205質量%および0.032質量%であった。
(Comparative Example 2)
14.6 g of silver oxalate, 0.1876 g of cesium nitrate, and 0.0315 g of ammonium perrhenate were dissolved in about 14 ml of water, and 6.8 ml of ethylenediamine was further added. This solution was impregnated in 52 g of an α-alumina carrier (specific surface area 1.5 m 2 / g, silica content 0.7 mass%, water absorption 41.7%), and then in an air stream at 300 ° C. for 0.25 hours, Heat treatment was applied. Next, heat treatment was further performed in a nitrogen stream at 550 ° C. for 3 hours to obtain Catalyst E. The contents of cesium and rhenium in catalyst E were 0.205% by mass and 0.032% by mass, respectively, based on the mass of the catalyst.

(TPD法による脱離ピーク温度の測定)
上記の実施例1〜3並びに比較例1および2で得た触媒A〜Eについて、以下に説明するTPD法を用いて、脱離ピーク温度を測定した。
(Measurement of desorption peak temperature by TPD method)
With respect to the catalysts A to E obtained in the above Examples 1 to 3 and Comparative Examples 1 and 2, the desorption peak temperature was measured using the TPD method described below.

まず、触媒の前処理として、850〜1180μmの粒径に粉砕した触媒3gを、内径7.5mm、管長300mmのステンレス製反応器に充填して充填層とした。次いで、この充填層にエチレン23容量%、酸素6.7容量%、塩化エチレン6.4容量ppm、残余が窒素からなるガスを導入し、反応圧力0.5kg・G、空間速度5500hr−1の条件で、エチレン転化率が4.6容量%となるようにして、10時間反応を行った。First, as a pretreatment of the catalyst, 3 g of the catalyst pulverized to a particle size of 850 to 1180 μm was packed into a stainless steel reactor having an inner diameter of 7.5 mm and a tube length of 300 mm to form a packed bed. Next, a gas composed of 23% by volume of ethylene, 6.7% by volume of oxygen, 6.4% by volume of ethylene chloride, and the balance of nitrogen was introduced into this packed bed, and the reaction pressure was 0.5 kg · G and the space velocity was 5500 hr −1 . Under the conditions, the reaction was carried out for 10 hours so that the ethylene conversion was 4.6% by volume.

一方、TPD測定装置(日本ベル株式会社製、触媒分析装置、BEL−CAT)を準備した。反応後の触媒0.5gを石英ガラス製TPD試料管に入れて触媒層とし、内部をヘリウムガスで置換した。その際、触媒層の中心に位置するように熱電対を設置した。次いで、ヘリウムガスを60ml/分の供給速度で供給しながら50℃まで昇温させた。その後、酸素(O)ガスを60ml/分の供給速度で供給しながら19分間かけて240℃まで昇温させ、昇温後60分間240℃に保持した。次いで、酸素(O)ガスを60ml/分の供給速度で供給しながら40分間かけて50℃まで降温させ、降温後はヘリウムガスの供給(供給速度60ml/分)に切り替えた。On the other hand, a TPD measuring device (manufactured by Nippon Bell Co., Ltd., catalyst analyzer, BEL-CAT) was prepared. 0.5 g of the catalyst after the reaction was placed in a quartz glass TPD sample tube to form a catalyst layer, and the inside was replaced with helium gas. In that case, the thermocouple was installed so that it might be located in the center of a catalyst layer. Next, the temperature was raised to 50 ° C. while supplying helium gas at a supply rate of 60 ml / min. Thereafter, the temperature was raised to 240 ° C. over 19 minutes while supplying oxygen (O 2 ) gas at a supply rate of 60 ml / min, and the temperature was maintained at 240 ° C. for 60 minutes after the temperature rise. Next, while supplying oxygen (O 2 ) gas at a supply rate of 60 ml / min, the temperature was lowered to 50 ° C. over 40 minutes, and after the temperature reduction, switching to helium gas supply (supply rate 60 ml / min) was performed.

その後、10℃/分の昇温速度で500℃まで昇温させ、この際の酸素の脱離量を熱伝導度検出器(TCD;Thermal Conductivity Detector)を用いて検出した。そして、150〜250℃の温度領域に観察される脱離ピーク温度を第1脱離ピーク温度(T1[℃])とし、250〜400℃の温度領域に観察される脱離ピーク温度を第2脱離ピーク温度(T2[℃])とした。また、これらの測定と併せて、T2[℃]のT1[℃]に対する比(T2/T1)を算出した。結果を下記の表1に示す。   Thereafter, the temperature was raised to 500 ° C. at a rate of temperature increase of 10 ° C./min, and the amount of desorbed oxygen at this time was detected using a thermal conductivity detector (TCD; Thermal Conductivity Detector). The desorption peak temperature observed in the temperature range of 150 to 250 ° C. is defined as the first desorption peak temperature (T1 [° C.]), and the desorption peak temperature observed in the temperature range of 250 to 400 ° C. is defined as the second desorption peak temperature. The desorption peak temperature (T2 [° C.]) was used. In addition to these measurements, the ratio of T2 [° C.] to T1 [° C.] (T2 / T1) was calculated. The results are shown in Table 1 below.

Figure 0005581058
Figure 0005581058

(触媒の選択率の測定:加速試験)
各実施例および各比較例において得られた触媒について、以下の手法により加速試験を行い、触媒の耐久性を評価した。
(Measurement of catalyst selectivity: acceleration test)
The catalyst obtained in each Example and each Comparative Example was subjected to an acceleration test by the following method to evaluate the durability of the catalyst.

まず、各実施例および各比較例において得られた触媒を、それぞれ600〜850μmの粒径に粉砕し、粉砕後の各触媒0.3gを、850〜1180μmの粒径に粉砕したイナート(ノープロ製、F24)0.9gとともに、外部が加熱型の二重管式ステンレス製反応器(内径3mm、管長300mm)に充填して充填層を形成した。次いで、当該充填層に、エチレン25容量%、酸素7.6容量%、二酸化炭素6.0容量%、二塩化エチレン3容量ppm、残余はメタンと、微量の窒素、アルゴンおよびエタンからなるガスを導入し、反応圧力25kg・G、空間速度22000hr−1の条件で、エチレン転化率が5容量%となるようにして、反応を行った。反応開始から10日目に選択率および反応温度を測定した。また、反応開始から50日目に選択率を測定した。測定結果を下記の表2に示す。なお、エチレンオキシド製造時の転化率および選択率は、それぞれ下記の数式2および数式3に従って算出される。First, each of the catalysts obtained in each Example and each Comparative Example was pulverized to a particle diameter of 600 to 850 μm, and 0.3 g of each catalyst after pulverization was pulverized to a particle diameter of 850 to 1180 μm (made by Nopro). , F24) Along with 0.9 g, the outside was filled into a heating type double-tube stainless steel reactor (inner diameter 3 mm, tube length 300 mm) to form a packed bed. Next, a gas composed of 25% by volume of ethylene, 7.6% by volume of oxygen, 6.0% by volume of carbon dioxide, 3% by volume of ethylene dichloride, and methane, and trace amounts of nitrogen, argon and ethane are added to the packed bed. The reaction was carried out under the conditions of a reaction pressure of 25 kg · G and a space velocity of 22000 hr −1 such that the ethylene conversion was 5% by volume. On the 10th day from the start of the reaction, the selectivity and the reaction temperature were measured. Further, the selectivity was measured on the 50th day from the start of the reaction. The measurement results are shown in Table 2 below. In addition, the conversion rate and selectivity at the time of ethylene oxide manufacture are calculated according to the following formula 2 and formula 3, respectively.

Figure 0005581058
Figure 0005581058

Figure 0005581058
Figure 0005581058

上記表2に示す結果から、各比較例において得られた触媒と比較して、各実施例において得られた触媒では、より低い反応温度でも高い選択率が得られる。また、かような高い選択率が長期に亘って維持されうる。従って、本発明によれば、優れた触媒性能を有し、長期に亘って高選択率でエチレンオキシドを製造しうる触媒が提供されうる。そして、当該触媒を用いたエチレンオキシドの製造方法によれば、長期に亘って高収率でエチレンオキシドを製造することが可能となる。   From the results shown in Table 2 above, the catalyst obtained in each Example can obtain a high selectivity even at a lower reaction temperature as compared with the catalyst obtained in each Comparative Example. Moreover, such a high selectivity can be maintained over a long period of time. Therefore, according to the present invention, a catalyst having excellent catalytic performance and capable of producing ethylene oxide with high selectivity over a long period of time can be provided. And according to the manufacturing method of ethylene oxide using the said catalyst, it becomes possible to manufacture ethylene oxide with a high yield over a long period of time.

Claims (7)

α−アルミナを主成分とする担体と、
前記担体に担持されてなる、銀ならびにアルカリ金属およびレニウムを含む触媒成分と、
を含むエチレンオキシド製造用触媒であって、
(1)酸素昇温脱離法(O−TPD法)により150〜250℃の温度領域に観測される第1脱離ピーク温度(T1[℃])が215℃未満であり;
(2)酸素昇温脱離法(O−TPD法)により250〜400℃の温度領域に観測される第2脱離ピーク温度(T2[℃])の前記T1に対する比(T2/T1)が1.7未満である;
ことを特徴とする、エチレンオキシド製造用触媒。
a carrier mainly composed of α-alumina;
Formed by supported on the support, the silver and the catalyst component comprising an alkali metal and Re bromide,
A catalyst for ethylene oxide production comprising
(1) The first desorption peak temperature (T1 [° C.]) observed in the temperature range of 150 to 250 ° C. by the oxygen temperature programmed desorption method (O 2 -TPD method) is less than 215 ° C .;
(2) Ratio (T2 / T1) of the second desorption peak temperature (T2 [° C]) observed in the temperature region of 250 to 400 ° C by the oxygen temperature programmed desorption method (O 2 -TPD method) to the T1 Is less than 1.7;
A catalyst for producing ethylene oxide.
α−アルミナを主成分とする担体と、
前記担体に担持されてなる、銀ならびにアルカリ金属およびレニウムを含む触媒成分と、
を含むエチレンオキシド製造用触媒であって、
銀ならびにアルカリ金属およびレニウムを含む触媒成分を担体に担持し、乾燥した後、2段階以上焼成を行うことにより得られ、
(1)酸素昇温脱離法(O−TPD法)により150〜250℃の温度領域に観測される第1脱離ピーク温度(T1[℃])が215℃未満であり;
(2)酸素昇温脱離法(O−TPD法)により250〜400℃の温度領域に観測される第2脱離ピーク温度(T2[℃])の前記T1に対する比(T2/T1)が1.7未満である;
ことを特徴とする、エチレンオキシド製造用触媒。
a carrier mainly composed of α-alumina;
Formed by supported on the support, the silver and the catalyst component comprising an alkali metal and Re bromide,
A catalyst for ethylene oxide production comprising
Silver and catalyst component containing an alkali metal and Re bromide supported on the carrier, after drying, is obtained by performing calcination two or more stages,
(1) The first desorption peak temperature (T1 [° C.]) observed in the temperature range of 150 to 250 ° C. by the oxygen temperature programmed desorption method (O 2 -TPD method) is less than 215 ° C .;
(2) Ratio (T2 / T1) of the second desorption peak temperature (T2 [° C]) observed in the temperature region of 250 to 400 ° C by the oxygen temperature programmed desorption method (O 2 -TPD method) to the T1 Is less than 1.7;
A catalyst for producing ethylene oxide.
前記焼成が、空気雰囲気中、次いで不活性ガス雰囲気中で行われる、請求項2に記載のエチレンオキシド製造用触媒。   The catalyst for ethylene oxide production according to claim 2, wherein the calcination is performed in an air atmosphere and then in an inert gas atmosphere. 前記T2が290〜360℃である、請求項1〜3のいずれか1項に記載のエチレンオキシド製造用触媒。   The catalyst for ethylene oxide production according to any one of claims 1 to 3, wherein the T2 is 290 to 360 ° C. 前記T1が180℃以上210℃未満である、請求項1〜4のいずれか1項に記載のエチレンオキシド製造用触媒。   The catalyst for ethylene oxide production according to any one of claims 1 to 4, wherein the T1 is 180 ° C or higher and lower than 210 ° C. 前記T2の前記T1に対する比(T2/T1)が1.65未満である、請求項1〜5のいずれか1項に記載のエチレンオキシド製造用触媒。   The catalyst for ethylene oxide production according to any one of claims 1 to 5, wherein a ratio of T2 to T1 (T2 / T1) is less than 1.65. 請求項1〜6のいずれか1項に記載のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法。   The manufacturing method of ethylene oxide which has a step which carries out the gaseous-phase oxidation of ethylene with molecular oxygen containing gas in presence of the catalyst for ethylene oxide manufacture of any one of Claims 1-6.
JP2009548948A 2008-01-11 2009-01-08 Catalyst for producing ethylene oxide and method for producing ethylene oxide Expired - Fee Related JP5581058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548948A JP5581058B2 (en) 2008-01-11 2009-01-08 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008004807 2008-01-11
JP2008004807 2008-01-11
PCT/JP2009/050146 WO2009088040A1 (en) 2008-01-11 2009-01-08 Catalyst for production of ethylene oxide, and process for production of ethylene oxide
JP2009548948A JP5581058B2 (en) 2008-01-11 2009-01-08 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014027555A Division JP2014128800A (en) 2008-01-11 2014-02-17 Catalyst for manufacturing ethylene oxide, and manufacturing method of ethylene oxide

Publications (2)

Publication Number Publication Date
JPWO2009088040A1 JPWO2009088040A1 (en) 2011-05-26
JP5581058B2 true JP5581058B2 (en) 2014-08-27

Family

ID=40853152

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009548948A Expired - Fee Related JP5581058B2 (en) 2008-01-11 2009-01-08 Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2014027555A Pending JP2014128800A (en) 2008-01-11 2014-02-17 Catalyst for manufacturing ethylene oxide, and manufacturing method of ethylene oxide

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014027555A Pending JP2014128800A (en) 2008-01-11 2014-02-17 Catalyst for manufacturing ethylene oxide, and manufacturing method of ethylene oxide

Country Status (2)

Country Link
JP (2) JP5581058B2 (en)
WO (1) WO2009088040A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202592A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Catalyst for ethylene oxide production and method for production of ethylene oxide

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126552A (en) * 1986-10-31 1988-05-30 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst for ethylene oxide and catalytic manufacture of ethylene oxide
JPH03207447A (en) * 1989-10-18 1991-09-10 Union Carbide Chem & Plast Co Inc Catalyst for manufacture of alkalene oxide containing high percentage of silver
JPH04298241A (en) * 1990-10-12 1992-10-22 Union Carbide Chem & Plast Co Inc Superhigh performance alkylene oxide catalyst having improved stability
JPH0584440A (en) * 1991-01-22 1993-04-06 Shell Internatl Res Maatschappij Bv Ethylene oxide catalyst and method
JPH09502129A (en) * 1993-09-08 1997-03-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Epoxidation catalyst and method
JP2000508969A (en) * 1996-04-30 2000-07-18 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Epoxidation catalyst and process
JP2001062307A (en) * 1999-08-27 2001-03-13 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2002136868A (en) * 2000-08-24 2002-05-14 Nippon Shokubai Co Ltd Carrier of catalyst for manufacturing ethylene oxide, catalyst using the carrier for manufacturing ethylene oxide and method for manufacturing ethylene oxide
JP2006521380A (en) * 2003-02-28 2006-09-21 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for producing ethylene oxide
JP2007503305A (en) * 2003-08-22 2007-02-22 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Improved alumina support and silver-based catalyst for the production of alkylene oxides
JP2007301554A (en) * 2006-04-10 2007-11-22 Mitsubishi Chemicals Corp Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126552A (en) * 1986-10-31 1988-05-30 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Catalyst for ethylene oxide and catalytic manufacture of ethylene oxide
JPH03207447A (en) * 1989-10-18 1991-09-10 Union Carbide Chem & Plast Co Inc Catalyst for manufacture of alkalene oxide containing high percentage of silver
JPH04298241A (en) * 1990-10-12 1992-10-22 Union Carbide Chem & Plast Co Inc Superhigh performance alkylene oxide catalyst having improved stability
JPH0584440A (en) * 1991-01-22 1993-04-06 Shell Internatl Res Maatschappij Bv Ethylene oxide catalyst and method
JPH09502129A (en) * 1993-09-08 1997-03-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Epoxidation catalyst and method
JP2000508969A (en) * 1996-04-30 2000-07-18 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Epoxidation catalyst and process
JP2001062307A (en) * 1999-08-27 2001-03-13 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2002136868A (en) * 2000-08-24 2002-05-14 Nippon Shokubai Co Ltd Carrier of catalyst for manufacturing ethylene oxide, catalyst using the carrier for manufacturing ethylene oxide and method for manufacturing ethylene oxide
JP2006521380A (en) * 2003-02-28 2006-09-21 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for producing ethylene oxide
JP2007503305A (en) * 2003-08-22 2007-02-22 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Improved alumina support and silver-based catalyst for the production of alkylene oxides
JP2007301554A (en) * 2006-04-10 2007-11-22 Mitsubishi Chemicals Corp Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide

Also Published As

Publication number Publication date
JPWO2009088040A1 (en) 2011-05-26
WO2009088040A1 (en) 2009-07-16
JP2014128800A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
EP0211521B1 (en) Process of promoting catalysts for the production of alkylene oxides
KR101324286B1 (en) Calcination in an inert gas in the presence of a small concentration of an oxidizing component
SU1071210A3 (en) Catalyst of oxidation of ethylene into ethylene oxide
JPS6041989B2 (en) Method for reactivating used silver catalyst
US20040110973A1 (en) Olefin oxide catalysts
JP5576607B2 (en) Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using the catalyst
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
JP5566881B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5570277B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP7314712B2 (en) Method for producing catalyst for producing allyl acetate
BR112015028724B1 (en) methods for decreasing the sodium content of a carrier, process for producing an ethylene oxide catalyst useful in epoxidating ethylene to ethylene oxide, method for converting the vapor phase of ethylene to ethylene oxide in the presence of oxygen, carrier for a silver-based ethylene oxide catalyst and silver-based ethylene oxide catalyst
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP6033124B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5101428B2 (en) Method for packing catalyst for producing ethylene oxide, reactor for producing ethylene oxide, and method for producing ethylene oxide
JP5606255B2 (en) Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide
WO2017175638A1 (en) Method for producing alcohol
JPH11314034A (en) Silver catalyst for manufacturing ethyleneoxide, manufacture thereof and manufacture of ethylene oxide
JP4747066B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5916329B2 (en) Catalyst for producing ethylene oxide, method for producing the catalyst, and method for producing ethylene oxide
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2021062340A (en) Catalyst for ethylene oxide production
JP2011206669A (en) Catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees