JP5574295B2 - High purity silicon fine powder production equipment - Google Patents

High purity silicon fine powder production equipment Download PDF

Info

Publication number
JP5574295B2
JP5574295B2 JP2010265715A JP2010265715A JP5574295B2 JP 5574295 B2 JP5574295 B2 JP 5574295B2 JP 2010265715 A JP2010265715 A JP 2010265715A JP 2010265715 A JP2010265715 A JP 2010265715A JP 5574295 B2 JP5574295 B2 JP 5574295B2
Authority
JP
Japan
Prior art keywords
silicon
gas
zinc
fine powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010265715A
Other languages
Japanese (ja)
Other versions
JP2012101997A (en
Inventor
健治 加藤
孝之 島宗
豊明 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOWN MINING CO Ltd
Original Assignee
TOWN MINING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOWN MINING CO Ltd filed Critical TOWN MINING CO Ltd
Priority to JP2010265715A priority Critical patent/JP5574295B2/en
Priority to KR1020137012075A priority patent/KR101525859B1/en
Priority to PCT/KR2011/008342 priority patent/WO2012064047A2/en
Publication of JP2012101997A publication Critical patent/JP2012101997A/en
Application granted granted Critical
Publication of JP5574295B2 publication Critical patent/JP5574295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Description

本発明は主としてリチウムイオン電池用の負極材や高純度窒化ケイ素用の原料として使用する、高純度で微細な結晶を有するシリコン微粉末を製造する製造装置に関する。又このシリコンの微細な結晶は、ソーラセル用、或いはその他のシリコン化合物用原料として使用できる。The present invention relates to a production apparatus for producing silicon fine powder having high purity and fine crystals, which is mainly used as a negative electrode material for lithium ion batteries and a raw material for high purity silicon nitride. Further, the fine crystal of silicon can be used as a raw material for solar cells or other silicon compounds.

高純度シリコンは、電子デバイス用では単結晶シリコンウエハーなど11ナイン程度の超高純度品が知られており、又最近急速に広がっているソーラセル用であっても不純物元素の種類によるが、少なくとも6ナイン程度の高純度が必要とされる。そのためにシリコンの製造では生成するシリコンの結晶を出来るだけ成長させて不純物が含まれない様な工夫が行われている。つまり典型的なシリコンの製造プロセスとして、トリクロロシランを水素で還元し、生成するシリコンを基材上に時間をかけて成長させるいわゆるジーメンス法が知られている。ただこの技術は超高純度シリコンを得るには極めて良い方法であるが、消費エネルギーが極めて大きく、しかも生成の速度が遅いために必然的に大きな設備が必要となり、製造コストが極めて大きくなるとされる。As for high-purity silicon, ultra-high-purity products of about 11 Nine such as single crystal silicon wafers are known for electronic devices, and even for solar cells that have been rapidly spreading recently, depending on the type of impurity element, at least 6 Nine or so high purity is required. For this reason, in the manufacture of silicon, a device has been devised in which the silicon crystal to be produced is grown as much as possible so as not to contain impurities. In other words, as a typical silicon production process, a so-called Siemens method is known in which trichlorosilane is reduced with hydrogen and the resulting silicon is grown on a substrate over time. However, this technology is a very good method for obtaining ultra-high purity silicon, but it is said that the energy consumption is extremely large and the production speed is slow, so a large facility is inevitably required and the manufacturing cost is extremely high. .

一方原料を変え、或いは条件を変えた多くのシリコン製造方法が提案されている。(非特許文献1)。しかしながらこれらについては原料が特殊であるとか、原料であるシリコン化合物が不安定で爆発性である等という問題点があり、広く実用化されているプロセスは極めて限られるのが現状である。On the other hand, many silicon manufacturing methods in which raw materials are changed or conditions are changed have been proposed. (Non-Patent Document 1). However, there are problems such as the fact that the raw material is special and that the silicon compound as the raw material is unstable and explosive, and the processes that have been widely put into practical use are extremely limited.

また冶金法と称して、4−ナイン程度の高純度シリコンを原料とし、プラズマ溶解を行う、或いは電子ビーム溶解を行うことによって不純物を揮散させて高純度化する方法が知られている。又、このようにして高純度化したシリコンの凝固プロセスで一方向凝固技術を加え、不純物のみを端部に移動させて高純度シリコンを得る方法が提案されている。この方法は超高純度シリコンを得ることは出来るが、原料シリコンが高純度であり高価なこと、また適当なシリコン源がすくない等から、実用化の拡大は進んでいない。
言うまでも無いが上記シリコンは、いずれもブロック状で、緻密質な高純度のシリコンを得るために行われているので、本願の発明の目的には合致するものではなかった。
Also known as a metallurgical method, a method is known in which high-purity silicon of about 4-nine is used as a raw material and plasma melting or electron beam melting is performed to volatilize impurities to increase the purity. In addition, there has been proposed a method for obtaining high-purity silicon by adding a unidirectional solidification technique in the solidification process of silicon thus purified to move only impurities to the end. Although this method can obtain ultra-high-purity silicon, since its raw material silicon is highly pure and expensive, and there are few suitable silicon sources, the practical application has not been expanded.
Needless to say, all of the above silicon is in the form of a block and is performed in order to obtain dense and high-purity silicon, and thus does not meet the object of the present invention.

最近では、主として省エネルギー化の観点から四塩化ケイ素を亜鉛で還元する方法が多く検討されている。つまり、この四塩化ケイ素の亜鉛還元法によるシリコンの製造は1950年頃に最初の提案がなされ、その後多くの技術提案がなされ、一部では商品化されたと言われる。しかしながら、その一方で高温プロセスでありその運転条件の保持が困難であること、また副生する塩化亜鉛の処理が困難であるという問題などがあるとされていた。Recently, many methods for reducing silicon tetrachloride with zinc have been studied mainly from the viewpoint of energy saving. In other words, it is said that the silicon production by the zinc reduction method of silicon tetrachloride was first proposed around 1950, and many technical proposals were made after that, and some were commercialized. However, on the other hand, it was a high-temperature process, and it was difficult to maintain the operating conditions, and it was difficult to treat the by-product zinc chloride.

このためにか種々の工夫がなされており、たとえば特許文献1および特許文献2では液状亜鉛表面に四塩化ケイ素を吹き込んでシリコンを得る方法が提案されている。この方法では比較的低い温度でシリコンの製造が出来るという特徴があるものの、現実には固相であるシリコンと液層亜鉛並びに気相の反応生成物である塩化亜鉛との分離が容易でないこと、どうしても液層亜鉛中の不純物がシリコン中に混入してしまいその分離が極めて困難であるという問題を有していた。For this purpose, various ideas have been made. For example, Patent Document 1 and Patent Document 2 propose a method of obtaining silicon by blowing silicon tetrachloride onto the surface of liquid zinc. Although this method is characterized in that silicon can be produced at a relatively low temperature, in reality, it is not easy to separate the solid phase silicon from the liquid phase zinc and the vapor phase reaction product zinc chloride, The impurities in the liquid layer zinc are inevitably mixed into the silicon, and the separation thereof is extremely difficult.

また四塩化珪素ガスを亜鉛ガスで還元し、生成したシリコンを反応炉の炉壁に生成させる方法が幾つか提案されている。特許文献3ではガスの混合比を特定して析出を制御し結晶の成長を促している。更に、炉壁へのシリコンの析出と取り出しを容易にする方法として、特許文献4では反応槽内の壁に離型材を施す事を提案している。しかしながらバッチプロセスとなるために生成シリコン中への不純物の混入機会が多くなること、反応ガスである四塩化ケイ素の除去、分離が困難であるという問題を有している。なおこれらは、いずれも生成するシリコンの結晶を出来るだけ成長させるにことを主眼としている。Several methods have been proposed in which silicon tetrachloride gas is reduced with zinc gas and the generated silicon is generated on the furnace wall of the reactor. In Patent Document 3, the gas mixture ratio is specified to control the precipitation to promote crystal growth. Further, as a method for facilitating the deposition and removal of silicon from the furnace wall, Patent Document 4 proposes to apply a release material to the wall in the reaction vessel. However, since it is a batch process, there are many opportunities for mixing impurities into the generated silicon, and it is difficult to remove and separate silicon tetrachloride as a reaction gas. Note that these methods are mainly intended to grow as many silicon crystals as possible.

更に、生成シリコン結晶をより大きく成長させるために特許文献5では四塩化ケイ素ガスと亜鉛ガスとの反応を不活性キャリアーガス雰囲気中で条件を特定して行うことを示している。さらに特許文献6では反応炉内にシリコン種結晶板を置き、あるいはそのような壁を作って、そこに針状のシリコンを成長させるようにしている。しかしながらこれらもバッチプロセスから抜け出すことが出来ず、改良されているとしても、不純物の混入を防ぐことは極めて困難であった。これらはいずれも高純度化の達成のために粒子を大きくすることを主眼としている。Further, Patent Document 5 shows that the reaction between silicon tetrachloride gas and zinc gas is performed by specifying the conditions in an inert carrier gas atmosphere in order to grow the generated silicon crystal larger. Further, in Patent Document 6, a silicon seed crystal plate is placed in a reaction furnace, or such a wall is formed, and needle-like silicon is grown there. However, these also cannot escape from the batch process, and even if they are improved, it has been extremely difficult to prevent contamination with impurities. All of these aim to enlarge the particles to achieve high purity.

特許文献7では、原料である四塩化ケイ素ガスをノズルから下部にある亜鉛ガス雰囲気中に吹き出すことによって、四塩化ケイ素ガスノズルの回りにシリコンを筒状に形成することが示されている。実質的にはガスの流速を規定しているが、実施例では希薄なガスを送ることによって反応を制御しながら製造することが示されている。相対的に大型の設備を使い大きな結晶を作ること、またノズルの回りに結晶を成長させることで、生成結晶を反応塔の内面にふれないで成長させることが出来るとしている。これによって不純物の入らない高純度の結晶が出来るとしているが、微細な結晶を短時間に多量に合成するのではなく、同じ亜鉛還元法であってもむしろ反対に結晶成長を進める様にしている。Patent Document 7 discloses that silicon tetrachloride gas, which is a raw material, is blown from a nozzle into a zinc gas atmosphere at a lower portion to form silicon around the silicon tetrachloride gas nozzle in a cylindrical shape. Although the gas flow rate is substantially defined, the examples show that the reaction is controlled by sending a dilute gas. By making a large crystal using a relatively large equipment and growing a crystal around the nozzle, the produced crystal can be grown without touching the inner surface of the reaction tower. This is said to produce high-purity crystals that do not contain impurities, but instead of synthesizing a large amount of fine crystals in a short period of time, the same zinc reduction method is used instead to proceed with crystal growth. .

これらに対して本発明者らは、反応炉の炉壁にはシリコンを生成させずに連続的にシリコンを生成させる方法として、旋回溶融法による高温プロセスの検討を進めてきた。これらについては特許文献8、特許文献9、特許文献10、特許文献11、特許文献12などの発明を行ってきた。これらにより反応炉の炉壁の影響を受けずしかも連続運転が可能となり製品シリコンは良い性能を与えることが可能となった。但し、1200℃以上、通常ではシリコンの融点である1410℃付近の高温を必要とするが故に生成シリコン中には系内に存在する不純物が僅かであるが混入しやすく、6−ナイン程度の純度が限界であった。さらに反応装置自身がサイクロンを形成するために大型化してしまうという問題点があった。また反応温度が極めて高いために、反応炉を構成する材料の耐久性に問題が出やすく、短時間では問題は少ないが、長期にわたっての安定な装置材料が見つかりにくいという問題があった。In contrast, the present inventors have been studying a high-temperature process using a swirl melting method as a method of continuously generating silicon without generating silicon on the furnace wall of the reactor. About these, invention of patent document 8, patent document 9, patent document 10, patent document 11, patent document 12, etc. has been performed. As a result, continuous operation was possible without being affected by the furnace wall of the reactor, and the product silicon was able to give good performance. However, since a high temperature of 1200 ° C. or higher, usually around 1410 ° C., which is the melting point of silicon, is required, the generated silicon has a small amount of impurities present in the system but is easily mixed, and has a purity of about 6-nine. Was the limit. Furthermore, the reaction apparatus itself has a problem that it is increased in size to form a cyclone. In addition, since the reaction temperature is extremely high, there is a problem in that the durability of the material constituting the reaction furnace is likely to occur, and there are few problems in a short time, but there is a problem that it is difficult to find a stable apparatus material over a long period of time.

これらの解決のために本発明者らは、特許文献13で同じように気相反応法を行うが条件を規定することで、シリコンを単結晶繊維として取り出す事に成功した。さらにこれによって高純度化をはかりながらそれを融体で取り出す事を行ってより効率化をはかった。しかしながら、このような繊維状単結晶を形成するためには高温度で高濃度の亜鉛と四塩化ケイ素を反応させる必要があり反応場の圧力変化が比較的大きいために実用化に向けては、条件の制御がきびしくなるという問題点が新たに見出されてきた。更に高温反応であるが故に時としては不純物のレベルが高くなりやすいという問題点も見出されている。
更にこれらはいずれも結晶成長を優先するために微粉末の形成を起こさない様な条件であり、またそれらからシリコンの微粉末を取り出すことは出来なかった。
In order to solve these problems, the present inventors performed the gas phase reaction method similarly in Patent Document 13, but succeeded in extracting silicon as a single crystal fiber by defining the conditions. In addition, it was made more efficient by taking it out as a melt while purifying high purity. However, in order to form such a fibrous single crystal, it is necessary to react a high concentration of zinc and silicon tetrachloride at a high temperature, and the pressure change in the reaction field is relatively large. A new problem has been found that the control of conditions becomes severe. Furthermore, due to the high temperature reaction, the problem that the level of impurities tends to be high sometimes has been found.
Furthermore, these are conditions that do not cause the formation of fine powder in order to prioritize crystal growth, and silicon fine powder could not be taken out from them.

また、このようにして反応装置内にシリコン結晶を生成させた後に融体化することによって連続運転が可能となったが、一方結晶を生成させるには、温度、雰囲気などの条件が厳しく装置の耐久性に問題を有する可能性があった。更に、生成する結晶にばらつきが発生しやすく、ガスとの分離工程で時として成長の不十分な結晶が排ガスに混入してしまう事が散見された。なお、生成する結晶をほぼ一定の状態で成長させる方法としては特許文献6に示されるように内部に種結晶をおくことが考えられるが、連続運転が困難になると共に、微細結晶を得ると言う本目的には合致しない。In addition, the silicon crystal is formed in the reaction apparatus in this way, and it is possible to continuously operate by melting it. On the other hand, in order to generate the crystal, conditions such as temperature and atmosphere are severe. There could be a problem with durability. Further, it was found that the generated crystals are likely to vary, and crystals that are insufficiently grown are sometimes mixed into the exhaust gas in the separation process from the gas. As a method for growing the crystals to be generated in a substantially constant state, it is conceivable to place a seed crystal inside as shown in Patent Document 6, but it is difficult to continuously operate, and a fine crystal is obtained. It does not meet this purpose.

本発明者の一人はこれらを更に推し進める技術として、亜鉛による四塩化ケイ素の還元反応が極めて早いことを見出して、より小型の装置を使用しながら製造能力を大幅に拡大する製造条件や装置の検討をおこなっている。つまり、高濃度のガス状亜鉛中に液状の四塩化ケイ素を供給して極めて高い会合を行うシリコン製造条件を実現した。(特許文献15,特許文献16,特許文献17)。これらでは反応部は小型となり、反応生成物であるシリコンは完全なシリコンになる前の中間体から、シリコン結晶に変化しながら成長すること見出した(非特許文献2)。One of the inventors of the present invention has found that the reduction reaction of silicon tetrachloride with zinc is extremely fast as a technique for further promoting these, and examined manufacturing conditions and apparatuses that greatly expand the manufacturing capacity while using a smaller apparatus. Is doing. In other words, silicon production conditions were realized in which liquid silicon tetrachloride was supplied into high-concentration gaseous zinc to perform extremely high association. (Patent Literature 15, Patent Literature 16, Patent Literature 17). In these, the reaction part became small, and it discovered that the silicon which is a reaction product grew from the intermediate body before changing into a complete silicon, changing into a silicon crystal (nonpatent literature 2).

これらのプロセスでは、結晶成長部、サイクロンなどによる反応ガスとシリコンの分離により、更に必要によっては融体化プロセスを経てシリコン結晶を得ることを行っている。このようなプロセスの中では、気相と固相シリコンの分離プロセスを物理的に行う結果、この間に少なくともある程度の結晶成長を促す必要があり、それによって、生成するシリコンはたとえ溶解を行わなくてもある程度の粒の成長を伴ってしまうと言う問題点があった。但しソーラセル用としては純度を問題とするので粒子が大きくなることはかえって望ましいことであった。In these processes, a silicon crystal is obtained through separation of the reaction gas and silicon by a crystal growth part, a cyclone or the like, and if necessary, through a melting process. In such a process, as a result of the physical separation process of the gas phase and the solid phase silicon, it is necessary to promote at least some crystal growth during this time, so that the generated silicon does not have to be dissolved. However, there was a problem that it was accompanied by some grain growth. However, for solar cells, it is desirable to increase the particle size because purity is a problem.

唯一連続的に種結晶上にシリコンを生成する方法としていわゆる流動層を使う方法がある。(非特許文献1)しかしながら反応ガスとして塩化亜鉛が系にある場合、反応ガスの分離回収が困難となり流動層そのものの形成が困難という問題点があった。
なお上記はいずれも高純度/超高純度のシリコンを得ること目的としたものであり高純度を保持しながらも微細な結晶を得ることは殆ど行われていない。
The only method for continuously generating silicon on the seed crystal is to use a so-called fluidized bed. (Non-patent Document 1) However, when zinc chloride is used as a reaction gas in the system, there is a problem that it is difficult to separate and recover the reaction gas and it is difficult to form the fluidized bed itself.
All of the above are aimed at obtaining high-purity / ultra-high-purity silicon, and fine crystals are hardly obtained while maintaining high purity.

特開平11−060228公報Japanese Patent Laid-Open No. 11-060228 特開平11−092130公報Japanese Patent Laid-Open No. 11-092130 特開2003−095633公報JP 2003-095633 A 特開2003−095632公報JP 2003-095632 A 特開2004−196643公報Japanese Patent Laid-Open No. 2004-196643 特開2003−095634公報JP 2003-095634 A 特開2003−095634公報JP 2003-095634 A 特開2004−210594公報Japanese Patent Laid-Open No. 2004-210594 特開2003−342016公報JP 2003-342016 A 特開2004−010472公報JP 2004-010472 A 特開2004−035382公報JP 2004-035382 A 特開2004−099421公報JP 2004-099421 A 特開2006−290645公報JP 2006-290645 A 特開2006−298740公報JP 2006-298740 A 特開2008−81387公報JP 2008-81387 A 特開2008−115066公報JP 2008-115066 A 特開2008−115455公報JP 2008-115455 A 特開2009−13042公報JP 2009-13042 A シリコン24(1994)培風館Silicon 24 (1994) Baifukan 名古屋工業大学・セラミックス基盤工学研究センター年報、vol7 17(2007)Nagoya Institute of Technology, Ceramics Engineering Research Center Annual Report, vol7 17 (2007)

本発明は叙上の問題点を解決して超高純度を有しながら微細で粒状がそろったシリコンを最小のエネルギーで高効率に、更に、多量に得ることの出来るシリコン製造装置を提供することを課題とした。The present invention solves the above-mentioned problems and provides a silicon production apparatus capable of obtaining high-efficiency and a large amount of finely grained silicon having ultrahigh purity with minimum energy. Was an issue.

本発明は、高純度シリコン微粉末の製造装置において(1)金属亜鉛を亜鉛の沸点以上に加熱蒸発して亜鉛ガスを供給する機構と(2)該亜鉛ガス中に液状の四塩化ケイ素を供給する機構と、(3)前記亜鉛ガスと前記四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構と、(4)前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構と(5)前記沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構と(6)前記蒸発物を含み、未反応ガス等を含む排ガスを系外に排出する排ガス機構を含んでなることを特徴とする高純度シリコン微粉末の製造装置であって、四塩化ケイ素を亜鉛に依って還元し、シリコンを製造するにあたり、不均化反応にもかかわらず極めて高濃度での反応を可能とし、シリコン核が選択的に生成する条件で、シリコン生成を行い、結果として微粉末シリコンを多量に生成すると共に、該シリコンを部分的に原料亜鉛並びに未反応亜鉛と共に沈殿を起こさせる事によって微粉シリコンを効率よく得ることが出来る。The present invention provides (1) a mechanism for supplying zinc gas by heating and evaporating metal zinc above the boiling point of zinc, and (2) supplying liquid silicon tetrachloride in the zinc gas in an apparatus for producing high-purity silicon fine powder. (3) a mechanism for generating a reaction gas containing silicon particles by mixing and stirring the zinc gas and the silicon tetrachloride, and (4) reducing the temperature of the reaction gas to 300 ° C. to 800 ° C. And (5) holding the precipitate, heating the precipitate to 950 ° C. or higher, volatilizing the evaporated material, and solidifying the generated silicon particles. (6) A high purity silicon fine powder producing apparatus comprising a mechanism for obtaining silicon and (6) an exhaust gas mechanism that exhausts exhaust gas containing unreacted gas and the like including the evaporant, Silicon tetrachloride zinc Therefore, when producing silicon by reducing, silicon can be produced under conditions that enable extremely high concentration despite disproportionation reaction, and silicon nuclei are selectively produced. Is produced in large quantities, and fine silicon can be obtained efficiently by causing the silicon to partially precipitate with the raw material zinc and unreacted zinc.

本願発明のような気相反応では一般に、原料ガス濃度を大きくすることによって反応生成物の核生成が促進されるので、生成する結晶粒が小さくなることが知られている。本発明者らが実用化した亜鉛ガス中に液状の四塩化ケイ素を供給して反応させる方法は常圧下で行う反応としては最も高濃度であり、微細結晶を得るためには最も望ましい形態である。従ってこの条件を生かし、高純度シリコンの微細な粒子結晶を高効率・高収率で得ることを目的として本発明に至ったのである。In the gas phase reaction as in the present invention, it is generally known that the nucleation of the reaction product is promoted by increasing the raw material gas concentration, so that the generated crystal grains are reduced. The method of supplying liquid silicon tetrachloride in zinc gas that has been put into practical use by the present inventors is the highest concentration as a reaction performed under normal pressure, and is the most desirable form for obtaining fine crystals. . Therefore, the present invention has been achieved with the objective of obtaining fine particle crystals of high-purity silicon with high efficiency and high yield by making use of this condition.

つまり、亜鉛ガスは亜鉛ガスを供給する機構(1)において、直接液状、又は固体の亜鉛金属を加熱し、沸騰・蒸発させることによりほぼ亜鉛ガスのみからなる沸騰温度の亜鉛ガスを得ることが出来る。更にこれを必要とする反応温度である、1050℃〜1300℃に加熱する。この時に雰囲気ガスは無くても良いが、系内のガスの流れをスムーズにし、また途中の閉塞を防ぐために、アルゴンガスを加える事も出来、それによってわずかに加圧することが出来る。ただしそのガス量、或いは加圧は僅かで良く、例えば圧力は最大でも10000Pa程度(水柱1m程度)で十分である。反応管太さが25mm程度ではアルゴン量として50ml/分〜1000ml/分位が適当である。In other words, zinc gas can be obtained at a boiling temperature consisting essentially of only zinc gas by directly heating the liquid or solid zinc metal in the mechanism (1) for supplying zinc gas to boil and evaporate it. . Furthermore, it heats to 1050-1300 degreeC which is reaction temperature which requires this. At this time, the atmosphere gas may not be used, but in order to smooth the gas flow in the system and prevent clogging in the middle, argon gas can be added, and the pressure can be slightly increased. However, the amount of gas or pressurization may be slight. For example, a maximum pressure of about 10,000 Pa (about 1 m of water column) is sufficient. When the reaction tube thickness is about 25 mm, an argon amount of about 50 ml / min to 1000 ml / min is appropriate.

このような加熱亜鉛ガスの中に次工程となる、四塩化ケイ素を供給する機構(2)で沸点が約56.4℃とされる四塩化ケイ素を液のまま供給する。供給は重力で上部から亜鉛ガスの流れ中に滴下することでも良く、亜鉛ガスの流れ中に噴霧するようにしても良い。なお四塩化ケイ素と亜鉛ガスの流れとの会合部分の温度は1050℃〜1300℃であることが望ましく、より望ましくは1100℃〜1200℃である。但しこの部分の実温度はこれより若干低いかも知れない。この部分の温度が、1050℃より低いと反応により生成するシリコン、又はシリコン前駆体が析出しやすくなり、シリコン又はシリコン前駆体が亜鉛と四塩化ケイ素の会合部分に析出してしまい、連続運転に支障を来す可能性がある。従って会合部分の温度は高いことが望ましいが、1300℃以上では通常使用する反応装置材質である石英ガラスや炭化ケイ素燒結体の耐久性に問題が出ること、消費エネルギーが大きくなりすぎることから可能ではあるが実用上の問題が残される。In such heated zinc gas, silicon tetrachloride having a boiling point of about 56.4 ° C. is supplied as a liquid by the mechanism (2) for supplying silicon tetrachloride, which is the next step. The supply may be performed by dropping into the zinc gas flow from the upper part by gravity, or may be sprayed in the zinc gas flow. Note that the temperature of the association portion between the silicon tetrachloride and the flow of zinc gas is desirably 1050 ° C. to 1300 ° C., and more desirably 1100 ° C. to 1200 ° C. However, the actual temperature of this part may be slightly lower than this. When the temperature of this part is lower than 1050 ° C., silicon or silicon precursor produced by the reaction is likely to be precipitated, and silicon or silicon precursor is precipitated at an association part of zinc and silicon tetrachloride, and continuous operation is performed. It may cause trouble. Therefore, it is desirable that the temperature of the association part is high. However, if the temperature is 1300 ° C. or higher, there is a problem in the durability of quartz glass or silicon carbide sintered body, which is a commonly used reactor material, and this is not possible because of excessive energy consumption. There are practical problems left.

ここで亜鉛と四塩化ケイ素が気−液、又は気−気で会合し、少なくとも部分的に反応し、一部生成したシリコン又はシリコン前駆体を含むガスは内部に攪拌手段を有する反応ガスを生成する機構(3)に導かれて反応を続け、完結する。ここに使用される攪拌手段は、亜鉛と四塩化ケイ素との会合を完全にし、十分に攪拌されることはもちろんであるが、反応管内での圧力損失を最小限に押さえると共に、生成したシリコン固体によって閉塞しないものであればどのような機構でも良い。たとえば、ランダムに置かれた邪魔板や、商品名スクエアミキサーと呼ばれるパイプ内を流れるガスを二分して半分は縦波的に折れ曲がりながら流れ、残りの半分は横波で流れて1周期で会合し、これを繰り返す事によって攪拌混合する様な機構を使用することが出来る。これらによって、ほとんど圧力損失なしに完全な混合を得ることが出来る。Here, zinc and silicon tetrachloride associate with each other by gas-liquid or gas-gas, and at least partially react, and the gas containing silicon or silicon precursor that is partially generated generates a reaction gas having a stirring means inside. It is led to the mechanism (3) to continue the reaction and complete. The stirring means used here completes the association between zinc and silicon tetrachloride and is sufficiently stirred, of course, while minimizing the pressure loss in the reaction tube and producing the generated silicon solids. Any mechanism may be used as long as it does not block by the operation. For example, a baffle plate placed at random or a gas flowing through a pipe called a trade name square mixer is divided into two, half flowing while bending in a longitudinal wave, the other half flowing in a transverse wave and meeting in one cycle, By repeating this, a mechanism such as stirring and mixing can be used. With these, complete mixing can be obtained with almost no pressure loss.

このようにして生成したシリコン前駆体・シリコンを含む反応ガスは機構(3)中を流れながら、更に反応が進む。これらによる反応物質は次いで温度300〜800℃に保持されたシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(4)に送られて、反応ガスである未反応亜鉛ガスと塩化亜鉛の少なくとも一部と生成したシリコンが一体となって析出する。これによって結晶成長前の非常に微細なシリコン粒子が塩化亜鉛や亜鉛ガスと共に沈殿する。The reaction proceeds further while the reaction gas containing the silicon precursor / silicon generated in this way flows through the mechanism (3). The reactants by these are then sent to a mechanism (4) for growing silicon particles maintained at a temperature of 300 to 800 ° C. and precipitating together with a part of the gas components, so that the unreacted zinc gas and zinc chloride as the reaction gases are sent. At least a portion of the produced silicon is deposited together. As a result, very fine silicon particles before crystal growth are precipitated together with zinc chloride and zinc gas.

この様にして生成した沈殿は、塩化亜鉛や亜鉛との共沈になるためか、生成した非常に細かい粒子を含んだ状態である。この温度によるシリコンの沈殿は極めて短時間に行われるようであり、300〜800℃に保持された部分で0.5秒から2秒程度保持すれば良く、該温度に保持された垂直管を通すだけでもほぼ完全にシリコンを沈殿させることが出来る。このような温度部分を通って沈殿したシリコンは、950℃以上に保持された蒸発物を揮散して、固体シリコンを得る機構(5)である、保持槽に至り、亜鉛や塩化亜鉛の様な揮発物が分離除去されて高純度のシリコン微粒子のみが残留する。ここで亜鉛や塩化亜鉛のような或いは未反応の四塩化ケイ素は排ガス機構から排出され、通常は排ガス成分を処理し、回収するようにする。The precipitate produced in this way is in a state containing the very fine particles produced, possibly due to coprecipitation with zinc chloride or zinc. The precipitation of silicon at this temperature seems to be carried out in a very short time, and it may be held for about 0.5 to 2 seconds in the portion held at 300 to 800 ° C., and the vertical tube held at the temperature is passed. Alone can deposit silicon almost completely. The silicon precipitated through such a temperature part volatilizes the evaporate kept at 950 ° C. or higher, and reaches the holding tank, which is a mechanism (5) for obtaining solid silicon, such as zinc or zinc chloride. Volatiles are separated and removed, leaving only high purity silicon fine particles. Here, zinc or zinc chloride or unreacted silicon tetrachloride is discharged from the exhaust gas mechanism, and usually exhaust gas components are treated and recovered.

なお必要に応じて、シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(4)を垂直缶ではなく、傾斜管とすることによってより安定化を図ることが出来る。水平に対して30〜90度に傾け、傾斜部分の温度を300〜800℃,望ましくは500〜750℃、に保持しておくと、その部分にシリコンと塩化亜鉛並びに亜鉛が一体となってほぼ瞬間的に沈殿すると共に、生成物はゆっくりと時間をかけながら、傾斜部分を滑るように移動してシリコン保持槽に落下し、そこで揮発物を揮散して純シリコンとして保持されるようになる。傾斜部の傾きは水平に対して30度から90度程度が良く、角度によって保持時間を変えることが出来る。  If necessary, the mechanism (4) for growing silicon particles and precipitating together with a part of the gas component can be further stabilized by using an inclined tube instead of a vertical can. When tilted at 30 to 90 degrees with respect to the horizontal and the temperature of the inclined portion is kept at 300 to 800 ° C., preferably 500 to 750 ° C., silicon, zinc chloride and zinc are almost integrated with the portion. Along with sedimentation instantaneously, the product slowly moves over time and slides on the inclined portion and falls to the silicon holding tank where the volatiles are stripped off and held as pure silicon. The inclination of the inclined part is preferably about 30 to 90 degrees with respect to the horizontal, and the holding time can be changed depending on the angle.

ここで、傾斜管の傾きが30度より小さいと生成シリコンの落下が不完全になりやすく、時としてはとどまってしまい閉塞の原因となることがある。しかし垂直に近づくに従って保持時間が短く成り、条件によってはムラを生じやすくなるので、用途と生産容量に応じて、傾斜角度を決める必要がある。Here, if the inclination of the inclined tube is smaller than 30 degrees, the generated silicon is liable to be dropped incompletely and sometimes stays, which may cause clogging. However, the holding time is shortened as it approaches the vertical, and unevenness is likely to occur depending on the conditions. Therefore, it is necessary to determine the inclination angle according to the application and production capacity.

高温高濃度の亜鉛ガス中に四塩化ケイ素を液状で供給し高温状態で十分に撹拌しながら反応させる事によって、四塩化ケイ素からシリコンを生成させ、それを反応ガスである亜鉛並びに反応生成物である塩化亜鉛の一部と共に300℃〜800℃で凝集させることによって微細なシリコン粒子を安定的に、しかも高収率で得ることが出来るようになった。またこのようにして凝集させた生成物は保持槽内で亜鉛の沸点以上の温度で亜鉛と塩化亜鉛を主とする揮散物を蒸発分離することにより、微粒の高純度シリコンを高収率で得ることが出来るようになった。Silicon tetrachloride is supplied in liquid form in high-temperature and high-concentration zinc gas and reacted with sufficient stirring at a high temperature to produce silicon from silicon tetrachloride, which is reacted with zinc as a reaction gas and reaction products. By agglomerating at a temperature of 300 ° C. to 800 ° C. together with a part of certain zinc chloride, fine silicon particles can be stably obtained at a high yield. In addition, the agglomerated product is obtained by evaporating and separating the volatiles mainly composed of zinc and zinc chloride at a temperature higher than the boiling point of zinc in the holding tank, thereby obtaining fine high-purity silicon in a high yield. I was able to do it.

本発明を図によって説明する。つまり図1はシリコンを含む反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構が垂直管である場合であり、図2は該沈殿する機構を傾斜した管体とした場合である。又図3は該沈殿する機構の温度制御のために冷却ファンを有する場合である。又排ガス処理機構の模式図のアイデアを示した。図4は沈殿物を保持し950℃以上に加温して蒸発物を揮散して、固体シリコンを得る機構の底部に傾斜を与え、生成したシリコンを移動させながら処理するようにして連続運転を可能としたものである。The present invention will be described with reference to the drawings. That is, FIG. 1 shows a case where the vertical tube is used as a mechanism for growing silicon particles generated by lowering the temperature of the reaction gas containing silicon to 300 ° C. to 800 ° C. and precipitating together with a part of the gas components. This is a case where the precipitation mechanism is an inclined tube. FIG. 3 shows a case where a cooling fan is provided for temperature control of the settling mechanism. The idea of schematic diagram of exhaust gas treatment mechanism was also presented. FIG. 4 shows that the precipitate is retained and heated to 950 ° C. or more to volatilize the evaporate, and the bottom of the mechanism for obtaining solid silicon is inclined, so that the generated silicon is processed while being moved. It is possible.

図1において亜鉛供給部1から亜鉛ワイヤー又は融体亜鉛を供給する。ここでは亜鉛を定量供給出来れば亜鉛溶融槽から、定量の亜鉛をポンプなどで送るようにすればよいが、亜鉛ワイヤーを供給する方式では、取扱いが容易であること、定量送りが容易であることから特に小型の装置では望ましい方法である。またここでの送りに合わせて加圧と必要に応じて雰囲気調整のために雰囲気ガスを合わせて供給することが出来る。In FIG. 1, zinc wire or molten zinc is supplied from a zinc supply unit 1. Here, if zinc can be supplied in a fixed amount, it is sufficient to send a fixed amount of zinc from a zinc melting tank with a pump, etc., but in the method of supplying zinc wire, handling is easy and fixed amount feeding is easy. Therefore, it is a desirable method particularly for a small-sized apparatus. In addition, the atmospheric gas can be supplied together for pressurizing and adjusting the atmosphere as necessary in accordance with the feeding here.

このようにして送られてきた亜鉛ワイヤー又は亜鉛融体は亜鉛供給口1から供給し、亜鉛ガスを供給する機構の亜鉛蒸発槽2で加熱・蒸発させて亜鉛蒸気を発生させる。ここでは直接ヒータにより亜鉛の沸点以上で亜鉛を蒸気とする。これにより僅かなアルゴンガスを含むが実質的には亜鉛ガスのみの雰囲気となる。この亜鉛ガスを同機構のガス加熱部3で所要温度まで加熱する。通常は1050℃から1300℃が良く、特に1100〜1200℃が適当である。このようにして加熱され制御された四塩化ケイ素を供給する機構4に送られる。The zinc wire or zinc melt thus sent is supplied from the zinc supply port 1 and heated and evaporated in a zinc evaporation tank 2 of a mechanism for supplying zinc gas to generate zinc vapor. Here, zinc is vaporized above the boiling point of zinc by a direct heater. As a result, an atmosphere containing only a small amount of argon gas but substantially only zinc gas is obtained. This zinc gas is heated to a required temperature by the gas heating unit 3 of the same mechanism. Usually, 1050 to 1300 ° C is good, and 1100 to 1200 ° C is particularly suitable. It is sent to a mechanism 4 for supplying silicon tetrachloride heated and controlled in this way.

四塩化ケイ素の沸点は57.6Cとされるので、通常の平衡状態では気体になるが、ここでは四塩化ケイ素供給口41から滴下するようにして液状で供給する。もちろん液滴としてそのまま供給しても良いが、噴霧、あるいはシャワー状にして供給しても良い。供給の方法は特に指定されずチューブポンプやダイアフラムポンプによって定量供給することが望ましく、多量の場合は四塩化ケイ素保持部に圧力をかけて流量計を通して流し、バルブによって流量調整することが行われる。いずれにしてもこの部分から液状のまま四塩化ケイ素を供給する。Since silicon tetrachloride has a boiling point of 57.6 C, it becomes a gas in a normal equilibrium state, but here it is supplied in a liquid state by dropping from the silicon tetrachloride supply port 41. Of course, it may be supplied as a droplet as it is, but it may be supplied in the form of spray or shower. The method of supply is not particularly specified, and it is desirable to supply a fixed amount by a tube pump or a diaphragm pump. In the case of a large amount, pressure is applied to the silicon tetrachloride holding part and the flow is passed through a flow meter, and the flow rate is adjusted by a valve. In any case, silicon tetrachloride is supplied from this portion in a liquid state.

供給された四塩化ケイ素はこの部分からすぐに亜鉛ガスと反応を開始し、シリコン前駆体並びにシリコンの生成を開始すると共に、シリコン粒子を含む反応ガスを生成する機構5でその中にあるガスを乱流化する要素51によって十分に攪拌されながら反応を続けると共に移動し、シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6で温度を下げられて生成シリコンと一部未反応亜鉛並びに生成した塩化亜鉛とが一体となって沈殿し、固体シリコンを得る機構7に移動する。なお該沈殿する機構6の温度保持には、ヒータ加熱のみではなく、外部空気の導入など冷却する冷却要素(例えば図3、300)を設けることによって温度を保持することがある。  The supplied silicon tetrachloride immediately starts to react with zinc gas from this portion, and starts generation of a silicon precursor and silicon, and at the same time, a gas contained therein is generated by a mechanism 5 that generates a reaction gas containing silicon particles. The reaction is continued and moved while being sufficiently stirred by the turbulent element 51, and the temperature is lowered by the mechanism 6 that grows silicon particles and precipitates together with a part of the gas component. The generated zinc chloride precipitates together and moves to the mechanism 7 for obtaining solid silicon. Note that the temperature of the settling mechanism 6 may be maintained not only by heating the heater but also by providing a cooling element (for example, FIG. 3, 300) for cooling such as introduction of external air.

これによって、通常のサイクロン方式では沈殿が困難な10ミクロン以下、特にサブミクロンの微粒子までのシリコンが、固体シリコンを得る機構7に沈殿する。ここでは、底面を1000℃以上に加熱しており、壁部はそれより若干低く、しかし亜鉛の沸点より高く保持することで、揮発物である、亜鉛や塩化亜鉛を揮散蒸発させること、またシリコンの粒成長は殆ど無く、生成シリコンが高純度で保持されるようになる。なおこの加熱は常時行うことがあるが、必要に応じては温度を低く保持しておき、間欠的に温度を上記1000℃以上に加熱することも可能である。なおこの機構の底面以外の温度を1000℃以上とすると、一部の微粒のシリコンが塩化亜鉛などの蒸発と共に排ガス機構8から抜けてしまうので、その点で周囲温度は1000℃以下が望ましい。As a result, silicon having a particle size of 10 microns or less, particularly submicron, which is difficult to be precipitated by a normal cyclone method, is precipitated in the mechanism 7 for obtaining solid silicon. Here, the bottom surface is heated to 1000 ° C. or higher, and the wall portion is slightly lower than that, but is kept higher than the boiling point of zinc to volatilize and evaporate zinc and zinc chloride, which are volatiles, and silicon. There is almost no grain growth, and the produced silicon is maintained at a high purity. In addition, although this heating may always be performed, it is also possible to keep the temperature low as necessary and intermittently heat the temperature to 1000 ° C. or higher. If the temperature of the mechanism other than the bottom surface is set to 1000 ° C. or higher, some fine silicon escapes from the exhaust gas mechanism 8 along with the evaporation of zinc chloride and the like, and therefore the ambient temperature is desirably 1000 ° C. or lower.

排ガス機構8は特には指定されないが、ここではガス管内の途中で沈殿が起こらないように亜鉛の沸点より高く保持されるが、その後の排ガス処理部9は温度を十分下げて固体で析出させる、あるいは塩化亜鉛水溶液と接触させて未反応四塩化ケイ素がある場合はそれをSiCl4+2H2O→SiO2+4HClとして酸化ケイ素で沈殿させ、また塩化亜鉛と亜鉛は塩化亜鉛水溶液に溶解して外部に連続的取り出して処理することも出来る。The exhaust gas mechanism 8 is not specified in particular, but here it is kept higher than the boiling point of zinc so that precipitation does not occur in the middle of the gas pipe, but the subsequent exhaust gas treatment section 9 is sufficiently lowered in temperature to precipitate as a solid, Alternatively, when there is unreacted silicon tetrachloride in contact with an aqueous zinc chloride solution, it is precipitated with silicon oxide as SiCl4 + 2H2O → SiO2 + 4HCl, and zinc chloride and zinc are dissolved in the aqueous zinc chloride solution and continuously taken out and processed. You can also

図2では図1と原則同じで有るが、図1ではシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6を垂直管としているがそのかわりに傾斜管61としたものであり、ここではシリコンと塩化亜鉛及び/又は亜鉛とからなる沈殿物を確実に傾斜部に析出するために、低い温度の期間を長くして、冷却・沈殿をより確実に行うと共に、シリコン粒の適正な成長を行わせて、収率をより高めることが出来る。またこの中間的な温度にある程度の時間保持されることによって、ここで沈殿しながら同時に塩化亜鉛を主とする揮散物の少なくともその一部を除去出来るので、蒸発物を揮散して、固体シリコンを得る機構7での亜鉛・塩化亜鉛の揮散が少なく、それに伴われるシリコン微粒子の排ガス部への抜けがよりいっそう少なくなり効率の向上に有効である。また当然のことながら、より微粒なシリコンが確実に得られるようになる。2 is basically the same as FIG. 1, but in FIG. 1, the mechanism 6 for growing silicon particles and precipitating together with a part of the gas component is a vertical pipe, but an inclined pipe 61 is used instead. Then, in order to deposit the precipitate consisting of silicon and zinc chloride and / or zinc on the inclined portion, the low temperature period is lengthened, cooling and precipitation are performed more reliably, and the silicon grains are properly grown. The yield can be further increased. Further, by maintaining at this intermediate temperature for a certain period of time, it is possible to remove at least part of the volatilized product mainly composed of zinc chloride while precipitating here. There is little volatilization of zinc and zinc chloride in the mechanism 7 to be obtained, and the accompanying escape of silicon fine particles to the exhaust gas part is further reduced, which is effective in improving the efficiency. As a matter of course, finer silicon can surely be obtained.

図3は排ガス処理部に処理水を通すようにした場合の模式図である。つまり排ガス処理部の底部に塩化亜鉛水溶液を循環させることによって、上部から入ってくる排ガス成分である塩化亜鉛はこの水溶液に溶解する。また未反応の亜鉛並びに四塩化ケイ素がある場合、四塩化ケイ素は水と即座に反応して塩酸と酸化ケイ素となり、また生成した塩酸によってこの水溶液が酸となるために亜鉛も溶解して塩化亜鉛水溶液となる。なおこの循環する水を僅かに塩酸を加えておけば、未反応四塩化ケイ素が無くても亜鉛を完全に溶解してしまうことが出来排ガスを全て塩化亜鉛溶液とすることが出来る。これを精製して塩化亜鉛を得ることも出来るし、このまま隔膜法電解槽に送って、亜鉛を金属亜鉛として回収することも出来る。  FIG. 3 is a schematic view when treated water is passed through the exhaust gas treatment section. That is, by circulating an aqueous zinc chloride solution at the bottom of the exhaust gas treatment unit, zinc chloride, which is an exhaust gas component entering from the top, is dissolved in this aqueous solution. In addition, when there is unreacted zinc and silicon tetrachloride, silicon tetrachloride reacts immediately with water to form hydrochloric acid and silicon oxide, and this aqueous solution becomes acid by the generated hydrochloric acid. It becomes an aqueous solution. If a slight amount of hydrochloric acid is added to the circulating water, zinc can be completely dissolved without any unreacted silicon tetrachloride, and all exhaust gas can be made into a zinc chloride solution. This can be purified to obtain zinc chloride, or it can be sent as it is to a diaphragm electrolytic cell to recover zinc as metallic zinc.

図4は図1とシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構6までは同じであるが、その下にある、固体シリコンを得る機構7の底部に傾斜をつけ、6から落ちてくる沈殿物によって押されて移動しながら揮発物を揮散させてシリコンのみが途中に設けた更に下部にある容器、あるいは溶解機構400に移行させそこから連続的に取り出す、あるいは溶解して融体として取り出すことも出来る。
以下実験的に組み立てた試験装置による実施例を示す。
尚実施例の装置は大部分が石英ガラスで作成しているが、大型化に伴って炭化ケイ素などのセラミックス材料を使うことも出来ることは言うまでもない。
FIG. 4 is the same as FIG. 1 up to the mechanism 6 for growing silicon particles and precipitating together with a part of the gas component, but tilting the bottom of the mechanism 7 to obtain solid silicon below it and dropping from 6 Volatile materials are volatilized while being pushed and moved by the deposits coming, and only silicon is provided in the middle, or it is transferred to the dissolution mechanism 400 and continuously taken out from or melted into the melt. It can be taken out as.
Examples of experimentally assembled test devices are shown below.
Although most of the apparatus of the embodiment is made of quartz glass, it goes without saying that ceramic materials such as silicon carbide can be used as the size of the apparatus increases.

図1に示す装置を試作した。つまり亜鉛蒸発槽(ガス化部)は直径150mm,高さ35mmで上下を塞いだ円筒形の一端に内径4mmで円筒に対して高さ方向45度の向きに付けられた亜鉛供給口とその円筒の反対側に円筒と水平に設けた外径30mmのガス流路を有する石英ガラス管製とし、ガス流路とフランジ接続した片側50mmの部分に内径10mmの垂直管を有する外径30mmで長さ600mmの石英ガラス管を亜鉛ガス加熱用(調整部)とし、その他端に垂直管をたてて四塩化ケイ素供給機構として設置した。更に水平方向に外径30mm,長さ1000mmの石英ガラス製の反応管を設け反応ガスを生成する機構とした。この反応管の中には炭化ケイ素製の長さ125mm直径23mmのスクエアミキサーを4台、四塩化ケイ素供給機構側に入れた。更にこの石英ガラス製の反応管の四塩化ケイ素供給機構の反対側には、直角に落下する外径35mm、高さ600mmの石英ガラス製の垂直管を介してその下側には外径160mm x 高さ200mmの同じく石英ガラス製の容器(シリコン保持容器)を取りつけた。この石英ガラス容器の蓋の部分には上記垂直管からの受け口(ガスを受ける要素)と排ガス管を取りつけ口(排ガスを排出する要素)を設け、それに外径25mmの石英ガラス製の排ガス管を取り付けその他端をステンレススチール製(SUS304)製のドラム缶に接続した。このドラム缶内にはアルゴンガスを満たして排ガス処理用とした。但し圧力はかからないようにし、背圧が生じないようにした。The apparatus shown in FIG. In other words, the zinc evaporation tank (gasification section) has a 150 mm diameter, 35 mm high and closed top and bottom, and a zinc supply port with an inner diameter of 4 mm and an angle of 45 degrees with respect to the cylinder. It is made of a quartz glass tube having a gas flow path with an outer diameter of 30 mm provided horizontally with a cylinder on the opposite side, and has a length of 30 mm with an outer diameter of 30 mm having a vertical tube with an inner diameter of 10 mm on the 50 mm portion on one side connected to the gas flow path. A 600 mm quartz glass tube was used for heating the zinc gas (adjusting part), and a vertical tube was set up at the other end and installed as a silicon tetrachloride supply mechanism. Further, a reaction tube made of quartz glass having an outer diameter of 30 mm and a length of 1000 mm is provided in the horizontal direction to form a reaction gas. In this reaction tube, four square mixers made of silicon carbide with a length of 125 mm and a diameter of 23 mm were placed on the silicon tetrachloride supply mechanism side. Further, on the opposite side of the silica tetrachloride supply mechanism of the quartz glass reaction tube, a quartz glass vertical tube having an outer diameter of 35 mm and a height of 600 mm dropped at a right angle passes through an outer diameter of 160 mm x A quartz glass container (silicon holding container) having a height of 200 mm was attached. The quartz glass container lid is provided with a receiving port (element for receiving gas) from the vertical pipe and a port for attaching the exhaust gas pipe (element for discharging the exhaust gas), and an exhaust gas pipe made of quartz glass having an outer diameter of 25 mm is provided. The other end of the attachment was connected to a stainless steel (SUS304) drum. The drum was filled with argon gas and used for exhaust gas treatment. However, no pressure was applied and no back pressure was generated.

亜鉛蒸発槽はガラス円筒の上下に密着するように鉄クロム線発熱体からなる発熱板を置いた。また石英ガラス容器の下面も同様にして発熱面が密着するように設置した。また他の部分はこれらの円筒を取り囲むようにヒータを置くようにして温度の制御を行うようにした。In the zinc evaporation tank, a heating plate made of an iron-chromium wire heating element was placed so as to be in close contact with the upper and lower sides of the glass cylinder. Similarly, the lower surface of the quartz glass container was installed so that the heat generating surface was in close contact therewith. In the other part, the temperature was controlled by placing a heater so as to surround these cylinders.

供給する亜鉛は直径2mmの純亜鉛(亜鉛分99.995質量%)のワイヤーを10mm/秒で連続的に送るようにした。また四塩化ケイ素は上部よりチューブポンプにより0.25g/秒で連続的に供給した。また運転開始は亜鉛を先に供給し始め、その30秒後に四塩化ケイ素の供給を開始することによった。なお亜鉛ワイヤー部分の枝管からアルゴンガスを200ml/分の速度で供給した。The supplied zinc was made to continuously feed a wire of pure zinc having a diameter of 2 mm (zinc content: 99.995% by mass) at 10 mm / second. Silicon tetrachloride was continuously supplied from the top at a rate of 0.25 g / sec by a tube pump. The operation was started by starting to supply zinc first and starting to supply silicon tetrachloride 30 seconds later. Argon gas was supplied at a rate of 200 ml / min from the branch pipe of the zinc wire portion.

各部の温度は亜鉛蒸発槽:1100℃、亜鉛ガス加熱部1100℃、四塩化ケイ素供給機構(亜鉛ガス通過部)1200℃、反応管の温度は、スクエアミキサー挿入部を1100℃、反応管の残り部分(後半)を1050℃とした。垂直管は700〜750℃、シリコン保持容器は、底部が1050℃、側壁部が950℃であった。四塩化ケイ素供給中については計算上、亜鉛が17%ほど過剰であった。20分間の連続運転を行ったところ褐色で微粉末のシリコンが45.2g得られた。このシリコンの粒度分布を計測したところ、粒度5ミクロンと15ミクロンのところにピークを有し、平均粒度10ミクロン以下のシリコン微粒子からなることがわかった。またシリコンの収量は理論値に対して91%であった。排ガス部分で塩酸臭があったことからこのような条件でも僅かに未反応部分が残ると共に、部分的には排ガス中に抜けたこと、またパイプ内に一部貯まっていることが見られた。The temperature of each part is zinc evaporation tank: 1100 ° C, zinc gas heating part 1100 ° C, silicon tetrachloride supply mechanism (zinc gas passage part) 1200 ° C, the temperature of the reaction tube is 1100 ° C in the square mixer insertion part, the rest of the reaction tube The portion (second half) was set to 1050 ° C. The vertical tube was 700 to 750 ° C., and the silicon holding container was 1050 ° C. at the bottom and 950 ° C. at the side wall. In the calculation of silicon tetrachloride, zinc was excessive by about 17%. As a result of continuous operation for 20 minutes, 45.2 g of brown, finely powdered silicon was obtained. When the particle size distribution of this silicon was measured, it was found that the particles consisted of silicon fine particles having peaks at particle sizes of 5 microns and 15 microns and an average particle size of 10 microns or less. The yield of silicon was 91% based on the theoretical value. Since there was a hydrochloric acid odor in the exhaust gas part, it was found that even under such conditions, a slightly unreacted part remained, and partly escaped into the exhaust gas and partly accumulated in the pipe.

図2に示すシリコン製造装置を組んだ。亜鉛供給から亜鉛四塩化ケイ素供給部までは図1と同じとし、反応管の長さを600mmとしてそこの部分には実施例1と同じスクエアミキサーを組み込んだ。反応管の後ろに傾斜角度を水平に対して45度として石英ガラス製容器に向かって落ちるように配置された斜め管を取りつけて、石英ガラス製容器に接続した。石英ガラス製容器の蓋部分は水平部分である反応ガス生成機構部分に対して600mm低く設置したので、斜め管の長さは850mmとなった。なお傾斜管の外径は35mmであり、その他は実施例1と同じであった。また材質は炭化ケイ素(SiC)を使用した。The silicon manufacturing apparatus shown in FIG. 2 was assembled. From the zinc supply to the zinc tetrachloride supply part was the same as in FIG. 1, the length of the reaction tube was 600 mm, and the same square mixer as in Example 1 was incorporated there. An oblique tube arranged so as to fall toward the quartz glass container with an inclination angle of 45 degrees with respect to the horizontal was attached behind the reaction tube and connected to the quartz glass container. Since the lid portion of the quartz glass container was set 600 mm lower than the reaction gas generation mechanism portion which is a horizontal portion, the length of the oblique tube was 850 mm. The outer diameter of the inclined tube was 35 mm, and the others were the same as in Example 1. The material used was silicon carbide (SiC).

温度は亜鉛蒸発槽:1200℃(但し蒸発槽外側部)であり、亜鉛ガス加熱部も1200℃とした、更に四塩化ケイ素供給機構:1200℃とし、反応ガス生成機構:1050℃更に傾斜管は500℃(反応後期には熱移動によって最高650℃程度になり安定した。)また石英ガラス容器は実施例1と同じく底板部:1050℃、また壁部:950℃とした。The temperature of the zinc evaporation tank is 1200 ° C (however, the outer part of the evaporation tank), the zinc gas heating part is also 1200 ° C, the silicon tetrachloride supply mechanism is 1200 ° C, the reaction gas generation mechanism is 1050 ° C, and the inclined tube is 500 ° C. (In the latter half of the reaction, the maximum was stabilized at about 650 ° C. due to heat transfer.) The quartz glass container had a bottom plate portion of 1050 ° C. and a wall portion of 950 ° C. as in Example 1.

亜鉛の供給を実施例1と同じ亜鉛ワイヤーを15mm/秒で供給した。また四塩化ケイ素は0.4g/秒であった。亜鉛供給と四塩化ケイ素供給は同時に開始した。亜鉛と四塩化ケイ素の供給を30分間継続して停止した。四塩化ケイ素と亜鉛の供給を停止してから30分間そのままの温度で保持した後に温度を下げた。これによってシリコンは石英ガラス容器から106g得られた。これは理論量に対して89.2%であった。なおここでは亜鉛供給量が四塩化ケイ素に対して約9%過剰であった。この差額分の一部は未反応が生じていることによるが、一方、傾斜部のガラス表面の一部に生成シリコンが保持されていた。The same zinc wire as that used in Example 1 was supplied at 15 mm / second. Silicon tetrachloride was 0.4 g / second. Zinc supply and silicon tetrachloride supply started simultaneously. The supply of zinc and silicon tetrachloride was stopped for 30 minutes continuously. After the supply of silicon tetrachloride and zinc was stopped, the temperature was lowered for 30 minutes and then the temperature was lowered. As a result, 106 g of silicon was obtained from the quartz glass container. This was 89.2% of the theoretical amount. Here, the supply amount of zinc was about 9% excess with respect to silicon tetrachloride. Part of this difference is due to the fact that unreacted, but on the other hand, generated silicon was held on a part of the glass surface of the inclined portion.

亜鉛蒸発槽と亜鉛供給設備、並びに反応塔のガスの乱流化要素として、スクエアミキサーを邪魔板に変えた以外実施例1と同じとした装置を準備した。つまり亜鉛蒸発槽は同じ大きさであるが、亜鉛供給部分を外径20mmの斜め管をとりつけその先端にトラップ付きの亜鉛の亜鉛供給部の外径を15mmとし、液トラップのついた亜鉛液供給器12を取りつけた。ここでの亜鉛供給は液トラップを通して亜鉛供給器からのオーバーフローによって亜鉛が供給されるようになっており、そこの部分には実施例1に使用したと同じ直径2mmの亜鉛ワイヤーを20mm/秒の速度で供給するようにした。As a turbulent element for turbulent flow of gas in the zinc evaporation tank, the zinc supply facility, and the reaction tower, the same apparatus as in Example 1 was prepared except that the square mixer was changed to a baffle plate. In other words, the zinc evaporating tank is the same size, but the zinc supply part is attached with an oblique tube having an outer diameter of 20 mm, the outer diameter of the zinc supply part with zinc at the tip is set to 15 mm, and the zinc liquid supply with a liquid trap is provided. A vessel 12 was attached. The zinc supply here is such that zinc is supplied by overflow from the zinc supply through the liquid trap, and in that part, the same 2 mm diameter zinc wire as used in Example 1 is 20 mm / second. It was made to supply at speed.

上記の様に反応管はガスの乱流化要素として半円形状の石英ガラス板をランダムの間隔・ランダムの角度で置いた邪魔板を機構内の長さ1000mm全体に渡るように入れた。なおこの装置は石英ガラスを主体にした。As described above, a baffle plate in which a semicircular quartz glass plate was placed at random intervals and at random angles as a gas turbulence element was placed over the entire length of 1000 mm in the mechanism. This apparatus was mainly made of quartz glass.

運転条件として亜鉛蒸発槽の温度を1300℃とした。ここでは実質的には沸騰温度の亜鉛ガスとなるが、十分な量の亜鉛ガスを発生させるためにまた瞬間的に亜鉛ガスとするためにこの温度とした。また亜鉛ガス加熱部は1200℃とし、四塩化ケイ素供給機構温度と同じとした。邪魔板の入った反応管の温度は1150℃とした。一方垂直管部の温度は600〜650℃とし、この温度を保持するためにヒータの他に外部空気を取り入れる冷却機構を設けた。またシリコン保持部温度は底板温度を1000℃とし、壁部温度を800℃とした。As operating conditions, the temperature of the zinc evaporation tank was set to 1300 ° C. Here, the temperature is substantially the boiling temperature of the zinc gas, but this temperature is used in order to generate a sufficient amount of zinc gas and to instantaneously make the zinc gas. The zinc gas heating section was set to 1200 ° C., which was the same as the silicon tetrachloride supply mechanism temperature. The temperature of the reaction tube containing the baffle plate was 1150 ° C. On the other hand, the temperature of the vertical tube portion was set to 600 to 650 ° C., and a cooling mechanism for taking in external air in addition to the heater was provided in order to maintain this temperature. Moreover, the silicon | silicone holding | maintenance part temperature was 1000 degreeC and the wall part temperature was 800 degreeC.

更に排ガス処理/回収機構として底部に外部からの塩化亜鉛水溶液の循環機構を有するSUS304製のドラム缶を使用した。このドラム缶の内側には耐酸性の塗料を塗布して耐食性を向上させるようにした。なおシリコン生成に伴う排ガスは外径30mmの石英ガラス管で該ドラム管の頂部に導くようにした。なおこの排ガス用の石英ガラス管に直接ヒータを巻くことによって1100℃に保持し、揮発物の生成が起こらないようにした。またドラム缶に供給する塩化亜鉛水溶液は水冷コンデンサーを介して2001の溶液タンクと接続、マグネットポンプにより循環をするようにした。また循環塩化亜鉛水曜器としてはとしては15%塩化亜鉛+5%塩酸水溶液(質量%)を循環した。なおこの循環水の水位はドラム管内では底部50mmまでとした。Further, as an exhaust gas treatment / recovery mechanism, a drum can made of SUS304 having an external zinc chloride aqueous solution circulation mechanism at the bottom was used. An acid resistant paint was applied to the inside of the drum to improve the corrosion resistance. The exhaust gas accompanying the silicon production was guided to the top of the drum tube with a quartz glass tube having an outer diameter of 30 mm. In addition, a heater was directly wound around the quartz glass tube for exhaust gas, and the temperature was kept at 1100 ° C. to prevent generation of volatile matter. The zinc chloride aqueous solution supplied to the drum can was connected to a 2001 solution tank via a water-cooled condenser and circulated by a magnet pump. As a circulating zinc chloride water container, 15% zinc chloride + 5% aqueous hydrochloric acid solution (mass%) was circulated. The water level of the circulating water was up to 50 mm at the bottom in the drum tube.

この装置について、以下運転を行った。つまり上記の様に亜鉛ワイヤーを20mm/秒で供給し、亜鉛蒸発槽への亜鉛の投入が確認されてから30秒後から四塩化ケイ素の滴下を開始した。四塩化ケイ素の供給量は0.5g/秒であった。60分間の運転により、252gの褐色のシリコン微粉末を得ることが出来た。なお供給亜鉛は理論量として、16.7%の過剰であった。また排ガス処理ドラム中の塩化亜鉛水溶液には、部分的に酸化ケイ素の沈殿物を含んでいた。これにより亜鉛を過剰に加えても未反応四塩化ケイ素がある程度出てくることがわかった。なお酸化ケイ素の沈殿は竜が大きいので100ミクロン程度の目開きの濾布で容易に分離できた。This apparatus was operated as follows. That is, as described above, zinc wire was supplied at a rate of 20 mm / second, and dripping of silicon tetrachloride was started 30 seconds after the introduction of zinc into the zinc evaporation tank was confirmed. The supply amount of silicon tetrachloride was 0.5 g / second. By running for 60 minutes, 252 g of brown silicon fine powder could be obtained. The supplied zinc was in excess of 16.7% as a theoretical amount. In addition, the zinc chloride aqueous solution in the exhaust gas treatment drum partially contained silicon oxide precipitates. As a result, it was found that unreacted silicon tetrachloride appears to some extent even when zinc is added excessively. Since the precipitate of silicon oxide was large, it could be easily separated with a filter cloth having an opening of about 100 microns.

実施例2の装置のシリコン保持容器の底部図4に見られるように角度20度でガスを受ける要素部分を最上部として傾けるようにし、その底部の他に直径60mmの石英ガラス製のパイプを取り付けた。傾斜部の長さはこのパイプの長さは600mmであり最上部の温度を1000℃、最下部の温度を200℃になるように温度勾配をつけた。また最下部にはアルゴンガスを満たした石英ガラス製の容器を取り付けた。この容器は上部に蓋を有し上部からここに落ちてきたシリコンを連続的に取り出すことが出来るようにした。実施例2と同じ条件でシリコン製造試験を行ったところ、開始15分くらいから僅かにシリコンと思われる褐色の噴霧粒子と共に沈殿が落ち始めた。温度が200℃であるので上からこれらを取り出すことが出来た。The bottom of the silicon holding container of the apparatus of Example 2 As shown in FIG. 4, the element receiving the gas is tilted at the top at an angle of 20 degrees, and a quartz glass pipe having a diameter of 60 mm is attached in addition to the bottom. It was. The length of the inclined portion was 600 mm, and a temperature gradient was applied so that the uppermost temperature was 1000 ° C. and the lowermost temperature was 200 ° C. A quartz glass container filled with argon gas was attached at the bottom. This container had a lid at the top so that silicon that had fallen from the top could be continuously taken out. When a silicon production test was performed under the same conditions as in Example 2, precipitation started to fall with brown spray particles that seemed to be slightly silicon from about 15 minutes from the start. Since the temperature was 200 ° C., these could be taken out from above.

ソーラセル用としてはもちろんであるが、特にリチウムイオン電池負極用や窒化ケイ素原料としての微粉末高純度シリコンを、現在のシリコン製造に必要とする電力の数分の一でしかも従来報告されたことのない微粉末の状態で製造する製造装置であり、今後のエネルギー問題、COによる地球温暖化問題などを解消できる重要な切り札となる技術である。特に現行のリチウムイオン二次電池の特性を大幅に向上できる可能性を有するので今後大きく拡大すると考えられるハイブリッド、並びに電気自動車用二次電池原料製造用として極めて広く使用されると考える。Of course, it has been reported in the past as a fraction of the power required for current silicon production, especially for solar cells, and fine powder high-purity silicon as a negative electrode for lithium ion batteries and as a raw material for silicon nitride. It is a manufacturing device that manufactures in the state of fine powder, and is an important trump card technology that can solve future energy problems and global warming problems due to CO 2 . In particular, since it has the potential to greatly improve the characteristics of current lithium ion secondary batteries, it is considered to be extremely widely used for producing secondary batteries for electric vehicles and hybrids that are expected to expand greatly in the future.

本発明の製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus of this invention. 本発明の製造装置の概念図であり、シリコンの沈殿部を傾斜管としたものである。It is a conceptual diagram of the manufacturing apparatus of this invention, and makes the precipitation part of silicon into the inclination pipe | tube. 本発明の製造装置の概念図であり、排ガス処理部に水の循環機構を設けたものである。It is a conceptual diagram of the manufacturing apparatus of this invention, and provides the water circulation mechanism in the waste gas treatment part. 本発明の製造装置の概念図であり、シリコン保持容器から連続的にシリコンを取り出す機構を設けたものである。It is a conceptual diagram of the manufacturing apparatus of this invention, and is provided with the mechanism which takes out silicon | silicone continuously from a silicon holding container.

1 亜鉛供給口
11 アルゴンガス導入口
12 亜鉛液供給器
2 亜鉛蒸発槽
3 ガス加熱部
4 四塩化ケイ素を供給する機構
41 四塩化ケイ素供給口
42 亜鉛ガスの通過部
5 シリコンを含む反応ガスを生成する機構
51 ガスを乱流化する要素(スクエアミキサー)
52 ガスを乱流化する要素(邪魔板)
6 シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(垂直管)
61 シリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構(傾斜管)
7 固体シリコンを得る機構
8 排ガス機構
9 排ガス処理部
91 排気口
100 ポンプ
200 塩化亜鉛液タンク
300 冷却要素
400 シリコン取り出し機構
DESCRIPTION OF SYMBOLS 1 Zinc supply port 11 Argon gas introduction port 12 Zinc liquid supply device 2 Zinc evaporation tank 3 Gas heating part 4 Silicon tetrachloride supply mechanism 41 Silicon tetrachloride supply port 42 Zinc gas passage part 5 Generates reaction gas containing silicon Mechanism 51 Element to make gas turbulent (square mixer)
52 Elements that make gas turbulent (baffle plates)
6 Mechanism of growing silicon particles and precipitating together with some gas components (vertical tube)
61 Mechanism for growing silicon particles and precipitating together with a part of gas components (inclined tube)
7 Mechanism for obtaining solid silicon 8 Exhaust gas mechanism 9 Exhaust gas processing unit 91 Exhaust port 100 Pump 200 Zinc chloride tank 300 Cooling element 400 Silicon extraction mechanism

Claims (13)

高純度シリコン微粉末の製造装置において(1)金属亜鉛を亜鉛の沸点以上に加熱蒸発して亜鉛ガスを供給する機構と(2)該亜鉛ガス中に液状の四塩化ケイ素を供給する機構と、(3)前記亜鉛ガスと前記四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構と、(4)前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈殿する機構と(5)前記沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構と、(6)前記蒸発物を含み、未反応ガス等を含む排ガスを系外に排出する排ガス機構を含んでなることを特徴とする高純度シリコン微粉末の製造装置。(1) a mechanism for supplying zinc gas by heating and evaporating metal zinc above the boiling point of zinc, and (2) a mechanism for supplying liquid silicon tetrachloride in the zinc gas. (3) a mechanism for producing a reaction gas containing silicon particles by mixing and stirring the zinc gas and the silicon tetrachloride, and (4) silicon produced by reducing the temperature of the reaction gas to 300 ° C. to 800 ° C. A mechanism for growing particles and precipitating together with a part of the gas component; and (5) a mechanism for retaining the precipitate and heating the precipitate to 950 ° C. or more to volatilize the evaporate to obtain solid silicon. (6) An apparatus for producing high-purity silicon fine powder, characterized in that it comprises an exhaust gas mechanism that exhausts exhaust gas containing the evaporant and containing unreacted gas and the like out of the system. 前記亜鉛ガスを供給する機構が、高純度の固体又は液状の亜鉛を定量的に亜鉛の沸点〜1300℃でガス化するガス化部と、該生成した亜鉛ガスを加熱し、温度を調整する調整部よりなり、温度を調整した亜鉛ガスを定量的に供給するようにしてなることを特徴とする請求項1の高純度シリコン微粉末の製造装置。The mechanism for supplying the zinc gas is a gasification unit that quantitatively gasifies high-purity solid or liquid zinc at a boiling point of zinc to 1300 ° C., and an adjustment for adjusting the temperature by heating the generated zinc gas. The apparatus for producing high-purity silicon fine powder according to claim 1, characterized in that zinc gas whose temperature is adjusted is quantitatively supplied. 四塩化ケイ素の供給機構が、前記亜鉛ガス供給機構から供給され通過する様にした亜鉛ガスの通過部を有し、該通過部内に液状の四塩化ケイ素を定量的に噴霧ないし滴下する供給部を有することを特徴とする請求項1の高純度シリコン微粉末の製造装置。The silicon tetrachloride supply mechanism has a zinc gas passage section that is supplied and passed from the zinc gas supply mechanism, and a supply section that quantitatively sprays or drops liquid silicon tetrachloride in the passage section. The high purity silicon fine powder production apparatus according to claim 1, comprising: 前記四塩化ケイ素の供給機構の亜鉛ガスの通過部の温度が1050℃〜1300℃に保持されてなることを特徴とする請求項1又は3の高純度シリコン微粉末の製造装置。The high purity silicon fine powder producing apparatus according to claim 1 or 3, wherein the temperature of the zinc gas passage part of the silicon tetrachloride supply mechanism is maintained at 1050C to 1300C. 前記亜鉛ガスと四塩化ケイ素を混合攪拌して反応させシリコン粒子を含む反応ガスを生成する機構が、温度1050℃〜1250℃に保持された管状体であり、該管状体内部にガスを乱流化する要素を含むことを特徴とする請求項1の高純度シリコンの製造装置。The mechanism for generating a reaction gas containing silicon particles by mixing and stirring the zinc gas and silicon tetrachloride to react is a tubular body maintained at a temperature of 1050 ° C. to 1250 ° C., and the gas is turbulently flown inside the tubular body The high purity silicon manufacturing apparatus according to claim 1, further comprising an element to be converted. 前記ガスを乱流化する要素が、不等間隔に置かれた邪魔板からなることを特徴とする請求項5の高純度シリコン微粉末の製造装置。6. The apparatus for producing high-purity silicon fine powder according to claim 5, wherein the gas turbulent element comprises baffle plates arranged at unequal intervals. 前記ガスを乱流化する要素が、スクエアミキサーであることを特徴とする請求項5の高純度シリコン微粉末の製造装置。6. The high purity silicon fine powder producing apparatus according to claim 5, wherein the gas turbulent element is a square mixer. 前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈澱する機構が、300℃〜800℃の温度に保持された垂直管であることを特徴とする請求項1の高純度シリコン微粉末の製造装置。The mechanism for growing the silicon particles generated by lowering the temperature of the reaction gas to 300 ° C. to 800 ° C. and precipitating with a part of the gas component is a vertical tube maintained at a temperature of 300 ° C. to 800 ° C. 2. The apparatus for producing high-purity silicon fine powder according to claim 1. 前記反応ガスの温度を300℃〜800℃に下げて生成したシリコン粒子を成長させると共にガス成分の一部と共に沈澱する機構が、300℃〜800℃に保持され、水平に対して30度〜90度に傾斜した管体であり、シリコンを含む沈殿物を該管体中並びに内壁部に生成させると共に、該生成物が該管体内壁を伝って下方にある、前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構に送る様にしたことを特徴とする請求項1の高純度シリコン微粉末の製造装置。The mechanism of growing the silicon particles generated by lowering the temperature of the reaction gas to 300 ° C. to 800 ° C. and precipitating with a part of the gas components is maintained at 300 ° C. to 800 ° C., and 30 ° to 90 ° with respect to the horizontal. A tube inclined at a degree, and a precipitate containing silicon is generated in the tube and on the inner wall, and the generated precipitate is held along the wall of the tube and holds the generated precipitate. The apparatus for producing high-purity silicon fine powder according to claim 1, wherein the precipitate is heated to 950 ° C. or more to volatilize the evaporated material and sent to a mechanism for obtaining solid silicon. 前記沈殿物を950℃以上に加温し蒸発物を揮散して、固体シリコンを得る機構が前記(4)に記載の機構からのシリコンを含有する沈殿物を含むガスを受ける要素とシリコン保持容器並びに排ガスを排出する要素を有することを特徴とする請求項1の高純度シリコン微粉末の製造装置。A mechanism for heating the precipitate to 950 ° C. or more, volatilizing the evaporate, and obtaining solid silicon is an element that receives a gas containing a precipitate containing silicon from the mechanism described in (4) above and silicon holding 2. The apparatus for producing high-purity silicon fine powder according to claim 1, further comprising a container and an element for discharging exhaust gas . 前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構がシリコン保持容器の底部に1000〜1100℃に保持したヒータを有し下方から加温するようにしたことを特徴とする請求項1または10の高純度シリコン微粉末の製造装置。A heater that holds the generated precipitate, heats the precipitate to 950 ° C. or more, volatilizes the evaporate, and obtains solid silicon is held at 1000 to 1100 ° C. at the bottom of the silicon holding container. The apparatus for producing high-purity silicon fine powder according to claim 1 or 10, wherein the apparatus is heated from below. 前記生成した沈殿物を保持すると共に、該沈殿物を950℃以上に加温し、蒸発物を揮散して、固体シリコンを得る機構のシリコン保持容器に生成したシリコンを反応中にも取り出せる様にした取り出し要素を有する事を特徴とする請求項1,10,11のいずれかの高純度シリコン微粉末の製造装置。While maintaining the generated precipitate, the precipitate is heated to 950 ° C. or more, and the evaporated material is volatilized so that the generated silicon can be taken out during the reaction in the silicon holding container of the mechanism for obtaining solid silicon. The apparatus for producing a high-purity silicon fine powder according to any one of claims 1, 10, and 11, wherein the take-out element is provided. 前記排ガスを排出する要素が、排ガスの処理機構に接続していることを特徴とする請求項10の高純度シリコン微粉末の製造装置。The apparatus for producing high-purity silicon fine powder according to claim 10, wherein the element that discharges the exhaust gas is connected to an exhaust gas treatment mechanism.
JP2010265715A 2010-11-11 2010-11-11 High purity silicon fine powder production equipment Expired - Fee Related JP5574295B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010265715A JP5574295B2 (en) 2010-11-11 2010-11-11 High purity silicon fine powder production equipment
KR1020137012075A KR101525859B1 (en) 2010-11-11 2011-11-11 Apparatus for manufacturing fine powder of high purity silicon
PCT/KR2011/008342 WO2012064047A2 (en) 2010-11-11 2011-11-11 Apparatus for manufacturing fine powder of high purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265715A JP5574295B2 (en) 2010-11-11 2010-11-11 High purity silicon fine powder production equipment

Publications (2)

Publication Number Publication Date
JP2012101997A JP2012101997A (en) 2012-05-31
JP5574295B2 true JP5574295B2 (en) 2014-08-20

Family

ID=46051382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265715A Expired - Fee Related JP5574295B2 (en) 2010-11-11 2010-11-11 High purity silicon fine powder production equipment

Country Status (3)

Country Link
JP (1) JP5574295B2 (en)
KR (1) KR101525859B1 (en)
WO (1) WO2012064047A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088774B2 (en) * 2018-07-31 2022-06-21 株式会社トクヤマ Silicon fine particle manufacturing equipment
KR102199812B1 (en) * 2019-05-15 2021-01-07 (주)다인스 Wet Type Manufacturing Method of Nano Powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200703B2 (en) * 2002-06-19 2008-12-24 豊 蒲池 Silicon manufacturing apparatus and method
JP4462839B2 (en) * 2003-03-19 2010-05-12 株式会社キノテック・ソーラーエナジー Silicon manufacturing apparatus and manufacturing method
JP2004210594A (en) * 2002-12-27 2004-07-29 Takayuki Shimamune Method of manufacturing high purity silicon
JP5194404B2 (en) * 2005-08-19 2013-05-08 住友化学株式会社 Method for producing silicon
JP2007284259A (en) * 2006-04-12 2007-11-01 Shin Etsu Chem Co Ltd Method and apparatus for producing silicon
JP2008037735A (en) * 2006-08-02 2008-02-21 Kinotech Corp Apparatus for manufacturing silicon
JP4428484B2 (en) * 2007-07-03 2010-03-10 有限会社シーエス技術研究所 High purity silicon production equipment
JP4392675B1 (en) * 2008-07-25 2010-01-06 有限会社シーエス技術研究所 High purity silicon production equipment

Also Published As

Publication number Publication date
JP2012101997A (en) 2012-05-31
KR20130097219A (en) 2013-09-02
WO2012064047A3 (en) 2012-07-19
KR101525859B1 (en) 2015-06-03
WO2012064047A2 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
JP5886831B2 (en) Generation of single crystal semiconductor materials
JP4038110B2 (en) Method for producing silicon
TWI386526B (en) Production process for high purity polycrystal silicon and production apparatus for the same
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
JP2007145663A (en) Method for producing high purity polycrystalline silicon
WO2004035472A1 (en) Process for producing high-purity silicon and apparatus
JP4428484B2 (en) High purity silicon production equipment
JP4392675B1 (en) High purity silicon production equipment
JP5533601B2 (en) High purity silicon fine powder production equipment
JP5574295B2 (en) High purity silicon fine powder production equipment
JP4692324B2 (en) High purity polycrystalline silicon production equipment
JP2008037735A (en) Apparatus for manufacturing silicon
JP4392670B2 (en) Manufacturing method of high purity silicon
JP4392671B2 (en) Silicon production equipment
TWI482736B (en) Manufacture of high purity silicon micropowder
JP5475708B2 (en) Titanium production method and production apparatus
JP5586005B2 (en) Method for producing silicon
TWI471267B (en) Manufacture of high purity silicon fine particles
JP2011132091A (en) Apparatus and method for separating-to-recover
JP2022049196A (en) METHOD FOR CONTINUOUSLY GENERATING SILICON MONOXIDE (SiO) GAS
JP2010076951A (en) Method for producing silicon
JP5419971B2 (en) Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon
JPS62292607A (en) Method and apparatus for producing fine powder by cvd
JP2014043384A (en) Treatment apparatus of exhaust gas and treatment method of exhaust gas using the same
JP2015040150A (en) Method for producing almost spherical silicon powder, and almost spherical silicon powder

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5574295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees