JP5573149B2 - Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery - Google Patents

Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP5573149B2
JP5573149B2 JP2009291781A JP2009291781A JP5573149B2 JP 5573149 B2 JP5573149 B2 JP 5573149B2 JP 2009291781 A JP2009291781 A JP 2009291781A JP 2009291781 A JP2009291781 A JP 2009291781A JP 5573149 B2 JP5573149 B2 JP 5573149B2
Authority
JP
Japan
Prior art keywords
carbon material
silicon
secondary battery
negative electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291781A
Other languages
Japanese (ja)
Other versions
JP2011134534A (en
Inventor
晋平 阪下
龍朗 佐々木
哲志 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2009291781A priority Critical patent/JP5573149B2/en
Publication of JP2011134534A publication Critical patent/JP2011134534A/en
Application granted granted Critical
Publication of JP5573149B2 publication Critical patent/JP5573149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池に関する。 The present invention relates to a carbon material for a lithium secondary battery negative electrode, a lithium secondary battery negative electrode, and a lithium secondary battery.

電子機器類のポータブル化、コードレス化が進むにつれ、リチウム2次電池の小型軽量化、或いは高エネルギー密度化が、より一層求められている。リチウム2次電池を高密度化するため、その負極材料として、リチウムと合金化するケイ素、スズ、ゲルマニウム、マグネシウム、鉛、およびアルミニウムまたはこれらの酸化物もしくは合金等を採用することが知られている。しかしながら、上述のような負極材料は、リチウムイオンを吸蔵する充電時に体積膨張し、反対にリチウムイオンを放出する放電時には体積収縮する。このため充放電サイクルの繰り返しに応じて負極電極の体積が変化し、その結果負極材料が微粉化し、電極から脱落するなどして負極が崩壊することが知られている。   As electronic devices become more portable and cordless, lithium secondary batteries are required to be smaller and lighter or have higher energy density. In order to increase the density of lithium secondary batteries, it is known to employ silicon, tin, germanium, magnesium, lead, and aluminum, or oxides or alloys thereof, which are alloyed with lithium, as the negative electrode material. . However, the negative electrode material as described above expands in volume during charging to occlude lithium ions, and conversely shrinks in volume during discharge to release lithium ions. For this reason, it is known that the volume of the negative electrode changes as the charge / discharge cycle repeats, and as a result, the negative electrode material is pulverized and falls off the electrode, causing the negative electrode to collapse.

上記問題を克服するため、さまざまな手法、手段が検討されているが、リチウム2次電池負極材料に金属、および酸化物を用いた場合に充放電特性を安定化させることは難しいのが現状である。そこで、例えば、特許文献1に開示されているように、充放電サイクル特性に優れたリチウム2次電池用負極材料として、リチウム合金を形成しうる金属の粒子表面を有機物で被覆し、リチウムイオンを吸蔵する際に起こる膨張を抑えるために、金属粒子の1次粒子平均粒径が500nm以下、2次粒子平均粒径が10μm以下のものが用いられると記載されている。しかし、用いる金属粒子の1次粒子径、2次粒子径を小さくしたのみでは、充電時のリチウム吸蔵における金属粒子の膨張を抑えることは難しく、また、負極活物質表面近傍の金属粒子の微細化による電極からの滑落も抑制できない。   In order to overcome the above problems, various methods and means have been studied. However, it is difficult to stabilize the charge / discharge characteristics when a metal and an oxide are used as a negative electrode material for a lithium secondary battery. is there. Therefore, for example, as disclosed in Patent Document 1, as a negative electrode material for a lithium secondary battery having excellent charge / discharge cycle characteristics, the surface of metal particles capable of forming a lithium alloy is coated with an organic substance, and lithium ions are formed. In order to suppress expansion that occurs during occlusion, it is described that a metal particle having a primary particle average particle size of 500 nm or less and a secondary particle average particle size of 10 μm or less is used. However, it is difficult to suppress the expansion of metal particles during lithium occlusion during charging only by reducing the primary particle size and secondary particle size of the metal particles used, and the metal particles near the negative electrode active material surface are made finer. Also, sliding from the electrode due to cannot be suppressed.

特開2007−214137号公報JP 2007-214137 A

本発明は、前記従来の技術に鑑み、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子と樹脂炭素材からなる複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体と、該複合粒子中の前記ケイ素含有粒子の2次凝集を抑制することによる、極めて優れた相乗効果により、リチウムイオン2次電池の充放電サイクル特性を一層向上させたリチウム2次電池負極用炭素材、リチウム2次電池負極およびこれを用いたリチウム2次電池を提供することを目的とする。   In view of the prior art, the present invention provides a nanofiber surrounding a composite particle composed of a silicon-containing particle containing an alloy, oxide, nitride, or carbide of silicon capable of occluding and releasing lithium ions and a resin carbon material, and The charge-discharge cycle characteristics of the lithium ion secondary battery are further enhanced by the extremely excellent synergistic effect by suppressing the secondary aggregation of the silicon-containing particles in the composite particles and the silicon-containing network structure composed of nanotubes. An object of the present invention is to provide an improved carbon material for a lithium secondary battery negative electrode, a lithium secondary battery negative electrode, and a lithium secondary battery using the same.

上述の目的は、以下の第(1)項〜第(8)項によって達成される。
(1)1次粒子平均粒径が5nm以上1.5μm以下のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに
該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体を含み、前記樹脂炭素材と前記網状構造体は、炭素前駆体を炭化処理することにより形成され、前記網状構造体は、見かけ上、複合粒子の表面を起点に形成され、
該複合粒子中の前記ケイ素含有粒子の2次粒子平均粒径が、1次粒子最小粒径以上、5μm以下であることを特徴とする、リチウム2次電池負極用炭素材。
The above object is achieved by the following items (1) to (8).
(1) Silicon-containing particles containing an alloy, oxide, nitride, or carbide of silicon capable of occluding and releasing lithium ions having an average primary particle diameter of 5 nm to 1.5 μm and surrounding the silicon-containing particles composite particles comprising a resin carbon material which, as well as bound to the surface of the composite particles, and includes a silicon-containing network structure consisting of nanofibers and / or nanotubes surrounding the composite particles, the said resin carbon material The network structure is formed by carbonizing a carbon precursor, and the network structure is apparently formed from the surface of the composite particle,
A carbon material for a lithium secondary battery negative electrode, wherein the silicon-containing particles in the composite particles have an average secondary particle size of not less than a minimum primary particle size of 5 μm or less.

(2)前記樹脂炭素材および前記網状構造体が、炭素前駆体の炭化処理により生成したものである、第(1)項に記載のリチウム2次電池負極用炭素材。 (2) The carbon material for a negative electrode of a lithium secondary battery according to item (1), wherein the resin carbon material and the network structure are generated by carbonizing a carbon precursor.

(3)前記ケイ素含有粒子がケイ素酸化物を含む、第(1)項または第(2)項に記載のリチウム2次電池負極用炭素材。 (3) The carbon material for a lithium secondary battery negative electrode according to (1) or (2), wherein the silicon-containing particles contain silicon oxide.

(4)前記網状構造体が更に炭素を含む、第(1)項〜第(3)項のいずれか1項に記載のリチウム2次電池負極用炭素材。 (4) The carbon material for a lithium secondary battery negative electrode according to any one of (1) to (3), wherein the network structure further contains carbon.

(5)平均粒子径が3μm〜15μmの範囲内である、第(1)項〜第(4)項のいずれか1項に記載のリチウム2次電池負極用炭素材。 (5) The carbon material for a lithium secondary battery negative electrode according to any one of (1) to (4), wherein the average particle diameter is in the range of 3 μm to 15 μm.

(6)前記炭素前駆体が、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料および/または難黒鉛化材料を含む、第(2)項〜第(5)項のいずれか1項に記載のリチウム2次電池負極用炭素材。 (6) The carbon precursor includes a graphitizable material and / or a non-graphitizable material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin and polyacrylonitrile. The carbon material for a lithium secondary battery negative electrode according to any one of items (1) to (5).

(7)第(1)項〜第(6)項のいずれか1項に記載のリチウム2次電池負極用炭素材を含むリチウム2次電池負極。 (7) A lithium secondary battery negative electrode comprising the carbon material for a lithium secondary battery negative electrode according to any one of items (1) to (6).

(8)第(7)項に記載のリチウム2次電池負極を含むリチウム2次電池。 (8) A lithium secondary battery including the lithium secondary battery negative electrode according to (7).

本発明によると、充放電サイクルによる負極用炭素材の微粉化が抑制されると共に、ナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体と複合粒子の間等の密着性が維持されることにより該炭素材の導電性の低下が抑えられるため、これまでにない優れた充放電サイクル特性を示すリチウム2次電池負極用炭素材が提供される。   According to the present invention, the pulverization of the carbon material for the negative electrode due to the charge / discharge cycle is suppressed, and the adhesion between the silicon-containing network structure composed of nanofibers and / or nanotubes and the composite particles is maintained. Since the decrease in conductivity of the carbon material is suppressed, a carbon material for a lithium secondary battery negative electrode that exhibits unprecedented excellent charge / discharge cycle characteristics is provided.

図1は、実施例1において得られた炭素材表面の走査型電子顕微鏡(SEM)写真の代表例である。1 is a representative example of a scanning electron microscope (SEM) photograph of the carbon material surface obtained in Example 1. FIG. 図2は、SEMで観測されたナノファイバーのエネルギー分散型X線分析装置(EDX)による元素分析結果を示すグラフである。FIG. 2 is a graph showing the results of elemental analysis by an energy dispersive X-ray analyzer (EDX) of nanofibers observed by SEM. 図3は、実施例1において得られた炭素材断面の走査型電子顕微鏡(SEM)写真の代表例である。FIG. 3 is a representative example of a scanning electron microscope (SEM) photograph of the cross section of the carbon material obtained in Example 1.

本発明によるリチウム2次電池負極用炭素材は、1次粒子平均粒径が5nm以上1.5μm以下のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブ(以下、「ナノファイバー等」という場合がある)からなるケイ素含有網状構造体(以下「網状構造体」という場合がある)を含み、該複合粒子中の前記ケイ素含有粒子の2次粒子平均粒径が、1次粒子最小粒径以上、5μm以下であることを特徴とするものである。   The carbon material for a negative electrode of a rechargeable lithium battery according to the present invention is a silicon containing an alloy, oxide, nitride or carbide of silicon capable of occluding and releasing lithium ions having an average primary particle size of 5 nm to 1.5 μm. Composite particles composed of containing particles and a resin carbon material surrounding the silicon-containing particles, and nanofibers and / or nanotubes (hereinafter referred to as “nanofibers”) that bind to the surface of the composite particles and surround the composite particles Etc.), and a secondary particle average particle size of the silicon-containing particles in the composite particles is a primary particle (hereinafter also referred to as a “network structure”). The minimum particle size is 5 μm or less.

本発明のケイ素含有網状構造体は、炭素前駆体を、炭化処理することにより上記樹脂炭素材とともに形成され、前記網状構造体は、見かけ上、ケイ素含有粒子と樹脂炭素材からなる複合粒子の表面を起点に形成される。特定の理論に束縛されることを意図するものではないが、前記ケイ素含有網状構造体は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面に結合しているため、隣接する別の粒子に起因する網状構造体と交絡しているものと考えられる。このため、ナノファイバー等と複合粒子の間の密着性が高くなり、充放電によるケイ素含有粒子の体積膨張収縮に際してもナノファイバー等が複合粒子から離れにくくなる。また、隣接する複数の粒子の網状構造体同士が交絡することで全体として伸縮性のある網状構造体が形成されるため、充放電によるケイ素含有粒子の体積膨張収縮に際して負極全体の導電性が維持される。そして、負極の導電性が維持されることにより、充放電に伴う抵抗変化を抑制することができ、サイクル特性に優れたものとなる。このような本発明特有の網状構造体は、公知の別途気相法で形成されたカーボンナノファイバー等を添加しただけでは、形成されない。なお、網状構造体は見かけ上複合粒子の表面を起点に形成されるが、網状構造体がケイ素を含有することから、網状構造体の真の起点はケイ素含有粒子の表面であると考えられる。   The silicon-containing network structure of the present invention is formed together with the resin carbon material by carbonizing a carbon precursor, and the network structure is apparently a surface of a composite particle composed of silicon-containing particles and a resin carbon material. It is formed from the starting point. While not intending to be bound by any particular theory, the silicon-containing network is composed of silicon-containing particles containing an alloy, oxide, nitride, or carbide of silicon capable of occluding and releasing lithium ions. Since it is bonded to the surface of the composite particle composed of the resin carbon material surrounding the silicon-containing particle, it is considered that it is entangled with the network structure due to another adjacent particle. For this reason, the adhesion between the nanofibers and the composite particles becomes high, and the nanofibers and the like are hardly separated from the composite particles even during the volume expansion and contraction of the silicon-containing particles due to charge and discharge. In addition, because the network structure of a plurality of adjacent particles is entangled with each other to form a stretchable network structure as a whole, the conductivity of the entire negative electrode is maintained during the volume expansion and contraction of silicon-containing particles due to charge and discharge. Is done. And by maintaining the electroconductivity of a negative electrode, the resistance change accompanying charging / discharging can be suppressed and it becomes excellent in cycling characteristics. Such a network structure peculiar to the present invention cannot be formed only by adding a carbon nanofiber or the like formed by a known separate vapor phase method. The network structure is apparently formed starting from the surface of the composite particle, but since the network structure contains silicon, the true starting point of the network structure is considered to be the surface of the silicon-containing particle.

本発明による網状構造体を構成するナノファイバー等は、繊維直径1μm未満のケイ素含有繊維を含む。ナノファイバーとナノチューブとを厳密に区別する必要はないが、本明細書では特に、繊維直径100nm以上のものをナノファイバーと、そして繊維直径100nm以下のものをナノチューブとそれぞれ定義する。本発明によるナノファイバー等の元素組成としては、ケイ素含有粒子の元の組成により、炭化ケイ素、窒化ケイ素、炭窒化ケイ素等またはこれらの任意の組合せであることが想定される。本発明によるナノファイバー等の元素組成は、ナノファイバー等の全体にわたり均一であってもよいし、場所によって異なっていてもよい。さらに、本発明による網状構造体を構成するナノファイバー等には、カーボンナノファイバーおよび/またはカーボンナノチューブ(以下、「カーボンナノファイバー等」という。)が含まれていることが好ましい。カーボンナノファイバー等が存在することにより、ケイ素含有粒子を含む複合粒子間の導電性向上が期待される。   The nanofibers and the like constituting the network structure according to the present invention include silicon-containing fibers having a fiber diameter of less than 1 μm. Although it is not necessary to strictly distinguish between nanofibers and nanotubes, in the present specification, those having a fiber diameter of 100 nm or more are specifically defined as nanofibers, and those having a fiber diameter of 100 nm or less are defined as nanotubes. The elemental composition of the nanofiber or the like according to the present invention is assumed to be silicon carbide, silicon nitride, silicon carbonitride, or any combination thereof depending on the original composition of the silicon-containing particles. The elemental composition of the nanofiber or the like according to the present invention may be uniform throughout the nanofiber or the like, or may vary depending on the location. Furthermore, it is preferable that the nanofibers and the like constituting the network structure according to the present invention include carbon nanofibers and / or carbon nanotubes (hereinafter referred to as “carbon nanofibers”). The presence of carbon nanofibers is expected to improve the conductivity between composite particles including silicon-containing particles.

本発明の、1次粒子平均粒径が5nm以上1.5μm以下のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有(1次)粒子を構成するケイ素の合金、酸化物、窒化物もしくは炭化物の例としては、一酸化ケイ素(SiO)、窒化ケイ素(Si)、炭化ケイ素(SiC)、チタンシリコン合金(Ti−Si系)等を挙げることができる。中でも、充電時の膨張率が小さいなどの理由で、一酸化ケイ素(SiO)などのケイ素酸化物が好ましく、さらにSiOが、より好ましい。
また前記ケイ素含有(1次)粒子は、その平均粒径が、5nm〜1.5μmの範囲内にあることが好ましく、0.1μm〜1.2μmの範囲内にあることがより好ましい。上記ケイ素含有粒子の平均粒径が5nm以上だと、リチウムイオンの吸蔵量が適正となり、粒子の膨張収縮を網状構造体により十分に抑制することができる。また上記ケイ素含有粒子の平均粒径が1.5μm以下だと、高い充放電容量を得ることができる。
The silicon-containing (primary) particles containing an alloy, oxide, nitride or carbide of silicon capable of occluding and releasing lithium ions having an average primary particle diameter of 5 nm to 1.5 μm of the present invention are constituted. Examples of silicon alloys, oxides, nitrides or carbides include silicon monoxide (SiO), silicon nitride (Si 2 N 4 ), silicon carbide (SiC), titanium silicon alloys (Ti—Si based), and the like. be able to. Among these, silicon oxides such as silicon monoxide (SiO) are preferable, and SiO is more preferable because the expansion coefficient during charging is small.
The silicon-containing (primary) particles preferably have an average particle size in the range of 5 nm to 1.5 μm, and more preferably in the range of 0.1 μm to 1.2 μm. When the average particle diameter of the silicon-containing particles is 5 nm or more, the amount of occlusion of lithium ions becomes appropriate, and the expansion and contraction of the particles can be sufficiently suppressed by the network structure. When the average particle size of the silicon-containing particles is 1.5 μm or less, a high charge / discharge capacity can be obtained.

本発明の複合粒子中の、前記ケイ素含有(1次)粒子が凝集した2次粒子については、その平均粒径は、1次粒子最小粒径以上、5μm以下が好ましく、さらに3.5μm以下がより好ましい。5μm以下だと、リチウムの吸蔵・放出に伴う膨張・収縮を樹脂炭素材が抑制できない部分を網状構造体で十分に抑制することができるため、優れた充放電サイクル特性を得ることができる。   Regarding the secondary particles in which the silicon-containing (primary) particles in the composite particles of the present invention are aggregated, the average particle size is preferably not less than the minimum primary particle size and not more than 5 μm, and more preferably not more than 3.5 μm. More preferred. When the thickness is 5 μm or less, the network structure can sufficiently suppress the portion where the resin carbon material cannot suppress the expansion / contraction associated with the insertion / extraction of lithium, and thus excellent charge / discharge cycle characteristics can be obtained.

本発明の網状構造体は前述のように、隣接する粒子に起因する網状構造体と交絡しているものと考えられるため、ナノファイバー等と複合粒子の間の密着性を向上させ、また、隣接する複数の粒子の網状構造体同士が交絡することで全体として伸縮性のある網状構造体が形成されるため、充放電による粒子の体積膨張収縮に際して負極全体の導電性が維持される効果があるが、前述のように、前記ケイ素含有(1次)粒子の凝集により、2次粒子が大きい場合、充放電に伴う膨張収縮が不均一になり、網状構造体の効果が十分に発現しなかったり、網状構造体自体が不均一となったりする可能性があるため、本発明の優れた効果を得るためには、本発明の網状構造体と、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子の1次粒子径、および複合粒子中の該ケイ素含有粒子の2次粒子径、の両方を制御する技術が重要である。   Since the network structure of the present invention is considered to be entangled with the network structure caused by adjacent particles as described above, the adhesion between nanofibers and composite particles is improved, and Since the network structure of a plurality of particles entangled with each other forms a stretchable network structure as a whole, there is an effect that the conductivity of the whole negative electrode is maintained during the volume expansion / contraction of the particles due to charge / discharge However, as described above, when the secondary particles are large due to aggregation of the silicon-containing (primary) particles, the expansion and contraction associated with charge / discharge becomes uneven, and the effect of the network structure is not sufficiently exhibited. In order to obtain the excellent effect of the present invention, the network structure of the present invention and a silicon alloy capable of occluding and releasing lithium ions can be obtained. , Oxides and nitrides Ku is a technology for controlling both secondary particle diameter, of the silicon-containing particles of silicon primary particle diameter of the containing particles, and composite particles comprising a carbide is important.

本発明のリチウム2次電池負極用炭素材は、その形状に特に制限はなく、塊状、鱗片状、球状、繊維状等の任意の粒子形状を有することができる。また、これら炭素材粒子の大きさは、充放電特性の上で、平均粒子径が3μm以上、15μm以下であることが好ましい。更に好ましくは5μm以上、12μm以下である。また、より好ましくは、7μm以上、10μm以下である。平均粒子径が15μm以下であると、炭素材粒子間の間隙を小さくでき、リチウム2次電池負極用炭素材として用いた場合に、負極電極の密度を向上させることができる。また、平均粒子径が3μm以上だと、単位質量当たりで見た場合、炭素材粒子個数を抑制でき全体として嵩高くならず、取り扱いが容易になる。   The shape of the carbon material for a negative electrode of a lithium secondary battery of the present invention is not particularly limited, and can have any particle shape such as a lump shape, a scale shape, a spherical shape, or a fibrous shape. The carbon material particles preferably have an average particle size of 3 μm or more and 15 μm or less in view of charge / discharge characteristics. More preferably, it is 5 μm or more and 12 μm or less. More preferably, it is 7 μm or more and 10 μm or less. When the average particle size is 15 μm or less, the gap between the carbon material particles can be reduced, and when used as a carbon material for a negative electrode of a lithium secondary battery, the density of the negative electrode can be improved. Further, when the average particle diameter is 3 μm or more, the number of carbon material particles can be suppressed when viewed per unit mass, and the whole is not bulky and easy to handle.

本発明における炭素材およびケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有(1次)粒子の粒子径の定義としては、粒子形状とMie理論を用いて測定量を粒子径に算出した値とし、有効径と称されるものである。
本発明における前記ケイ素含有1次平均粒子径は、レーザー回折式粒度分布測定法による測定される体積換算で頻度が50%となる粒子径を平均粒子径D50%として定めた。
また、本発明の複合粒子中の前記ケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子の2次粒子平均粒径は、よく混合した炭素材粒子を10サンプル任意に抽出し、その断面を走査型電子顕微鏡(SEM)を用いて観察した際の2次凝集粒子の長径を測定、その平均値を2次粒子平均粒径とした。
As the definition of the particle size of silicon-containing (primary) particles containing carbon material and silicon alloy, oxide, nitride or carbide in the present invention, the measured amount was calculated as the particle size using the particle shape and Mie theory. The value is referred to as the effective diameter.
In the present invention, the silicon-containing primary average particle size was determined by setting the particle size having a frequency of 50% in terms of volume measured by a laser diffraction particle size distribution measurement method as an average particle size D50%.
Further, the secondary particle average particle size of the silicon-containing particles containing the alloy, oxide, nitride or carbide of silicon in the composite particles of the present invention is arbitrarily extracted from 10 samples of well-mixed carbon material particles. When the cross section was observed using a scanning electron microscope (SEM), the major axis of the secondary agglomerated particles was measured, and the average value was defined as the secondary particle average particle size.

本発明におけるリチウム2次電池負極用炭素材は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を、負極用炭素材に対する質量比で5〜60質量%含有することが好ましい。上記含有量が5質量%以上だと、リチウムイオンの吸蔵が十分なものとなり、高い充放電容量を得ることが期待できる。一方、上記含有量が60質量%以下だと、リチウムイオンの吸蔵・放出における粒子の膨張収縮を網状構造体により抑えることが容易となり、十分な充放電サイクル特性を得ることができる。ここで、上記のケイ素の合金、酸化物、窒化物または炭化物の含有量は、JIS K 2272:1998に従う灰分試験法によって測定される。   The lithium secondary battery negative electrode carbon material according to the present invention contains a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions in a mass ratio of 5 to 60% by mass with respect to the negative electrode carbon material. It is preferable. When the content is 5% by mass or more, lithium ion storage is sufficient, and a high charge / discharge capacity can be expected. On the other hand, when the content is 60% by mass or less, it becomes easy to suppress the expansion and contraction of the particles during insertion and extraction of lithium ions by the network structure, and sufficient charge / discharge cycle characteristics can be obtained. Here, the content of the above-mentioned silicon alloy, oxide, nitride or carbide is measured by an ash test method according to JIS K 2272: 1998.

本発明によるリチウム2次電池負極用炭素材は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子と、炭素前駆体とを混合することにより、該ケイ素含有粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことにより製造される。この炭化処理により、炭素前駆体が樹脂炭素材に転化すると共に、転化した樹脂炭素材とリチウムイオンの吸蔵・放出が可能なケイ素含有粒子とからなる複合粒子を包囲するナノファイバー等からなる網状構造体が、該複合粒子の表面を起点に形成される。また必要に応じて炭素前駆体中に触媒を分散させて炭化処理を施すことにより、網状構造体を構成するナノファイバー等、特にカーボンナノファイバー等の生成量を増大させることができる。   The carbon material for a negative electrode of a lithium secondary battery according to the present invention is obtained by mixing silicon-containing particles containing an alloy, oxide, nitride, or carbide of silicon capable of occluding and releasing lithium ions, and a carbon precursor. The silicon-containing particles are produced by forming a mixture dispersed in the carbon precursor, and then subjecting the mixture to carbonization. This carbonization converts the carbon precursor into a resin carbon material, and a network structure comprising nanofibers surrounding composite particles composed of the converted resin carbon material and silicon-containing particles capable of occluding and releasing lithium ions. A body is formed starting from the surface of the composite particle. Further, if necessary, the amount of produced nanofibers constituting the network structure, particularly carbon nanofibers, can be increased by dispersing the catalyst in the carbon precursor and subjecting it to carbonization treatment.

炭素前駆体の例としては、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料および/または難黒鉛化材料を挙げることができる。易黒鉛化材料と難黒鉛化材料の混合物を使用してもよい。また、フェノール樹脂等に硬化剤(例、ヘキサメチレンテトラミン)を含めてもよく、その場合、硬化剤も炭素前駆体の一部となり得る。   Examples of the carbon precursor include an easily graphitized material and / or a hardly graphitized material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin, and polyacrylonitrile. A mixture of an easily graphitizable material and a hardly graphitized material may be used. Moreover, you may include a hardening | curing agent (for example, hexamethylenetetramine) in a phenol resin etc., In that case, a hardening | curing agent can also be a part of carbon precursor.

触媒を使用する場合、例として、銅(Cu)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)およびマンガン(Mn)からなる群より選ばれた少なくとも1種の元素を含むものが挙げられる。触媒元素は、炭素前駆体に不純物として含まれるものであってもよく、その場合、意図的に別途触媒を用意して混合する必要のない場合もある。これらの触媒元素は、該ケイ素含有粒子と触媒とが炭素前駆体に分散された混合物を形成するように、溶液として粒子と混合することが好ましい。このような溶液を提供するため、触媒元素は金属塩化合物として用意することが好ましく、そのような金属塩化合物の例としては、上記元素の、硝酸塩、硫酸塩、塩酸塩等の無機酸根との塩、カルボン酸、スルホン酸、フェノール等の有機酸根との塩、等が挙げられる。また、このような溶液に用いる溶媒としては、水、有機溶媒および水と有機溶媒の混合物の中から適宜選択すればよく、特に有機溶媒の例としては、エタノール、イソプロピルアルコール、トルエン、ベンゼン、ヘキサン、テトラヒドロフラン等が挙げられる。   When using a catalyst, as an example, at least one element selected from the group consisting of copper (Cu), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo) and manganese (Mn) The thing containing is mentioned. The catalytic element may be contained as an impurity in the carbon precursor. In that case, it may not be necessary to intentionally prepare and mix a separate catalyst. These catalytic elements are preferably mixed with the particles as a solution so that the silicon-containing particles and the catalyst form a mixture dispersed in the carbon precursor. In order to provide such a solution, the catalyst element is preferably prepared as a metal salt compound. Examples of such metal salt compounds include the above-described elements and inorganic acid radicals such as nitrates, sulfates, and hydrochlorides. And salts with organic acid radicals such as salts, carboxylic acids, sulfonic acids and phenols. Further, the solvent used in such a solution may be appropriately selected from water, an organic solvent, and a mixture of water and an organic solvent. Particularly, examples of the organic solvent include ethanol, isopropyl alcohol, toluene, benzene, hexane. , Tetrahydrofuran and the like.

リチウムイオンの吸蔵・放出が可能な粒子と、炭素前駆体と、必要に応じて触媒とを混合する方法は、本発明のケイ素の合金、酸化物、窒化物もしくは炭化物を含む粒子等を前述のように十分に分散できれば特に制限はなく、ホモディスパー、ホモジナイザー等の撹拌機による溶融または溶液混合;遠心粉砕機、自由ミル、ジェットミル等の粉砕機による粉砕混合;乳鉢、乳棒による混練混合;等を採用することができる。上記粒子と樹脂炭素材からなる粒子において、樹脂炭素材により上記粒子を包囲する複合粒子を形成する上で、溶媒を用いて、上記粒子と炭素前駆体を混合し、スラリー状混合物としてもよいし、上記粒子に炭素前駆体を混合し、炭素前駆体を硬化させ、固形状にしてもよい。また、上記スラリーにおいて、炭素前駆体が液状であれば、溶媒を使用しなくても良い。また本発明のケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子を十分に分散させるための混合手順も特に制限はなく、該粒子を予めよく分散し得る溶媒に分散させた後、他の成分と混合する方法や他の成分と該粒子を同時に溶媒に混合する方法、他の成分と該粒子を同時に溶融混合する方法(その際少量の溶媒を使用することも含む)、該粒子と前記炭素前駆体の一部を予め溶融混合し、後で残りの成分を混合する方法、あるいは該粒子の表面にカップリング剤を付着させて分散させる方法など、特に制限はない。   The method of mixing particles capable of occluding / releasing lithium ions, a carbon precursor, and, if necessary, a catalyst, the particles containing an alloy, oxide, nitride, or carbide of silicon of the present invention are described above. As long as it can be sufficiently dispersed, there is no particular limitation, and melting or solution mixing with a stirrer such as a homodisper or homogenizer; pulverization and mixing with a pulverizer such as a centrifugal pulverizer, free mill or jet mill; kneading and mixing with a mortar or pestle; Can be adopted. In forming the composite particles that surround the particles with the resin carbon material in the particles composed of the particles and the resin carbon material, the particles and the carbon precursor may be mixed using a solvent to form a slurry mixture. The carbon precursor may be mixed with the particles, the carbon precursor may be cured, and solidified. Further, in the slurry, if the carbon precursor is liquid, it is not necessary to use a solvent. The mixing procedure for sufficiently dispersing the silicon-containing particles containing the silicon alloy, oxide, nitride or carbide of the present invention is not particularly limited, and after the particles are dispersed in a solvent that can be well dispersed in advance, A method of mixing with other components, a method of simultaneously mixing other components and the particles in a solvent, a method of simultaneously melting and mixing other components and the particles (including the use of a small amount of solvent), the particles There is no particular limitation such as a method in which a part of the carbon precursor is melt-mixed in advance and the remaining components are mixed later, or a method in which a coupling agent is attached to the surface of the particles and dispersed.

本発明のリチウム2次電池負極用炭素材の粒度分布を調整する場合は、公知の粉砕方法、分級方法を採用すればよい。粉砕装置の例としては、ハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法の例としては、気流分級、篩による分級が可能であり、特に気流分級装置の例として、ターボクラシファイヤー、ターボプレックス等が挙げられる。   When adjusting the particle size distribution of the carbon material for a lithium secondary battery negative electrode of the present invention, a known pulverization method and classification method may be employed. Examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. Moreover, as an example of the classification method, air classification and classification with a sieve are possible. Particularly, examples of the air classification apparatus include a turbo classifier and a turboplex.

炭化処理のための加熱温度は、好ましくは400〜1400℃、より好ましくは600〜1300℃の範囲内で適宜設定すればよい。上記加熱温度に至るまでの昇温速度に特に制限はなく、好ましくは0.5〜600℃/時、より好ましくは20〜300℃/時の範囲内で適宜設定すればよい。上記加熱温度での保持時間は、好ましくは48時間以内、より好ましくは1〜12時間の範囲内で適宜設定すればよい。また、炭化処理は、アルゴン、窒素、二酸化炭素等の還元雰囲気において実施すればよい。さらに、炭化処理を2段階以上に分けて実施することにより、得られる樹脂炭素材の物性を制御することが好ましい。例えば、400〜700℃の温度で1〜6時間程度処理(1次炭化)した後、上述の粉砕処理により所期の平均粒子径を有する炭素材を得、さらにその炭素材を1000℃以上の温度で処理(2次炭化)することが好ましい。また炭化処理工程で本発明のケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子を凝集させない条件を適宜選択することも本発明に含まれる。   What is necessary is just to set the heating temperature for carbonization processing suitably in the range of preferably 400-1400 degreeC, More preferably, 600-1300 degreeC. There is no restriction | limiting in particular in the temperature increase rate until it reaches the said heating temperature, What is necessary is just to set suitably in the range of 0.5-600 degreeC / hour, More preferably, 20-300 degreeC / hour. The holding time at the heating temperature is suitably set within 48 hours, more preferably within a range of 1 to 12 hours. Moreover, what is necessary is just to implement carbonization processing in reducing atmosphere, such as argon, nitrogen, a carbon dioxide. Furthermore, it is preferable to control the physical properties of the obtained resin carbon material by carrying out the carbonization treatment in two or more stages. For example, after processing (primary carbonization) at a temperature of 400 to 700 ° C. for about 1 to 6 hours, a carbon material having an expected average particle diameter is obtained by the above-described pulverization treatment, and the carbon material is further heated to 1000 ° C. or more. It is preferable to perform the treatment (secondary carbonization) at a temperature. Further, the present invention includes appropriately selecting conditions that do not agglomerate silicon-containing particles containing an alloy, oxide, nitride or carbide of silicon of the present invention in the carbonization process.

このように、本発明よるリチウム2次電池負極用炭素材は、樹脂炭素材と、ナノファイバー等からなる網状構造体とが炭化処理により一緒に形成されるため、別途ナノファイバー等を気相法、アーク放電法、プラズマ処理法で用意する必要がなく、製造プロセスが簡便であり、且つコストを下げることができる。   As described above, the carbon material for a negative electrode of a lithium secondary battery according to the present invention is formed by carbonizing a resin carbon material and a network structure made of nanofibers together. Further, it is not necessary to prepare an arc discharge method or a plasma treatment method, the manufacturing process is simple, and the cost can be reduced.

上述のようにして得られた炭素材を負極活物質として用いることにより、本発明によるリチウム2次電池負極を作製することができる。本発明によるリチウム2次電池負極は、従来公知の方法で作製することができる。例えば、負極活物質としての本発明による炭素材に、バインダー、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させる。そのコーティングを50〜200℃程度で熱処理することにより溶媒または分散媒を除去することにより、本発明による負極を得ることができる。   By using the carbon material obtained as described above as a negative electrode active material, a lithium secondary battery negative electrode according to the present invention can be produced. The lithium secondary battery negative electrode according to the present invention can be produced by a conventionally known method. For example, a carbon material according to the present invention as a negative electrode active material is added with a binder, a conductive agent, etc. to prepare a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium, and this is applied to a current collector such as a metal foil. Then, a coating having a thickness of several μm to several hundred μm is formed. The negative electrode according to the present invention can be obtained by heat-treating the coating at about 50 to 200 ° C. to remove the solvent or the dispersion medium.

本発明による負極の作製に用いられるバインダーは、従来公知の材料であればよく、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、スチレン・ブタジエン共重合体、ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコール、ポリビニルブチラール等を使用することができる。また、本発明による負極の作製に用いられる導電剤は、導電補助材として通常使用されている材料であればよく、例として、黒鉛、アセチレンブラック、ケッチェンブラック等が挙げられる。さらに、本発明による負極の作製に用いられる溶媒または分散媒は、負極活物質、バインダー、導電剤等を均一に混合できる材料であればよく、例として、N−メチル−2−ピロリドン、メタノール、アセトニトリル等が挙げられる。   The binder used for preparing the negative electrode according to the present invention may be any conventionally known material, such as polyvinylidene fluoride resin, polytetrafluoroethylene, styrene / butadiene copolymer, polyimide resin, polyamide resin, polyvinyl alcohol, polyvinyl Butyral or the like can be used. In addition, the conductive agent used for producing the negative electrode according to the present invention may be any material that is usually used as a conductive auxiliary material, and examples thereof include graphite, acetylene black, and ketjen black. Furthermore, the solvent or dispersion medium used for the production of the negative electrode according to the present invention may be any material that can uniformly mix the negative electrode active material, the binder, the conductive agent, and the like. Examples thereof include N-methyl-2-pyrrolidone, methanol, Examples include acetonitrile.

さらに、本発明によるリチウム2次電池負極を用いることにより、本発明によるリチウム2次電池を作製することができる。本発明によるリチウム2次電池は、従来公知の方法で作製することができ、一般に、本発明による負極と、正極と、電解質とを含み、さらにこれらの負極と正極が短絡しないようにするセパレータを含む。電解質がポリマーと複合化された固体電解質であってセパレータの機能を併せ持つものである場合には、独立したセパレータは不要である。   Furthermore, the lithium secondary battery according to the present invention can be manufactured by using the lithium secondary battery negative electrode according to the present invention. The lithium secondary battery according to the present invention can be produced by a conventionally known method. In general, the lithium secondary battery includes a negative electrode according to the present invention, a positive electrode, and an electrolyte, and further includes a separator that prevents the negative electrode and the positive electrode from being short-circuited. Including. When the electrolyte is a solid electrolyte combined with a polymer and has the function of a separator, an independent separator is not necessary.

本発明によるリチウム2次電池の作製に用いられる正極は、従来公知の方法で作製することができる。例えば、正極活物質に、バインダー、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒または分散媒を除去すればよい。正極活物質は、従来公知の材料であればよく、例えば、LiCoO等のコバルト複合酸化物、LiMn等のマンガン複合酸化物、LiNiO等のニッケル複合酸化物、これら酸化物の混合物、LiNiOのニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO、LiFePO等の鉄複合酸化物、等を使用することができる。 The positive electrode used for the production of the lithium secondary battery according to the present invention can be produced by a conventionally known method. For example, a positive electrode active material is added with a binder, a conductive agent and the like to prepare a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium, and this is applied to a current collector such as a metal foil, and a thickness of several μm to What is necessary is just to remove a solvent or a dispersion medium by forming several hundred micrometers coating and heat-processing the coating at about 50-200 degreeC. The positive electrode active material may be a conventionally known material, for example, a cobalt composite oxide such as LiCoO 2 , a manganese composite oxide such as LiMn 2 O 4 , a nickel composite oxide such as LiNiO 2 , and a mixture of these oxides. , LiNiO 2 in which part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4 , and the like can be used.

電解質としては、公知の電解液、常温溶融塩(イオン液体)、及び有機系もしくは無機系の固体電解質などを用いることができる。公知の電解液としては、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステル、エチルメチルカーボネートおよびジエチルカーボネートなどの鎖状炭酸エステルなどが挙げられる。また、常温溶融塩(イオン液体)としては、例えば、イミダゾリウム系塩、ピロリジニウム系塩、ピリジニウム系塩、アンモニウム系塩、ホスホニウム系塩、スルホニウム系塩などが挙げられる。前記固体電解質としては、例えば、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリイミン系ポリマー、ポリビニルアセタール系ポリマー、ポリアクリロニトリル系ポリマー、ポリフッ化アルケン系ポリマー、ポリ塩化ビニル系ポリマー、ポリ(塩化ビニル−フッ化ビニリデン)系ポリマー、ポリ(スチレン−アクリロニトリル)系ポリマー、及びニトリルゴムなどの直鎖型ポリマーなどに代表される有機系ポリマーゲル;ジルコニアなどの無機セラミックス;ヨウ化銀、ヨウ化銀硫黄化合物、ヨウ化銀ルビジウム化合物などの無機系電解質;などが挙げられる。また、前記電解質にリチウム塩を溶解したものを2次電池用の電解質として用いることができる。また、電解質に難燃性を付与するために難燃性電解質溶解剤を加えることもできる。同様に、電解質の粘度を低下させるために可塑剤を加えることもできる。   As the electrolyte, a known electrolytic solution, a room temperature molten salt (ionic liquid), an organic or inorganic solid electrolyte, and the like can be used. Examples of the known electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. Examples of the room temperature molten salt (ionic liquid) include imidazolium salts, pyrrolidinium salts, pyridinium salts, ammonium salts, phosphonium salts, sulfonium salts, and the like. Examples of the solid electrolyte include polyether polymers, polyester polymers, polyimine polymers, polyvinyl acetal polymers, polyacrylonitrile polymers, polyfluorinated alkene polymers, polyvinyl chloride polymers, poly (vinyl chloride-fluoride). Vinylidene) -based polymers, poly (styrene-acrylonitrile) -based polymers, and organic polymer gels represented by linear polymers such as nitrile rubber; inorganic ceramics such as zirconia; silver iodide, silver iodide sulfur compounds, iodine And inorganic electrolytes such as silver rubidium compounds. Moreover, what melt | dissolved lithium salt in the said electrolyte can be used as an electrolyte for secondary batteries. A flame retardant electrolyte solubilizer can also be added to impart flame retardancy to the electrolyte. Similarly, a plasticizer can be added to reduce the viscosity of the electrolyte.

電解質に溶解させるリチウム塩としては、例えば、LiPF、LiClO、LiCFSO、LiBF、LiAsF、LiN(CFSO、LiN(CSOおよびLiC(CFSOなどが挙げられる。上記リチウム塩は、単独で用いても、また2種以上を組み合わせて用いてもよい。上記リチウム塩は、電解質全体に対して、一般に0.1質量%〜89.9質量%、好ましくは1.0質量%〜79.0質量%の含有量で用いられる。電解質のリチウム塩以外の成分は、リチウム塩の含有量が上記範囲内にあることを条件に、適当な量で添加することができる。 Examples of the lithium salt dissolved in the electrolyte include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC ( CF 3 SO 2 ) 3 and the like. The lithium salts may be used alone or in combination of two or more. The lithium salt is generally used in a content of 0.1% by mass to 89.9% by mass, preferably 1.0% by mass to 79.0% by mass, based on the entire electrolyte. Components other than the lithium salt of the electrolyte can be added in an appropriate amount on condition that the content of the lithium salt is within the above range.

上記電解質に用いられるポリマーとしては、電気化学的に安定であり、イオン伝導度が高いものであれば特に制限はなく、例えば、アクリレート系ポリマー、ポリフッ化ビニリデン等を使用することができる。また、重合性官能基を有するオニウムカチオンと重合性官能基を有する有機アニオンとから構成される塩モノマーを含むものから合成されたポリマーは、特にイオン伝導度が高く、充放電特性のさらなる向上に寄与し得る点で、より好ましい。電解質中のポリマー含有量は、好ましくは0.1質量%〜50質量%、より好ましくは1質量%〜40質量%の範囲内である。   The polymer used for the electrolyte is not particularly limited as long as it is electrochemically stable and has high ionic conductivity. For example, an acrylate polymer, polyvinylidene fluoride, or the like can be used. In addition, polymers synthesized from those containing a salt monomer composed of an onium cation having a polymerizable functional group and an organic anion having a polymerizable functional group have particularly high ionic conductivity, which further improves charge / discharge characteristics. It is more preferable at the point which can contribute. The polymer content in the electrolyte is preferably in the range of 0.1 mass% to 50 mass%, more preferably 1 mass% to 40 mass%.

上記難燃性電解質溶解剤としては、自己消火性を示し、かつ、電解質塩が共存した状態で電解質塩を溶解させることができる化合物であれば特に制限はなく、例えば、リン酸エステル、ハロゲン化合物、フォスファゼン等を使用することができる。   The flame retardant electrolyte solubilizer is not particularly limited as long as it is a compound that exhibits self-extinguishing properties and can dissolve the electrolyte salt in the presence of the electrolyte salt. For example, phosphate ester, halogen compound Phosphazene etc. can be used.

上記可塑剤の例としては、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、等が挙げられる。上記可塑剤は、単独で用いても、また2種以上を組み合わせて用いてもよい。   Examples of the plasticizer include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. The above plasticizers may be used alone or in combination of two or more.

本発明によるリチウム2次電池にセパレータを用いる場合、正極と負極の間の短絡を防止することができ、電気化学的に安定である従来公知の材料を使用すればよい。セパレータの例としては、ポリエチレン製セパレータ、ポリプロピレン製セパレータ、セルロース製セパレータ、不織布、無機系セパレータ、グラスフィルター等が挙げられる。電解質にポリマーを含める場合には、その電解質がセパレータの機能を兼ね備える場合もあり、その場合、独立したセパレータは不要である。   When the separator is used in the lithium secondary battery according to the present invention, a conventionally known material that can prevent a short circuit between the positive electrode and the negative electrode and is electrochemically stable may be used. Examples of the separator include a polyethylene separator, a polypropylene separator, a cellulose separator, a nonwoven fabric, an inorganic separator, a glass filter, and the like. When a polymer is included in the electrolyte, the electrolyte may also have a separator function, and in that case, an independent separator is unnecessary.

本発明の2次電池の製造方法としては、公知な方法が適用できる。例えば、まず、上記で得た正極および負極を、所定の形、大きさに切断して用意し、次いで、正極と負極を直接接触しないように、セパレータを介して貼りあわせ、それを単層セルとする。次いで、この単層セルの電極間に、注液などの方法により、電解質を注入する。このようにして得られたセルを、例えば、ポリエステルフィルム/アルミニウムフィルム/変性ポリオレフィンフィルムの三層構造のラミネートフィルムからなる外装体に挿入し封止することにより、2次電池が得られる。得られた2次電池は、用途により、単セルとして用いても、複数のセルを繋いだモジュールとして用いてもよい。   As a method for producing the secondary battery of the present invention, a known method can be applied. For example, the positive electrode and the negative electrode obtained above are first prepared by cutting them into a predetermined shape and size, and then bonded via a separator so that the positive electrode and the negative electrode are not in direct contact with each other. And Next, an electrolyte is injected between the electrodes of the single-layer cell by a method such as injection. A secondary battery is obtained by inserting and sealing the thus obtained cell into an outer package made of a laminate film having a three-layer structure of polyester film / aluminum film / modified polyolefin film, for example. The obtained secondary battery may be used as a single cell or a module in which a plurality of cells are connected depending on the application.

以下、本発明をより具体的に説明するための実施例を提供する。   Hereinafter, an example for explaining the present invention more concretely is provided.

<実施例1>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−51530)100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、メタノール10質量部、さらに一酸化ケイ素25質量部(平均粒子径0.6μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、図1に示すように白く写った繊維状のナノファイバー等からなる網状構造体が炭素材の粒子表面から発生し、これらの粒子を包囲していることが確認された。また、SEMで観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された(図2のグラフに代表例を示す)。また、炭素材断面のSEM観察を行ったところ、炭素材中の一酸化ケイ素粒子の2次粒子平均粒径は3μmであった(図3の写真に代表例を示す)。また、得られた炭素材には一酸化ケイ素が26.8質量%含有されていた。
<Example 1>
100 parts by weight of a novolac type phenolic resin (PR-51530 manufactured by Sumitomo Bakelite Co., Ltd.), 10 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by weight of methanol, and 25 parts by weight of silicon monoxide (average particle size 0) .6 μm) was mixed with a kneader at a rotation speed of 50 rpm and 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 9 μm, and the carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. The obtained carbon material was observed on the surface of the carbon material using a scanning electron microscope (SEM). As shown in FIG. 1, a network structure composed of fibrous nanofibers and the like appearing in white was a carbon material. It was confirmed that these particles were generated from the particle surface and surrounded these particles. Further, when elemental analysis was performed on nanofibers and the like observed by SEM using an energy dispersive X-ray analyzer (EDX), silicon peaks were confirmed (a representative example is shown in the graph of FIG. 2). Moreover, when SEM observation of the carbon material cross section was performed, the secondary particle average particle size of the silicon monoxide particles in the carbon material was 3 μm (a representative example is shown in the photograph of FIG. 3). The obtained carbon material contained 26.8% by mass of silicon monoxide.

本発明の炭素材およびケイ素の合金、酸化物、窒化物もしくは炭化物を含む(1次)粒子の粒子径は、レーザー回折折散乱粒度分布測定装置(ベックマン・コールター(株)社製LS−230)を用いて測定した。平均粒子径は体積換算とし、頻度が累積で50%になったところを平均粒子径と定義した。
また、本発明の複合粒子中の前記ケイ素含有粒子の2次粒子平均粒径は、よく混合した炭素材粒子を10サンプル任意に抽出し、その断面を走査型電子顕微鏡(SEM)を用いて観察した際の2次凝集粒子の長径を測定、その平均値を2次粒子平均粒径とした。
The particle diameter of the (primary) particles containing the carbon material and silicon alloy, oxide, nitride or carbide of the present invention is measured by a laser diffraction diffraction scattering particle size distribution analyzer (LS-230 manufactured by Beckman Coulter, Inc.). It measured using. The average particle diameter was converted to volume, and the place where the frequency reached 50% cumulatively was defined as the average particle diameter.
Further, the secondary particle average particle size of the silicon-containing particles in the composite particles of the present invention is obtained by arbitrarily extracting 10 samples of well-mixed carbon material particles and observing the cross section using a scanning electron microscope (SEM). The major axis of the secondary agglomerated particles was measured, and the average value was defined as the average secondary particle size.

充放電特性の評価
(1)負極の作製
上記で得られた炭素材を用い、これに対して結着剤としてポリフッ化ビニリデン10%、アセチレンブラック3%の割合で、それぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極用混合物を調製した。
この負極スラリー状混合物を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を100μmに加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極を用いて、リチウムイオン2次電池用電極としてφ13mmの径で打ち抜き負極とした。
Evaluation of charge / discharge characteristics (1) Production of negative electrode Using the carbon material obtained above, the binder was blended at a ratio of 10% polyvinylidene fluoride and 3% acetylene black, respectively, and further diluted. An appropriate amount of N-methyl-2-pyrrolidone as a solvent was added and mixed to prepare a slurry-like negative electrode mixture.
This negative electrode slurry mixture was applied to both sides of a 10 μm copper foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed to 100 μm by a roll press. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Using this negative electrode, a negative electrode was punched out with a diameter of 13 mm as an electrode for a lithium ion secondary battery.

(2)リチウムイオン2次電池の作製
上記負極、セパレータ(ポリプロピレン製多孔質フィルム:直径φ16、厚さ25μm)、作用極としてリチウム金属(直径φ12、厚さ1mm)の順で、宝泉製2032型コインセル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウムイオン2次電池を作製した。
(2) Production of Lithium Ion Secondary Battery The negative electrode, separator (polypropylene porous film: diameter φ16, thickness 25 μm), and lithium metal (diameter φ12, thickness 1 mm) as the working electrode in order of Hosen 2032 The coin cell was placed at a predetermined position in the coin cell. Further, an electrolyte solution in which lithium perchlorate is dissolved at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio is 1: 1) is injected into a lithium ion secondary. A battery was produced.

(3)電池特性の評価
〈初期充放電特性評価〉
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。
なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR−1010mSM8)を用いて行った。
また、以下の式により初回の充放電効率を定義した。
初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
(3) Evaluation of battery characteristics <Evaluation of initial charge / discharge characteristics>
Regarding the charging capacity, constant current charging is performed with the current density at the time of charging being 25 mA / g, and from the time when the potential reaches 0 V, constant voltage charging is performed at 0 V until the current density reaches 1.25 mA / g. The amount of electricity charged was taken as the charge capacity.
On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity.
In addition, evaluation of the charging / discharging characteristic was performed using the charging / discharging characteristic evaluation apparatus (Hokuto Denko Co., Ltd. product: HJR-1010mSM8).
The initial charge / discharge efficiency was defined by the following equation.
Initial charge / discharge efficiency (%) = initial discharge capacity (mAh / g) / initial charge capacity (mAh / g) × 100

〈サイクル性評価〉
初期充放電特性評価条件を300回繰り返し測定した後に得られた放電容量を300サイクル目の放電容量とした。また、以下の式によりサイクル性(300サイクル容量維持率)を定義した。
サイクル性(%、300サイクル容量維持率)=300サイクル目の放電容量(mAh/g)/初回放電容量(mAh/g)×100
<Cycle evaluation>
The discharge capacity obtained after repeatedly measuring the initial charge / discharge characteristic evaluation conditions 300 times was defined as the discharge capacity at the 300th cycle. In addition, the cycle property (300 cycle capacity maintenance rate) was defined by the following equation.
Cycle performance (%, 300 cycle capacity retention rate) = 300th cycle discharge capacity (mAh / g) / initial discharge capacity (mAh / g) × 100

<実施例2>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−51530)100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、メタノール10質量部、さらに一酸化ケイ素25質量部(平均粒子径1.2μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認され、観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は3.3μmであった。また、得られた炭素材には一酸化ケイ素が27.0質量%含有されていた。
<Example 2>
100 parts by weight of a novolac type phenolic resin (PR-51530, manufactured by Sumitomo Bakelite Co., Ltd.), 10 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by weight of methanol, and 25 parts by weight of silicon monoxide (average particle size 1) 2 μm) was mixed with a kneader at a rotation speed of 50 rpm and 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 10 μm. The carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using a scanning electron microscope (SEM), the production | generation of nanofiber etc. was confirmed on the carbon material particle surface, and energy dispersion was performed for the observed nanofiber etc. When elemental analysis was performed using a type X-ray analyzer (EDX), a silicon peak was confirmed. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 3.3 micrometers. The obtained carbon material contained 27.0% by mass of silicon monoxide.

<実施例3>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−51530)100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、メタノール10質量部、さらに一酸化ケイ素40質量部(平均粒子径0.7μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認され、観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は4μmであった。また、得られた炭素材には一酸化ケイ素が41.1質量%含有されていた。
<Example 3>
100 parts by weight of novolak type phenolic resin (PR-51530 manufactured by Sumitomo Bakelite Co., Ltd.), 10 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by weight of methanol, and 40 parts by weight of silicon monoxide (average particle size 0) 0.7 μm) was mixed with a kneader at a rotation speed of 50 rpm and 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 10 μm. The carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using a scanning electron microscope (SEM), the production | generation of nanofiber etc. was confirmed on the carbon material particle surface, and energy dispersion was performed for the observed nanofiber etc. When elemental analysis was performed using a type X-ray analyzer (EDX), a silicon peak was confirmed. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 4 micrometers. The obtained carbon material contained 41.1% by mass of silicon monoxide.

<実施例4>
メタクレゾール(関東化学株式会社製)100質量部と43%ホルムアルデヒド水溶液(住友ベークライト株式会社製)53.3質量部、しゅう酸(関東化学株式会社製)3質量部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、メタクレゾール樹脂90質量部を得た。上記操作を繰り返して得られたメタクレゾール樹脂100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、ジメチルスルホアミド10質量部、さらに一酸化ケイ素25質量部(平均粒子径1.2μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認され、観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は3.5μmであった。また、得られた炭素材には一酸化ケイ素が26.7質量%含有されていた。
<Example 4>
100 parts by mass of metacresol (manufactured by Kanto Chemical Co., Inc.), 53.3 parts by mass of a 43% formaldehyde aqueous solution (manufactured by Sumitomo Bakelite Co., Ltd.), and 3 parts by mass of oxalic acid (manufactured by Kanto Chemical Co., Ltd.) were equipped with a stirrer and a condenser. The mixture was placed in a three-necked flask and reacted at 100 ° C. for 3 hours, followed by dehydration at elevated temperature to obtain 90 parts by mass of a metacresol resin. 100 parts by mass of a metacresol resin obtained by repeating the above operation, 10 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by mass of dimethylsulfamide, and 25 parts by mass of silicon monoxide (average particle diameter of 1. 2 μm) was mixed with a kneader at a rotation speed of 50 rpm and 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 9 μm, and the carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using a scanning electron microscope (SEM), the production | generation of nanofiber etc. was confirmed on the carbon material particle surface, and energy dispersion was performed for the observed nanofiber etc. When elemental analysis was performed using a type X-ray analyzer (EDX), a silicon peak was confirmed. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 3.5 micrometers. Further, the obtained carbon material contained 26.7% by mass of silicon monoxide.

<実施例5>
メタクレゾール(関東化学株式会社製)100質量部と43%ホルムアルデヒド水溶液(住友ベークライト株式会社製)53.3質量部、しゅう酸(関東化学株式会社製)3質量部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、メタクレゾール樹脂90質量部を得た。上記操作を繰り返して得られたメタクレゾール樹脂100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、ジメチルスルホアミド10質量部、さらに一酸化ケイ素35質量部(平均粒子径0.5μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認され、観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は5μmであった。また、得られた炭素材には一酸化ケイ素が36.5質量%含有されていた。
<Example 5>
100 parts by mass of metacresol (manufactured by Kanto Chemical Co., Inc.), 53.3 parts by mass of a 43% formaldehyde aqueous solution (manufactured by Sumitomo Bakelite Co., Ltd.), and 3 parts by mass of oxalic acid (manufactured by Kanto Chemical Co., Ltd.) were equipped with a stirrer and a condenser. The mixture was placed in a three-necked flask and reacted at 100 ° C. for 3 hours, followed by dehydration at elevated temperature to obtain 90 parts by mass of a metacresol resin. 100 parts by mass of a metacresol resin obtained by repeating the above operation, 10 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by mass of dimethylsulfamide, and 35 parts by mass of silicon monoxide (average particle size of 0. 5 μm) was mixed with a kneader at 50 rpm and 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 10 μm. The carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using a scanning electron microscope (SEM), the production | generation of nanofiber etc. was confirmed on the carbon material particle surface, and energy dispersion was performed for the observed nanofiber etc. When elemental analysis was performed using a type X-ray analyzer (EDX), a silicon peak was confirmed. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 5 micrometers. The obtained carbon material contained 36.5% by mass of silicon monoxide.

<比較例1>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−51530)100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、メタノール10質量部、さらに一酸化ケイ素25質量部(平均粒子径1.2μm)をニーダーで、回転数25rpm、40℃、10分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が15μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認され、観察されたナノファイバー等をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行ったところ、ケイ素のピークが確認された。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は9μmであった。また、得られた炭素材には一酸化ケイ素が26.4質量%含有されていた。
<Comparative Example 1>
100 parts by weight of a novolac type phenolic resin (PR-51530, manufactured by Sumitomo Bakelite Co., Ltd.), 10 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.), 10 parts by weight of methanol, and 25 parts by weight of silicon monoxide (average particle size 1) .2 μm) was mixed with a kneader at a rotational speed of 25 rpm, 40 ° C. for 10 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 15 μm, and the carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using a scanning electron microscope (SEM), the production | generation of nanofiber etc. was confirmed on the carbon material particle surface, and energy dispersion was performed for the observed nanofiber etc. When elemental analysis was performed using a type X-ray analyzer (EDX), a silicon peak was confirmed. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 9 micrometers. The obtained carbon material contained 26.4% by mass of silicon monoxide.

<比較例2>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−51530)100質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)10質量部、メタノール10質量部、さらにケイ素(株式会社高純度化学研究所製のものを粉砕)20質量部(平均粒子径1.0μm)をニーダーで、回転数50rpm、40℃、30分間混合し、樹脂スラリーを得た。攪拌終了後、得られた樹脂スラリーを175℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭素材を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後3時間の炭化処理を行い、2次電池負極用炭素材を得た。得られた炭素材について、走査型電子顕微鏡(SEM)を用いて炭素材表面の観察を行ったところ、炭素材粒子表面にナノファイバー等の生成が確認されなかった。また、炭素材の断面のSEM観察を行ったところ、炭素材中の金属粒子の2次粒子平均粒径は3μmであった。また、得られた炭素材にはケイ素が20.9質量%含有されていた。
<Comparative example 2>
100 parts by weight of a novolac type phenolic resin (PR-51530 manufactured by Sumitomo Bakelite Co., Ltd.), 10 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Ltd.), 10 parts by weight of methanol, and silicon (manufactured by High Purity Chemical Research Laboratory) 20 parts by mass (average particle size: 1.0 μm) was mixed with a kneader at 50 rpm, 40 ° C. for 30 minutes to obtain a resin slurry. After the stirring was completed, the obtained resin slurry was cured at 175 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbon material is pulverized until the average particle size becomes 9 μm, and the carbon material obtained by the pulverization is further heated, and carbonized for 3 hours after reaching 1100 ° C. Carbon material for use was obtained. About the obtained carbon material, when the carbon material surface was observed using the scanning electron microscope (SEM), the production | generation of nanofiber etc. was not confirmed on the carbon material particle surface. Moreover, when the SEM observation of the cross section of a carbon material was performed, the secondary particle average particle diameter of the metal particle in a carbon material was 3 micrometers. The obtained carbon material contained 20.9% by mass of silicon.

上記各実施例、比較例について、炭素材の電池特性の評価結果を表1に示す。   Table 1 shows the evaluation results of the battery characteristics of the carbon material for each of the above Examples and Comparative Examples.

表1から明らかなように、実施例1〜5のリチウムイオン2次電池は、300サイクル
後の容量維持率が80%以上あり、同50%以下の比較例1、2と比べ、充放電サイクル特性が顕著に向上した。これは、図1、図3に代表されるように、実施例ではナノファイバー等からなる網状構造体が複合粒子の表面から発生し、これらの粒子を包囲し、さらには本発明のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有(1次)粒子がよく分散して2次粒子が小さくなっている結果、充放電サイクルによる負極用炭素材の膨張収縮に伴う微粉化が抑制されたためであると考えられる。これに対し、比較例1では、ナノファイバー等からなる網状構造体が複合粒子の表面から発生し、これらの粒子を包囲しているものの、本発明のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有(1次)粒子の凝集が著しく、2次粒子が大きくなっており、比較例2では、粒子を包囲する網状構造体が存在しないため、前記2次粒子が小さくなっているにもかかわらず、前記充放電サイクルによる負極用炭素材の膨張収縮に伴う微粉化が進行し、実質的に電極が崩壊した。
As is clear from Table 1, the lithium ion secondary batteries of Examples 1 to 5 have a capacity maintenance rate of 80% or more after 300 cycles, and charge / discharge cycles as compared with Comparative Examples 1 and 2 of 50% or less. The characteristics were significantly improved. As represented by FIG. 1 and FIG. 3, in this embodiment, a network structure composed of nanofibers or the like is generated from the surface of the composite particles, surrounds these particles, and further, the lithium ion of the present invention. As a result of the well-dispersed silicon-containing (primary) particles containing silicon alloys, oxides, nitrides or carbides that can be occluded / released, the secondary particles become smaller. This is considered to be because the pulverization accompanying expansion and contraction was suppressed. On the other hand, in Comparative Example 1, although a network structure composed of nanofibers or the like is generated from the surface of the composite particle and surrounds these particles, the silicon of the present invention capable of occluding and releasing lithium ions is used. Aggregation of silicon-containing (primary) particles containing an alloy, oxide, nitride, or carbide is remarkably large, and the secondary particles are large. In Comparative Example 2, there is no network structure surrounding the particles. Despite secondary particles becoming smaller, pulverization accompanying the expansion and contraction of the carbon material for a negative electrode due to the charge / discharge cycle proceeded, and the electrode substantially collapsed.

Claims (6)

1次粒子平均粒径が5nm以上1.5μm以下のリチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物もしくは炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに
該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体を含み、前記樹脂炭素材と前記網状構造体は、炭素前駆体を炭化処理することにより形成され、前記網状構造体は、見かけ上、複合粒子の表面を起点に形成され、
該複合粒子中の前記ケイ素含有粒子の2次粒子平均粒径が、1次粒子最小粒径以上、5μm以下であることを特徴とする、リチウム2次電池負極用炭素材。
Silicon-containing particles containing an alloy, oxide, nitride or carbide of silicon capable of occluding and releasing lithium ions having an average primary particle diameter of 5 nm to 1.5 μm, and resin charcoal surrounding the silicon-containing particles A composite particle composed of a raw material, and a silicon-containing network composed of nanofibers and / or nanotubes that bind to and surround the surface of the composite particle, the resin carbon material and the network structure Is formed by carbonizing a carbon precursor, and the network structure is apparently formed from the surface of the composite particle,
A carbon material for a lithium secondary battery negative electrode, wherein the silicon-containing particles in the composite particles have an average secondary particle size of not less than a minimum primary particle size of 5 μm or less.
前記ケイ素含有粒子がケイ素酸化物を含む、請求項に記載のリチウム2次電池負極用炭素材。 The carbon material for a lithium secondary battery negative electrode according to claim 1 , wherein the silicon-containing particles include a silicon oxide. 平均粒子径が3μm〜15μmの範囲内である、請求項1または2に記載のリチウム2次電池負極用炭素材。 The carbon material for a lithium secondary battery negative electrode according to claim 1 or 2 , wherein the average particle diameter is in the range of 3 µm to 15 µm. 前記炭素前駆体が、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料および/または難黒鉛化材料を含む、請求項のいずれか1項に記載のリチウム2次電池負極用炭素材。 Wherein the carbon precursor, petroleum pitch, coal pitch, phenolic containing resins, furan resins, epoxy resins and the graphitizable material selected from the group consisting of polyacrylonitrile and / or non-graphitizable materials, of claims 1 to 3, The carbon material for a lithium secondary battery negative electrode according to any one of the above. 請求項1〜のいずれか1項に記載のリチウム2次電池負極用炭素材を含むリチウム2次電池負極。 The lithium secondary battery negative electrode containing the carbon material for lithium secondary battery negative electrodes of any one of Claims 1-4 . 請求項に記載のリチウム2次電池負極を含むリチウム2次電池。

A lithium secondary battery comprising the lithium secondary battery negative electrode according to claim 5 .

JP2009291781A 2009-12-24 2009-12-24 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery Expired - Fee Related JP5573149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291781A JP5573149B2 (en) 2009-12-24 2009-12-24 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291781A JP5573149B2 (en) 2009-12-24 2009-12-24 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011134534A JP2011134534A (en) 2011-07-07
JP5573149B2 true JP5573149B2 (en) 2014-08-20

Family

ID=44347060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291781A Expired - Fee Related JP5573149B2 (en) 2009-12-24 2009-12-24 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5573149B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494712B2 (en) * 2012-04-13 2014-05-21 株式会社豊田自動織機 Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and vehicle
US10374221B2 (en) * 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
KR101708363B1 (en) * 2013-02-15 2017-02-20 삼성에스디아이 주식회사 Negative active material, and negative electrode and lithium battery containing the material
DE102014008739A1 (en) * 2014-06-12 2015-12-17 Daimler Ag Electrode material for an electrochemical storage, method for producing an electrode material and electrochemical energy storage
KR101609459B1 (en) * 2014-07-03 2016-04-06 오씨아이 주식회사 Carbon-silicon composite and manufacturing mehtod of the same
CN113548671B (en) * 2021-08-11 2023-03-17 贝特瑞(江苏)新能源材料有限公司 Negative electrode material and preparation method thereof, negative electrode plate and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1833109A1 (en) * 2005-06-03 2007-09-12 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP4208034B2 (en) * 2006-02-17 2009-01-14 パナソニック株式会社 Method for producing conductive composite particles
JP2007214137A (en) * 2007-03-12 2007-08-23 Mitsubishi Chemicals Corp Negative electrode active material for nonaqueous carbon-coated lithium secondary battery

Also Published As

Publication number Publication date
JP2011134534A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5482660B2 (en) Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP5593663B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
JP5593665B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
KR101571917B1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP6450309B2 (en) Anode material for lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP5573149B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5499636B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5655396B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP5440488B2 (en) Carbon material for secondary battery
JP5482094B2 (en) Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP5540631B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
JP2006269110A (en) Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees