JP5572593B2 - Fluorescent lamp - Google Patents

Fluorescent lamp Download PDF

Info

Publication number
JP5572593B2
JP5572593B2 JP2011134764A JP2011134764A JP5572593B2 JP 5572593 B2 JP5572593 B2 JP 5572593B2 JP 2011134764 A JP2011134764 A JP 2011134764A JP 2011134764 A JP2011134764 A JP 2011134764A JP 5572593 B2 JP5572593 B2 JP 5572593B2
Authority
JP
Japan
Prior art keywords
tube
arc tube
fluorescent lamp
ring
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011134764A
Other languages
Japanese (ja)
Other versions
JP2013004329A (en
Inventor
喜将 高橋
晋 坂野
玲夫 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011134764A priority Critical patent/JP5572593B2/en
Publication of JP2013004329A publication Critical patent/JP2013004329A/en
Application granted granted Critical
Publication of JP5572593B2 publication Critical patent/JP5572593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は3本以上の環形発光管を略同一平面内に略同心円状に設けた蛍光ランプに関するものである。   The present invention relates to a fluorescent lamp in which three or more ring-shaped arc tubes are provided in a substantially concentric manner in substantially the same plane.

環形蛍光ランプの1種として、図5に示すような放電路が二重環形状になる発光管51a,発光管51bを備えた蛍光ランプ50が公知である(特許文献1)。図5の蛍光ランプは、いわゆる二重環形蛍光ランプであって、発光管51aと発光管51bがブリッジ接合部52で連結され、発光管51aの管端部にある電極(図示せず)から発光管51bの管端部にある電極(図示せず)で一つの放電路が形成されている。   As one type of annular fluorescent lamp, there is known a fluorescent lamp 50 including a light emitting tube 51a and a light emitting tube 51b having a discharge ring as shown in FIG. 5 (Patent Document 1). The fluorescent lamp of FIG. 5 is a so-called double ring fluorescent lamp, in which the arc tube 51a and the arc tube 51b are connected by a bridge junction 52, and light is emitted from an electrode (not shown) at the tube end of the arc tube 51a. One discharge path is formed by an electrode (not shown) at the tube end of the tube 51b.

特許第2776840号公報Japanese Patent No. 2776840

特許文献1に記載の蛍光ランプではより全光束を大きくし、発光効率のよいランプを作成しようとした際に満足できなくなる恐れがある。   In the fluorescent lamp described in Patent Document 1, there is a possibility that the total luminous flux is increased to be unsatisfactory when an attempt is made to produce a lamp with good luminous efficiency.

本発明は、ランプの全光束が大きく、発光効率が高い蛍光ランプを提供することを目的とする。   An object of the present invention is to provide a fluorescent lamp having a large total luminous flux and high luminous efficiency.

上記目的を達成するため、請求項1に記載の本発明に係る蛍光ランプは、環径が異なる3本以上の環形発光管が略同一平面内に略同心円状に設けられ、前記環形発光管の端部をブリッジ接合部により順次連結していき、最外輪の環形発光管と最内輪の環形発光管の端部にそれぞれ設けた電極で一つの放電路が形成され、前記環形発光管の管端部を包囲する形で一つの口金を備え、二つ以上の複数のブリッジ接合部が設けられ、ブリッジ接合部近傍の発光管の管端部に最冷点が位置し、前記放電路が2500mmより長く、かつランプ電流は150〜320mAの範囲にあることを特徴とする。 In order to achieve the above object, the fluorescent lamp according to the first aspect of the present invention is provided with three or more ring-shaped arc tubes having different ring diameters provided substantially concentrically in a substantially same plane. Ends are sequentially connected by a bridge joint, and one discharge path is formed by the electrodes provided at the ends of the outermost ring-shaped arc tube and the innermost ring-shaped arc tube, respectively. One base is provided so as to surround the part , two or more bridge joints are provided, the coldest spot is located at the tube end of the arc tube near the bridge joint, and the discharge path is from 2500 mm It is long and the lamp current is in the range of 150 to 320 mA .

請求項に記載の本発明に係る蛍光ランプは、請求項1に記載の蛍光ランプにおいて、前記環形発光管の管壁同士の隙間Sが複数設けられ、隙間Sは略均一である構成を有することを特徴とする。 The fluorescent lamp according to a second aspect of the present invention is the fluorescent lamp according to the first aspect, wherein a plurality of gaps S between the tube walls of the annular arc tube are provided, and the gaps S are substantially uniform. It is characterized by that.

請求項に記載の本発明に係る蛍光ランプは、請求項1に記載の蛍光ランプにおいて、前記最外輪の環形発光管の最大外径が408mmを超えない構成を有することを特徴とする。
A fluorescent lamp according to a third aspect of the present invention is the fluorescent lamp according to the first aspect, characterized in that the maximum outer diameter of the outermost ring-shaped arc tube does not exceed 408 mm.

本発明の蛍光ランプは、環径が異なる3本以上の環形発光管が略同一平面内に略同心円状に設けられ、前記環形発光管の端部をブリッジ接合により順次連結していき、最外輪の環形発光管と最内輪の環形発光管の端部にそれぞれ設けた電極で一つの放電路が形成されているため、従来の二重環形蛍光ランプに比べ、ランプの最大外径を大きくすることなく、環形発光管を内側に設けていくことで、発光管の放電路を長くし、放電路が長くなったため、発光面積が増えることにより、全光束を大きく、発光効率を向上させることができる。   In the fluorescent lamp of the present invention, three or more ring-shaped arc tubes having different ring diameters are provided in a substantially concentric shape in a substantially same plane, and the ends of the ring-shaped arc tubes are sequentially connected by bridge joining, Since a single discharge path is formed by the electrodes provided at the ends of the ring-shaped arc tube and inner ring-shaped arc tube, the maximum outer diameter of the lamp should be larger than that of conventional double-ring type fluorescent lamps. By providing an annular arc tube on the inside, the discharge path of the arc tube is lengthened and the discharge path is lengthened, so that the light emission area increases, so that the total luminous flux can be increased and the luminous efficiency can be improved. .

本発明の蛍光ランプにおいて、環形発光管のブリッジ接合部近傍の管端部に最冷点が設けられている場合は、最冷点が放電路から離れているため、温度を下げることが可能であり、2個以上のブリッジ接合部とそれぞれ近傍の管端部の位置関係で、最冷点を任意の管端部に設けることが可能となる。したがって、ランプを密閉形器具内に装着した場合の周囲温度が高くなる雰囲気においても、任意に設けた最冷点の温度を器具に装着した状態で下げることができる。そのため、従来では最冷点の温度が高い状態で使用し全光束が最大値を超える発光効率の悪くなる状態となる場合があったが、本発明の蛍光ランプでは全光束が最大値に近づき、器具内での発光効率が高い状態で点灯させることが可能となる。   In the fluorescent lamp of the present invention, when the coldest spot is provided at the tube end near the bridge junction of the annular arc tube, the temperature can be lowered because the coldest spot is away from the discharge path. Yes, it is possible to provide the coldest spot at an arbitrary pipe end due to the positional relationship between two or more bridge joints and the adjacent pipe ends. Therefore, even in an atmosphere in which the ambient temperature is high when the lamp is mounted in a sealed instrument, the temperature of the coldest spot that is arbitrarily provided can be lowered while the lamp is mounted on the instrument. Therefore, in the past, there was a case where the cold spot temperature is high and the total luminous flux exceeds the maximum value, and the luminous efficiency may be in a poor state.However, in the fluorescent lamp of the present invention, the total luminous flux approaches the maximum value, It is possible to light the lamp with high luminous efficiency in the appliance.

本発明の蛍光ランプにおいて、3本以上の環形発光管を同一平面内に設け、管壁同士の隙間を環形発光管と同一平面内に2箇所以上設けている場合は、2箇所以上の隙間を略均一にすれば、蛍光ランプとして発光する部分である発光管と発光しない部分である隙間による発光の明暗差が目立たなくなり、全体の発光が均一になるため、密閉形器具に装着した場合に器具のカバー部材で光を拡散する必要性が少なくなり、カバー部材での光の反射,吸収を抑え、比較的高い照度を得る照明器具を設計することができる。   In the fluorescent lamp of the present invention, when three or more ring arc tubes are provided in the same plane and two or more gaps between the tube walls are provided in the same plane as the ring arc tube, two or more gaps are provided. If it is made almost uniform, the difference in brightness between the arc tube that emits light as a fluorescent lamp and the gap that does not emit light becomes inconspicuous, and the entire light emission becomes uniform. The necessity of diffusing light with the cover member is reduced, and it is possible to design a luminaire that obtains a relatively high illuminance by suppressing reflection and absorption of light at the cover member.

本発明の蛍光ランプにおいて、管壁同士のそれぞれの隙間の1箇所以上において、接着剤等により管壁同士が固着されている場合は、接着剤等とブリッジ接合部の合わせて2箇所以上で管壁同士が固着され、蛍光ランプの口金を器具のソケットに差し込む際に力加減を間違えても、発光管が折れてしまう恐れを低減することができる。   In the fluorescent lamp of the present invention, when the tube walls are fixed by an adhesive or the like at one or more positions of the gaps between the tube walls, the tube is attached at two or more locations including the adhesive and the bridge joint portion. The walls are fixed to each other, and the risk of the arc tube being broken can be reduced even if the force is mistaken when inserting the base of the fluorescent lamp into the socket of the instrument.

本発明の蛍光ランプにおいて、最外輪の環形発光管の外径が蛍光ランプの最大外径となり、3本以上の複数の環形蛍光管を最大外径408mm以下の内側に並べていくことで、従来の器具と同等の大きさで装着できる蛍光ランプを作成することが可能となる。   In the fluorescent lamp of the present invention, the outer diameter of the outermost ring-shaped arc tube is the maximum outer diameter of the fluorescent lamp, and three or more ring-shaped fluorescent tubes are arranged inside the maximum outer diameter of 408 mm or less. It is possible to create a fluorescent lamp that can be mounted in the same size as the appliance.

本発明の蛍光ランプにおいて、前記放電路を2500mmより長くし、かつランプ電流は150〜320mAの範囲で蛍光ランプを点灯させることで、発光効率を低下させることなく、環形発光管のブリッジ接合部近傍の管端部に設けられた最冷点の温度を下げることが可能となる。   In the fluorescent lamp of the present invention, the discharge path is made longer than 2500 mm, and the lamp current is turned on in the range of 150 to 320 mA. It is possible to lower the temperature of the coldest spot provided at the pipe end.

本発明の第一の実施の形態である蛍光ランプを示す正面図。The front view which shows the fluorescent lamp which is 1st embodiment of this invention. 本発明の第二の実施の形態である蛍光ランプを示す正面図。The front view which shows the fluorescent lamp which is 2nd embodiment of this invention. 本発明の第一の実施の形態である蛍光ランプの発光管を示す正面断面図。1 is a front sectional view showing an arc tube of a fluorescent lamp that is a first embodiment of the present invention. 本発明の第二の実施の形態である蛍光ランプの発光管を示す正面断面図。The front sectional view showing the arc tube of the fluorescent lamp which is the second embodiment of the present invention. 従来の例を示す蛍光ランプの正面図。The front view of the fluorescent lamp which shows the conventional example. 本発明の第一の実施の形態と第二の実施の形態である蛍光ランプのランプ電流と発光効率の関係を示す図。The figure which shows the relationship between the lamp current of the fluorescent lamp which is 1st embodiment of this invention, and 2nd embodiment, and luminous efficiency. 本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示す図。The figure which shows the relationship between the coldest point of the fluorescent lamp which is 1st embodiment of this invention, and 2nd embodiment, and a total luminous flux.

以下、本発明の実施の形態に係る蛍光ランプについて、図面を参照しながら説明する。   Hereinafter, fluorescent lamps according to embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第一の実施の形態に係る蛍光ランプ10を示す図である。本発明の第一の実施の形態に係る蛍光ランプ10は、主にリビングやダイニングルーム等に好適な家庭用照明器具に用いられる蛍光ランプであって、環形発光管11a,11b,11cは管壁同士の隙間S1,S2が略均一になるよう略同一平面内に略同心円状に並べられ、前記環形発光管11a,11bを連結するブリッジ接合部12a、前記環形発光管11b,11cを連結するブリッジ接合部12b、前記環形発光管11a,11b,11cの管端部を包囲する形の口金13、前記環形発光管11a,11b,11cの管壁同士を固着する接着剤14を備えている。蛍光ランプ10の環形発光管11a,11b,11cは3本の環形発光管を連結し、一つの放電路を形成しているため、2本の環形発光管で一つの放電路を形成している蛍光ランプに比べ、同じ最大外径で蛍光ランプを作成した場合、発光管10aの内側に発光管10bや10cが形成されていることにより、2本の環形発光管よりも放電路を長くすることができる。したがって、発光管の放電路が長くなり発光面積が増えたことで、全光束を大きく、発光効率を向上させたランプを作成することができる。同じ消費電力であれば、発光面積を増やすことで、結果、全光束が大きくなって、発光効率があがる。 FIG. 1 is a diagram showing a fluorescent lamp 10 according to a first embodiment of the present invention. A fluorescent lamp 10 according to a first embodiment of the present invention is a fluorescent lamp mainly used in a home lighting apparatus suitable for a living room, a dining room, etc., and the annular arc tubes 11a, 11b, and 11c are tube walls. The gaps S 1 and S 2 are arranged substantially concentrically in substantially the same plane so that the gaps S 1 and S 2 are substantially uniform, and connect the ring-shaped arc tubes 11a and 11b and the ring-shaped arc tubes 11b and 11c. A bridge joint 12b, a base 13 surrounding the tube ends of the ring-shaped arc tubes 11a, 11b, and 11c, and an adhesive 14 for fixing the tube walls of the ring-shaped arc tubes 11a, 11b, and 11c. . Since the annular arc tubes 11a, 11b, and 11c of the fluorescent lamp 10 connect three annular arc tubes to form one discharge path, the two annular arc tubes form one discharge path. When a fluorescent lamp is produced with the same maximum outer diameter as compared with the fluorescent lamp, the discharge path is made longer than the two annular arc tubes because the arc tubes 10b and 10c are formed inside the arc tube 10a. Can do. Therefore, the discharge path of the arc tube is lengthened and the light emission area is increased, so that a lamp with a large total luminous flux and improved luminous efficiency can be produced. If the power consumption is the same, increasing the light emission area results in an increase in the total luminous flux and an increase in light emission efficiency.

接着剤14は、例えば長さ30mm,幅6mmで管壁同士を固着している。接着剤14には、例えばシリコーン樹脂,エポキシ樹脂,アクリル樹脂あるいはセメント等が用いられる。   The adhesive 14 has a length of 30 mm and a width of 6 mm, for example, and fixes the tube walls to each other. For example, a silicone resin, an epoxy resin, an acrylic resin, or cement is used for the adhesive 14.

図2は、本発明の第二の実施の形態に係る蛍光ランプを示す図である。本発明の第二の実施の形態に係る蛍光ランプ20は、主にリビングやダイニングルーム等に好適な家庭用照明器具に用いられる蛍光ランプであって、環形発光管21a,21b,21c,21dは管壁同士の隙間S1,S2,S3を略均一に略同一平面内に略同心円状に並べられ、前記環形発光管21a,21bを連結するブリッジ接合部22a、前記環形発光管21b,21cを連結するブリッジ接合部22b、前記環形発光管21c,21dを連結するブリッジ接合部22c、前記環形発光管21a,21b,21c,21dの管端部を包囲する形の口金23、前記環形発光管21a,21b,21c,21dの管壁同士を固着する接着剤24を備えている。 FIG. 2 is a diagram showing a fluorescent lamp according to the second embodiment of the present invention. The fluorescent lamp 20 according to the second embodiment of the present invention is a fluorescent lamp mainly used in a home lighting apparatus suitable for a living room, a dining room, etc., and the annular arc tubes 21a, 21b, 21c, 21d are The gaps S 1 , S 2 , S 3 between the tube walls are arranged substantially uniformly and substantially concentrically in substantially the same plane, and connect the annular arc tube 21a, 21b, the bridge junction 22a, the annular arc tube 21b, A bridge junction 22b for connecting 21c, a bridge junction 22c for connecting the ring-shaped arc tubes 21c and 21d, a base 23 surrounding the tube ends of the ring-shaped arc tubes 21a, 21b, 21c and 21d, and the ring-shaped light emission. An adhesive 24 for fixing the tube walls of the tubes 21a, 21b, 21c, and 21d is provided.

接着剤24は、例えば長さ30mm,幅6mmで管壁同士を固着している。接着剤24には、例えばシリコーン樹脂,エポキシ樹脂,アクリル樹脂あるいはセメント等が用いられる。   The adhesive 24 has a length of 30 mm and a width of 6 mm, for example, and fixes the tube walls to each other. For the adhesive 24, for example, silicone resin, epoxy resin, acrylic resin, cement, or the like is used.

図3は、本発明の第一の実施の形態である蛍光ランプの発光管を示す正面断面図である。発光管31は、口金13,接着剤14を取り付ける前の状態を示す断面図である。発光管31は、環形発光管11aの一方の管端部に配置された電極35aと環形蛍光管11cの一方の管端部に配置された電極35bで形成される一つの放電路が3本の環形発光管11a,11b,11cの環中央を中心として、略同一平面内に略同心円状に並べられた形状を有している。また、発光管31の環形発光管11a,11b,11cの管壁同士の隙間S1,S2は略均一である。 FIG. 3 is a front sectional view showing the arc tube of the fluorescent lamp according to the first embodiment of the present invention. The arc tube 31 is a cross-sectional view showing a state before the base 13 and the adhesive 14 are attached. The arc tube 31 has three discharge paths formed by an electrode 35a disposed at one end of the annular arc tube 11a and an electrode 35b disposed at one end of the annular fluorescent tube 11c. The ring-shaped arc tubes 11a, 11b, and 11c are arranged in a substantially concentric manner in substantially the same plane with the center of the ring at the center. Further, the gaps S 1 and S 2 between the tube walls of the annular arc tubes 11a, 11b, and 11c of the arc tube 31 are substantially uniform.

発光管31は、例えば72Wの蛍光ランプの場合、環形発光管11a,11b,11cの管外径が20.0mm、管内径が17.6mmであり、環形発光管11aの環外径は354mm、環内径は314mm、環形発光管11bの環外径は308mm、環内径は268mm、環形発光管11cの環外径は262mm、環内径は222mm、ブリッジ接合部12a,12bの外径が9.0mm、内径が6.0mmであり、環形発光管11a,11b,11cのそれぞれの管壁同士の隙間S1,S2が3.0mm、電極35aと電極35bで形成される一つの放電路の距離が2570mmである。蛍光管31は、例えば、鉛フリーガラス(軟化点665℃の軟質ガラス)で形成されている。なお、最外輪の環形発光管11aの環外径354mmが発光管31の最大外径であり、したがって蛍光ランプ10の大きさは354mmとなる。 For example, in the case of a 72 W fluorescent lamp, the arc tube 31 has an annular outer diameter of 20.0 mm and an inner diameter of 17.6 mm, and an annular outer diameter of the annular arc tube 11a is 354 mm. The inner diameter of the ring is 314 mm, the outer diameter of the annular arc tube 11b is 308 mm, the inner diameter of the ring is 268 mm, the outer diameter of the annular arc tube 11c is 262 mm, the inner diameter of the ring is 222 mm, and the outer diameter of the bridge joints 12a and 12b is 9.0 mm. The inner diameter is 6.0 mm, the gaps S 1 and S 2 between the tube walls of the annular arc tubes 11a, 11b and 11c are 3.0 mm, and the distance between one discharge path formed by the electrodes 35a and 35b. Is 2570 mm. The fluorescent tube 31 is made of, for example, lead-free glass (soft glass having a softening point of 665 ° C.). It should be noted that the ring outer diameter 354 mm of the outermost ring-shaped arc tube 11a is the maximum outer diameter of the arc tube 31, and therefore the size of the fluorescent lamp 10 is 354 mm.

発光管31の内面には、酸化セリウム(CeO2)からなる保護膜層(図示せず),赤色蛍光体(Y23:Eu),緑色蛍光体(LaPO4:Ce,Tb)及び青色蛍光体((Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu)からなる希土類蛍光体によって蛍光体膜層(図示せず)が形成されている。 A protective film layer (not shown) made of cerium oxide (CeO 2 ), a red phosphor (Y 2 O 3 : Eu), a green phosphor (LaPO 4 : Ce, Tb), and blue are formed on the inner surface of the arc tube 31. A phosphor film layer (not shown) is formed of a rare earth phosphor made of a phosphor ((Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu).

発光管31の内部には、水銀(図示せず)が約15mg封入されているとともに、緩衝ガスとしてのアルゴンが約300Paとなるように封入されている。封入する水銀は、水銀単体の他に亜鉛水銀,錫水銀等の水銀合金であっても良く、また緩衝ガスはアルゴン単体の他にネオン,クリプトン,キセノンの混合ガスでも良い。   Inside the arc tube 31, about 15 mg of mercury (not shown) is sealed, and argon as a buffer gas is sealed at about 300 Pa. Mercury to be enclosed may be mercury alloy such as zinc mercury and tin mercury in addition to mercury alone, and the buffer gas may be a mixed gas of neon, krypton and xenon in addition to argon alone.

また前記隙間S1,S2は平均的に3.0〜15.0mmの範囲とする必要がある。前記隙間S1,S2を3.0mmよりも狭く設計すると、発光管11a,11b,11cを同一平面内に並べるためには、3本とも真円環状に精度よく加工しなければならず、製造費が著しく高くなる。加えて、隙間S1,S2が狭い場合は、発光管11a,11b,11cから放射される赤外線で、互いに管壁温度が上昇し、特に密閉形器具に装着した場合、最冷点温度の上昇による発光効率の低下が顕著になる。 The gaps S 1 and S 2 need to be in the range of 3.0 to 15.0 mm on average. If the gaps S 1 and S 2 are designed to be narrower than 3.0 mm, in order to arrange the arc tubes 11a, 11b, and 11c in the same plane, all three must be processed into a perfect circular shape with high accuracy. Manufacturing costs are significantly higher. In addition, when the gaps S 1 and S 2 are narrow, the tube wall temperatures rise with each other by infrared rays emitted from the arc tubes 11a, 11b, and 11c. The decrease in luminous efficiency due to the rise becomes remarkable.

前記隙間S1,S2が15.0mmを超えると、発光管11a,11b,11cがそれぞれ独立して存在するように見え、均一な発光が得られず、密閉形器具に装着した場合に器具のカバー部材で光を拡散する必要性が多くなり、カバー部材での光の反射,吸収が増え、前記発光管31から得られる照度が低くなる。 When the gaps S 1 and S 2 exceed 15.0 mm, the arc tubes 11a, 11b, and 11c appear to exist independently, and uniform light emission cannot be obtained. The necessity of diffusing light with the cover member increases, reflection and absorption of light at the cover member increase, and the illuminance obtained from the arc tube 31 decreases.

ブリッジ接合部12aの管軸中心位置は、発光管11aの電極35a側ではない管端部から30mmの位置にあり、ブリッジ接合部12bの管軸中心位置は、発光管11bのブリッジ接合部12aの近傍ではない他方の管端部から25mmの位置にある。発光管11aの電極35a側ではない管端部が発光管31の最冷点となる。   The tube axis center position of the bridge joint portion 12a is 30 mm from the tube end portion that is not on the electrode 35a side of the arc tube 11a, and the tube axis center position of the bridge junction portion 12b is the position of the bridge junction portion 12a of the arc tube 11b. It is at a position of 25 mm from the other pipe end that is not in the vicinity. The tube end of the arc tube 11a that is not on the electrode 35a side is the coldest spot of the arc tube 31.

電極35a,35bはタングステン製フィラメントと一対の給電のためのリード線とを備え、発光管11a及び発光管11cの管端部で気密封着されている。   The electrodes 35a and 35b include a tungsten filament and a pair of power supply lead wires, and are hermetically sealed at the tube ends of the arc tube 11a and the arc tube 11c.

図6は、本発明の第一の実施の形態と第二の実施の形態である蛍光ランプのランプ電流と発光効率の関係を示す図であり、発光管31のランプ電流(放電電流)と発光効率の関係を示す。発光管31の発光効率は、従来の二重環形の定格ランプ電流に対する発光効率の相対値である。本実施例においては発光効率(相対値)が103以上であれば発光効率がよいと判断しているため、発光管31の発光効率を高くするためには、ランプ電流を150〜320mAの範囲にすることが好適であると判断する。ランプ電流が150mAより小さい場合は、発光管31内の放電で流れる電子が少ないため、電子と水銀原子との衝突が減少し、水銀原子から発生する紫外線が減少する。紫外線の発生が減ることにより、蛍光体膜層で紫外線を可視光に変換する量が減り、発光効率が低下する恐れがある。ランプ電流が320mAを超えると、発光管31内の放電で流れる電子は多くなるため、電子と水銀原子との衝突が増加し、水銀原子から発生する紫外線が増加する恐れがある。また、ランプ電流が大きくなると発光管31の管壁温度が上昇し、蛍光体膜層の温度が上昇する。蛍光体膜層の発光効率(紫外線を可視光に変換する変換効率)には温度依存性があるため、蛍光体膜層の温度上昇で発光効率が低下する。したがって、ランプ電流を150〜320mAの範囲にすることで発光効率の高い発光管31を作成することができると判断する。なお、前記ランプ電流の範囲で作成した発光管31は、放電路の距離が2570mmであるため、ランプ電力の最適範囲は、53〜90Wとなる。ただし、従来よりも効率が上がるということを考えると、発光効率が100よりも大きければ良い場合もある。その場合は、ランプ電流の範囲は図6から明らかなように450mA以下とすれば良い。また、発光効率の最大範囲だけで考えると220〜230mAで蛍光ランプを作成することが良い。   FIG. 6 is a diagram showing the relationship between the lamp current and the luminous efficiency of the fluorescent lamps according to the first embodiment and the second embodiment of the present invention, and the lamp current (discharge current) of the arc tube 31 and the light emission. The relationship of efficiency is shown. The luminous efficiency of the arc tube 31 is a relative value of the luminous efficiency with respect to the conventional double ring rated lamp current. In this embodiment, it is determined that the luminous efficiency is good if the luminous efficiency (relative value) is 103 or more. Therefore, in order to increase the luminous efficiency of the arc tube 31, the lamp current is set in the range of 150 to 320 mA. It is determined that it is preferable. When the lamp current is smaller than 150 mA, the number of electrons flowing due to the discharge in the arc tube 31 is small, so the collision between the electrons and mercury atoms is reduced, and the ultraviolet rays generated from the mercury atoms are reduced. When the generation of ultraviolet rays is reduced, the amount of ultraviolet rays converted into visible light in the phosphor film layer is reduced, and the light emission efficiency may be reduced. When the lamp current exceeds 320 mA, the number of electrons flowing through the discharge in the arc tube 31 increases, so that collision between the electrons and mercury atoms increases, and there is a possibility that ultraviolet rays generated from the mercury atoms increase. Further, when the lamp current increases, the tube wall temperature of the arc tube 31 increases, and the temperature of the phosphor film layer increases. Since the luminous efficiency of the phosphor film layer (conversion efficiency for converting ultraviolet light into visible light) is temperature-dependent, the luminous efficiency decreases as the temperature of the phosphor film layer increases. Therefore, it is determined that the arc tube 31 with high luminous efficiency can be created by setting the lamp current in the range of 150 to 320 mA. In addition, since the arc tube 31 created in the lamp current range has a discharge path distance of 2570 mm, the optimum range of lamp power is 53 to 90 W. However, in view of the fact that the efficiency is higher than in the prior art, the light emission efficiency may be larger than 100 in some cases. In that case, the range of the lamp current may be 450 mA or less as apparent from FIG. Also, considering only the maximum range of luminous efficiency, it is preferable to create a fluorescent lamp at 220 to 230 mA.

図7は、本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示す図であり、発光管31の最冷点温度と全光束の関係を示す。ランプ電力が前記範囲である場合は、発光管31の大きさ(放電路の長さ)に対し、発光管への管入力が低くなるため、発光管31の管壁温度が低くなり、最冷点の温度も低くなる。器具に装着した場合に全光束を大きくするためには、最冷点を45〜55℃の範囲にすることが好適である。密閉形器具に装着した場合、器具内の温度は常温に比べ、著しく上昇し、最冷点は前記範囲内になる可能性が高く、発光管31は実使用状態で全光束が大きくなる。   FIG. 7 is a diagram showing the relationship between the coldest spot and the total luminous flux of the fluorescent lamp according to the first embodiment and the second embodiment of the present invention. The relationship is shown. When the lamp power is within the above range, since the tube input to the arc tube is lower than the size of the arc tube 31 (the length of the discharge path), the tube wall temperature of the arc tube 31 is lowered and the coldest The point temperature will also be lowered. In order to increase the total luminous flux when mounted on the appliance, it is preferable to set the coldest point in the range of 45 to 55 ° C. When attached to a sealed appliance, the temperature inside the appliance rises significantly compared to room temperature, the coldest point is likely to be within the above range, and the arc tube 31 has a larger total luminous flux in actual use.

本実施の形態に係る蛍光ランプ10を用いて、諸特性について評価した。実験は、蛍光ランプ10を高周波点灯形蛍光ランプ専用の点灯装置で点灯させ、前記蛍光ランプ10の諸特性を測定した。光源色を昼光色とし、72Wの蛍光ランプ10では、ランプ電流220mA,ランプ電圧331V,全光束6420lm,ランプ効率89.2lm/Wという優れたランプ特性を示した。また、周囲温度25℃の雰囲気での最冷点は31℃となり、図5に示す従来の蛍光ランプ50よりも約9℃低くなった。   Various characteristics were evaluated using the fluorescent lamp 10 according to the present embodiment. In the experiment, the fluorescent lamp 10 was turned on with a lighting device dedicated to a high-frequency lighting type fluorescent lamp, and various characteristics of the fluorescent lamp 10 were measured. The light source color was daylight, and the 72 W fluorescent lamp 10 showed excellent lamp characteristics of a lamp current of 220 mA, a lamp voltage of 331 V, a total luminous flux of 6420 lm, and a lamp efficiency of 89.2 lm / W. Further, the coldest spot in an atmosphere having an ambient temperature of 25 ° C. was 31 ° C., which was about 9 ° C. lower than the conventional fluorescent lamp 50 shown in FIG.

したがって、前記蛍光ランプ10を密閉形器具に装着し、器具内での最冷点温度が約50℃であった場合、器具内での全光束は7480lmとなる。   Therefore, when the fluorescent lamp 10 is mounted on a sealed instrument and the coldest spot temperature in the instrument is about 50 ° C., the total luminous flux in the instrument is 7480 lm.

前記発光管31の変態例として、発光管31が例えば90Wの蛍光ランプの場合、環形発光管11a,11b,11cの管外径が20.0mm、管内径が17.6mmであり、環形発光管11aの環外径は400mm、環内径は360mm、環形発光管11bの環外径は354mm、環内径は314mm、環形発光管11cの環外径は308mm、環内径は268mm、ブリッジ接合部12a,12bの外径が9.0mm、内径が6.0mmであり、環形発光管11a,11b,11cのそれぞれの管壁同士の隙間S1,S2が3.0mm、電極35aと電極35bで形成される一つの放電路の距離が3000mmである。最外輪の環形発光管11aの環外径400mmが発光管31の最大外径であり、したがって蛍光ランプ10の大きさは400mmとなる。 As a modification example of the arc tube 31, when the arc tube 31 is a 90 W fluorescent lamp, for example, the annular arc tubes 11a, 11b, and 11c have a tube outer diameter of 20.0 mm and a tube inner diameter of 17.6 mm. 11a has a ring outer diameter of 400 mm, a ring inner diameter of 360 mm, a ring arc tube 11b has a ring outer diameter of 354 mm, a ring inner diameter of 314 mm, a ring arc tube 11c has a ring outer diameter of 308 mm, a ring inner diameter of 268 mm, a bridge joint 12a, 12b has an outer diameter of 9.0 mm and an inner diameter of 6.0 mm, and gaps S 1 and S 2 between the tube walls of the annular arc tubes 11a, 11b, and 11c are 3.0 mm, and are formed by the electrodes 35a and 35b. The distance of one discharge path to be performed is 3000 mm. The ring outer diameter 400 mm of the outermost ring-shaped arc tube 11 a is the maximum outer diameter of the arc tube 31. Therefore, the size of the fluorescent lamp 10 is 400 mm.

また前記隙間S1,S2は平均的に3.0〜15.0mmの範囲とする必要がある。前記隙間S1,S2を3.0mmよりも狭く設計すると、発光管11a,11b,11cを同一平面内に並べるためには、3本とも真円環状に精度よく加工しなければならず、製造費が著しく高くなる。また、隙間S1,S2が狭い場合は、発光管11a,11b,11cから放射される赤外線で、互いに管壁温度が上昇し、特に密閉形器具に装着した場合、最冷点温度の上昇による発光効率の低下が顕著になる。 The gaps S 1 and S 2 need to be in the range of 3.0 to 15.0 mm on average. If the gaps S 1 and S 2 are designed to be narrower than 3.0 mm, in order to arrange the arc tubes 11a, 11b, and 11c in the same plane, all three must be processed into a perfect circular shape with high accuracy. Manufacturing costs are significantly higher. In addition, when the gaps S 1 and S 2 are narrow, the tube wall temperature increases with the infrared rays emitted from the arc tubes 11a, 11b, and 11c, and particularly when mounted on a sealed device, the coldest spot temperature increases. The decrease in luminous efficiency due to the above becomes remarkable.

前記隙間S1,S2が15.0mmを超えると、発光管11a,11b,11cがそれぞれ独立して存在するように見え、均一な発光が得られず、密閉形器具に装着した場合に器具のカバー部材で光を拡散する必要性が多くなり、カバー部材での光の反射,吸収が増え、前記発光管31から得られる照度が低くなる。 When the gaps S 1 and S 2 exceed 15.0 mm, the arc tubes 11a, 11b, and 11c appear to exist independently, and uniform light emission cannot be obtained. The necessity of diffusing light with the cover member increases, reflection and absorption of light at the cover member increase, and the illuminance obtained from the arc tube 31 decreases.

ブリッジ接合部12aの管軸中心位置は、発光管11aの電極35a側ではない管端部から30mmの位置にあり、ブリッジ接合部12bの管軸中心位置は、発光管11bのブリッジ接合部12aの近傍ではない他方の管端部から25mmの位置にある。発光管11aの電極35a側ではない管端部が発光管31の最冷点となる。   The tube axis center position of the bridge joint portion 12a is 30 mm from the tube end portion that is not on the electrode 35a side of the arc tube 11a, and the tube axis center position of the bridge junction portion 12b is the position of the bridge junction portion 12a of the arc tube 11b. It is at a position of 25 mm from the other pipe end that is not in the vicinity. The tube end of the arc tube 11a that is not on the electrode 35a side is the coldest spot of the arc tube 31.

図6の本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示す図は、前記発光管31のランプ電流(放電電流)と発光効率の関係を示しており、前記発光管31の発光効率を高くするためには、ランプ電流を150〜320mAの範囲にすることが好適である。なお、前記ランプ電流の範囲で作成した前記発光管31は、放電路の距離が3000mmであるため、ランプ電力の最適範囲は、63〜106Wとなる。   FIG. 6 is a diagram showing the relationship between the coldest spot and the total luminous flux of the fluorescent lamps according to the first embodiment and the second embodiment of the present invention, the lamp current (discharge current) of the arc tube 31 and the light emission. The relationship of efficiency is shown, and in order to increase the luminous efficiency of the arc tube 31, it is preferable to set the lamp current in the range of 150 to 320 mA. In addition, since the arc tube 31 created in the lamp current range has a discharge path distance of 3000 mm, the optimum range of lamp power is 63 to 106 W.

図7は、本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示しており、前記発光管31の最冷点温度と全光束の関係を示す。ランプ電力が前記範囲である場合は、発光管31の大きさに対し、発光管への管入力が低くなるため、発光管31の管壁温度が低くなり、最冷点の温度も低くなる。器具に装着した場合に全光束を大きくするためには、最冷点を45〜55℃の範囲にすることが好適である。密閉形器具に装着した場合、器具内の温度は常温に比べ、著しく上昇し、最冷点は前記範囲内になる可能性が高く、発光管31は実使用状態で全光束が大きくなる。   FIG. 7 shows the relationship between the coldest spot and the total luminous flux of the fluorescent lamp according to the first embodiment and the second embodiment of the present invention. The relationship is shown. When the lamp power is in the above range, the tube input to the arc tube is lower than the size of the arc tube 31, so the tube wall temperature of the arc tube 31 is lowered and the coldest point temperature is also lowered. In order to increase the total luminous flux when mounted on the appliance, it is preferable to set the coldest point in the range of 45 to 55 ° C. When attached to a sealed appliance, the temperature inside the appliance rises significantly compared to room temperature, the coldest point is likely to be within the above range, and the arc tube 31 has a larger total luminous flux in actual use.

本実施の形態に係る蛍光ランプ10を用いて、諸特性について評価した。実験は、蛍光ランプ10を高周波点灯形蛍光ランプ専用の点灯装置で点灯させ、前記蛍光ランプ10の諸特性を測定した。光源色を昼光色とし、90Wの蛍光ランプ10では、ランプ電流240mA,ランプ電圧378V,全光束8120lm,ランプ効率90.2lm/Wという優れたランプ特性を示した。また、周囲温度25℃の雰囲気での最冷点は31℃となり、図5に示す従来の蛍光ランプ50よりも約9℃低くなった。   Various characteristics were evaluated using the fluorescent lamp 10 according to the present embodiment. In the experiment, the fluorescent lamp 10 was turned on with a lighting device dedicated to a high-frequency lighting type fluorescent lamp, and various characteristics of the fluorescent lamp 10 were measured. The light source color was daylight, and the 90 W fluorescent lamp 10 showed excellent lamp characteristics of a lamp current of 240 mA, a lamp voltage of 378 V, a total luminous flux of 8120 lm, and a lamp efficiency of 90.2 lm / W. Further, the coldest spot in an atmosphere having an ambient temperature of 25 ° C. was 31 ° C., which was about 9 ° C. lower than the conventional fluorescent lamp 50 shown in FIG.

したがって、前記蛍光ランプ10を密閉形器具に装着し、器具内での最冷点温度が約50℃であった場合、器具内での全光束は9460lmとなる。   Therefore, when the fluorescent lamp 10 is mounted on a sealed instrument and the coldest spot temperature in the instrument is about 50 ° C., the total luminous flux in the instrument is 9460 lm.

図4は、本発明の第二の実施の形態である蛍光ランプの発光管を示す正面断面図である。発光管41は、口金23,接着剤24を取り付ける前の状態を示す断面図である。発光管41は、環形発光管21aの一方の管端部に配置された電極45aと環形蛍光管21dの一方の管端部に配置された電極45bで形成される一つの放電路が4本の環形発光管21a,21b,21c,21dの環中央を中心として、略同一平面内に略同心円状に並べられた形状を有している。また、発光管41の環形発光管21a,21b,21c,21dは管壁同士の隙間S1,S2,S3は略均一である。 FIG. 4 is a front sectional view showing an arc tube of a fluorescent lamp according to the second embodiment of the present invention. The arc tube 41 is a cross-sectional view showing a state before the base 23 and the adhesive 24 are attached. The arc tube 41 has four discharge paths formed by an electrode 45a disposed at one end of the annular arc tube 21a and an electrode 45b disposed at one end of the annular fluorescent tube 21d. The ring-shaped arc tubes 21a, 21b, 21c, and 21d have a shape arranged in a substantially concentric manner in a substantially same plane with the center of the ring at the center. Further, the ring-shaped arc tubes 21a, 21b, 21c and 21d of the arc tube 41 have substantially uniform gaps S 1 , S 2 and S 3 between the tube walls.

発光管41は、例えば130Wの蛍光ランプの場合、環形発光管21a,21b,21c,21dの管外径が20.0mm、管内径が17.6mmであり、環形発光管21aの環外径は400mm、環内径は360mm、環形発光管21bの環外径は354mm、環内径は314mm、環形発光管21cの環外径は308mm、環内径は268mm、環形発光管21dの環外径は262mm、環内径は222mm、ブリッジ接合部22a,22b,22cの外径が9.0mm、内径が6.0mmであり、環形発光管21a,21b,21c,21dのそれぞれの管壁同士の隙間S1,S2,S3が3.0mm、電極45aと電極45bで形成される一つの放電路の距離が3720mmである。蛍光管41は、例えば、鉛フリーガラス(軟化点665℃の軟質ガラス)で形成されている。なお、最外輪の環形発光管21aの環外径400mmが発光管41の最大外径であり、したがって蛍光ランプ20の大きさは400mmとなる。 For example, in the case of a fluorescent lamp of 130 W, the arc tube 41 has an annular arc tube 21a, 21b, 21c, 21d having a tube outer diameter of 20.0 mm and a tube inner diameter of 17.6 mm. 400 mm, the inner diameter of the ring is 360 mm, the outer diameter of the annular arc tube 21b is 354 mm, the inner diameter of the ring is 314 mm, the outer diameter of the annular arc tube 21c is 308 mm, the inner diameter of the ring is 268 mm, the outer diameter of the annular arc tube 21d is 262 mm, The inner diameter of the ring is 222 mm, the outer diameter of the bridge joint portions 22a, 22b, and 22c is 9.0 mm, and the inner diameter is 6.0 mm. The gaps S 1 between the respective tube walls of the annular arc tubes 21a, 21b, 21c, and 21d, S 2 and S 3 are 3.0 mm, and the distance between one discharge path formed by the electrodes 45a and 45b is 3720 mm. The fluorescent tube 41 is made of, for example, lead-free glass (soft glass having a softening point of 665 ° C.). It should be noted that the ring outer diameter of the outermost ring-shaped arc tube 21a of 400 mm is the maximum outer diameter of the arc tube 41, and therefore the size of the fluorescent lamp 20 is 400 mm.

発光管41の内面には、酸化セリウム(CeO2)からなる保護膜層(図示せず),赤色蛍光体(Y23:Eu),緑色蛍光体(LaPO4:Ce,Tb)及び青色蛍光体((Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu)からなる希土類蛍光体によって蛍光体膜層(図示せず)が形成されている。 On the inner surface of the arc tube 41, a protective film layer (not shown) made of cerium oxide (CeO 2 ), a red phosphor (Y 2 O 3 : Eu), a green phosphor (LaPO 4 : Ce, Tb) and blue A phosphor film layer (not shown) is formed of a rare earth phosphor made of a phosphor ((Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu).

発光管41の内部には、水銀(図示せず)が約15mg封入されているとともに、緩衝ガスとしてのアルゴンが約300Paとなるように封入されている。封入する水銀は、水銀単体の他に亜鉛水銀,錫水銀等の水銀合金であっても良く、また緩衝ガスはアルゴン単体の他にネオン,クリプトン,キセノンの混合ガスでも良い。   Inside the arc tube 41, about 15 mg of mercury (not shown) is sealed, and argon as a buffer gas is sealed at about 300 Pa. Mercury to be enclosed may be mercury alloy such as zinc mercury and tin mercury in addition to mercury alone, and the buffer gas may be a mixed gas of neon, krypton and xenon in addition to argon alone.

また前記隙間S1,S2,S3は平均的に3.0〜15.0mmの範囲とする必要がある。前記隙間S1,S2,S3を3.0mmよりも狭く設計すると、発光管21a,21b,21c,21dを同一平面内に並べるためには、4本とも真円環状に精度よく加工しなければならず、製造費が著しく高くなる。また、隙間S1,S2,S3が狭い場合は、発光管21a,21b,21c,21dから放射される赤外線で、互いに管壁温度が上昇し、特に密閉形器具に装着した場合、最冷点温度の上昇による発光効率の低下が顕著になる。 The gaps S 1 , S 2 , S 3 need to be in the range of 3.0 to 15.0 mm on average. If the gaps S 1 , S 2 , S 3 are designed to be narrower than 3.0 mm, in order to arrange the arc tubes 21a, 21b, 21c, 21d in the same plane, all four must be accurately processed into a perfect circle. And manufacturing costs are significantly increased. Also, when the gaps S 1 , S 2 , S 3 are narrow, the tube wall temperature increases with infrared rays emitted from the arc tubes 21a, 21b, 21c, 21d. A decrease in luminous efficiency due to an increase in cold spot temperature becomes significant.

前記隙間S1,S2,S3が15.0mmを超えると、発光管21a,21b,21c,21dがそれぞれ独立して存在するように見え、均一な発光が得られず、密閉形器具に装着した場合に器具のカバー部材で光を拡散する必要性が多くなり、カバー部材での光の反射,吸収が増え、前記発光管41から得られる照度が低くなる。 When the gaps S 1 , S 2 , S 3 exceed 15.0 mm, the arc tubes 21a, 21b, 21c, 21d appear to exist independently, and uniform light emission cannot be obtained. When mounted, the necessity of diffusing light with the cover member of the instrument increases, reflection and absorption of light at the cover member increase, and the illuminance obtained from the arc tube 41 decreases.

ブリッジ接合部22aの管軸中心位置は、発光管21aの電極45a側ではない管端部から30mmの位置にあり、ブリッジ接合部22bの管軸中心位置は、発光管21bのブリッジ接合部22aの近傍ではない他方の管端部から25mmの位置にあり、ブリッジ接合部22cの管軸中心位置は、発光管21cのブリッジ接合部22bの近傍ではない他方の管端部から25mmの位置にある。発光管21aの電極45a側ではない管端部が発光管41の最冷点となる。   The tube axis center position of the bridge joint portion 22a is 30 mm from the tube end portion that is not on the electrode 45a side of the arc tube 21a, and the tube axis center position of the bridge junction portion 22b is the position of the bridge junction portion 22a of the arc tube 21b. The center of the tube axis of the bridge joint 22c is 25 mm from the other tube end that is not near the bridge joint 22b of the arc tube 21c. The tube end of the arc tube 21a that is not on the electrode 45a side is the coldest spot of the arc tube 41.

電極45a,45bはタングステン製フィラメントと一対の給電のためのリード線とを備え、発光管21a及び発光管21dの管端部で気密封着されている。   The electrodes 45a and 45b include a tungsten filament and a pair of power supply lead wires, and are hermetically sealed at the tube ends of the arc tube 21a and the arc tube 21d.

図6の本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示す図は、発光管41のランプ電流(放電電流)と発光効率の関係を示しており、発光管41の発光効率を高くするためには、ランプ電流を150〜320mAの範囲にすることが好適である。ランプ電流が150mAより小さい場合は、発光管41内の放電で流れる電子が少ないため、電子と水銀原子との衝突が減少し、水銀原子から発生する紫外線が減少する。紫外線の発生が減ることにより、蛍光体膜層で紫外線を可視光に変換する量が減り、発光効率が低下する。ランプ電流が320mAを超えると、発光管41内の放電で流れる電子は多くなるため、電子と水銀原子との衝突が増加し、水銀原子から発生する紫外線が増加する。しかし、ランプ電流が大きくなると発光管41の管壁温度が上昇し、蛍光体膜層の温度が上昇する。蛍光体膜層の発光効率(紫外線を可視光に変換する変換効率)には温度依存性があるため、蛍光体膜層の温度上昇で発光効率が低下する。したがって、ランプ電流を150〜320mAの範囲にすることで発光効率の高い発光管41を作成することができる。なお、前記ランプ電流の範囲で作成した発光管41は、放電路の距離が3720mmであるため、ランプ電力の最適範囲は、84〜138Wとなる。   FIG. 6 is a diagram showing the relationship between the coldest spot and the total luminous flux of the fluorescent lamps according to the first embodiment and the second embodiment of the present invention, the lamp current (discharge current) of the arc tube 41 and the luminous efficiency. In order to increase the luminous efficiency of the arc tube 41, it is preferable to set the lamp current in the range of 150 to 320 mA. When the lamp current is smaller than 150 mA, the number of electrons flowing due to the discharge in the arc tube 41 is small, so the collision between the electrons and mercury atoms decreases, and the ultraviolet rays generated from the mercury atoms decrease. By reducing the generation of ultraviolet rays, the amount of ultraviolet rays converted into visible light by the phosphor film layer is reduced, and the light emission efficiency is lowered. When the lamp current exceeds 320 mA, the number of electrons that flow due to the discharge in the arc tube 41 increases, so the collision between the electrons and mercury atoms increases, and the ultraviolet rays generated from the mercury atoms increase. However, when the lamp current increases, the tube wall temperature of the arc tube 41 increases and the temperature of the phosphor film layer increases. Since the luminous efficiency of the phosphor film layer (conversion efficiency for converting ultraviolet light into visible light) is temperature-dependent, the luminous efficiency decreases as the temperature of the phosphor film layer increases. Therefore, the arc tube 41 with high luminous efficiency can be created by setting the lamp current in the range of 150 to 320 mA. Since the arc tube 41 created in the lamp current range has a discharge path distance of 3720 mm, the optimum range of lamp power is 84 to 138 W.

図7は、本発明の第一の実施の形態と第二の実施の形態である蛍光ランプの最冷点と全光束の関係を示しており、前記発光管41の最冷点温度と全光束の関係を示す。ランプ電力が前記範囲である場合は、発光管41の大きさに対し、発光管への管入力が低くなるため、発光管41の管壁温度が低くなり、最冷点の温度も低くなる。器具に装着した場合に全光束を大きくするためには、最冷点を45〜55℃の範囲にすることが好適である。密閉形器具に装着した場合、器具内の温度は常温に比べ、著しく上昇し、最冷点は前記範囲内になる可能性が高く、発光管41は実使用状態で全光束が大きくなる。   FIG. 7 shows the relationship between the coldest spot and the total luminous flux of the fluorescent lamps according to the first and second embodiments of the present invention. The relationship is shown. When the lamp power is within the above range, the tube input to the arc tube is lower than the size of the arc tube 41, so the tube wall temperature of the arc tube 41 is lowered and the coldest point temperature is also lowered. In order to increase the total luminous flux when mounted on the appliance, it is preferable to set the coldest point in the range of 45 to 55 ° C. When attached to a sealed appliance, the temperature inside the appliance rises significantly compared to room temperature, the coldest point is likely to be within the above range, and the arc tube 41 has a large total luminous flux in actual use.

本実施の形態に係る蛍光ランプ20を用いて、諸特性について評価した。実験は、蛍光ランプ20を高周波点灯形蛍光ランプ専用の点灯装置で点灯させ、前記蛍光ランプ20の諸特性を測定した。光源色を昼光色とし、130Wの蛍光ランプ20では、ランプ電流290mA,ランプ電圧455V,全光束11760lm,ランプ効率90.5lm/Wという優れたランプ特性を示した。また、周囲温度25℃の雰囲気での最冷点は32℃となり、図5に示す従来の蛍光ランプ50よりも約8℃低くなった。   Various characteristics were evaluated using the fluorescent lamp 20 according to the present embodiment. In the experiment, the fluorescent lamp 20 was turned on with a lighting device dedicated to a high-frequency lighting type fluorescent lamp, and various characteristics of the fluorescent lamp 20 were measured. The light source color was daylight, and the 130 W fluorescent lamp 20 exhibited excellent lamp characteristics of a lamp current of 290 mA, a lamp voltage of 455 V, a total luminous flux of 11760 lm, and a lamp efficiency of 90.5 lm / W. Further, the coldest spot in an atmosphere having an ambient temperature of 25 ° C. was 32 ° C., which was about 8 ° C. lower than the conventional fluorescent lamp 50 shown in FIG.

したがって、前記蛍光ランプ20を密閉形器具に装着し、器具内での最冷点温度が約50℃であった場合、器具内での全光束は13720lmとなる。   Therefore, when the fluorescent lamp 20 is mounted on a sealed instrument and the coldest spot temperature in the instrument is about 50 ° C., the total luminous flux in the instrument is 13720 lm.

以上説明したように、本発明は環径が異なる3本以上の環形発光管が略同一平面内に略同心円状に設けられ、前記環形発光管の端部をブリッジ接合により順次連結していき、最外輪の環形発光管と最内輪の環形発光管の端部にそれぞれ設けた電極で一つの放電路が形成することで放電路を長くし、ランプの全光束及び発光効率を向上し、最冷点温度を低下させたランプを得ることができる。   As described above, in the present invention, three or more ring-shaped arc tubes having different ring diameters are provided substantially concentrically in substantially the same plane, and the ends of the ring-shaped arc tubes are sequentially connected by bridge joining, By forming one discharge path with the electrodes provided at the ends of the outer ring-shaped arc tube and the inner ring-shaped arc tube, the discharge path is lengthened, improving the total luminous flux and luminous efficiency of the lamp, A lamp with a reduced point temperature can be obtained.

以上に説明した数値は上記に限るものではない。   The numerical values described above are not limited to the above.

本発明は、蛍光ランプにおいて利用される特許である。   The present invention is a patent used in fluorescent lamps.

10,20,50 蛍光ランプ
11,21,31,41,51 発光管
12,22,52 ブリッジ接合部
13,23,53 口金
14,24,54 接着剤
35,45 電極
10, 20, 50 Fluorescent lamp 11, 21, 31, 41, 51 Arc tube 12, 22, 52 Bridge joint 13, 23, 53 Base 14, 24, 54 Adhesive 35, 45 Electrode

Claims (3)

環径が異なる3本以上の環形発光管が略同一平面内に略同心円状に設けられ、前記環形
発光管の端部をブリッジ接合部により順次連結していき、最外輪の環形発光管と最内輪の
環形発光管の端部にそれぞれ設けた電極で一つの放電路が形成され、前記環形発光管の管
端部を包囲する形で一つの口金を備え、
二つ以上の複数のブリッジ接合部が設けられ、ブリッジ接合部近傍の発光管の管端部に
最冷点が位置し、
前記放電路が2500mmより長く、かつランプ電流は150〜320mAの範囲にある
ことを特徴とする蛍光ランプ。
Three or more ring-shaped arc tubes having different ring diameters are provided substantially concentrically in the same plane, and the end portions of the ring-shaped arc tubes are sequentially connected by a bridge joint, and the outermost ring-shaped arc tube is connected to the outermost ring-shaped arc tube. One discharge path is formed by an electrode provided at each end of the annular arc tube of the inner ring, and a single base is provided so as to surround the tube end of the annular arc tube,
Two or more bridge junctions are provided, and the coldest point is located at the tube end of the arc tube near the bridge junction,
The fluorescent lamp characterized in that the discharge path is longer than 2500 mm and the lamp current is in the range of 150 to 320 mA.
前記環形発光管の管壁同士の間に二つ以上の複数の隙間Sが設けられ、隙間Sは略均一
であること特徴とする請求項1に記載された蛍光ランプ。
2. The fluorescent lamp according to claim 1, wherein two or more gaps S are provided between the tube walls of the annular arc tube, and the gaps S are substantially uniform.
前記最外輪の環形発光管の最大外径は408mmを超えないことを特徴とする請求項1に
記載された蛍光ランプ。
The fluorescent lamp according to claim 1, wherein a maximum outer diameter of the outermost ring-shaped arc tube does not exceed 408 mm .
JP2011134764A 2011-06-17 2011-06-17 Fluorescent lamp Expired - Fee Related JP5572593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134764A JP5572593B2 (en) 2011-06-17 2011-06-17 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134764A JP5572593B2 (en) 2011-06-17 2011-06-17 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2013004329A JP2013004329A (en) 2013-01-07
JP5572593B2 true JP5572593B2 (en) 2014-08-13

Family

ID=47672700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134764A Expired - Fee Related JP5572593B2 (en) 2011-06-17 2011-06-17 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JP5572593B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776840B2 (en) * 1988-08-26 1998-07-16 株式会社日立製作所 Fluorescent lamp
JPH08315774A (en) * 1995-05-16 1996-11-29 Matsushita Electron Corp Circular fluorescent lamp
JPH08315773A (en) * 1995-05-16 1996-11-29 Matsushita Electron Corp Circular fluorescent lamp
JP3024922B2 (en) * 1995-05-26 2000-03-27 松下電子工業株式会社 Ring fluorescent lamp
JP3218958B2 (en) * 1995-12-27 2001-10-15 松下電器産業株式会社 Annular fluorescent lamp and method of manufacturing the same
JPH10106489A (en) * 1996-09-26 1998-04-24 Hitachi Lighting Ltd Annular fluorescent lamp
JPH10162777A (en) * 1996-11-29 1998-06-19 Hitachi Lighting Ltd Circular fluorescent lamp
JP2005026212A (en) * 2003-06-13 2005-01-27 Toshiba Lighting & Technology Corp Fluorescent lamp and lighting equipment
JP2005353574A (en) * 2004-05-13 2005-12-22 Toshiba Lighting & Technology Corp Multiple circular fluorescent lamp and lighting system
JP2005346955A (en) * 2004-05-31 2005-12-15 Toshiba Lighting & Technology Corp Fluorescent lamp and luminaire

Also Published As

Publication number Publication date
JP2013004329A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP2013522850A (en) LED bulb and LED light emitting strip capable of 4π light emission
KR100934323B1 (en) Xenon lamp using ceramic capsule
JPH0261956A (en) Fluorescent lamp
JP2005353574A (en) Multiple circular fluorescent lamp and lighting system
TW200537551A (en) Fluorescent lamp for emitting visible radiation
JP5572593B2 (en) Fluorescent lamp
JP2013004486A (en) Fluorescent lamp
JP2013004487A (en) Fluorescent lamp
JPWO2004049388A1 (en) Fluorescent lamps and lighting fixtures
KR100896035B1 (en) Electrodeless induction lamp having high efficiency
JP2010251253A (en) Discharge lamp, and illumination device
JP3020927B2 (en) Fluorescent lamp
KR100731155B1 (en) Electrodeless xenon phosphor lamp
JP2013045533A (en) Circular fluorescent lamp
KR100731154B1 (en) Electrodeless xenon phosphor lamp
KR100731153B1 (en) Electrodeless xenon phosphor lamp
JP3020928B2 (en) Fluorescent lamp
JP2880483B2 (en) Fluorescent lamp
JP2007273333A (en) Fluorescent lamp
KR100731152B1 (en) Electrodeless xenon phosphor lamp
JP2004022412A (en) Compact self-ballasted fluorescent lamp and luminaire
JP2880484B2 (en) Fluorescent lamp
JP2880486B2 (en) Fluorescent lamp
JP2880487B2 (en) Fluorescent lamp
JP2009104940A (en) Compact self-ballasted fluorescent lamp and lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees