JP5573797B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP5573797B2
JP5573797B2 JP2011175024A JP2011175024A JP5573797B2 JP 5573797 B2 JP5573797 B2 JP 5573797B2 JP 2011175024 A JP2011175024 A JP 2011175024A JP 2011175024 A JP2011175024 A JP 2011175024A JP 5573797 B2 JP5573797 B2 JP 5573797B2
Authority
JP
Japan
Prior art keywords
solar cell
infrared
light
diffraction grating
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011175024A
Other languages
Japanese (ja)
Other versions
JP2013038323A (en
Inventor
川井  正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011175024A priority Critical patent/JP5573797B2/en
Publication of JP2013038323A publication Critical patent/JP2013038323A/en
Application granted granted Critical
Publication of JP5573797B2 publication Critical patent/JP5573797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

この発明は、太陽電池の温度上昇を抑制して、発電効率(変換効率)を改善することができる太陽電池モジュールに関するものである。   The present invention relates to a solar cell module capable of improving the power generation efficiency (conversion efficiency) by suppressing the temperature rise of the solar cell.

従来、太陽光などの光によって発電を行う太陽電池においては、その発電効率を高めるために、各種の工夫がなされている。
例えば、太陽電池は、光の全波長域に対して同一の発電効率を持つわけではなく、材料自体の特性によって最大効率の波長域が異なるので、最大効率の波長域が異なる材料の太陽電池を薄膜状にして複数層重ねることによって、利用できる波長域を広げるようにした、所謂、複層太陽電池(タンデム太陽電池)が開発されている。
2. Description of the Related Art Conventionally, various devices have been made to increase the power generation efficiency of solar cells that generate power using light such as sunlight.
For example, solar cells do not have the same power generation efficiency for the entire wavelength range of light, and the maximum efficiency wavelength range differs depending on the characteristics of the material itself. A so-called multi-layer solar cell (tandem solar cell) has been developed in which a plurality of layers are formed into a thin film to expand the usable wavelength range.

また、蛍光光学板等の波長変換板や蛍光色素をガラス基板に塗布した部材を用い、波長変換により太陽光を発電効率の低い波長から発電効率の高い波長に変換し、太陽電池に入射するようにした構造の太陽電池モジュールが提案されている(下記特許文献1参照)。   Also, using a wavelength conversion plate such as a fluorescent optical plate or a member coated with a fluorescent dye on a glass substrate, sunlight is converted from a wavelength with low power generation efficiency to a wavelength with high power generation efficiency by wavelength conversion so as to be incident on the solar cell. A solar cell module having a structure as described above has been proposed (see Patent Document 1 below).

更に、波長変換板の端面に太陽電池を貼り合わせ、波長変換板の導波作用(全反射)により、側面の太陽電池に光が入射するようにした構造の太陽電池モジュールも提案されている(下記特許文献2参照)。   Furthermore, a solar cell module having a structure in which a solar cell is bonded to the end surface of the wavelength conversion plate and light is incident on the solar cell on the side surface by the waveguide action (total reflection) of the wavelength conversion plate has been proposed ( See Patent Document 2 below).

特公平8−4147号公報Japanese Patent Publication No.8-4147 特開昭57−95675号公報JP-A-57-95675

しかしながら、上述した様に、利用できる波長域を広げたり、波長変換を行ったり、太陽光を効率よく集光して、太陽電池の発電効率を改善しようとした場合でも、太陽電池の温度が上昇した場合には、発電効率が低下してしまうという問題があった。   However, as described above, even when attempting to improve the power generation efficiency of the solar cell by expanding the usable wavelength range, performing wavelength conversion, or concentrating sunlight efficiently, the temperature of the solar cell rises. In this case, there is a problem that the power generation efficiency is lowered.

特に、シリコン系の太陽電池(Si太陽電池)の場合には、温度上昇に伴って発電効率が大きく低下するので、その対策が望まれていた。
この対策として、即ち、Si太陽電池の温度上昇を抑制するために、例えばSi太陽電池に隣接して冷却システムを構成する方法などが考えられるが、その場合には、太陽電池モジュールの構造が複雑になったり、コストが上昇するなどの問題があるので、必ずしも十分ではない。
In particular, in the case of a silicon-based solar cell (Si solar cell), the power generation efficiency is greatly reduced as the temperature rises.
As a countermeasure for this, in order to suppress the temperature rise of the Si solar cell, for example, a method of configuring a cooling system adjacent to the Si solar cell is conceivable. In that case, the structure of the solar cell module is complicated. It is not always sufficient because there are problems such as increasing costs and increasing costs.

本発明は、上記問題を解決するためになされたものであり、その目的は、簡易な構成で容易に製造できるとともに、太陽電池の温度上昇を効果的に抑制して、発電効率に優れた太陽電池モジュールを提供することである。   The present invention has been made in order to solve the above-described problems. The object of the present invention is to provide a solar cell that can be easily manufactured with a simple configuration, effectively suppresses the temperature rise of the solar cell, and has excellent power generation efficiency. It is to provide a battery module.

(1)請求項1の発明は、赤外線を含む光を受光して発電する第1の太陽電池を備えた太陽電池モジュールにおいて、前記光が前記第1の太陽電池に入射する経路に、前記赤外線を回折する赤外線回折格子を配置するとともに、該赤外線回折格子を配置しない場合に比べて前記第1の太陽電池に入射する赤外線の入射角が大きくなるように、該赤外線回折格子を配置し、更に、前記第1の太陽電池より赤外線の感度の高い第2の太陽電池を備えるとともに、前記赤外線回折格子による赤外線の回折側に、前記第2の太陽電池を配置したことを特徴とする。 (1) The invention of claim 1 is a solar cell module including a first solar cell that receives light including infrared rays to generate electric power, and the infrared ray is provided in a path where the light enters the first solar cell. And arranging the infrared diffraction grating so that the incident angle of the infrared light incident on the first solar cell is larger than the case where the infrared diffraction grating is not disposed . A second solar cell having higher infrared sensitivity than the first solar cell is provided, and the second solar cell is disposed on the infrared diffraction side of the infrared diffraction grating .

本発明では、第1の太陽電池の受光側に赤外線回折格子を配置するとともに、赤外線回折格子を配置しない場合に比べて第1の太陽電池に入射する赤外線の入射角が大きくなるように、赤外線回折格子を配置しているので、赤外線回折格子を配置しない場合に比べて赤外光が第1の太陽電池に入射しにくくなり、よって、第1の太陽電池の温度上昇を抑制することができる。   In the present invention, an infrared diffraction grating is arranged on the light receiving side of the first solar cell, and an infrared ray is incident so that an incident angle of infrared rays incident on the first solar cell is larger than a case where no infrared diffraction grating is arranged. Since the diffraction grating is disposed, infrared light is less likely to be incident on the first solar cell than in the case where the infrared diffraction grating is not disposed, and thus the temperature increase of the first solar cell can be suppressed. .

例えば太陽光が第1の太陽電池に入射する構成を考えた場合、その太陽光のうちの赤外線は、温度上昇に大きく関与するものであるので、赤外線が第1の太陽電池にそのまま入射した場合には、第1の太陽電池の温度が上昇し易い。   For example, when a configuration in which sunlight is incident on the first solar cell is considered, since infrared rays in the sunlight are largely involved in the temperature rise, the infrared rays are incident on the first solar cell as they are. The temperature of the first solar cell is likely to rise.

そこで、本発明では、赤外線が第1の太陽電池に入射する入射角が大きくなるように(即ち赤外線が第1の太陽電池に入射しにくいように)設定しているので、第1の太陽電池の温度上昇を効果的に抑制できる。   Therefore, in the present invention, since the incident angle at which the infrared rays are incident on the first solar cell is set to be large (that is, the infrared rays are not likely to be incident on the first solar cell), the first solar cell is set. Temperature rise can be effectively suppressed.

ここで、第1の太陽電池への赤外線の入射角が大きくなると、第1の太陽電池に入射する赤外線が少なくなる理由は、赤外線の入射角が大きくなると、赤外線は第1の太陽電池の表面で反射し易くなるからである。また、赤外線の入射角が大きくなると、(第1の太陽電池で受光する)単位面積当たりの赤外線量が小さくなるからである。   Here, when the incident angle of the infrared rays to the first solar cell is increased, the infrared rays incident on the first solar cell is decreased. When the incident angle of the infrared rays is increased, the infrared ray is the surface of the first solar cell. It is because it becomes easy to reflect. Further, when the incident angle of infrared rays increases, the amount of infrared rays per unit area (received by the first solar cell) decreases.

これにより、特別な冷却システムを用いることなく、従来より簡易な構成で、高い発電効率を実現することができる。
ここで、前記赤外線回折格子とは、入射した赤外線を所定方向に回折して出射する部材であり、この部材としては、例えば(赤外線の)ホログラムが挙げられる。
As a result, high power generation efficiency can be realized with a simpler configuration than before without using a special cooling system.
Here, the infrared diffraction grating is a member that diffracts incident infrared rays in a predetermined direction and emits them, and examples of the member include an (infrared) hologram.

また、前記赤外線の入射角とは、第1の太陽電池の表面における法線となす角である。
前記第1の太陽電池としては、温度上昇によって発電効率が低下する太陽電池、例えば波長が400〜1100nmの可視光から近赤外における発電効率が高いシリコン系の太陽電池(例えば結晶質のSi太陽電池などが挙げられる。
The infrared incident angle is an angle formed with a normal line on the surface of the first solar cell.
As the first solar cell, a solar cell whose power generation efficiency is reduced by a temperature rise, for example, a silicon-based solar cell having high power generation efficiency from visible light having a wavelength of 400 to 1100 nm to near infrared (for example, crystalline Si solar cell). A battery etc. are mentioned.

更に、前記赤外線の波長としては、1100〜2000nmの範囲が挙げられる(なお、以下では境界値の波長1100nmは赤外線とする)。
なお、前記光としては、太陽光などのように、赤外線や可視光以外に、紫外線等の可視光以外の波長の電磁波を含むものが挙げられる(以下同様)。
Furthermore, as the wavelength of the infrared ray, a range of 1100 to 2000 nm can be mentioned (hereinafter, the boundary value wavelength 1100 nm is assumed to be infrared ray).
In addition, as said light, what contains electromagnetic waves of wavelengths other than visible light, such as an ultraviolet-ray other than infrared rays and visible light like sunlight, etc. are mentioned (same below).

また、本発明では、第1の太陽電池より赤外線の感度の高い第2の太陽電池を、赤外線回折格子によって回折した赤外線が向く側(回折側)に配置したので、第2の太陽電池には、多くの赤外線が入射する。 Moreover, in this invention, since the 2nd solar cell with higher infrared sensitivity than the 1st solar cell was arrange | positioned in the side (diffraction side) which the infrared rays diffracted by the infrared diffraction grating faced, in a 2nd solar cell, Many infrared rays are incident.

つまり、回折によって第1の太陽電池への赤外線の入射角が大きくなっているので、赤外線は第1の太陽電池の表面や後述する波長変換板の内表面や保護板の内表面で反射し易く、赤外線の回折側に導かれ易くなっている。従って、赤外線の回折側に、第2の太陽電池を配置することにより、赤外線を効率よく第2の太陽電池に入射させることができる。   That is, since the incident angle of infrared rays to the first solar cell is increased by diffraction, the infrared rays are easily reflected on the surface of the first solar cell, the inner surface of the wavelength conversion plate described later, and the inner surface of the protective plate. It is easy to be guided to the infrared diffraction side. Therefore, by arranging the second solar cell on the infrared diffraction side, the infrared light can be efficiently incident on the second solar cell.

しかも、この第2の太陽電池は、赤外線の感度が高い太陽電池、即ち、赤外線により(第1の太陽電池より)効率良く発電することができる太陽電池であるので、この第2の太陽電池に多くの赤外線が入射することにより、極めて効率よく発電ができるという顕著な効果を奏する。   In addition, since the second solar cell is a solar cell with high infrared sensitivity, that is, a solar cell that can generate power efficiently by infrared rays (than the first solar cell), When a large amount of infrared rays is incident, it has a remarkable effect that power can be generated extremely efficiently.

また、一般的に、赤外線に感度の高い太陽電池は高価であるが、本発明では、赤外線回折格子による赤外線の回折側に第2の太陽電池を配置することにより、効率良く赤外線を集光することができるので、第2の太陽電池の使用量を抑制でき、これにより、低コストを実現できる。   In general, a solar cell having high sensitivity to infrared rays is expensive. However, in the present invention, the infrared rays are efficiently collected by arranging the second solar cell on the infrared diffraction side of the infrared diffraction grating. Therefore, the usage amount of the second solar cell can be suppressed, thereby realizing low cost.

ここで、前記赤外線の回折側とは、赤外線が回折によって曲げられる側であり、特定の回折方向に限定される訳ではなく、回折によって曲げられる側であればよい。
なお、前記第2の太陽電池は、第1の太陽電池に比べて、赤外線によって効率よく発電ができるものであり、例えばGeを主成分とするGe太陽電池やInGaAs系太陽電池が挙げられる。なお、Ge太陽電池としては、例えばp型Ge(Bドープ)基板に、n型Ge(Pドープ)を拡散形成したものが挙げられる。
Here, the infrared diffraction side is a side on which infrared rays are bent by diffraction, and is not limited to a specific diffraction direction, and may be any side that is bent by diffraction.
The second solar cell can generate power more efficiently by infrared rays than the first solar cell, and examples thereof include a Ge solar cell mainly composed of Ge and an InGaAs solar cell. Examples of the Ge solar cell include a p-type Ge (B-doped) substrate in which n-type Ge (P-doped) is diffused.

)請求項の発明では、前記太陽電池モジュールは平板状であり、該太陽電池モジュールの平面方向における端面に、前記第2の太陽電池を備えたことを特徴とする。
本発明は、好ましい太陽電池モジュールの構成及び第2の太陽電池の配置を例示したものである。
( 2 ) The invention of claim 2 is characterized in that the solar cell module has a flat plate shape, and the second solar cell is provided on an end surface in a planar direction of the solar cell module.
This invention illustrates the structure of a preferable solar cell module and arrangement | positioning of a 2nd solar cell.

ここでは、第2の太陽電池は、平板状の太陽電池モジュールの平面方向における端面に配置されているので、高価な第2の太陽電池の使用量を最小限にできるとともに、高い発電効率にて発電することができる。つまり、太陽電池モジュール内で集光された赤外線等をその端面に配置された第2の太陽電池で受光するので、少ない受光面積であっても、効率よく発電することができる。   Here, since the second solar cell is disposed on the end surface in the planar direction of the flat plate solar cell module, the amount of the expensive second solar cell used can be minimized and the power generation efficiency is high. It can generate electricity. That is, since infrared rays or the like collected in the solar cell module are received by the second solar cell disposed on the end face, even if the light receiving area is small, power can be generated efficiently.

(3)請求項3の発明は、赤外線を含む光を受光して発電する第1の太陽電池を備えた太陽電池モジュールにおいて、前記光が入射する経路に前記第1の太陽電池を配置するとともに、前記第1の太陽電池を透過した光の経路に、前記赤外線を回折する赤外線回折格子を配置し、更に、前記赤外線回折格子による赤外線の回折側に、前記第1の太陽電池より赤外線の感度の高い第2の太陽電池を備えるとともに、前記赤外線回折格子によって回折された赤外線が、前記太陽電池モジュール内で反射して、前記第2の太陽電池に入射する構造を有することを特徴とする。
本発明では、第1の太陽電池より赤外線の感度の高い第2の太陽電池を、赤外線回折格子によって回折した赤外線が向く側(回折側)に配置したので、第2の太陽電池には、(太陽電池モジュール内で反射して)多くの赤外線が入射する。従って、赤外線を効率よく第2の太陽電池に入射させることができる。
しかも、この第2の太陽電池は、赤外線の感度が高い太陽電池、即ち、赤外線により(第1の太陽電池より)効率良く発電することができる太陽電池であるので、この第2の太陽電池に多くの赤外線が入射することにより、極めて効率よく発電ができるという顕著な効果を奏する。
また、一般的に、赤外線に感度の高い太陽電池は高価であるが、本発明では、赤外線回折格子によって回折された赤外線が(反射して)第2の太陽電池に入射する構造を有するので、効率良く赤外線を集光することができる。よって、第2の太陽電池の使用量を抑制でき、これにより、低コストを実現できる。
ここで、前記赤外線回折格子とは、入射した赤外線を所定方向に回折して出射する部材であり、この部材としては、例えば(赤外線の)ホログラムが挙げられる。
前記第1の太陽電池としては、温度上昇によって発電効率が低下する太陽電池、例えば波長が400〜1100nmの可視光から近赤外における発電効率が高いシリコン系の太陽電池(例えば結晶質のSi太陽電池などが挙げられる。
前記赤外線の波長としては、1100〜2000nmの範囲が挙げられる(なお、以下では境界値の波長1100nmは赤外線とする)。
なお、前記第2の太陽電池は、第1の太陽電池に比べて、赤外線によって効率よく発電ができるものであり、例えばGeを主成分とするGe太陽電池やInGaAs系太陽電池が挙げられる。なお、Ge太陽電池としては、例えばp型Ge(Bドープ)基板に、n型Ge(Pドープ)を拡散形成したものが挙げられる。
)請求項の発明では、前記第1の太陽電池は平板状であり、その板厚方向の両側から光を受光して発電が可能な両面受光太陽電池であることを特徴とする。
本発明では、第1の太陽電池は両面受光太陽電池であるので、周囲の光を効率よく利用して発電を行うことができる。
(3) The invention of claim 3 is a solar cell module including a first solar cell that receives light including infrared rays to generate electric power, and the first solar cell is disposed in a path on which the light is incident. An infrared diffraction grating that diffracts the infrared light is disposed in the path of light that has passed through the first solar cell, and the infrared sensitivity of the infrared diffraction by the infrared diffraction grating is higher than that of the first solar cell. The second solar cell having a high height is provided, and the infrared rays diffracted by the infrared diffraction grating are reflected in the solar cell module and incident on the second solar cell.
In the present invention, since the second solar cell having higher infrared sensitivity than the first solar cell is disposed on the side facing the infrared rays diffracted by the infrared diffraction grating (diffraction side), the second solar cell includes ( Many infrared rays are incident (reflected in the solar cell module). Therefore, infrared rays can be efficiently incident on the second solar cell.
In addition, since the second solar cell is a solar cell with high infrared sensitivity, that is, a solar cell that can generate power efficiently by infrared rays (than the first solar cell), When a large amount of infrared rays is incident, it has a remarkable effect that power can be generated extremely efficiently.
In general, a solar cell having high sensitivity to infrared rays is expensive. However, in the present invention, since the infrared rays diffracted by the infrared diffraction grating (reflect) is incident on the second solar cell, Infrared rays can be collected efficiently. Therefore, the usage-amount of a 2nd solar cell can be suppressed, and low cost is realizable by this.
Here, the infrared diffraction grating is a member that diffracts incident infrared rays in a predetermined direction and emits them, and examples of the member include an (infrared) hologram.
As the first solar cell, a solar cell whose power generation efficiency is reduced by a temperature rise, for example, a silicon-based solar cell having high power generation efficiency from visible light having a wavelength of 400 to 1100 nm to near infrared (for example, crystalline Si solar cell). A battery etc. are mentioned.
Examples of the infrared wavelength include a range of 1100 to 2000 nm (in the following, the boundary wavelength of 1100 nm is infrared).
The second solar cell can generate power more efficiently by infrared rays than the first solar cell, and examples thereof include a Ge solar cell mainly composed of Ge and an InGaAs solar cell. Examples of the Ge solar cell include a p-type Ge (B-doped) substrate in which n-type Ge (P-doped) is diffused.
( 4 ) The invention of claim 4 is characterized in that the first solar cell has a flat plate shape, and is a double-sided light-receiving solar cell capable of generating power by receiving light from both sides in the plate thickness direction.
In the present invention, since the first solar cell is a double-sided light-receiving solar cell, power generation can be performed using ambient light efficiently.

)請求項の発明では、前記第1の太陽電池の受光側(即ち光を受光する経路)に、光の波長を前記第1の太陽電池による発電が可能な又は一層効率よく発電が可能な波長に変換する波長変換部材を備えたことを特徴とする。 ( 5 ) In the invention of claim 5 , power generation by the first solar cell is possible or more efficiently generated at the light receiving side of the first solar cell (that is, the path for receiving light). A wavelength conversion member for converting to a possible wavelength is provided.

本発明では、波長変換部材によって波長を、第1の太陽電池によって発電できる又はより効率よく発電できる波長に変換することにより、第1の太陽電池では、(波長変換しない場合比べて)効率よく発電することができる。   In the present invention, by converting the wavelength to a wavelength that can be generated by the first solar cell or more efficiently generated by the wavelength conversion member, the first solar cell can efficiently generate power (compared to the case where wavelength conversion is not performed). can do.

この波長変換部材としては、紫外線を可視光に変換する部材を採用できる。
前記波長変換部材としては、(波長変換を行う物質が添加された)透光性を有するフィルム、ガラス板、樹脂材等が挙げられる。フィルムの基材としては、例えば透光性を有するシリコーン樹脂等の樹脂を採用でき、ガラスとしては、例えばシリカ、酸化ホウ素系ガラスを採用でき、樹脂としては、例えばアクリル、ポリカーボネイトを採用できる。
As this wavelength conversion member, a member that converts ultraviolet light into visible light can be employed.
Examples of the wavelength conversion member include a translucent film (added with a substance that performs wavelength conversion), a glass plate, a resin material, and the like. As the film substrate, for example, a resin such as a translucent silicone resin can be employed. As the glass, for example, silica or boron oxide-based glass can be employed. As the resin, for example, acrylic or polycarbonate can be employed.

なお、波長変換を行う物質として、有機蛍光物質又は無機蛍光物質が挙げられる。有機蛍光物質としては、例えばペリレン、ナフタルイミド、Alq3等が挙げられ、無機蛍光物質としては、例えばY23:Eu、ZnS:Mn、ZnSe:Mn、ZnO:Li−Yb等が挙げられる。 In addition, an organic fluorescent substance or an inorganic fluorescent substance is mentioned as a substance which performs wavelength conversion. Examples of the organic fluorescent material include perylene, naphthalimide, and Alq3, and examples of the inorganic fluorescent material include Y 2 O 3 : Eu, ZnS: Mn, ZnSe: Mn, and ZnO: Li—Yb.

)請求項の発明では、前記第1の太陽電池の受光側(即ち光を受光する経路)に、透光性を有する保護板と充填材とを備えるとともに、該保護板と充填材との間に、光の波長を前記第1の太陽電池による発電が可能な又は一層効率よく発電が可能な波長に変換する波長変換層を備えたことを特徴とする。 ( 6 ) In the invention of claim 6 , the light-receiving side of the first solar cell (that is, the path for receiving light) is provided with a translucent protective plate and a filler, and the protective plate and the filler. And a wavelength conversion layer that converts the wavelength of light into a wavelength that enables power generation by the first solar cell or enables more efficient power generation.

本発明では、波長変換層によって波長を、第1の太陽電池によって発電できる又はより効率よく発電できる波長に変換することにより、第1の太陽電池では、(波長変換しない場合に比べて)効率よく発電することができる。   In the present invention, by converting the wavelength into a wavelength that can be generated by the first solar cell or more efficiently generated by the wavelength conversion layer, the first solar cell is more efficient (compared to the case where wavelength conversion is not performed). It can generate electricity.

前記波長変換層としては、前記波長変換を行う物質を含む材料を塗布してなる塗布層を採用できる。この材料としては、例えば有機蛍光物質(+樹脂バインダー)又は無機蛍光物質(+樹脂バインダー)が挙げられる。有機蛍光物質としては、例えばペリレン、ナフタルイミド、Alq3等が挙げられ、無機蛍光物質としては、例えばY23:Eu、ZnS:Mn、ZnSe:Mn、ZnO:Li−Yb等が挙げられる。 As the wavelength conversion layer, an application layer formed by applying a material containing a substance that performs the wavelength conversion can be employed. Examples of this material include an organic fluorescent substance (+ resin binder) or an inorganic fluorescent substance (+ resin binder). Examples of the organic fluorescent material include perylene, naphthalimide, and Alq3, and examples of the inorganic fluorescent material include Y 2 O 3 : Eu, ZnS: Mn, ZnSe: Mn, and ZnO: Li—Yb.

実施例1の太陽電池モジュールを示す斜視図である。1 is a perspective view showing a solar cell module of Example 1. FIG. 実施例1の太陽電池モジュールを(図1のA−Aにて)板厚方向に切断した状態を示す説明図である。It is explanatory drawing which shows the state which cut | disconnected the solar cell module of Example 1 in plate | board thickness direction (at AA of FIG. 1). 太陽光のスペクトルと太陽電池で利用できる波長との関係を示すグラフである。It is a graph which shows the relationship between the spectrum of sunlight, and the wavelength which can be utilized with a solar cell. ホログラムの位置に対応した赤外線の回折の状態(赤外線の密度)を示すグラフである。It is a graph which shows the state (infrared density) of the infrared diffraction corresponding to the position of a hologram. 実施例2の太陽電池モジュールを板厚方向に切断した状態を示す説明図である。It is explanatory drawing which shows the state which cut | disconnected the solar cell module of Example 2 in the plate | board thickness direction. 実施例3の太陽電池モジュールを板厚方向に切断した状態を示す説明図である。It is explanatory drawing which shows the state which cut | disconnected the solar cell module of Example 3 in the plate | board thickness direction.

次に、本発明の太陽電池モジュールの実施例について、いくつかの具体的な例を挙げて説明する。   Next, examples of the solar cell module of the present invention will be described with some specific examples.

a)まず、本実施例の太陽電池モジュールの構成について説明する。
図1及び図2に示す様に、本実施例の太陽電池モジュール1は、平面形状が長方形で板状の部材であり、その受光側(図2の上側)から、光(例えば太陽光)の波長を変換する波長変換板3と、透明な封止材層5と、バックシート7とを備えるとともに、封止材層5の内部には、4枚の赤外線回折格子9a、9b、9c、9d(9と総称する)と、左右一対の第1の太陽電池11a、11b(11と総称する)と、中央の第2の太陽電池13aとを備えている。
a) First, the configuration of the solar cell module of this example will be described.
As shown in FIGS. 1 and 2, the solar cell module 1 of the present embodiment is a plate-shaped member having a rectangular planar shape, and from the light receiving side (upper side in FIG. 2) of light (for example, sunlight). The wavelength conversion plate 3 for converting the wavelength, the transparent sealing material layer 5 and the back sheet 7 are provided, and four infrared diffraction gratings 9a, 9b, 9c and 9d are provided inside the sealing material layer 5. (Collectively referred to as 9), a pair of left and right first solar cells 11a, 11b (collectively referred to as 11), and a central second solar cell 13a.

なお、前記部材3、5、7、9、11は、板厚方向に対して垂直の方向(平面方向)に対して、それぞれ平行に配置されている。
また、図1に示す様に、太陽電池モジュール1の平面方向において、同図上下方向の端部、詳しくは、波長変換板3と封止材層5との積層体6における一対の端部には、側方の第2の太陽電池13b、13c(13aも含め13と総称する)を備えている。また、前記一対の端部に対して平面方向において直交する他の一対の端部(同図左右方向の端部)には、Al反射膜15a、15b(15と総称する)が形成されている。
The members 3, 5, 7, 9, and 11 are arranged in parallel to a direction (plane direction) perpendicular to the plate thickness direction.
Further, as shown in FIG. 1, in the planar direction of the solar cell module 1, the end portions in the vertical direction in FIG. Includes side second solar cells 13b and 13c (collectively referred to as 13 including 13a). In addition, Al reflective films 15a and 15b (generally referred to as 15) are formed on another pair of end portions (end portions in the left-right direction in the figure) orthogonal to the pair of end portions in the plane direction. .

以下、各構成について説明する。
図2に示す様に、前記波長変換板3は、太陽光のうちの紫外線を、第1の太陽電池11の感度の高い可視光に波長変換する部材である。
Each configuration will be described below.
As shown in FIG. 2, the wavelength conversion plate 3 is a member that converts the wavelength of ultraviolet light in sunlight into visible light having high sensitivity of the first solar cell 11.

この波長変換板3としては、例えばルミラスG9(商品名)からなる波長変換板を使用できる。この波長変換板は、Tb添加の蛍光ガラス(B23・CaO・SiO2・La2O3・Tb3+)から構成されており、光の波長400nm以下の紫外線領域で光を吸収し、545nmの波長で蛍光を示す。 As the wavelength conversion plate 3, for example, a wavelength conversion plate made of Lumilas G9 (trade name) can be used. This wavelength conversion plate is made of Tb-added fluorescent glass (B 2 O 3 · CaO · SiO 2 · La 2 O 3 · Tb 3+ ), and absorbs light in the ultraviolet region of light having a wavelength of 400 nm or less. Fluorescence is shown at a wavelength of 545 nm.

また、これ以外に、波長変換光学板としては、例えばアクリル(PMMA)からなる透明な樹脂中に、例えばLumogen(商品名:BASF社製)からなる有機蛍光物資(有機蛍光色素)が混入されたものなどを利用できる。   In addition to this, as the wavelength conversion optical plate, an organic fluorescent material (organic fluorescent dye) made of, for example, Lumogen (trade name: manufactured by BASF) was mixed in a transparent resin made of, for example, acrylic (PMMA). Things can be used.

前記封止材層5は、赤外線回折格子9と第1の太陽電池11と中央の第2の太陽電池13aとを封止する透明な部材であり、例えば、エチレン−酢酸ビニル重合体又はシリコーン樹脂から構成されている。   The sealing material layer 5 is a transparent member that seals the infrared diffraction grating 9, the first solar cell 11, and the central second solar cell 13 a, and is, for example, an ethylene-vinyl acetate polymer or a silicone resin. It is composed of

詳しくは、封止材層5は、上側封止材層5a、中央封止材層5b、下側封止材層5cの3層からなり、上側封止材層5aと中央封止材層5bとの間に、赤外線回折格子9が配置され、中央封止材層5bと下側封止材層5cとの間に、第1の太陽電池11及び中央の第2の太陽電池13aが配置されている。   Specifically, the sealing material layer 5 includes three layers of an upper sealing material layer 5a, a central sealing material layer 5b, and a lower sealing material layer 5c, and the upper sealing material layer 5a and the central sealing material layer 5b. Between the central sealing material layer 5b and the lower sealing material layer 5c, the first solar cell 11 and the central second solar cell 13a are disposed. ing.

前記バックシート7は、積層される部材を支える基材であり、例えばPVF(ポリビニルフロライド)、PVDF(ポリフッ化ビニリデン)のフッ素樹脂、PET(ポリエチレンテレフタレート)にフッ素化合物をコーティングしたものなどを採用できる。   The back sheet 7 is a base material that supports the members to be laminated. For example, a PVF (polyvinyl fluoride), PVDF (polyvinylidene fluoride) fluororesin, or PET (polyethylene terephthalate) coated with a fluorine compound is used. it can.

前記左右一対の第1の太陽電池11は、中央の第2の太陽電池13aを挟んで、板厚方向と垂直の同一平面に配置された平面形状が長方形の部材であり、例えばバンドギャップ1.1eVのSi単結晶太陽電池(Si太陽電池)である。   The pair of left and right first solar cells 11 is a member having a rectangular planar shape arranged on the same plane perpendicular to the plate thickness direction with the second solar cell 13a at the center in between. This is a 1 eV Si single crystal solar cell (Si solar cell).

ここでは、一対の第1の太陽電池11は、中央の第2の太陽電池13aを挟んで、左右方向に所定の間隔を介して、左右対称に配置されている。
この第1の太陽電池11は、図3に示す様な分光特性(各波長の光に対する光の強度:分校放射照度)を有している。即ち、第1の太陽電池11は、波長が0.4〜1.1μmの光に対して感度を有し、その波長の光を受光して発電することができる。
Here, the pair of first solar cells 11 are arranged symmetrically with a predetermined interval in the left-right direction with the second solar cell 13a at the center interposed therebetween.
The first solar cell 11 has spectral characteristics (light intensity with respect to light of each wavelength: branch irradiance) as shown in FIG. That is, the first solar cell 11 is sensitive to light having a wavelength of 0.4 to 1.1 μm, and can generate light by receiving light of that wavelength.

なお、この一対の太陽電池11及び中央の第2の太陽電池13aは、赤外線回折格子9に平行に配置されている。
図2に戻り、前記第2の太陽電池13は、第1の太陽電池11より赤外線の感度の高い太陽電池、即ち、赤外線により(第1の太陽電池11より)効率良く発電することができる太陽電池である。
The pair of solar cells 11 and the center second solar cell 13 a are arranged in parallel to the infrared diffraction grating 9.
Returning to FIG. 2, the second solar cell 13 is a solar cell having higher infrared sensitivity than the first solar cell 11, that is, the sun that can generate power efficiently by infrared rays (than the first solar cell 11). It is a battery.

この第2の太陽電池13としては、波長1μm〜2μmの光にて発電ができ、特に波長1〜1.6μmの赤外線に感度の高い太陽電池が挙げられる。例えばGeを主成分とするGe太陽電池、例えばp型Ge(Bドープ)基板に、n型Ge(Pドープ)を拡散形成したものが挙げられる。   As this 2nd solar cell 13, electric power can be generated with the light of wavelength 1 micrometer-2 micrometers, and especially a solar cell with high sensitivity to infrared rays with a wavelength of 1-1.6 micrometers is mentioned. For example, a Ge solar cell having Ge as a main component, for example, a p-type Ge (B-doped) substrate in which n-type Ge (P-doped) is diffused may be mentioned.

本実施例では、第2の太陽電池13は、3箇所に分かれて配置されている。
具体的には、中央の第2の太陽電池13aは、短冊状であり、左右の第1の太陽電池11に挟まれるとともに、この両第1の太陽電池11と同一の平面に配置されている。
In the present embodiment, the second solar cell 13 is arranged in three places.
Specifically, the second solar cell 13a at the center has a strip shape, is sandwiched between the first solar cells 11 on the left and right sides, and is disposed on the same plane as the first solar cells 11 on both sides. .

一方、側方の第2の太陽電池13b、13cは、波長変換板3と封止材層5との積層体6の側方(同図左右方向)に、前記積層体6からの反射光を受光できるように、板厚方向と平行に積層体6の端面を覆うように配置されている。   On the other hand, the second solar cells 13b and 13c on the side receive the reflected light from the laminate 6 on the side (horizontal direction in the figure) of the laminate 6 of the wavelength conversion plate 3 and the sealing material layer 5. It arrange | positions so that the end surface of the laminated body 6 may be covered in parallel with a plate | board thickness direction so that it can light-receive.

特に、本実施例では、一対の第1の太陽電池11と中央の第2の太陽電池13aとの受光側に、若干の空間を介して、波長1.1〜2.0μmの赤外線を所定方向に回折させるシート状の赤外線回折格子(ホログラム)9を備えている。この赤外線回折格子9は、赤外線以外の光、即ち波長400〜1100nmの可視光(含む近赤外)及び波長300〜400nmの紫外線はそのまま透過させる透光性を有している。   In particular, in the present embodiment, infrared light having a wavelength of 1.1 to 2.0 μm is transmitted in a predetermined direction through a slight space on the light receiving side of the pair of first solar cells 11 and the central second solar cell 13a. A sheet-like infrared diffraction grating (hologram) 9 is provided. The infrared diffraction grating 9 has translucency that allows light other than infrared light, that is, visible light (including near infrared) having a wavelength of 400 to 1100 nm and ultraviolet light having a wavelength of 300 to 400 nm to pass through as they are.

前記赤外線回折格子9は、同図の左側から、第1赤外線回折格子9a及びそれに隣接する第2赤外線回折格子9bと、第3赤外線回折格子9c及びそれに隣接する第4赤外線回折格子9dとからなり、それらは同一平面に配置されている。   The infrared diffraction grating 9 includes a first infrared diffraction grating 9a, a second infrared diffraction grating 9b adjacent thereto, a third infrared diffraction grating 9c, and a fourth infrared diffraction grating 9d adjacent thereto, from the left side of FIG. , They are arranged in the same plane.

このうち、第1、第2の赤外線回折格子9a、9bは、(第1の赤外線回折格子9aが無い場合に比べて)左側の第1の太陽電池11aに対する赤外線の入射角が大きくなるように赤外線を回折させるものである。この第1、第2の赤外線回折格子9a、9bは、左側の第1の太陽電池11aへの投影領域が、当該左側の第1の太陽電池11aの範囲に含まれるように、第1の太陽電池11aの真上(受光側)に配置されている。   Among these, the first and second infrared diffraction gratings 9a and 9b have an infrared incident angle with respect to the left first solar cell 11a (compared to the case without the first infrared diffraction grating 9a). It diffracts infrared rays. The first and second infrared diffraction gratings 9a and 9b are arranged so that the projection area onto the left first solar cell 11a is included in the range of the left first solar cell 11a. It is arranged directly above the battery 11a (light receiving side).

同様に、第3、第4の赤外線回折格子9c、9dは、右側の第1の太陽電池11bに対する赤外線の入射角が大きくなるように赤外線を回折させるものである。この第3、第4の赤外線回折格子9c、9dは、右側の第1の太陽電池11bへの投影領域が、当該右側の第1の太陽電池11bの範囲に含まれるように、第1の太陽電池11bの真上(受光側)に配置されている。   Similarly, the third and fourth infrared diffraction gratings 9c and 9d diffract infrared rays so that the incident angle of infrared rays with respect to the first solar cell 11b on the right side is increased. The third and fourth infrared diffraction gratings 9c and 9d are configured so that the projection area onto the right first solar cell 11b is included in the range of the right first solar cell 11b. It is arranged directly above the battery 11b (light receiving side).

なお、第1、第2赤外線回折格子9a、9bと第3、第4赤外線回折格子9c、9dとの間には、中央の第2の太陽電池13aの幅に対応する間隔が設けられている。
従って、中央の第2の太陽電池13aは、赤外線回折格子9の真下(同図下方)ではなく、赤外線回折格子9の回折側(詳しくは左右方向の斜め下方)に配置されていることになり、同様に、側方の第2の太陽電池13b、13cも、赤外線回折格子9の真下(同図下方)ではなく、赤外線回折格子9の回折側(詳しくは左右方向)に配置されていることになる。
An interval corresponding to the width of the central second solar cell 13a is provided between the first and second infrared diffraction gratings 9a and 9b and the third and fourth infrared diffraction gratings 9c and 9d. .
Therefore, the second solar cell 13a at the center is not located directly below the infrared diffraction grating 9 (downward in the figure) but on the diffraction side of the infrared diffraction grating 9 (specifically, diagonally downward in the left-right direction). Similarly, the second solar cells 13b and 13c on the side are also arranged on the diffraction side of the infrared diffraction grating 9 (specifically, in the left-right direction), not directly below the infrared diffraction grating 9 (downward in the figure). become.

b)以下、この赤外線回折格子9の特性について、更に詳しく説明する。
例えば太陽電池モジュール1の上方(同図上方)より太陽光が入射した場合を考えると、第1の赤外線回折格子9aは、同図の右側にゆくほど(即ち左側の第1の太陽電池11aの中心に近いほど)回折角が大きくなるように構成されている。
b) Hereinafter, the characteristics of the infrared diffraction grating 9 will be described in more detail.
For example, considering the case where sunlight is incident from above the solar cell module 1 (upper side in the figure), the first infrared diffraction grating 9a moves to the right side of the figure (that is, the first solar cell 11a on the left side). The diffraction angle is increased (closer to the center).

つまり、第1の赤外線回折格子9aにて回折した赤外線が、同図下方の第1の太陽電池11aに入射しにくく、且つ、側方(同図左側)の第2の太陽電池13bに入射し易いように設定されている。   That is, the infrared rays diffracted by the first infrared diffraction grating 9a are not easily incident on the first solar cell 11a at the lower side of the figure and are incident on the second solar cell 13b on the side (left side of the figure). It is set to be easy.

なお、赤外線の回折角が大きくなるほど、第1の太陽電池11aへの入射角が大きくなり、赤外光が第1の太陽電池11a内に入射しにくくなる。
具体的には、下記の回折の式(1)に示す様に、回折格子周期dと回折角β等の関係があるので、この式(1)に基づいて、「同図の右側にゆくほど回折角が大きくなる」ように、回折角を設定する。

d(sinα+sinβ)=mλ ・・・(1)
ここで、d:開口の間隔(回折格子周期)
α:入射角(入射光と回折格子法線とのなす角)
β:回折角(回折光と回折格子法線とのなす角)
m:回折次数(0、±1、±2・・)
λ:波長

例えば、垂直入射(α=0)で、回折次数mを1とすると、βsin-1(λ/d)となるので、例えば波長λを1.5μm、回折格子間隔dを2μmとすると、回折角βは49度となる。また、回折格子間隔dを3μmとすると、回折角βは30度となる。
In addition, as the diffraction angle of infrared rays increases, the incident angle to the first solar cell 11a increases, and it becomes difficult for infrared light to enter the first solar cell 11a.
Specifically, as shown in the following diffraction equation (1), there is a relationship between the diffraction grating period d and the diffraction angle β, etc. Based on this equation (1), “ The diffraction angle is set so that the diffraction angle increases.

d (sin α + sin β) = mλ (1)
Where d: spacing between apertures (diffraction grating period)
α: Incident angle (angle between incident light and diffraction grating normal)
β: Diffraction angle (angle between diffracted light and diffraction grating normal)
m: Diffraction order (0, ± 1, ± 2,...)
λ: wavelength

For example, when the diffraction order m is 1 at normal incidence (α = 0), βsin −1 (λ / d) is obtained. For example, when the wavelength λ is 1.5 μm and the diffraction grating interval d is 2 μm, the diffraction angle is β is 49 degrees. If the diffraction grating interval d is 3 μm, the diffraction angle β is 30 degrees.

例えば、図4に密度分布ホログラムを示す様に、赤外線回折格子9の回折格子周期が設定されている。この図4は、第1の赤外線回折格子9aについて、図2の左右方向における回折格子周期の変化を示しており、右側の波が密となっている部分では、回折格子周期が小さく(よって回折角が大きく)、左側の波が粗となって部分では、回折格子周期が大きく(よって回折角が小さく)なっている。   For example, as shown in the density distribution hologram in FIG. 4, the diffraction grating period of the infrared diffraction grating 9 is set. FIG. 4 shows the change of the diffraction grating period in the left-right direction of FIG. 2 for the first infrared diffraction grating 9a. The bending angle is large), and the left wave is rough, and the diffraction grating period is large (and hence the diffraction angle is small) in the portion.

図2に戻り、同様に、第2の赤外線回折格子9bにて回折した赤外線が、同図下方の第1の太陽電池11aに入射しにくく、且つ、中央の第2の太陽電池13bに入射し易いように設定されている。つまり、第2の赤外線回折格子9bは、同図の左側にゆくほど(即ち左側の第1の太陽電池11aの中心に近いほど)回折角が大きくなるように構成されている。   Returning to FIG. 2, similarly, the infrared rays diffracted by the second infrared diffraction grating 9 b are not easily incident on the first solar cell 11 a at the lower side of the figure and are incident on the second solar cell 13 b in the center. It is set to be easy. That is, the second infrared diffraction grating 9b is configured such that the diffraction angle increases as it goes to the left side of the figure (that is, as it is closer to the center of the left first solar cell 11a).

また、同様に、第3の赤外線回折格子9cにて回折した赤外線が、同図下方の第1の太陽電池11bに入射しにくく、且つ、中央の第2の太陽電池13bに入射し易いように設定されている。つまり、第3の赤外線回折格子9cは、同図の右側にゆくほど(即ち右側の第1の太陽電池11bの中心に近いほど)回折角が大きくなるように構成されている。   Similarly, the infrared rays diffracted by the third infrared diffraction grating 9c are less likely to enter the first solar cell 11b at the lower side of the figure, and more likely to enter the second solar cell 13b at the center. Is set. That is, the third infrared diffraction grating 9c is configured such that the diffraction angle becomes larger toward the right side of the drawing (that is, closer to the center of the first solar cell 11b on the right side).

更に、同様に、第4の赤外線回折格子9dにて回折した赤外線が、同図下方の第1の太陽電池11bに入射しにくく、且つ、同図右側の第2の太陽電池13cに入射し易いように設定されている。つまり、第4の赤外線回折格子9cは、同図の左側にゆくほど(即ち右側の第1の太陽電池11bの中心に近いほど)回折角が大きくなるように構成されている。   Further, similarly, the infrared rays diffracted by the fourth infrared diffraction grating 9d are not easily incident on the first solar cell 11b on the lower side of the figure, and are easily incident on the second solar cell 13c on the right side of the figure. Is set to That is, the fourth infrared diffraction grating 9c is configured such that the diffraction angle becomes larger toward the left side of the drawing (that is, closer to the center of the right first solar cell 11b).

なお、3枚の第1の太陽電池11と3枚の太陽電池13とは、それぞれ太陽電池11、13が順次接続されるようにして、直列に電気的に接続されている。
c)次に、本実施例の太陽電池モジュール1の製造方法について簡単に説明する。
The three first solar cells 11 and the three solar cells 13 are electrically connected in series so that the solar cells 11 and 13 are sequentially connected to each other.
c) Next, the manufacturing method of the solar cell module 1 of the present embodiment will be briefly described.

本実施例の太陽電池モジュール1を製造する場合には、下側より、バックシート7、下側封止材層5c、一対の第1の太陽電池11及び中央の第2の太陽電池13a、中央封止材層5b、赤外線回折格子9、上側封止材層5a、波長変換板3の順番で、各部材を積層するとともに、その積層した部材の側方に、側方の第2の太陽電池13b、13cを配置する。   When manufacturing the solar cell module 1 of the present embodiment, from the lower side, the back sheet 7, the lower sealing material layer 5c, the pair of first solar cells 11 and the central second solar cell 13a, the center Each member is laminated in the order of the sealing material layer 5b, the infrared diffraction grating 9, the upper sealing material layer 5a, and the wavelength conversion plate 3, and the second solar cell on the side is formed on the side of the laminated member. 13b and 13c are arranged.

その後、それらを一体の保持した状態で、高温プレスを行い、熱硬化封止を行って一体化する。
その後、前記積層体6の側方の一対の端面(即ち側方の第2の太陽電池13b、13cが形成されていない側の端面)に、Alシート貼り付けたり、スパッタリングなどによってAl反射膜15を形成し、太陽電池モジュール1を完成する。
Thereafter, in a state where they are integrally held, high temperature pressing is performed, and thermosetting sealing is performed to integrate them.
Thereafter, an Al sheet is attached to the pair of side surfaces of the laminate 6 (that is, the side surfaces where the second solar cells 13b and 13c are not formed), or the Al reflective film 15 is formed by sputtering or the like. To complete the solar cell module 1.

d)次に、本実施例の太陽電池モジュール1による光の経路について説明する。
本実施例の太陽電池モジュール1では、前記図2の上方から波長変換板3に太陽光が入射すると、その波長変換板3に入射した光(太陽光)のうち、波長400〜1100nmの光(可視光)は、波長変換されず、そのまま又は赤外線回折格子9を透過して、第1の太陽電池11及び中央の第2の太陽電池13aに入射する。
d) Next, the light path by the solar cell module 1 of the present embodiment will be described.
In the solar cell module 1 of the present embodiment, when sunlight enters the wavelength conversion plate 3 from above in FIG. 2, light (sunlight) having a wavelength of 400 to 1100 nm among the light (sunlight) incident on the wavelength conversion plate 3 ( Visible light) is not wavelength-converted and passes through the infrared diffraction grating 9 as it is and enters the first solar cell 11 and the central second solar cell 13a.

また、波長変換板3に入射した光のうち、波長400nm未満の光(紫外線)は、波長545nmの光に変換される。そして、波長変換された光は第1の太陽電池11及び中央の第2の太陽電池13aに入射する。   Of the light incident on the wavelength conversion plate 3, light (ultraviolet light) having a wavelength of less than 400 nm is converted into light having a wavelength of 545 nm. Then, the wavelength-converted light is incident on the first solar cell 11 and the central second solar cell 13a.

更に、第2、第3の赤外線回折格子9b、9cに入射した波長1100〜2000nmの赤外線は、第2、第3の赤外線回折格子9b、9cにて、中央の第2の太陽電池13a側などに回折され、第1の太陽電池11の表面や波長変換板2の内側面等で反射を繰り返して集光され、主として中央の第2の太陽電池13aに入射する。   Furthermore, the infrared rays having a wavelength of 1100 to 2000 nm incident on the second and third infrared diffraction gratings 9b and 9c are transmitted through the second and third infrared diffraction gratings 9b and 9c. The light is diffracted and condensed by being repeatedly reflected on the surface of the first solar cell 11 and the inner surface of the wavelength conversion plate 2, and is mainly incident on the second solar cell 13a at the center.

同様に、第1、第4の赤外線回折格子9a、9dに入射した波長1100〜2000nmの赤外線は、第1、第4の赤外線回折格子9a、9dにて、それぞれ側方(近い方)の第2の太陽電池13b、13c側などに回折され、第1の太陽電池11の表面や波長変換板2の内側面等で反射を繰り返して集光され、主としてそれぞれ側方の第2の太陽電池13b、13cに入射する。   Similarly, the infrared rays having a wavelength of 1100 to 2000 nm incident on the first and fourth infrared diffraction gratings 9a and 9d are respectively laterally (closer) to the first and fourth infrared diffraction gratings 9a and 9d. 2 is diffracted to the solar cells 13b, 13c side, etc., and is repeatedly reflected and condensed on the surface of the first solar cell 11, the inner surface of the wavelength conversion plate 2, etc., and mainly the second solar cell 13b on the side. , 13c.

従って、第1の太陽電池11では、主として、そのまま入射した可視光と紫外線が波長変換された可視光とによって発電が行われ、中央の第2の太陽電池13aでは、主として、そのまま入射した可視光と回折されて集光された赤外線によって発電が行われ、側方の第2の太陽電池13b、13cでは、主として、回折されて集光された赤外線によって発電が行われる。   Therefore, the first solar cell 11 generates power mainly by the visible light incident as it is and the visible light obtained by converting the wavelength of ultraviolet rays, and the central second solar cell 13a mainly generates the visible light incident as it is. The second solar cells 13b and 13c on the side generate power mainly by the diffracted and collected infrared rays.

e)次に、本実施例の太陽電池モジュール1の効果について説明する。
本実施例では、光(太陽光)が第1の太陽電池11に入射する経路に、(赤外線回折格子9を配置しない場合に比べて)第1の太陽電池11に入射する赤外線の入射角が大きくなるように、赤外線回折格子9を配置したので、第1の太陽電池11の温度上昇を抑制することができる。これにより、特別な冷却システムを用いることなく、従来より簡易な構成で、高い発電効率を実現することができる。
e) Next, the effect of the solar cell module 1 of the present embodiment will be described.
In the present embodiment, the incident angle of the infrared light incident on the first solar cell 11 is smaller than that in the case where the light (sunlight) is incident on the first solar cell 11 (as compared to the case where the infrared diffraction grating 9 is not disposed). Since the infrared diffraction grating 9 is disposed so as to increase, the temperature increase of the first solar cell 11 can be suppressed. As a result, high power generation efficiency can be realized with a simpler configuration than before without using a special cooling system.

また、本実施例では、第1の太陽電池11より赤外線の感度の高い第2の太陽電池13を、赤外線回折格子9による赤外線の回折側に配置したので、第2の太陽電池13には、多くの赤外線が入射する。   In the present embodiment, since the second solar cell 13 having higher infrared sensitivity than the first solar cell 11 is arranged on the infrared diffraction side by the infrared diffraction grating 9, the second solar cell 13 includes: Many infrared rays are incident.

この第2の太陽電池13は、赤外線の感度が高い太陽電池であるので、この第2の太陽電池13に多くの赤外線が入射することにより、極めて効率よく発電ができるという顕著な効果を奏する。   Since the second solar cell 13 is a solar cell having high infrared sensitivity, when a large amount of infrared light is incident on the second solar cell 13, there is a remarkable effect that power can be generated extremely efficiently.

また、一般的に、赤外線に感度の高い太陽電池は高価であるが、本実施例では、赤外線回折格子9によって回折した赤外線が向く側に第2の太陽電池13を配置することにより、効率良く赤外線を集光することができるので、第2の太陽電池13の使用量を抑制でき、これにより、低コストを実現できる。   In general, a solar cell having high sensitivity to infrared rays is expensive, but in this embodiment, the second solar cell 13 is arranged on the side where the infrared rays diffracted by the infrared diffraction grating 9 are directed, thereby efficiently. Since infrared rays can be collected, the amount of the second solar cell 13 used can be suppressed, thereby realizing low cost.

つまり、本実施例では、平板状な太陽電池モジュール1の平面方向における端面に、側方の第2の太陽電池13b、13cが配置されているので、高価な第2の太陽電池13の使用量を最小限にできるとともに、高い発電効率にて発電することができる。   That is, in this embodiment, since the second solar cells 13b and 13c on the side are arranged on the end face in the planar direction of the flat solar cell module 1, the usage amount of the expensive second solar cell 13 is increased. Can be minimized and power can be generated with high power generation efficiency.

更に、本実施例では、赤外線の回折角を、第1の太陽電池11の中央に近いほど大きくなるように設定することにより、第1の太陽電池11に赤外線が入射しにくくなるので、第1の太陽電池11の温度上昇を効果的に抑制できる。また、これにより、赤外線が第2の太陽電池13に入射し易くなるので、第2の太陽電池13の発電効率が向上するという利点がある。   Furthermore, in this embodiment, the infrared diffraction angle is set so as to increase as the distance from the center of the first solar cell 11 increases, so that it becomes difficult for infrared rays to enter the first solar cell 11. The temperature rise of the solar cell 11 can be effectively suppressed. In addition, this makes it easier for infrared rays to enter the second solar cell 13, so that the power generation efficiency of the second solar cell 13 is improved.

その上、本実施例では、第1の太陽電池11の受光側に、紫外線を第1の太陽電池11の感度の高い可視光に変換する波長変換部材3を備えているので、第1の太陽電池11では、効率よく発電することができる。   In addition, in this embodiment, since the wavelength conversion member 3 that converts ultraviolet light into visible light having high sensitivity of the first solar cell 11 is provided on the light receiving side of the first solar cell 11, the first solar cell 11 is provided. The battery 11 can generate power efficiently.

次に、実施例2について説明するが、前記実施例1と同様な内容の説明は省略する。
a)図5に示す様に、本実施例の太陽電池モジュール21は、前記実施例1と同様に、下側から、バックシート23と、下側封止材層25cと、一対の第1の太陽電池27a、27b(27と総称する)及び中央の第2の太陽電池29aと、中央封止材層25bと、4枚の赤外線回折格子31a、31b、31c、31d(31と総称する)と、上側封止材層25aとを備えている。
Next, the second embodiment will be described, but the description of the same contents as the first embodiment will be omitted.
a) As shown in FIG. 5, the solar cell module 21 of this example is similar to that of Example 1 in that the back sheet 23, the lower sealing material layer 25 c, and the pair of first first components from the lower side. Solar cells 27a, 27b (generally referred to as 27), a central second solar cell 29a, a central sealing material layer 25b, four infrared diffraction gratings 31a, 31b, 31c, 31d (generally referred to as 31) And an upper sealing material layer 25a.

なお、下側封止材層25cと中央封止材層25bと上側封止材層25aとからなる封止材層25の平面方向における左右の側面に、一対の側方の第2の太陽電池29b、29cが配置されている。   A pair of lateral second solar cells are provided on the left and right side surfaces in the planar direction of the sealing material layer 25 including the lower sealing material layer 25c, the central sealing material layer 25b, and the upper sealing material layer 25a. 29b and 29c are arranged.

特に、本実施例では、封止材層25の受光側(同図上側)には、透明なガラスからなる保護板33が配置されるとともに、保護板33の内側面(受光側と反対側:同図下側)には、紫外線を可視光に変換する波長変更層35が形成されている。   In particular, in this embodiment, a protective plate 33 made of transparent glass is disposed on the light receiving side (upper side in the figure) of the sealing material layer 25, and the inner side surface of the protective plate 33 (the side opposite to the light receiving side: A wavelength changing layer 35 for converting ultraviolet light into visible light is formed on the lower side of FIG.

なお、この波長変換層35は、波長変換材料を塗布したフィルムから構成されている。
また、本実施例では、保護板33の平面方向における両側面(同図左右)は、例えば内側に45度傾くように斜めに形成されて、保護板33は台形となっており、この斜面33a、33bには、Al反射膜37a、37b(37と総称する)が形成されている。
In addition, this wavelength conversion layer 35 is comprised from the film which apply | coated the wavelength conversion material.
In the present embodiment, both side surfaces (left and right in the figure) of the protective plate 33 in the plane direction are formed obliquely so as to be inclined inward by 45 degrees, for example, and the protective plate 33 has a trapezoidal shape, and this inclined surface 33a. , 33b are formed with Al reflecting films 37a, 37b (collectively referred to as 37).

b)本実施例では、保護板33に入射した可視光は、波長変換層35、封止材層25、赤外線回折格子31を透過して、第1の太陽電池27に入射する。
また、紫外線は、波長変換層35で可視光に波長変換され、その可視光は、そのまま、封止材層25、赤外線回折格子31を透過して、第1の太陽電池27に入射したり、保護板33の内側面やAl反射膜37等で反射して、封止材層25等を透過して、第1の太陽電池27に入射する。
b) In this embodiment, the visible light incident on the protective plate 33 is transmitted through the wavelength conversion layer 35, the sealing material layer 25, and the infrared diffraction grating 31 and is incident on the first solar cell 27.
Further, the ultraviolet light is wavelength-converted into visible light by the wavelength conversion layer 35, and the visible light passes through the sealing material layer 25 and the infrared diffraction grating 31 as it is and enters the first solar cell 27, The light is reflected by the inner surface of the protective plate 33, the Al reflective film 37, etc., passes through the sealing material layer 25, and enters the first solar cell 27.

更に、赤外線は、第2、第3の赤外線回折格子31b、31によって、所定の回折角にて側方(同図左右方向)に回折され、第1の太陽電池27の表面や保護板33の内側面等で反射を繰り返して集光され、中央の第2の太陽電池29aや側方の第2の太陽電池27b、27cに入射する。   Further, the infrared rays are diffracted laterally (in the left-right direction in the figure) by the second and third infrared diffraction gratings 31 b and 31, and the surface of the first solar cell 27 and the protective plate 33. The light is condensed by being repeatedly reflected on the inner side surface and the like, and is incident on the second solar cell 29a in the center and the second solar cells 27b and 27c on the side.

従って、本実施例では、前記実施例1と同様な効果を奏するとともに、保護板33の側面が傾斜しているので、太陽電池モジュール21に入射した光は、斜面33a、33bに形成されたAl反射膜37a、37bにて、第1の太陽電池27a、27b側などに反射し、よって、発電効率が高いという利点がある。   Therefore, in this embodiment, the same effect as in the first embodiment is obtained, and the side surface of the protective plate 33 is inclined, so that the light incident on the solar cell module 21 is formed on the Al formed on the inclined surfaces 33a and 33b. The reflective films 37a and 37b reflect the first solar cells 27a and 27b and the like, and thus have an advantage of high power generation efficiency.

次に、実施例3について説明するが、前記実施例1と同様な内容の説明は省略する。
a)図6に示す様に、本実施例の太陽電池モジュール41は、前記実施例1と同様に、その受光側(同図上側)から、波長変換板43と、上側封止材層45a及び中央封止材層45b及び下側封止材層45cからなる封止材層45と、バックシート47とを備えている。
Next, the third embodiment will be described, but the description of the same contents as the first embodiment will be omitted.
a) As shown in FIG. 6, the solar cell module 41 of this example is similar to Example 1 in that the wavelength conversion plate 43, the upper sealing material layer 45 a, A sealing material layer 45 including a central sealing material layer 45 b and a lower sealing material layer 45 c and a back sheet 47 are provided.

また、前記封止材層25には、中央封止材層25bと下側封止材層25cとの間に、4枚の赤外線回折格子49a、49b、49c、49d(49と総称する)が同一平面上に配置され、上側封止材層25aと中央封止材層25bとの間に、一対の第1の太陽電池51a、51b(51と総称する)と3枚の第2の太陽電池53a、53b、53c(53と総称する)とが配置されている。   The sealing material layer 25 includes four infrared diffraction gratings 49a, 49b, 49c, and 49d (collectively referred to as 49) between the central sealing material layer 25b and the lower sealing material layer 25c. A pair of first solar cells 51a, 51b (collectively referred to as 51) and three second solar cells are disposed on the same plane and between the upper sealing material layer 25a and the central sealing material layer 25b. 53a, 53b, 53c (collectively referred to as 53) are arranged.

詳しくは、一対の第1の太陽電池51の中央側のそれぞれの端部に重なるように(同図下側に)、中央の第2の太陽電池53aが配置され、また、一対の第1の太陽電池51の外側のそれぞれの端部に重なるように(同図下側に)、側方の第2の太陽電池53b、53cが配置されている。   Specifically, the second solar cell 53a at the center is arranged so as to overlap the respective end portions on the central side of the pair of first solar cells 51 (on the lower side in the figure), and the pair of first solar cells 51 Side second solar cells 53b and 53c are arranged so as to overlap the respective outer ends of the solar cell 51 (on the lower side in the figure).

なお、第1の太陽電池51は、板厚方向の両側から可視光を受光して発電ができる両面受光太陽電池である。
b)本実施例では、波長変換板43に入射した可視光は、波長変換板43、封止材層45を透過して、(同図上側より)第1の太陽電池51に入射する。なお、太陽電池モジュール41内で反射した可視光は、(同図下側からも)第1の太陽電池51に入射する。
The first solar cell 51 is a double-sided solar cell that can generate visible light by receiving visible light from both sides in the thickness direction.
b) In this embodiment, the visible light incident on the wavelength conversion plate 43 passes through the wavelength conversion plate 43 and the sealing material layer 45 and enters the first solar cell 51 (from the upper side in the figure). The visible light reflected in the solar cell module 41 is incident on the first solar cell 51 (also from the lower side in the figure).

また、紫外線は、波長変換板43で可視光に波長変換され、その可視光は、そのまま、封止材層45を透過して、第1の太陽電池51に入射する。
更に、赤外線は、波長変換板43、封止材層45、第1の太陽電池51を透過し、第2、第3の赤外線回折格子49b、49cによって、所定の回折角にて側方(同図左右方向)に回折され、バックシート47で反射し集光され、中央の第2の太陽電池53aや側方の第2の太陽電池53b、53cに入射する。
The ultraviolet light is converted into visible light by the wavelength conversion plate 43, and the visible light passes through the sealing material layer 45 as it is and enters the first solar cell 51.
Further, infrared light passes through the wavelength conversion plate 43, the sealing material layer 45, and the first solar cell 51, and is laterally transmitted at a predetermined diffraction angle by the second and third infrared diffraction gratings 49b and 49c. The light is diffracted in the left-right direction of FIG.

従って、本実施例では、前記実施例1と同様な効果を奏するとともに、第1の太陽電池51は両面受光太陽電池であるので、周囲の光を効率よく利用して発電を行うことができ
なお、以上、本発明の実施例について説明したが、本発明は上記の具体的な実施例に限定されず、本発明の範囲内でこの他にも種々の形態で実施することができる。
Therefore, in this embodiment, the same effects as in the first embodiment can be obtained, and since the first solar cell 51 is a double-sided light receiving solar cell, it is possible to generate power by using ambient light efficiently. As mentioned above, although the Example of this invention was described, this invention is not limited to said specific Example, It can implement with a various form besides this in the scope of the present invention.

(1)例えば太陽光以外の光も利用可能である。
(2)波長変換板や波長変換層としては、周知の各種の材料を使用できる。
(1) For example, light other than sunlight can be used.
(2) Various known materials can be used as the wavelength conversion plate and the wavelength conversion layer.

1、21、41…太陽電池モジュール
3、43…波長変換板
5、5a、5b、5c、25、25a、25b、25c、45、45a、45b、45c…封止材層
7、23、47…バックシート
9、9a、9b、9c、9d、31、31a、31b、31c、31d、49、49a、49b、49c、49d…赤外線回折格子
11、11a、11b、27、27a、27b、51、51a、51b…第1の太陽電池
13、13a、13b、13c、29、29a、29b、29c、53、53a、53b、53c…第2の太陽電池
33…保護板
35…波長変換層
1, 21, 41 ... Solar cell module 3, 43 ... Wavelength conversion plate 5, 5a, 5b, 5c, 25, 25a, 25b, 25c, 45, 45a, 45b, 45c ... Sealing material layer 7, 23, 47 ... Back sheet 9, 9a, 9b, 9c, 9d, 31, 31a, 31b, 31c, 31d, 49, 49a, 49b, 49c, 49d ... Infrared diffraction grating 11, 11a, 11b, 27, 27a, 27b, 51, 51a , 51b ... first solar cell 13, 13a, 13b, 13c, 29, 29a, 29b, 29c, 53, 53a, 53b, 53c ... second solar cell 33 ... protective plate 35 ... wavelength conversion layer

Claims (6)

赤外線を含む光を受光して発電する第1の太陽電池を備えた太陽電池モジュールにおいて、
前記光が前記第1の太陽電池に入射する経路に、前記赤外線を回折する赤外線回折格子を配置するとともに、
該赤外線回折格子を配置しない場合に比べて前記第1の太陽電池に入射する赤外線の入射角が大きくなるように、該赤外線回折格子を配置し
更に、前記第1の太陽電池より赤外線の感度の高い第2の太陽電池を備えるとともに、
前記赤外線回折格子による赤外線の回折側に、前記第2の太陽電池を配置したことを特徴とする太陽電池モジュール。
In a solar cell module including a first solar cell that receives light including infrared rays and generates power,
In the path where the light is incident on the first solar cell, an infrared diffraction grating for diffracting the infrared light is disposed,
Arranging the infrared diffraction grating so that the incident angle of infrared rays incident on the first solar cell is larger than when not arranging the infrared diffraction grating ,
In addition, a second solar cell having higher infrared sensitivity than the first solar cell is provided,
The solar cell module , wherein the second solar cell is disposed on an infrared diffraction side of the infrared diffraction grating .
前記太陽電池モジュールは平板状であり、該太陽電池モジュールの平面方向における端面に、前記第2の太陽電池を備えたことを特徴とする請求項に記載の太陽電池モジュール。 The solar cell module according to claim 1 , wherein the solar cell module has a flat plate shape, and the second solar cell is provided on an end surface of the solar cell module in a planar direction. 赤外線を含む光を受光して発電する第1の太陽電池を備えた太陽電池モジュールにおいて、
前記光が入射する経路に前記第1の太陽電池を配置するとともに、
前記第1の太陽電池を透過した光の経路に、前記赤外線を回折する赤外線回折格子を配置し、
更に、前記赤外線回折格子による赤外線の回折側に、前記第1の太陽電池より赤外線の感度の高い第2の太陽電池を備えるとともに、
前記赤外線回折格子によって回折された赤外線が、前記太陽電池モジュール内で反射して、前記第2の太陽電池に入射する構造を有することを特徴とする太陽電池モジュール。
In a solar cell module including a first solar cell that receives light including infrared rays and generates power,
While arranging the first solar cell in the path where the light is incident,
An infrared diffraction grating that diffracts the infrared light is disposed in a path of light transmitted through the first solar cell,
Furthermore, on the infrared diffraction side by the infrared diffraction grating, a second solar cell having higher infrared sensitivity than the first solar cell is provided,
The solar cell module having a structure in which infrared rays diffracted by the infrared diffraction grating are reflected in the solar cell module and incident on the second solar cell.
前記第1の太陽電池は平板状であり、その板厚方向の両側から光を受光して発電が可能な両面受光太陽電池であることを特徴とする請求項1〜のいずれか1項に記載の太陽電池モジュール。 The said 1st solar cell is flat form, It is a double-sided light reception solar cell which can receive light from the both sides of the plate | board thickness direction, and can generate electric power, The any one of Claims 1-3 characterized by the above-mentioned. The solar cell module described. 前記第1の太陽電池の受光側に、光の波長を前記第1の太陽電池による発電が可能な又は一層効率よく発電が可能な波長に変換する波長変換部材を備えたことを特徴とする請求項1〜のいずれか1項に記載の太陽電池モジュール。 The light receiving side of the first solar cell is provided with a wavelength conversion member that converts the wavelength of light into a wavelength that enables power generation by the first solar cell or more efficiently. Item 5. The solar cell module according to any one of Items 1 to 4 . 前記第1の太陽電池の受光側に、透光性を有する保護板と充填材とを備えるとともに、該保護板と充填材との間に、光の波長を前記第1の太陽電池による発電が可能な又は一層効率よく発電が可能な波長に変換する波長変換層を備えたことを特徴とする請求項1〜のいずれか1項に記載の太陽電池モジュール。 A light-receiving side of the first solar cell is provided with a light-transmitting protective plate and a filler, and the power generation by the first solar cell is performed between the protective plate and the filler. The solar cell module according to any one of claims 1 to 4 , further comprising a wavelength conversion layer that converts the wavelength into a wavelength that enables power generation more efficiently or more efficiently.
JP2011175024A 2011-08-10 2011-08-10 Solar cell module Expired - Fee Related JP5573797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175024A JP5573797B2 (en) 2011-08-10 2011-08-10 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175024A JP5573797B2 (en) 2011-08-10 2011-08-10 Solar cell module

Publications (2)

Publication Number Publication Date
JP2013038323A JP2013038323A (en) 2013-02-21
JP5573797B2 true JP5573797B2 (en) 2014-08-20

Family

ID=47887622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175024A Expired - Fee Related JP5573797B2 (en) 2011-08-10 2011-08-10 Solar cell module

Country Status (1)

Country Link
JP (1) JP5573797B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2727517T3 (en) 2013-08-19 2019-10-16 Tropiglas Tech Ltd A device to generate electricity
FR3009892A1 (en) * 2013-08-20 2015-02-27 Segton Adt OPTO-ELECTRONIC ASSEMBLY OF AN OPTO-PHONIC PLATFORM FOR PROCESSING LIGHT, PHONIC CONVERTERS, AND AT LEAST ONE LIGHT-ELECTRICITY CONVERTER FOR FORMING A SOLAR SENSOR
WO2015033227A2 (en) * 2013-09-03 2015-03-12 Segton Adt Sas Entire solar spectrum multiplying converting platform unit for an optimal light-to-electricity conversion
WO2015103152A1 (en) * 2014-01-03 2015-07-09 Nitto Denko Corporation A packaged luminescent solar concentrator panel for providing high efficiency low cost solar harvesting
FR3022073B1 (en) * 2014-06-05 2018-02-23 Electricite De France FLUORESCENT CONCENTRATING PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
HUE051883T2 (en) * 2015-10-30 2021-03-29 Tropiglas Tech Ltd A panel structure for receiving light and generating electricity
EP4002490A4 (en) * 2019-07-17 2023-04-05 Kabushiki Kaisha Toshiba Solar battery module and tandem solar battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323287A (en) * 1976-08-16 1978-03-03 Hiroyuki Sakaki Photoelectric converting element

Also Published As

Publication number Publication date
JP2013038323A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5573797B2 (en) Solar cell module
US11162302B2 (en) Device for generating electric energy
NL2013168B1 (en) Solar panel and method of manufacturing such a solar panel.
US20080223438A1 (en) Systems and methods for improving luminescent concentrator performance
WO2012046319A1 (en) Solar cell module, photovoltaic device, and process for manufacture of solar cell module
US20080121270A1 (en) Photovoltaic roof tile system
WO2013168612A1 (en) Solar cell module
US9105784B2 (en) Solar module
JP2010263115A (en) Solar light collector
US20130167903A1 (en) Encapsulated solar energy concentrator
JP2012532447A (en) Double-sided photovoltaic module having a reflective element and method for manufacturing the same
US20110155213A1 (en) Wavelength spectrum conversion solar cell module
JP5590965B2 (en) Photovoltaic element module and manufacturing method thereof
US20140198380A1 (en) Planar solar concentrators using subwavelength gratings
JP2012216620A (en) Solar cell module
CN105723523A (en) Opto-electronic unit composed of an opto-photonic platform for light processing, photonic converters and one or more light-to-electricity converters to form a solar light converter
JP5999571B2 (en) Solar cell module
KR102113839B1 (en) Back sheet and solar cell module including the same
EP2372786A1 (en) Wavelength spectrum conversion solar cell module
US20130319524A1 (en) Solar energy concentrator with multiplexed diffraction gratings
JP4924724B2 (en) Solar panel
US20130306132A1 (en) Solar photoelectrical module and fabrication thereof
Kostuk et al. Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells
US20160079462A1 (en) Package structure of solar photovoltaic module
JP7306359B2 (en) Photoelectric conversion device for photovoltaic power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R151 Written notification of patent or utility model registration

Ref document number: 5573797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees