JP5571843B2 - Automotive battery temperature control system - Google Patents

Automotive battery temperature control system Download PDF

Info

Publication number
JP5571843B2
JP5571843B2 JP2013500737A JP2013500737A JP5571843B2 JP 5571843 B2 JP5571843 B2 JP 5571843B2 JP 2013500737 A JP2013500737 A JP 2013500737A JP 2013500737 A JP2013500737 A JP 2013500737A JP 5571843 B2 JP5571843 B2 JP 5571843B2
Authority
JP
Japan
Prior art keywords
vehicle
heat
storage agent
battery
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013500737A
Other languages
Japanese (ja)
Other versions
JPWO2012114439A1 (en
Inventor
禎夫 関谷
弘章 松嶋
忠史 尾坂
悠基 秋山
利一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012114439A1 publication Critical patent/JPWO2012114439A1/en
Application granted granted Critical
Publication of JP5571843B2 publication Critical patent/JP5571843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/46Heat pumps, e.g. for cabin heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Control Of Temperature (AREA)

Description

本発明は、車載用バッテリの温度制御システムに関する。   The present invention relates to a temperature control system for a vehicle-mounted battery.

車載用バッテリの温度制御システムとしては、例えば、特許文献1に記載のように、車内の空気を吸い込んでバッテリを冷却するバッテリ冷却装置が知られている。
一方、燃料電池温度制御システムとして、特許文献2に記載のように、内面に蓄熱壁、外面に断熱壁を設けたハウジング内に、燃料電池セルを収納し、さらにハウジングに熱交換部を設け、熱交換部において、ハウジング外からの導入ガスによって燃焼ガスを加熱する燃料電池組立体が知られている。
As a temperature control system for a vehicle-mounted battery, for example, as described in Patent Document 1, a battery cooling device that sucks air in a vehicle and cools the battery is known.
On the other hand, as described in Patent Document 2, as a fuel cell temperature control system, a fuel cell is housed in a housing in which a heat storage wall is provided on the inner surface and a heat insulating wall is provided on the outer surface, and a heat exchange part is provided in the housing. 2. Description of the Related Art There is known a fuel cell assembly that heats combustion gas with introduced gas from the outside of a housing in a heat exchange section.

特開2004−220799号公報JP 2004-220799 A 特開2005−158530号公報JP 2005-158530 A

車載用バッテリは、低温では発電効率が低下し、高温では電極、電解液等の劣化が顕著であるため、適正な温度制御が必要である。
しかし、特許文献1記載のバッテリ冷却装置では、バッテリを加熱することはできず、必ずしも適正温度は得られない。
An in-vehicle battery has low power generation efficiency at a low temperature, and electrode, electrolyte, and the like are remarkably deteriorated at a high temperature. Therefore, appropriate temperature control is necessary.
However, in the battery cooling device described in Patent Document 1, the battery cannot be heated, and an appropriate temperature cannot always be obtained.

また、燃料電池は、発熱量の60%の廃熱を要する程、発熱量が大きく、その温度制御システムは、発熱のはるかに少ない車載用バッテリには適用できない。   In addition, the fuel cell generates a large amount of heat as it requires waste heat of 60% of the heat generation, and the temperature control system cannot be applied to an in-vehicle battery that generates much less heat.

(1)請求項1の発明による車載用バッテリの温度制御システムは、車載用のバッテリを収納するバッテリ収納容器と、前記バッテリ収納容器内において、前記バッテリと熱交換可能な蓄熱剤と、前記蓄熱剤と第1冷媒との間で熱交換して前記蓄熱剤の温度を調節する蓄熱剤温度調節装置と、前記蓄熱剤の温度を検出する蓄熱剤温度検出器と、第2冷媒を循環させて車室内への調和空気を生成するヒートポンプ空調装置と、前記蓄熱剤温度調節装置の前記第1冷媒と前記ヒートポンプ空調装置の前記第2冷媒との間で熱交換を行う中間熱交換装置と、前記蓄熱剤温度検出によって検出された蓄熱剤温度が所定値になったときに、前記蓄熱剤温度調節装置および前記ヒートポンプ空調装置により前記第1冷媒の温度を調整して前記蓄熱剤の温度を調整する制御装置とを備え、前記バッテリ収納容器には、車室内に連通する車室内入口開口および車室外と連通する車室外入口開口を有し、前記バッテリ収納容器内に冷却風を流通させるための入口開口と、車室内に連通する車室内出口開口および車室外と連通する車室外出口開口を有し、前記バッテリ収納容器内に冷却風を流通させるための出口開口と、前記入口開口から導入した冷却風を流通させて前記出口開口から吐き出す風路とが設けられ、前記車室内入口開口と前記車室内出口開口の開閉を制御する車室内用ダンパ装置と、前記車室外入口開口と前記車室外出口開口の開閉を制御する車室外用ダンパ装置とをさらに備え、前記制御装置は、前記蓄熱剤温度が第1の基準値以上となったとき、前記車室外入口開口と前記車室外出口開口を開放するように前記車室外用ダンパ装置を駆動制御し、前記車室内入口開口と前記車室内出口開口が閉じるように前記車室内用ダンパ装置を駆動制御するものである。 (1) A temperature control system for a vehicle-mounted battery according to the invention of claim 1 includes a battery storage container that stores a vehicle-mounted battery, a heat storage agent that can exchange heat with the battery in the battery storage container, and the heat storage. A heat storage agent temperature adjusting device that adjusts the temperature of the heat storage agent by exchanging heat between the agent and the first refrigerant, a heat storage agent temperature detector that detects the temperature of the heat storage agent, and circulating a second refrigerant. A heat pump air conditioner that generates conditioned air into the passenger compartment, an intermediate heat exchange device that exchanges heat between the first refrigerant of the heat storage agent temperature control device and the second refrigerant of the heat pump air conditioner; when the heat storage agent temperature detected by the heat storage agent temperature detector reaches a predetermined value, the temperature of the heat storage agent to adjust the temperature of the first refrigerant by the heat storage agent temperature control unit and the heat pump air conditioning system And a controller for adjusting, in the battery container has a vehicle exterior inlet opening communicating with the vehicle interior inlet and cabin communicates with the vehicle interior, circulating the cooling air to the battery housing container A vehicle interior outlet opening communicating with the vehicle interior and a vehicle exterior outlet opening communicating with the exterior of the vehicle interior; an outlet opening for circulating cooling air into the battery storage container; and the entrance opening An air passage that circulates the introduced cooling air and exhausts it from the outlet opening, and is provided with a vehicle interior damper device that controls opening and closing of the vehicle interior entrance opening and the vehicle interior exit opening; A vehicle exterior damper device that controls opening and closing of the vehicle exterior outlet opening, and the control device, when the heat storage agent temperature becomes equal to or higher than a first reference value, the vehicle exterior entrance opening and the vehicle exterior exit. The car outdoor damper device so as to open the opening drives and controls, the vehicle interior damper device as the vehicle interior inlet opening and the passenger compartment outlet opening is closed is for controlling the drive.

本発明によれば、蓄熱剤により、車両の停止時にもバッテリの温度が一定に保持され、再起動時にも放電効率が高い。また、バッテリからの放熱量が急激に増加しても、蓄熱剤の熱量で吸収することができる。   According to the present invention, the heat storage agent keeps the battery temperature constant even when the vehicle is stopped, and the discharge efficiency is high even when the vehicle is restarted. Moreover, even if the heat dissipation from the battery increases rapidly, it can be absorbed by the heat amount of the heat storage agent.

本発明に係る温度制御システムの第1実施携帯を示すシステム構成図。The system block diagram which shows the 1st implementation mobile of the temperature control system which concerns on this invention. 図1の温度制御システムのブロック図Block diagram of the temperature control system of FIG. 図1のバッテリ収納器を示す縦断面図。The longitudinal cross-sectional view which shows the battery container of FIG. 図1の温度制御システムによる第1冷却運転モードを示す配管系統図。The piping system figure which shows the 1st cooling operation mode by the temperature control system of FIG. 図1の温度制御システムによる第2冷却運転モードを示す配管系統図。The piping system figure which shows the 2nd cooling operation mode by the temperature control system of FIG. 図1の温度制御システムによる第3冷却運転モードを示す配管系統図。The piping system figure which shows the 3rd cooling operation mode by the temperature control system of FIG. 図1の温度制御システムによる第4冷却運転モードを示す配管系統図。The piping system figure which shows the 4th cooling operation mode by the temperature control system of FIG. 図1の温度制御システムによる第5冷却運転モードを示す配管系統図。The piping system figure which shows the 5th cooling operation mode by the temperature control system of FIG. 図1の温度制御システムによる第1暖房運転を示す配管系統図。The piping system figure which shows the 1st heating operation by the temperature control system of FIG. 図1の温度制御システムによる第2暖房運転を示す配管系統図。The piping system figure which shows the 2nd heating operation by the temperature control system of FIG. 図1の温度制御システムによる第3暖房運転を示す配管系統図。The piping system figure which shows the 3rd heating operation by the temperature control system of FIG. 図1の温度制御システムによる第4暖房運転を示す配管系統図。The piping system figure which shows the 4th heating operation by the temperature control system of FIG. 図1の温度制御システムの処理を示すフローチャート。The flowchart which shows the process of the temperature control system of FIG. 図1の温度制御システムによる蓄熱剤温度の変化を示すグラフ。The graph which shows the change of the thermal storage agent temperature by the temperature control system of FIG. 本発明に係る温度制御システムの運転モード選択条件を示す一覧表。The list which shows the operation mode selection conditions of the temperature control system which concerns on this invention. 選択された運転モードにおける各種機器の動作を説明する一覧表。A list for explaining the operation of various devices in the selected operation mode. 本発明に係る温度制御システムの第2実施形態におけるバッテリ収納器を示す縦断面図。The longitudinal cross-sectional view which shows the battery container in 2nd Embodiment of the temperature control system which concerns on this invention. 図15のバッテリ収納器の冷却用伝熱管を示す斜視図。The perspective view which shows the heat exchanger tube for cooling of the battery container of FIG.

以下、本発明による車載用バッテリの温度制御システムの実施形態を添付図面に従って詳細に説明する。本発明によるシステムは、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)の車載バッテリに適用して好適である。   Embodiments of a temperature control system for a vehicle-mounted battery according to the present invention will be described below in detail with reference to the accompanying drawings. The system according to the present invention is suitable for application to an in-vehicle battery of a hybrid vehicle (HV), a plug-in hybrid vehicle (PHV), and an electric vehicle (EV).

[第1実施形態]
図1、図3に示すように、車載用バッテリ21は、車両1におけるバッテリ収納容器2内に収納され、バッテリ収納容器2にはブライン回路5が接続されている。車両1には、暖冷房等のためのヒートポンプシステム3が設けられ、ヒートポンプシステム3の主要部はヒートポンプ用機械室4に収納されている。ヒートポンプ用機械室4内には中間熱交換器48(図4〜図12)が設けられ、ヒートポンプシステム3とブライン回路5とは相互に熱交換可能である。すなわち、実施形態では、ブライン回路5およびヒートポンプシステム3は、それぞれの冷媒(第1冷媒、第2冷媒)により熱交換機能を実現する基幹の構成要素である。
[First Embodiment]
As shown in FIGS. 1 and 3, the in-vehicle battery 21 is stored in a battery storage container 2 in the vehicle 1, and a brine circuit 5 is connected to the battery storage container 2. The vehicle 1 is provided with a heat pump system 3 for heating and cooling or the like, and a main part of the heat pump system 3 is housed in a heat pump machine room 4. An intermediate heat exchanger 48 (FIGS. 4 to 12) is provided in the heat pump machine room 4, and the heat pump system 3 and the brine circuit 5 can exchange heat with each other. In other words, in the embodiment, the brine circuit 5 and the heat pump system 3 are basic components that realize a heat exchange function by the respective refrigerants (first refrigerant and second refrigerant).

図3に示すように、バッテリ収納容器2は断熱材25によって形成され、内部のバッテリ21の周囲には蓄熱剤22が設けられている。バッテリ21からの放熱は蓄熱剤22に伝達され、かつ、断熱材25の保熱効果によって、蓄熱剤22に効果的に保有される。   As shown in FIG. 3, the battery storage container 2 is formed of a heat insulating material 25, and a heat storage agent 22 is provided around the battery 21 inside. The heat release from the battery 21 is transmitted to the heat storage agent 22 and is effectively held in the heat storage agent 22 by the heat retaining effect of the heat insulating material 25.

蓄熱剤22は蓄熱温度が30〜50℃のものであれば各種材料を使用可能である。たとえば、パラフィンのn−エイコサン(融点36.4℃)、n−ドコサン(融点44℃)、脂肪酸のラウリン酸(融点44℃)、無機水和塩の臭化カルシウム水和物(融点38℃)等の単独あるいは混合物が使用される。
断熱材25としては、たとえば、グラスウール等の無機材を内部に封入し、周囲をアルミ箔で覆い、内部を真空にしたもの、あるいは、グラスウール等の無機材を内部に封入し、周囲をステンレスの板で構成し、内部を真空にしたものが使用される。
このような構成を採用する容器内にバッテリを収容することにより、車両1の停止時、とくに気温の低い季節の夜間停止時にもバッテリ21が保温される。
なお、金属製のケースの内側に断熱材を設けた断熱性容器を作製してもよい。
The heat storage agent 22 can use various materials as long as the heat storage temperature is 30 to 50 ° C. For example, paraffin n-eicosane (melting point 36.4 ° C.), n-docosan (melting point 44 ° C.), fatty acid lauric acid (melting point 44 ° C.), inorganic hydrated calcium bromide hydrate (melting point 38 ° C.) Etc. are used alone or as a mixture.
As the heat insulating material 25, for example, an inorganic material such as glass wool is enclosed inside, the periphery is covered with aluminum foil, the inside is evacuated, or an inorganic material such as glass wool is enclosed inside, and the periphery is made of stainless steel. A plate made of a vacuum inside is used.
By storing the battery in a container that employs such a configuration, the battery 21 is kept warm even when the vehicle 1 is stopped, particularly when the vehicle is stopped at night during a low temperature season.
In addition, you may produce the heat insulation container which provided the heat insulating material inside the metal case.

蓄熱剤22内には、ブライン(例えば、エチレングリコール)が流動する冷却用伝熱管23が埋設され、蓄熱剤22の保有熱によって、冷却用伝熱管23内のブラインを加熱することができる。すなわち、ブラインと蓄熱剤22との間で熱交換することができる。冷却用伝熱管23の外周には、フィン24が、冷却用伝熱管23長手方向に並列して突設され、蓄熱剤22と冷却用伝熱管23との熱伝達効率が高められている。
蓄熱剤22には、バッテリ21に近接して蓄熱剤温度検出器26が設けられ、蓄熱剤温度Tを検出できる。
A cooling heat transfer tube 23 in which brine (for example, ethylene glycol) flows is embedded in the heat storage agent 22, and the brine in the cooling heat transfer tube 23 can be heated by the retained heat of the heat storage agent 22. That is, heat exchange can be performed between the brine and the heat storage agent 22. On the outer periphery of the cooling heat transfer tube 23, fins 24 project in parallel with the longitudinal direction of the cooling heat transfer tube 23, and the heat transfer efficiency between the heat storage agent 22 and the cooling heat transfer tube 23 is increased.
The heat storage agent 22 is provided with a heat storage agent temperature detector 26 in the vicinity of the battery 21 so that the heat storage agent temperature T can be detected.

図1に示すように、ヒートポンプシステム3は、室内空調システム6における空調用室内熱交換器(エバポレータ)61、および空調用熱交換器(コンデンサ)7に接続されている。一方、ブライン回路5は、室内空調システム6におけるブライン用室内熱交換器62に接続されている。
室内空調システム6には室内ファン63が設けられ、室内空調システム6によって得られた暖気、冷気を室内に供給することができる。
As shown in FIG. 1, the heat pump system 3 is connected to an indoor heat exchanger (evaporator) 61 for air conditioning in an indoor air conditioning system 6 and a heat exchanger (condenser) 7 for air conditioning. On the other hand, the brine circuit 5 is connected to a brine indoor heat exchanger 62 in the indoor air conditioning system 6.
The indoor air conditioning system 6 is provided with an indoor fan 63, and warm air and cold air obtained by the indoor air conditioning system 6 can be supplied into the room.

空調用熱交換器7はブライン冷却用ラジエータ8に隣接配置され、空調用熱交換器7およびラジエータ8は、室外ファン9によって室外から取り込まれる外気で冷却される。
室内空調システム6は空調制御器90によって操作・設定され、後述する制御部100によって、制御される。
The air-conditioning heat exchanger 7 is disposed adjacent to the brine cooling radiator 8, and the air-conditioning heat exchanger 7 and the radiator 8 are cooled by the outdoor air taken in from the outdoor by the outdoor fan 9.
The indoor air conditioning system 6 is operated and set by the air conditioning controller 90 and controlled by the control unit 100 described later.

図1〜図3に示すように、室内空調システム6および空調用熱交換器7には、外気温度検出器11、車内温度検出器12がそれぞれ設けられ、ブライン回路5には、ブライン温度検出器56が設けられている。これによって、外気温度Tout、室内空調システム6の空調温度Tinおよびブライン温度Tpを検出することができる。   As shown in FIGS. 1 to 3, the indoor air-conditioning system 6 and the air-conditioning heat exchanger 7 are each provided with an outside air temperature detector 11 and an in-vehicle temperature detector 12, and the brine circuit 5 has a brine temperature detector. 56 is provided. Thus, the outside air temperature Tout, the air conditioning temperature Tin of the indoor air conditioning system 6 and the brine temperature Tp can be detected.

外気温度検出器11、車内温度検出器12、蓄熱剤温度検出器26、ブライン温度検出器56は制御部100に接続されている。制御部100は、外気温度検出器11、車内温度検出器12、蓄熱剤温度検出器26、ブライン温度検出器56によって検出された、外気温度Tout、車内温度Tin、蓄熱剤温度T、ブライン温度Tpに基づいて、ヒートポンプシステム3、ブライン回路5、室内空調システム6を制御する。
なお、実施形態の各種構成要素へは、バッテリ21の電力を供給する。しかし、充電時は商用電源から給電することもできる。
The outside air temperature detector 11, the vehicle interior temperature detector 12, the heat storage agent temperature detector 26, and the brine temperature detector 56 are connected to the control unit 100. The control unit 100 includes an outside air temperature detector 11, an in-vehicle temperature detector 12, a heat storage agent temperature detector 26, and a brine temperature detector 56, and the outside air temperature Tout, the vehicle interior temperature Tin, the heat storage agent temperature T, and the brine temperature Tp. Based on this, the heat pump system 3, the brine circuit 5, and the indoor air conditioning system 6 are controlled.
In addition, the electric power of the battery 21 is supplied to the various components of the embodiment. However, power can be supplied from a commercial power source during charging.

図4〜図12は本実施形態の各種運転モードにおける冷媒とブラインの流通経路を説明する回路図である。はじめに、図4を参照して全体構成を説明する。
ヒートポンプシステム3は冷媒(例えば、フロン系のR134a、R1234yf)を加圧送給する圧縮機41を備える。圧縮機41は、たとえば電動可変容量型圧縮機であり、回転数と吐出容量を調整して冷暖房能力を任意に設定できる。圧縮機41には、その低圧側(吸込側)41aまたは高圧側(吐出側)41bを中間熱交換器48の一端に接続する3方弁43が接続されている。3方弁43は、実線で示す切替位置と、破線で示す切替位置のいずれかに選択的に切り替えられる。3方弁43が実線で示す切替位置に切換えられているとき、圧縮機41の低圧側(吸込側)41aは中間熱交換器48の一端に接続される。3方弁43が破線で示す切替位置に切り替えられているとき、圧縮機41の高圧側(吐出側)41bは中間熱交換器48の一端に接続される。
4 to 12 are circuit diagrams for explaining the flow paths of refrigerant and brine in various operation modes of the present embodiment. First, the overall configuration will be described with reference to FIG.
The heat pump system 3 includes a compressor 41 that pressurizes and feeds refrigerants (for example, Freon-based R134a and R1234yf). The compressor 41 is, for example, an electric variable capacity compressor, and can arbitrarily set the cooling / heating capacity by adjusting the rotation speed and the discharge capacity. A three-way valve 43 that connects the low pressure side (suction side) 41 a or the high pressure side (discharge side) 41 b to one end of the intermediate heat exchanger 48 is connected to the compressor 41. The three-way valve 43 is selectively switched between a switching position indicated by a solid line and a switching position indicated by a broken line. When the three-way valve 43 is switched to the switching position indicated by the solid line, the low pressure side (suction side) 41 a of the compressor 41 is connected to one end of the intermediate heat exchanger 48. When the three-way valve 43 is switched to the switching position indicated by the broken line, the high pressure side (discharge side) 41 b of the compressor 41 is connected to one end of the intermediate heat exchanger 48.

圧縮機41には、低圧側(吸込側)41aと高圧側(吐出側)41bに四方弁42が接続されている。四方弁42は、実線の切替位置と破線の切替位置の2位置に切換え可能である。実線の切替位置においては、圧縮機41の低圧側(吸込側)41aが空調用室内熱交換器61の一端に接続され、圧縮機41の高圧側(吐出側)41bが空調用室外熱交換器7の一端に接続される。破線の切替位置においては、圧縮機41の低圧側(吸込側)41aが空調用室外熱交換器7の一端に接続され、圧縮機41の高圧側(吐出側)41bが空調用室内熱交換器61の一端に接続される。   A four-way valve 42 is connected to the compressor 41 at a low pressure side (suction side) 41a and a high pressure side (discharge side) 41b. The four-way valve 42 can be switched between two positions: a solid line switching position and a broken line switching position. At the switching position of the solid line, the low pressure side (suction side) 41a of the compressor 41 is connected to one end of the air conditioning indoor heat exchanger 61, and the high pressure side (discharge side) 41b of the compressor 41 is the outdoor heat exchanger for air conditioning. 7 is connected to one end. At the broken line switching position, the low pressure side (suction side) 41a of the compressor 41 is connected to one end of the air conditioning outdoor heat exchanger 7, and the high pressure side (discharge side) 41b of the compressor 41 is the air conditioning indoor heat exchanger. 61 is connected to one end.

空調用室外熱交換器7の他端には、膨張弁45を介してレシーバタンク47が接続され、空調用室内熱交換器61の他端には膨張弁44を介してレシーバタンク47が接続されている。一方、中間熱交換器48の他端には、膨張弁46を介してレシーバタンク47が接続されている。   A receiver tank 47 is connected to the other end of the air conditioning outdoor heat exchanger 7 via an expansion valve 45, and a receiver tank 47 is connected to the other end of the air conditioning indoor heat exchanger 61 via an expansion valve 44. ing. On the other hand, a receiver tank 47 is connected to the other end of the intermediate heat exchanger 48 via an expansion valve 46.

中間熱交換器48の一端は、二方弁57を介してラジエータ8の一端に接続されるとともに、二方弁58を介してラジエータ8の他端に接続されている。   One end of the intermediate heat exchanger 48 is connected to one end of the radiator 8 through a two-way valve 57 and is connected to the other end of the radiator 8 through a two-way valve 58.

ラジエータ8の他端と二方弁58とを接続する管路には、発熱機器冷却熱交換器10の入口側が接続されている。発熱機器冷却熱交換器10は、たとえばインバータ、回転電機、蓄電装置などを冷却するための熱交換器である。発熱機器冷却熱交換器10の出口側は、二方弁52を介して冷却用伝熱管23の入口側に接続されている。冷却用伝熱管23の出口側には、二方弁55を介してポンプ51の吸込側が接続され、ポンプ51の吐出側は中間熱交換器48の他端に接続されている。   An inlet side of the heat generating device cooling heat exchanger 10 is connected to a pipe line connecting the other end of the radiator 8 and the two-way valve 58. The heat generating equipment cooling heat exchanger 10 is a heat exchanger for cooling, for example, an inverter, a rotating electrical machine, a power storage device, and the like. The outlet side of the heat generating device cooling heat exchanger 10 is connected to the inlet side of the cooling heat transfer tube 23 via a two-way valve 52. The suction side of the pump 51 is connected to the outlet side of the cooling heat transfer tube 23 via a two-way valve 55, and the discharge side of the pump 51 is connected to the other end of the intermediate heat exchanger 48.

二方弁55とポンプ51の吸込側とを接続する管路には、ブライン用室内熱交換器62の一端が接続され、冷却用伝熱管23の出口側と二方弁55とを接続する管路には、二方弁54を介して、ブライン用室内熱交換器62の他端が接続されている。さらに、冷却用伝熱管23の出口側と二方弁55とを接続する管路と、発熱機器冷却熱交換器10の出口側と二方弁52とを接続する管路とが、二方弁53を介して相互に接続されている。 One end of the brine indoor heat exchanger 62 is connected to a pipe line connecting the two-way valve 55 and the suction side of the pump 51, and a pipe connecting the outlet side of the cooling heat transfer pipe 23 and the two-way valve 55. The other end of the brine indoor heat exchanger 62 is connected to the passage through a two-way valve 54 . Furthermore, a pipe line connecting the outlet side of the cooling heat transfer pipe 23 and the two-way valve 55 and a pipe line connecting the outlet side of the heat generating equipment cooling heat exchanger 10 and the two-way valve 52 are two-way valves. 53 are connected to each other.

以下、種々の条件における、温度制御システムの運転状態を説明する。
なお、本発明に係る温度制御システムの運転モード選択条件は図15に示し、選択された運転モードにおける各種機器の動作は図16に示す。
Hereinafter, the operation state of the temperature control system under various conditions will be described.
In addition, the operation mode selection conditions of the temperature control system according to the present invention are shown in FIG. 15, and the operations of various devices in the selected operation mode are shown in FIG.

[第1冷却運転モード]
バッテリ21からの放熱によって、蓄熱剤22が昇温し、その温度Tが融点T0(たとえば、30℃〜50℃)よりも高い所定の温度T1を超えたとき、図4に示す第1冷却運転モードによる冷却動作が実行される。第1冷却運転モードでは、制御部100は、ブライン回路5をラジエータ8に接続し、ブラインを外気によって冷却する。
[First cooling operation mode]
When the heat storage agent 22 is heated by the heat radiation from the battery 21 and the temperature T exceeds a predetermined temperature T1 higher than the melting point T0 (for example, 30 ° C. to 50 ° C.), the first cooling operation shown in FIG. The cooling operation according to the mode is executed. In the first cooling operation mode, the control unit 100 connects the brine circuit 5 to the radiator 8 and cools the brine with outside air.

図4において、第1冷却運転モードによる冷却動作では、制御部100の制御の下、二方弁52、55、57が開弁し、二方弁53、54、58が閉弁する。そのため、ポンプ51によって、ブラインが、ラジエータ8と、発熱機器冷却熱交換器10と、冷却用伝熱管23との間を循環する。これによって、ブラインがファン9によって導入された外気で冷却され、冷却されたブラインによって、インバータなどの発熱体と蓄熱剤22が冷却される。 In FIG. 4, in the cooling operation in the first cooling operation mode, the two-way valves 52, 55 , and 57 are opened and the two-way valves 53, 54 , and 58 are closed under the control of the control unit 100. Therefore, the brine is circulated among the radiator 8, the heat generating device cooling heat exchanger 10, and the cooling heat transfer tube 23 by the pump 51. As a result, the brine is cooled by the outside air introduced by the fan 9, and the heating element such as an inverter and the heat storage agent 22 are cooled by the cooled brine.

第1冷却運転モードでは、電動圧縮機41、および電動室内ファン63は停止し、したがって、ヒートポンプシステム3と室内空調システム6も停止している。そして、第1冷却運転モードによる冷却動作では、ファン9とポンプ51の電力のみで、インバータなどの発熱体と蓄熱剤22を冷却でき、消費電力が少ない。   In the first cooling operation mode, the electric compressor 41 and the electric indoor fan 63 are stopped, and thus the heat pump system 3 and the indoor air conditioning system 6 are also stopped. In the cooling operation in the first cooling operation mode, the heating element such as the inverter and the heat storage agent 22 can be cooled only by the electric power of the fan 9 and the pump 51, and the power consumption is low.

[第2冷却運転モード]
外気温度が高いとき、あるいは、急速充電等、バッテリ21の発熱量が大のとき、第1冷却運転モードから図5で説明する第2冷却運転モードに切り換わる。第2冷却運転モードによる冷却動作では、蓄熱剤22の温度Tが所定の温度T2(>T1)を超えたとき、蓄熱剤22を急速冷却する。第2冷却運転モードは第1冷却運転モードに引き続いて切り換わるモードである。
[Second cooling operation mode]
When the outside air temperature is high, or when the amount of heat generated by the battery 21 is large, such as rapid charging, the first cooling operation mode is switched to the second cooling operation mode described with reference to FIG. In the cooling operation in the second cooling operation mode, when the temperature T of the heat storage agent 22 exceeds a predetermined temperature T2 (> T1), the heat storage agent 22 is rapidly cooled. The second cooling operation mode is a mode that switches following the first cooling operation mode.

第2冷却運転モードによる冷却動作では、ブライン回路5のブラインとヒートポンプシステム3の冷媒とを中間熱交換器48において熱交換する。また、ヒートポンプシステム3の冷媒を空調用室外熱交換器7において、外気によって冷却する。   In the cooling operation in the second cooling operation mode, heat is exchanged between the brine in the brine circuit 5 and the refrigerant in the heat pump system 3 in the intermediate heat exchanger 48. The refrigerant of the heat pump system 3 is cooled by outside air in the outdoor heat exchanger 7 for air conditioning.

図5において、第2冷却運転モードによる冷却動作では、制御部100の制御の下、ブライン回路5において、二方弁52、55、58が開弁し、二方弁53、54、57が閉弁する。そのため、ポンプ51によって、ブラインが、冷却用伝熱管23から中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。
一方、ヒートポンプシステム3において、制御部100の制御の下、四方弁42および3方弁43を実線で示す切替位置とするとともに、膨張弁44を閉じ、膨張弁45、46を所定開度に開く。これにより、圧縮機41から吐出される冷媒が空調用室外熱交換器7、レシーバタンク47、中間熱交換器48を循環する。
In FIG. 5, in the cooling operation in the second cooling operation mode, under the control of the control unit 100, the two-way valves 52, 55 , 58 are opened and the two-way valves 53, 54 , 57 are closed in the brine circuit 5. I speak. Therefore, the brine is circulated by the pump 51 so as to return from the cooling heat transfer tube 23 to the cooling heat transfer tube 23 through the intermediate heat exchanger 48 and the heat generating device cooling heat exchanger 10.
On the other hand, in the heat pump system 3, under the control of the control unit 100, the four-way valve 42 and the three-way valve 43 are set to the switching positions indicated by solid lines, the expansion valve 44 is closed, and the expansion valves 45 and 46 are opened to a predetermined opening. . Accordingly, the refrigerant discharged from the compressor 41 circulates through the outdoor heat exchanger 7 for air conditioning, the receiver tank 47, and the intermediate heat exchanger 48.

空調用室外熱交換器7において、室外ファン9で送風された空気との熱交換により冷媒は放熱され、高圧の液冷媒となる。その後、冷媒は膨張弁45で減圧され、余剰分がレシーバタンク47に滞留しつつ、膨張弁46で再び減圧され、中間熱交換器48でブライン回路5内のブラインと熱交換する。これによりブラインが冷却される。ここで、冷媒はガス冷媒となり、3方弁43を通り圧縮機41に戻る。
冷媒との熱交換によって蓄熱剤22の温度がT3以下となったときに、第2冷却運転モードによる冷却動作が停止される。
In the outdoor heat exchanger 7 for air conditioning, the refrigerant is radiated by heat exchange with the air blown by the outdoor fan 9, and becomes high-pressure liquid refrigerant. Thereafter, the refrigerant is depressurized by the expansion valve 45, while the surplus portion is retained in the receiver tank 47, the refrigerant is depressurized again by the expansion valve 46, and heat exchange is performed with the brine in the brine circuit 5 by the intermediate heat exchanger 48. This cools the brine. Here, the refrigerant becomes a gas refrigerant and returns to the compressor 41 through the three-way valve 43.
When the temperature of the heat storage agent 22 becomes T3 or less due to heat exchange with the refrigerant, the cooling operation in the second cooling operation mode is stopped.

上述したように、圧縮機41は、たとえば電動可変容量型圧縮機であり、回転数と吐出容量を任意に調整して冷却能力を任意に設定できる。また、膨張弁44、45、46の開度によっても冷却能力を任意に設定できる。従って、高外気温度、急速充電の際にも、バッテリ21の温度を所定の温度に保持できる。   As described above, the compressor 41 is, for example, an electric variable capacity compressor, and can arbitrarily set the cooling capacity by arbitrarily adjusting the rotation speed and the discharge capacity. Further, the cooling capacity can be arbitrarily set by the opening degree of the expansion valves 44, 45, 46. Therefore, the temperature of the battery 21 can be maintained at a predetermined temperature even during high outside air temperature and rapid charging.

第1冷却運転モード、第2冷却運転モードによる冷却動作は、冷房(空調)運転の要求がないときに実行される。そして、蓄熱剤22の温度TがT1以上のときに第1冷却運転モード、T2以上のときに第2冷却運転モードが選択される。   The cooling operation in the first cooling operation mode and the second cooling operation mode is executed when there is no request for cooling (air conditioning) operation. The first cooling operation mode is selected when the temperature T of the heat storage agent 22 is equal to or higher than T1, and the second cooling operation mode is selected when the temperature T is equal to or higher than T2.

図14に示すように、たとえば夜間充電時(時刻t0〜t4)において、蓄熱剤22の温度TがT1に達した時刻t1から、冷却システムは第1冷却運転モードに切り換わる。図14のラジエータ冷却の区間である。時刻t1から蓄熱剤22の冷却が開始され、蓄熱剤22の温度上昇が緩やかになる。その後、さらに蓄熱剤22の温度Tが上昇し、温度T2に達した時刻t2から、冷却システムは第2冷却運転モードに切り換わる。図14のヒートポンプ冷却の区間である。時刻t2から第2冷却運転モードが開始される。これによって、蓄熱剤22の温度Tは融点T0まで急速に低下し、大部分の冷媒が凝固するまで融点T0一定に保たれる。凝固後はさらに低下する。そして、温度TがT3に達すると第2冷却運転モードが停止する。すなわち、冷媒による蓄熱剤22の冷却動作が停止される。   As shown in FIG. 14, for example, at night charging (time t0 to t4), the cooling system switches to the first cooling operation mode from time t1 when the temperature T of the heat storage agent 22 reaches T1. It is the area of the radiator cooling of FIG. Cooling of the heat storage agent 22 is started from time t1, and the temperature rise of the heat storage agent 22 becomes moderate. Thereafter, the temperature T of the heat storage agent 22 further increases, and the cooling system switches to the second cooling operation mode from time t2 when the temperature T2 is reached. It is the area of the heat pump cooling of FIG. The second cooling operation mode is started from time t2. As a result, the temperature T of the heat storage agent 22 rapidly decreases to the melting point T0, and is maintained constant at the melting point T0 until most of the refrigerant solidifies. It further decreases after solidification. When the temperature T reaches T3, the second cooling operation mode is stopped. That is, the cooling operation of the heat storage agent 22 by the refrigerant is stopped.

充電開始時の蓄熱剤22の温度Tは、一般にその融点T0であるが、低外気温の下に長期間放置されたときにはより低温(図14の曲線C1)になることもある。また、充電完了後、運転開始までに、低外気温の下に長期間放置されたときにも、温度低下(図14の曲線C2)が見られることがある。運転が行われないまま蓄電装置が長時間放置され、放電が生じたときには、充電サイクルは再度実行され、適宜繰り返される。   The temperature T of the heat storage agent 22 at the start of charging is generally the melting point T0, but may be lower (curve C1 in FIG. 14) when left for a long time under a low outside air temperature. In addition, a temperature drop (curve C2 in FIG. 14) may be observed even when the battery is left for a long time under a low outside air temperature after the completion of charging and before the start of operation. When the power storage device is left unattended for a long time and discharge occurs, the charging cycle is executed again and repeated as appropriate.

車内の空調制御器90から冷房が要求され、空調負荷が比較的大きい条件下では、第3冷却運転モードまたは第4冷却運転モードに切り換わる。   Under the condition that the air conditioning controller 90 in the vehicle requires cooling and the air conditioning load is relatively large, the mode is switched to the third cooling operation mode or the fourth cooling operation mode.

[第3冷却運転モード]
車内の空調制御器90から冷房が要求され、かつ、蓄熱剤22の温度TがT1に到達しないときは、蓄熱剤22の冷却を行う必要がない。このときは図6で説明する第3冷却運転モードが選択され、車室内の冷房のみが行われる。
[Third cooling operation mode]
When cooling is requested from the air conditioning controller 90 in the vehicle and the temperature T of the heat storage agent 22 does not reach T1, it is not necessary to cool the heat storage agent 22. At this time, the third cooling operation mode described in FIG. 6 is selected, and only the cooling of the vehicle interior is performed.

図6において、第3冷却運転モードによる冷却動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42および3方弁43が実線で示す切替位置に切り替えられ、膨張弁44、45が所定開度に開弁される。このとき、圧縮機41、室外ファン9、室内ファン63が駆動され、圧縮機41によって、冷媒が空調用室外熱交換器7、レシーバタンク47、空調用室内熱交換器61を循環する。   In FIG. 6, in the cooling operation in the third cooling operation mode, under the control of the control unit 100, the four-way valve 42 and the three-way valve 43 are switched to the switching positions indicated by the solid lines in the heat pump system 3, and the expansion valves 44, 45. Is opened to a predetermined opening. At this time, the compressor 41, the outdoor fan 9, and the indoor fan 63 are driven, and the refrigerant circulates through the air-conditioning outdoor heat exchanger 7, the receiver tank 47, and the air-conditioning indoor heat exchanger 61 by the compressor 41.

空調用室外熱交換器7において、室外ファン9で送風された空気との熱交換により冷媒が放熱され、高圧の液冷媒となる。その後、冷媒は膨張弁45で減圧され、余剰分がレシーバタンク47に滞留しつつ、膨張弁44で再び減圧されて空調用室内熱交換器61に流入する。室内ファン63で送風された空気は空調用室内熱交換器61で冷却され、低圧のガス冷媒となって、四方弁42を通った後、圧縮機41に戻る。
第3冷却運転モードによる冷却動作は、冷房要求が解除されたときに停止する。なお、蓄熱剤22の温度TがT1≦T<T2のときは第4冷却運転モードに移行する。
In the outdoor heat exchanger 7 for air conditioning, the refrigerant is radiated by heat exchange with the air blown by the outdoor fan 9, and becomes high-pressure liquid refrigerant. Thereafter, the refrigerant is decompressed by the expansion valve 45, and the surplus is retained in the receiver tank 47, while being decompressed again by the expansion valve 44 and flows into the air conditioning indoor heat exchanger 61. The air blown by the indoor fan 63 is cooled by the air conditioning indoor heat exchanger 61, becomes a low-pressure gas refrigerant, passes through the four-way valve 42, and returns to the compressor 41.
The cooling operation in the third cooling operation mode stops when the cooling request is canceled. When the temperature T of the heat storage agent 22 is T1 ≦ T <T2, the process proceeds to the fourth cooling operation mode.

[第4冷却運転モード]
車内の空調制御器90から冷房が要求され、かつ、蓄熱剤22の温度TがT2に到達したときは、蓄熱剤22の冷却も併せて行う必要がある。そこで、図7で説明する第4冷却運転モードが選択され、冷房と蓄熱剤22の冷却との双方が実行される。
[Fourth cooling operation mode]
When cooling is required from the air conditioning controller 90 in the vehicle and the temperature T of the heat storage agent 22 reaches T2, it is necessary to cool the heat storage agent 22 as well. Therefore, the fourth cooling operation mode described in FIG. 7 is selected, and both cooling and cooling of the heat storage agent 22 are executed.

図7において、第4冷却運転モードによる冷却動作では、制御部100の制御の下、図4の第1冷却運転モードと同様、二方弁52、55、57が開弁し、二方弁53、54、58が閉弁される。そのため、ポンプ51によって、ブラインがラジエータ8と発熱機器冷却熱交換機10と冷却用伝熱管23との間を循環する。これによって、ブラインがファン9によって導入された外気で冷却され、冷却されたブラインによって、蓄熱剤22が冷却される。 In FIG. 7, in the cooling operation in the fourth cooling operation mode, the two-way valves 52, 55, and 57 are opened under the control of the control unit 100 as in the first cooling operation mode in FIG. , 54 and 58 are closed. Therefore, the brine is circulated among the radiator 8, the heat generating device cooling heat exchanger 10, and the cooling heat transfer tube 23 by the pump 51. As a result, the brine is cooled by the outside air introduced by the fan 9, and the heat storage agent 22 is cooled by the cooled brine.

さらに、第4冷却運転モードによる冷却動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42および3方弁43が実線の切替位置に切り替わり、膨張弁44、45が所定開度に開弁される。その結果、圧縮機41によって、冷媒が空調用室外熱交換器7、レシーバタンク47、空調用室内熱交換器61を循環する。
第4冷却運転モードは、冷房要求が解除されたときは、蓄熱剤温度Tに応じて、第1冷却運転モードまたは第2冷却運転モードに移行する。また、T<T1となったとき第3冷却運転モードに移行する。さらに、T2≦Tとなったとき第5冷却運転モードに移行する。
Further, in the cooling operation in the fourth cooling operation mode, under the control of the control unit 100, in the heat pump system 3, the four-way valve 42 and the three-way valve 43 are switched to the solid line switching position, and the expansion valves 44 and 45 have a predetermined opening degree. Is opened. As a result, the refrigerant circulates through the air conditioning outdoor heat exchanger 7, the receiver tank 47, and the air conditioning indoor heat exchanger 61 by the compressor 41.
The fourth cooling operation mode shifts to the first cooling operation mode or the second cooling operation mode according to the heat storage agent temperature T when the cooling request is canceled. Further, when T <T1, the third cooling operation mode is entered. Furthermore, when T2 ≦ T, the fifth cooling operation mode is entered.

[第5冷却運転モード]
車内の空調制御器90から冷房が要求され、かつ、蓄熱剤22の温度TがT2に到達したときは、冷房と蓄熱剤22の急速冷却との両者を実行する必要がある。そこで、図8で説明する第5冷却運転モードが選択される。第5冷却運転モードは、第2冷却運転モードと第3冷却運転モードによる冷却動作を実行するものである。
[Fifth cooling operation mode]
When cooling is requested from the air conditioning controller 90 in the vehicle and the temperature T of the heat storage agent 22 reaches T2, it is necessary to execute both cooling and rapid cooling of the heat storage agent 22. Therefore, the fifth cooling operation mode described in FIG. 8 is selected. In the fifth cooling operation mode, the cooling operation is performed by the second cooling operation mode and the third cooling operation mode.

図8において、第5冷却運転モードによる冷却動作では、制御部100の制御の下、第2冷却運転モードを示す図5と同様に、ブライン回路5において、二方弁52、55、58が開弁し、二方弁53、54、57が閉弁する。そのため、ポンプ51によって、ブラインが、冷却用伝熱管23から中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。 In FIG. 8, in the cooling operation in the fifth cooling operation mode, the two-way valves 52, 55, and 58 are opened in the brine circuit 5 under the control of the control unit 100 as in FIG. 5 showing the second cooling operation mode. The two-way valves 53, 54 and 57 are closed. Therefore, the brine is circulated by the pump 51 so as to return from the cooling heat transfer tube 23 to the cooling heat transfer tube 23 through the intermediate heat exchanger 48 and the heat generating device cooling heat exchanger 10.

さらに図5と同様、第5冷却運転モードによる冷却動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42および3方弁43が実線の切替位置に切り替わるとともに、膨張弁45、46が所定開度に開弁される。その結果、圧縮機41によって、冷媒が空調用室外熱交換器7、レシーバタンク47、中間熱交換器48を循環する。
一方、図5と異なり、膨張弁44は所定開度に開かれ、冷媒はレシーバタンク47から空調用室内熱交換器61に送給される。そして、冷媒は、空調用室内熱交換器61から四方弁42を経て圧縮機41に戻される。
冷媒の一部はレシーバタンク47から中間熱交換器48に流れ、ブライン回路5のブラインを冷却する。これによって、冷媒はガス冷媒となり、3方弁43から圧縮機41に戻る。
Further, similarly to FIG. 5, in the cooling operation in the fifth cooling operation mode, under the control of the control unit 100, in the heat pump system 3, the four-way valve 42 and the three-way valve 43 are switched to the solid line switching position, and the expansion valve 45, 46 is opened to a predetermined opening. As a result, the refrigerant circulates through the air-conditioning outdoor heat exchanger 7, the receiver tank 47, and the intermediate heat exchanger 48 by the compressor 41.
On the other hand, unlike FIG. 5, the expansion valve 44 is opened to a predetermined opening, and the refrigerant is supplied from the receiver tank 47 to the indoor heat exchanger 61 for air conditioning. Then, the refrigerant is returned from the air conditioning indoor heat exchanger 61 to the compressor 41 via the four-way valve 42.
A part of the refrigerant flows from the receiver tank 47 to the intermediate heat exchanger 48 to cool the brine in the brine circuit 5. As a result, the refrigerant becomes a gas refrigerant and returns from the three-way valve 43 to the compressor 41.

なお、膨張弁45、46の開度の比率を変更することにより、空調用室内熱交換器61と中間熱交換器48に流れる冷媒量を制御することができ、冷房能力と冷却能力を調節することができる。   Note that the amount of refrigerant flowing through the air conditioning indoor heat exchanger 61 and the intermediate heat exchanger 48 can be controlled by changing the opening ratio of the expansion valves 45 and 46, and the cooling capacity and the cooling capacity are adjusted. be able to.

第5冷却運転モードは、T<T2となったとき、第4冷却運転モードに移行し、T<T1となったとき、第3冷房運転モードに移行する。一方、冷房要求が解除されたとき、温度Tに応じて第1冷却運転モードまたは第2冷却運転モードに移行する。   The fifth cooling operation mode shifts to the fourth cooling operation mode when T <T2, and shifts to the third cooling operation mode when T <T1. On the other hand, when the cooling request is canceled, the first cooling operation mode or the second cooling operation mode is shifted according to the temperature T.

図14において、第1冷却運転モード、第4冷却運転モードによる蓄熱剤22の温度変化特性を、運転時における実線で示す。また、第4冷却運転モード、第5冷却運転モードによる蓄熱剤22の温度変化特性を、運転時における曲線C3で示す。   In FIG. 14, the temperature change characteristic of the heat storage agent 22 in the first cooling operation mode and the fourth cooling operation mode is indicated by a solid line during operation. Further, the temperature change characteristic of the heat storage agent 22 in the fourth cooling operation mode and the fifth cooling operation mode is indicated by a curve C3 during operation.

[第1暖房運転モード]
車内の空調制御器90から暖房が要求されたとき、制御部100は、車内温度検出器12およびブライン温度検出器56によって検出された温度Tin、Tpに基づいて暖房負荷を算出し、ヒートポンプシステム3の運転要否を判断する。暖房負荷が所定値よりも小であり、かつ温度Tpが所定値Tp0以上のときは、ヒートポンプシステム3を運転しない第1暖房運転モードが選択される。
[First heating operation mode]
When heating is requested from the air conditioning controller 90 in the vehicle, the control unit 100 calculates the heating load based on the temperatures Tin and Tp detected by the vehicle interior temperature detector 12 and the brine temperature detector 56, and the heat pump system 3. Judge whether or not to drive. When the heating load is smaller than the predetermined value and the temperature Tp is equal to or higher than the predetermined value Tp0, the first heating operation mode in which the heat pump system 3 is not operated is selected.

図9において、第1暖房運転モードによる暖房動作では、制御部100の制御の下、ブライン回路5において、二方弁52、54、58が開弁し、二方弁53、55、57が閉弁される。その結果、ポンプ51によって、ブラインが、冷却用伝熱管23からブライン用室内熱交換器62、中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。   In FIG. 9, in the heating operation in the first heating operation mode, under the control of the control unit 100, the two-way valves 52, 54, 58 are opened and the two-way valves 53, 55, 57 are closed in the brine circuit 5. To be spoken. As a result, the pump 51 causes the brine to pass from the cooling heat transfer tube 23 through the brine indoor heat exchanger 62, the intermediate heat exchanger 48, and the heating device cooling heat exchanger 10, and return to the cooling heat transfer tube 23. It circulates to.

このとき、ポンプ51および室内ファン63のみを駆動する。ブラインは、発熱機器冷却熱交換器10において電動機、インバータ等の熱により加熱され、さらに蓄熱剤22で加熱される。加熱されたブラインは、二方弁54からブライン用室内熱交換器62に送られ、室内ファン63によって供給された空気を加熱する。   At this time, only the pump 51 and the indoor fan 63 are driven. The brine is heated by heat from the electric motor, inverter, etc. in the heat-generating equipment cooling heat exchanger 10 and further heated by the heat storage agent 22. The heated brine is sent from the two-way valve 54 to the brine indoor heat exchanger 62 and heats the air supplied by the indoor fan 63.

ブラインは、二方弁57が閉、二方弁58が開となっているため、ラジエータ8に流れず、外部への放熱がない。従って、発熱機器、バッテリの発熱量を有効に暖房に活用できる。   Since the two-way valve 57 is closed and the two-way valve 58 is opened, the brine does not flow to the radiator 8 and does not radiate heat to the outside. Therefore, the heat generation amount of the heat generating device and the battery can be effectively used for heating.

[第2暖房運転モード]
空調制御器90から暖房要求が指令され、かつT≦T3の条件下において、暖房負荷が所定値よりも大、またはTp<Tp0のとき、ヒートポンプシステム3による第2暖房運転モードが選択される。第2暖房運転モードでは、蓄熱剤22が比較的低温であるため、蓄熱剤22を冷媒の加熱に活用できない。
[Second heating mode]
When a heating request is commanded from the air conditioning controller 90 and the heating load is larger than a predetermined value or Tp <Tp0 under the condition of T ≦ T3, the second heating operation mode by the heat pump system 3 is selected. In the second heating operation mode, since the heat storage agent 22 has a relatively low temperature, the heat storage agent 22 cannot be used for heating the refrigerant.

さらに図9と同様、第2暖房運転モードによる暖房動作では、図10において、制御部100の制御の下、ブライン回路5において、二方弁52、54、58が開弁し、二方弁53、55、57が閉弁する。その結果、ポンプ51によって、ブラインが、冷却用伝熱管23からブライン用室内熱交換器62、中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。   Further, as in FIG. 9, in the heating operation in the second heating operation mode, the two-way valves 52, 54, and 58 are opened in the brine circuit 5 under the control of the control unit 100 in FIG. , 55, 57 are closed. As a result, the pump 51 causes the brine to pass from the cooling heat transfer tube 23 through the brine indoor heat exchanger 62, the intermediate heat exchanger 48, and the heating device cooling heat exchanger 10, and return to the cooling heat transfer tube 23. It circulates to.

さらに第2暖房運転モードによる暖房動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42が破線で示す切替位置に切り替わり、3方弁43が実線で示す切替位置に切り替わる。また、膨張弁44、45が所定開度に開弁され、膨張弁46が閉弁される。冷媒は、圧縮機41で加熱された後、四方弁42、空調用室内熱交換器61、レシーバタンク47、空調用室外熱交換器7、四方弁42を通って圧縮機41に戻る。このとき、冷媒は、空調用室内熱交換器61において、室内ファン63によって供給される空気を加熱し、液冷媒となる。冷媒は、その後、膨張弁44、45で減圧され、空調用室外熱交換器7において、室外ファン9によって供給された空気から吸熱して、低圧のガス冷媒となる。さらに、冷媒は四方弁42を通って圧縮機41に戻る。   Further, in the heating operation in the second heating operation mode, under the control of the control unit 100, in the heat pump system 3, the four-way valve 42 is switched to the switching position indicated by the broken line, and the three-way valve 43 is switched to the switching position indicated by the solid line. Further, the expansion valves 44 and 45 are opened to a predetermined opening, and the expansion valve 46 is closed. After the refrigerant is heated by the compressor 41, it returns to the compressor 41 through the four-way valve 42, the air conditioning indoor heat exchanger 61, the receiver tank 47, the air conditioning outdoor heat exchanger 7, and the four-way valve 42. At this time, the refrigerant heats the air supplied by the indoor fan 63 in the indoor heat exchanger 61 for air conditioning, and becomes a liquid refrigerant. Thereafter, the refrigerant is decompressed by the expansion valves 44 and 45, and in the outdoor heat exchanger 7 for air conditioning, it absorbs heat from the air supplied by the outdoor fan 9 and becomes a low-pressure gas refrigerant. Further, the refrigerant returns to the compressor 41 through the four-way valve 42.

一方、蓄熱剤22は、ブライン用熱交換器62において室内ファン63によって供給される空気を加熱する。   On the other hand, the heat storage agent 22 heats the air supplied by the indoor fan 63 in the brine heat exchanger 62.

[第3暖房運転モード]
空調制御器90から暖房要求が指令され、暖房負荷が所定値よりも大、かつTp<Tp0のとき、ヒートポンプシステム3による第3暖房運転モードが選択される。第3暖房運転モードでは、発熱体10およびバッテリ2により加熱されたブラインが比較的高温(例えば略30℃)であるため、発熱体10および蓄熱剤22を冷媒の加熱に循環させて活用できる。ここで、T1<T<T2では二方弁52を開、二方弁53を閉として蓄熱剤22をブラインで冷却し、T<T3では二方弁52を閉、二方弁53を閉として蓄熱剤22のブラインによる冷却を停止する。これにより、ブラインの温度と蓄熱剤22の温度を独立に制御できる。
[Third heating operation mode]
When a heating request is commanded from the air conditioning controller 90, the heating load is larger than a predetermined value, and Tp <Tp0, the third heating operation mode by the heat pump system 3 is selected. In the third heating operation mode, since the brine heated by the heating element 10 and the battery 2 has a relatively high temperature (for example, approximately 30 ° C.), the heating element 10 and the heat storage agent 22 can be circulated and used for heating the refrigerant. Here, when T1 <T <T2, the two-way valve 52 is opened and the two-way valve 53 is closed and the heat storage agent 22 is cooled with brine. When T <T3, the two-way valve 52 is closed and the two-way valve 53 is closed. Cooling of the heat storage agent 22 with brine is stopped. Thereby, the temperature of the brine and the temperature of the heat storage agent 22 can be controlled independently.

図11において、第3暖房運転モードによる暖房動作では、制御部100の制御の下、ブライン回路5において、二方弁52、55、58が開弁し、二方弁53、54、57が閉弁される。ポンプ51によって、ブラインが、冷却用伝熱管23から中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。   In FIG. 11, in the heating operation in the third heating operation mode, under the control of the control unit 100, the two-way valves 52, 55, 58 are opened and the two-way valves 53, 54, 57 are closed in the brine circuit 5. To be spoken. The brine is circulated by the pump 51 so that the brine passes from the cooling heat transfer tube 23 through the intermediate heat exchanger 48 and the heat generating device cooling heat exchanger 10 and returns to the cooling heat transfer tube 23.

さらに第3暖房運転モードによる暖房動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42が実線で示す切替位置に切り替えられ、3方弁43が実線で示す切替位置に切り替えられ、膨張弁44、45,46が所定開度に開かれる。冷媒は、圧縮機41で加熱された後、四方弁42、空調用室内熱交換器61、膨張弁44、レシーバタンク47、膨張弁46を経て、中間熱交換器48においてブラインによって加熱され、3方弁43を通って、圧縮機41に戻る。また冷媒は、圧縮機41で加熱された後、四方弁42、空調用室内熱交換器61、膨張弁44、レシーバタンク47、膨張弁45を経て、車室外熱交換器7において外気から吸熱して加熱され、四方弁42を通って、圧縮機41に戻る。
従って、発熱機器10及びバッテリ21の発熱量を冷媒を介して暖房に活用することができる。
Further, in the heating operation in the third heating operation mode, under the control of the control unit 100, in the heat pump system 3, the four-way valve 42 is switched to the switching position indicated by the solid line, and the three-way valve 43 is switched to the switching position indicated by the solid line. The expansion valves 44, 45, 46 are opened to a predetermined opening. After the refrigerant is heated by the compressor 41, it passes through the four-way valve 42, the air conditioning indoor heat exchanger 61, the expansion valve 44, the receiver tank 47, and the expansion valve 46, and is heated by the brine in the intermediate heat exchanger 48. It returns to the compressor 41 through the direction valve 43. In addition, the refrigerant is heated by the compressor 41, and then passes through the four-way valve 42, the air conditioning indoor heat exchanger 61, the expansion valve 44, the receiver tank 47, and the expansion valve 45, and then absorbs heat from the outside air in the vehicle interior heat exchanger 7. And then returns to the compressor 41 through the four-way valve 42.
Therefore, the calorific values of the heat generating device 10 and the battery 21 can be utilized for heating via the refrigerant.

[第4暖房運転モード(暖機運転)]
車両1が長時間停止され場合等、蓄熱剤22の温度が第4の設定温度T4(<T3)以下のときに車両1を始動するには暖機運転を要する。そこで、制御部100は、温度T<T4であったとき、第4暖房運転モード(暖機運転)を選択する。
T3は、たとえば蓄熱剤22の蓄熱温度より2℃〜5℃低い温度、T4はたとえばマイナス5℃〜プラス5℃に設定される。
[Fourth heating operation mode (warm-up operation)]
For example, when the vehicle 1 is stopped for a long time, warm-up operation is required to start the vehicle 1 when the temperature of the heat storage agent 22 is equal to or lower than the fourth set temperature T4 (<T3). Therefore, the control unit 100 selects the fourth heating operation mode (warm-up operation) when the temperature T <T4.
T3 is set, for example, at a temperature 2 to 5 ° C. lower than the heat storage temperature of the heat storage agent 22, and T4 is set to, for example, minus 5 ° C. to plus 5 ° C.

図12において、第4暖房運転モードによる暖房動作では、制御部100の制御の下、ヒートポンプシステム3において、四方弁42、3方弁43が実線で示す切替位置に切り替えられ、膨張弁45、46が所定開度に開弁され、膨張弁44が閉弁される。冷媒は、圧縮機41で加熱された後、3方弁43、中間熱交換器48、膨張弁46、レシーバタンク47、膨張弁44、空調用室内熱交換器61、四方弁42を通って、圧縮機41に戻る。   In FIG. 12, in the heating operation in the fourth heating operation mode, under the control of the control unit 100, the four-way valve 42 and the three-way valve 43 are switched to the switching positions indicated by the solid lines in the heat pump system 3, and the expansion valves 45 and 46 Is opened to a predetermined opening, and the expansion valve 44 is closed. After the refrigerant is heated by the compressor 41, the refrigerant passes through the three-way valve 43, the intermediate heat exchanger 48, the expansion valve 46, the receiver tank 47, the expansion valve 44, the indoor heat exchanger 61 for air conditioning, and the four-way valve 42. Return to the compressor 41.

さらに、図12において、第4暖房運転モードによる暖房動作では、制御部100の制御の下、ブライン回路5においては、二方弁52、55、58が開弁され、二方弁53、54、57が閉弁とされる。ポンプ51によって、ブラインが、冷却用伝熱管23から中間熱交換器48、発熱機器冷却熱交換器10を通過して、冷却用伝熱管23に戻るように循環する。   Furthermore, in FIG. 12, in the heating operation in the fourth heating operation mode, under the control of the control unit 100, the two-way valves 52, 55, 58 are opened in the brine circuit 5, and the two-way valves 53, 54, 57 is closed. The brine is circulated by the pump 51 so that the brine passes from the cooling heat transfer tube 23 through the intermediate heat exchanger 48 and the heat generating device cooling heat exchanger 10 and returns to the cooling heat transfer tube 23.

中間熱交換器48においては、冷媒はブラインを加熱し、液冷媒となって膨張弁46、レシーバタンク47、膨張弁45を経て低圧となり、空調用室外熱交換器7に至る。空調用室外熱交換器7では、冷媒は室外ファン9によって供給された空気から吸熱しガス冷媒となって四方弁42を通り、圧縮機41に戻る。
一方、中間熱交換器48で加熱されたブラインは、発熱機器冷却熱交換器10において、電動機、インバータ等の熱によってさらに加熱され、蓄熱剤22を介してバッテリ21を加熱する。従って、外気の熱量を使用することにより、暖機運転時間を短縮できるとともに、暖機のためのエネルギーを節減することができる。
In the intermediate heat exchanger 48, the refrigerant heats the brine, becomes a liquid refrigerant, becomes a low pressure through the expansion valve 46, the receiver tank 47, and the expansion valve 45, and reaches the outdoor heat exchanger 7 for air conditioning. In the outdoor heat exchanger 7 for air conditioning, the refrigerant absorbs heat from the air supplied by the outdoor fan 9, becomes a gas refrigerant, passes through the four-way valve 42, and returns to the compressor 41.
On the other hand, the brine heated by the intermediate heat exchanger 48 is further heated by the heat of the electric motor, the inverter and the like in the heat generating device cooling heat exchanger 10 and heats the battery 21 via the heat storage agent 22. Therefore, by using the amount of heat of the outside air, the warm-up operation time can be shortened and energy for warm-up can be saved.

[制御部の処理の流れ]
制御部100は、図13のフローチャートに示す以下の各ステップによって、第1冷却運転モード〜第5冷却運転モード、第1暖房運転モード〜第4暖房運転モードを実行する。
[Processing flow of control unit]
The control unit 100 executes the first cooling operation mode to the fifth cooling operation mode and the first heating operation mode to the fourth heating operation mode by the following steps shown in the flowchart of FIG.

ステップS1301:まず、車両1が始動時か否かを判断する。始動時と判定されると、ステップS1318に進み、始動時でないときは、ステップS1302に進む。   Step S1301: First, it is determined whether or not the vehicle 1 is being started. If it is determined that the engine has been started, the process proceeds to step S1318. If not, the process proceeds to step S1302.

ステップS1302:空調制御器90から暖房要求があったか否かを判断する。暖房要求があったときはステップS1313に進み、暖房要求が無かったときは、ステップS1303に進む。   Step S1302: It is determined whether or not there is a heating request from the air conditioning controller 90. When there is a heating request, the process proceeds to step S1313. When there is no heating request, the process proceeds to step S1303.

ステップS1303:空調制御器90から冷房要求があったか否かを判断する。冷房要求があったときはステップS1308に進み、冷房要求が無かったときは、ステップS1304に進む。   Step S1303: It is determined whether or not there is a cooling request from the air conditioning controller 90. When there is a cooling request, the process proceeds to step S1308, and when there is no cooling request, the process proceeds to step S1304.

ステップS1304:蓄熱剤22の温度TがT1以上か否か判断する。T≧T1のときはステップS1305に進み、T<T1のときは、ステップS1302に進む。   Step S1304: It is determined whether or not the temperature T of the heat storage agent 22 is equal to or higher than T1. When T ≧ T1, the process proceeds to step S1305, and when T <T1, the process proceeds to step S1302.

ステップS1305:蓄熱剤22の温度TがT2以上か否か判断する。T≧T2のときはステップS1307に進み、T<T2のときは、ステップS1306に進む。   Step S1305: It is determined whether or not the temperature T of the heat storage agent 22 is equal to or higher than T2. When T ≧ T2, the process proceeds to step S1307, and when T <T2, the process proceeds to step S1306.

ステップS1306:第1冷却運転モードを実行し、ステップS1302に戻る。   Step S1306: The first cooling operation mode is executed, and the process returns to Step S1302.

ステップS1307:第2冷却運転モードを実行し、ステップS1302に戻る。   Step S1307: The second cooling operation mode is executed, and the process returns to Step S1302.

ステップS1308:第3冷却運転モードを実行し、ステップS1309に進む。   Step S1308: The third cooling operation mode is executed, and the process proceeds to Step S1309.

ステップS1309:蓄熱剤22の温度TがT1以上か否か判断する。T≧T1のときはステップS1310に進み、T<T1のときは、ステップS1308に戻る。   Step S1309: It is determined whether or not the temperature T of the heat storage agent 22 is equal to or higher than T1. When T ≧ T1, the process proceeds to step S1310. When T <T1, the process returns to step S1308.

ステップS1310:蓄熱剤22の温度TがT2以上か否か判断する。T≧T2のときはステップS1312に進み、T<T2のときは、ステップS1311に進む。   Step S1310: It is determined whether or not the temperature T of the heat storage agent 22 is equal to or higher than T2. When T ≧ T2, the process proceeds to step S1312, and when T <T2, the process proceeds to step S1311.

ステップS1311:第4冷却運転モードを実行し、ステップS1302に戻る。   Step S1311: The fourth cooling operation mode is executed, and the process returns to Step S1302.

ステップS1312:第5冷却運転モードを実行し、ステップS1302に戻る。   Step S1312: The fifth cooling operation mode is executed, and the process returns to Step S1302.

ステップS1313:暖房負荷が小であるという条件、およびブライン温度Tpが所定温度Tp0以上という条件の両者が満足されているか否かを判断する。両条件が満足されたときは、ステップS1314に進み、両条件またはいずれかの条件が満足されないときは、ステップS1315に進む。   Step S1313: It is determined whether or not both the condition that the heating load is small and the condition that the brine temperature Tp is equal to or higher than the predetermined temperature Tp0 are satisfied. When both conditions are satisfied, the process proceeds to step S1314, and when both conditions or one of the conditions is not satisfied, the process proceeds to step S1315.

ステップS1314:第1暖房運転モードを実行し、ステップS1302に戻る。   Step S1314: The first heating operation mode is executed, and the process returns to Step S1302.

ステップS1315:ブラインの温度TpがTp0以上か否か判断する。Tp≧Tp0のときはステップS1316に進み、Tp<Tp0のときは、ステップS1317に進む。   Step S1315: It is determined whether or not the brine temperature Tp is equal to or higher than Tp0. When Tp ≧ Tp0, the process proceeds to step S1316. When Tp <Tp0, the process proceeds to step S1317.

ステップS1316:第2暖房運転モードを実行し、ステップS1302に戻る。   Step S1316: The second heating operation mode is executed, and the process returns to Step S1302.

ステップS1317:第3暖房運転モードを実行し、ステップS1302に戻る。   Step S1317: The third heating operation mode is executed, and the process returns to Step S1302.

ステップS1318:蓄熱剤22の温度TがT4以下か否か判断する。T≦T4のときはステップS1319に進み、T>T4のときはステップS1302に戻る。   Step S1318: It is determined whether or not the temperature T of the heat storage agent 22 is equal to or lower than T4. When T ≦ T4, the process proceeds to step S1319, and when T> T4, the process returns to step S1302.

ステップS1319:第4暖房運転モードを実行し、ステップS1318に戻る。   Step S1319: The fourth heating operation mode is executed, and the process returns to Step S1318.

[第2実施形態]
本発明による車載用バッテリの温度制御システムの第2実施形態を、図17、図18を参照して説明する。なお、図中、第1実施形態と同一もしくは相当部分には同一符号を付し、説明を省略する。
[Second Embodiment]
A second embodiment of the on-vehicle battery temperature control system according to the present invention will be described with reference to FIGS. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

第2実施形態は、バッテリ収納容器2内に、車外の空気を取り込んでバッテリ収納容器2内を冷却し、あるいは、バッテリ収納容器2の空気を車内に放出して、暖房に活用する。   In the second embodiment, air outside the vehicle is taken into the battery storage container 2 to cool the inside of the battery storage container 2, or the air in the battery storage container 2 is discharged into the vehicle and used for heating.

図17、図18に示すように、バッテリ収納容器2には、車両1の車内に連通した開口部71、75が容器長手方向の両端に設けられている。開口部71は冷却風入口、開口部75は冷却風出口である。車両1の車外に連通した開口部72、76が、容器長手方向の両端に設けられている。開口部72は冷却風入口、開口部76は冷却風出口である。   As shown in FIGS. 17 and 18, the battery storage container 2 is provided with openings 71 and 75 communicating with the interior of the vehicle 1 at both ends in the container longitudinal direction. The opening 71 is a cooling air inlet, and the opening 75 is a cooling air outlet. Openings 72 and 76 communicating with the outside of the vehicle 1 are provided at both ends in the container longitudinal direction. The opening 72 is a cooling air inlet, and the opening 76 is a cooling air outlet.

開口部71、72、75、76には、風路切り替え用ダンパ73、74、77、78がそれぞれ設けられ、各ダンパ73、74、77、78は、開口部71、72、75、76を開閉することができる。バッテリ収納容器2内の出口側には、開口部75、76に対向して送風ファン70が配置され、送風ファン70は、入口側の開口部71および/または72から空気を吸い込み、出口側の開口部75および/または76から排出する。
なお、上記ダンパやファンは制御部100で駆動制御される。
The opening portions 71, 72, 75, and 76 are provided with air path switching dampers 73, 74, 77, and 78. The dampers 73, 74, 77, and 78 are provided with the openings 71, 72, 75, and 76, respectively. Can be opened and closed. A blower fan 70 is disposed on the outlet side in the battery storage container 2 so as to face the openings 75 and 76. The blower fan 70 sucks air from the openings 71 and / or 72 on the inlet side, Drain from the openings 75 and / or 76.
The dampers and fans are driven and controlled by the control unit 100.

送風ファン70による空気の流動を可能にするために、蓄熱剤22と断熱材25の間には、冷却用伝熱管23のフィン24が容器長手方向に延びるように配置され、隣接するフィン24の間隙が複数の風路30とされている。フィン24の延在方向に対応して、冷却用伝熱管23は蓄熱剤22を横方向にジグザグに貫通しており、蓄熱剤22との充分な伝熱面積が確保されている。   In order to allow air flow by the blower fan 70, the fins 24 of the cooling heat transfer tube 23 are arranged between the heat storage agent 22 and the heat insulating material 25 so as to extend in the longitudinal direction of the container. The gaps are a plurality of air paths 30. Corresponding to the extending direction of the fins 24, the cooling heat transfer tubes 23 penetrate the heat storage agent 22 in the lateral direction in a zigzag manner, and a sufficient heat transfer area with the heat storage agent 22 is ensured.

例えば、第1実施形態で説明した第1冷却運転モード〜第5冷却運転モードに際して、蓄熱剤22の温度Tが温度T1以上であったとき、ダンパ74、78を開、ダンパ73、77を閉とし、送風ファン70を駆動する。このとき、車外の空気が開口部72から取り込まれ、風路30を通過しながら蓄熱剤22、フィン24を冷却し、後方の開口部76から排出される。   For example, in the first to fifth cooling operation modes described in the first embodiment, when the temperature T of the heat storage agent 22 is equal to or higher than the temperature T1, the dampers 74 and 78 are opened, and the dampers 73 and 77 are closed. And the blower fan 70 is driven. At this time, air outside the vehicle is taken in from the opening 72, cools the heat storage agent 22 and the fins 24 while passing through the air passage 30, and is discharged from the rear opening 76.

従って、バッテリ21は送風ファン70によって空冷されるので、第1冷却運転モードに替えてこの空冷を実行し、あるいは、空冷によって第1冷却運転モード〜第5冷却運転モードを補助することができる。空冷によって第1冷却運転モードを補助する場合、ヒートポンプシステム3、室内ファン63、室外ファン9の消費電力を節減することができる。   Therefore, since the battery 21 is air-cooled by the blower fan 70, the air cooling can be executed instead of the first cooling operation mode, or the first cooling operation mode to the fifth cooling operation mode can be assisted by air cooling. When the first cooling operation mode is assisted by air cooling, power consumption of the heat pump system 3, the indoor fan 63, and the outdoor fan 9 can be reduced.

例えば、第1実施形態で説明した第1暖房運転モード〜第4暖房運転モードに際して、ダンパ73、77を開、ダンパ74、78を閉とし、送風ファン70を駆動する。このとき、車内の空気が開口部71から取り込まれ、風路30を通過しながら蓄熱剤22、フィン24によって加熱され、開口部75から放出される。
従って、バッテリ21からの放熱によって加熱された空気によって車内を暖房でき、車内の暖房負荷を低減できる。
For example, in the first heating operation mode to the fourth heating operation mode described in the first embodiment, the dampers 73 and 77 are opened, the dampers 74 and 78 are closed, and the blower fan 70 is driven. At this time, the air inside the vehicle is taken in from the opening 71, heated by the heat storage agent 22 and the fins 24 while passing through the air passage 30, and discharged from the opening 75.
Therefore, the inside of the vehicle can be heated by the air heated by the heat radiation from the battery 21, and the heating load in the vehicle can be reduced.

以上の説明は一例であり、本発明の趣旨に逸脱しない種々の構造の車載バッテリの温度制御システムに本発明を適用することができる。   The above description is an example, and the present invention can be applied to a temperature control system for an in-vehicle battery having various structures without departing from the gist of the present invention.

Claims (9)

車載用のバッテリを収納するバッテリ収納容器と、
前記バッテリ収納容器内において、前記バッテリと熱交換可能な蓄熱剤と、
前記蓄熱剤と第1冷媒との間で熱交換して前記蓄熱剤の温度を調節する蓄熱剤温度調節装置と、
前記蓄熱剤の温度を検出する蓄熱剤温度検出器と、
第2冷媒を循環させて車室内への調和空気を生成するヒートポンプ空調装置と、
前記蓄熱剤温度調節装置の前記第1冷媒と前記ヒートポンプ空調装置の前記第2冷媒との間で熱交換を行う中間熱交換装置と、
前記蓄熱剤温度検出によって検出された蓄熱剤温度が所定値になったときに、前記蓄熱剤温度調節装置および前記ヒートポンプ空調装置により前記第1冷媒の温度を調整して前記蓄熱剤の温度を調整する制御装置とを備え
前記バッテリ収納容器には、
車室内に連通する車室内入口開口および車室外と連通する車室外入口開口を有し、前記バッテリ収納容器内に冷却風を流通させるための入口開口と、
車室内に連通する車室内出口開口および車室外と連通する車室外出口開口を有し、前記バッテリ収納容器内に冷却風を流通させるための出口開口と、
前記入口開口から導入した冷却風を流通させて前記出口開口から吐き出す風路とが設けられ、
前記車室内入口開口と前記車室内出口開口の開閉を制御する車室内用ダンパ装置と、
前記車室外入口開口と前記車室外出口開口の開閉を制御する車室外用ダンパ装置とをさらに備え、
前記制御装置は、
前記蓄熱剤温度が第1の基準値以上となったとき、前記車室外入口開口と前記車室外出口開口を開放するように前記車室外用ダンパ装置を駆動制御し、前記車室内入口開口と前記車室内出口開口が閉じるように前記車室内用ダンパ装置を駆動制御する車載用バッテリの温度制御システム。
A battery storage container for storing an in-vehicle battery;
In the battery storage container, a heat storage agent capable of exchanging heat with the battery,
A heat storage agent temperature adjusting device for adjusting the temperature of the heat storage agent by exchanging heat between the heat storage agent and the first refrigerant;
A heat storage agent temperature detector for detecting the temperature of the heat storage agent;
A heat pump air conditioner that circulates the second refrigerant to generate conditioned air into the passenger compartment;
An intermediate heat exchange device for exchanging heat between the first refrigerant of the heat storage agent temperature control device and the second refrigerant of the heat pump air conditioner;
When the heat storage agent has been heat storage agent temperature detected by the temperature detector reaches a predetermined value, the temperature of the heat storage agent to adjust the temperature of the first refrigerant by the heat storage agent temperature control unit and the heat pump air conditioning system A control device to adjust ,
In the battery storage container,
A vehicle interior entrance opening that communicates with the vehicle interior and an exterior entrance opening that communicates with the outside of the vehicle interior; an entrance opening for circulating cooling air into the battery storage container;
A vehicle interior outlet opening communicating with the vehicle interior and a vehicle exterior outlet opening communicating with the exterior of the vehicle interior; an outlet opening for circulating cooling air into the battery storage container;
An air path that circulates the cooling air introduced from the inlet opening and discharges it from the outlet opening is provided.
A vehicle interior damper device that controls opening and closing of the vehicle interior entrance opening and the vehicle interior exit opening;
A vehicle exterior damper device that controls opening and closing of the vehicle exterior entrance opening and the vehicle exterior exit opening;
The controller is
When the heat storage agent temperature is equal to or higher than a first reference value, the vehicle exterior damper device is driven and controlled to open the vehicle exterior entrance opening and the vehicle exterior exit opening, and the vehicle interior entrance opening and the A vehicle- mounted battery temperature control system for drivingly controlling the vehicle interior damper device so that the vehicle interior outlet opening is closed .
請求項1記載の車載用バッテリの温度制御システムにおいて、
前記制御装置は、前記蓄熱剤温度が第1の基準値以上となったとき、前記蓄熱剤を冷却する車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to claim 1,
The said control apparatus is a temperature control system of the vehicle-mounted battery which cools the said thermal storage agent when the said thermal storage agent temperature becomes more than a 1st reference value.
請求項1または2記載の車載用バッテリの温度制御システムにおいて、
前記制御装置は、前記蓄熱剤温度が第2の基準値(第1の基準値)以下となったとき、前記蓄熱剤を加熱する車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to claim 1 or 2,
The said control apparatus is a temperature control system of the vehicle-mounted battery which heats the said thermal storage agent when the said thermal storage agent temperature becomes below a 2nd reference value (1st reference value).
請求項1乃至3のいずれか1項記載の車載用バッテリの温度制御システムにおいて、
前記制御装置は、
前記蓄熱剤温度が第2の基準値(第1の基準値)以下となったとき、前記車室内入口開口と前記車室内出口開口を開放するように前記車室内用ダンパ装置を駆動制御し、前記車室外入口開口と前記車室外出口開口が閉じるように前記車室外用ダンパ装置を駆動制御する車載用バッテリの温度制御システム。
In the temperature control system of the vehicle-mounted battery according to any one of claims 1 to 3 ,
The control device includes:
When the heat storage agent temperature becomes equal to or lower than a second reference value (first reference value), the vehicle interior damper device is driven and controlled to open the vehicle interior entrance opening and the vehicle interior exit opening, A vehicle-mounted battery temperature control system that drives and controls the vehicle exterior damper device so that the vehicle exterior exterior opening and the vehicle exterior exit opening are closed.
請求項1乃至4のいずれか1項記載の車載用バッテリの温度制御システムにおいて、
前記バッテリ収納容器内に冷却風を流通させるファンをさらに有する車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to any one of claims 1 to 4 ,
A vehicle-mounted battery temperature control system further comprising a fan for circulating cooling air in the battery storage container.
請求項1乃至5のいずれか1項記載の車載用バッテリの温度制御システムにおいて、
前記蓄熱剤温度調節装置は、
内部に前記第1冷媒が充填され、前記第1冷媒と前記蓄熱剤との間で熱交換する伝熱管を有する車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to any one of claims 1 to 5 ,
The heat storage agent temperature control device is:
Wherein the first refrigerant is filled in, the temperature control system of the in-vehicle battery to have a heat transfer tube for heat exchange between the first refrigerant and the heat storage agent.
請求項記載の車載用バッテリの温度制御システムにおいて、
前記伝熱管は前記風路を横切るようにジグザグ状に配設されている車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to claim 6 ,
The on-vehicle battery temperature control system in which the heat transfer tubes are arranged in a zigzag shape so as to cross the air path.
請求項1乃至7のいずれか1項記載の車載用バッテリの温度制御システムにおいて、
前記バッテリ収納容器には前記蓄熱剤を断熱する断熱材が設けられている車載用バッテリの温度制御システム。
In the temperature control system of the vehicle-mounted battery according to any one of claims 1 to 7 ,
A temperature control system for an in-vehicle battery, wherein the battery storage container is provided with a heat insulating material for insulating the heat storage agent.
請求項6または7記載の車載用バッテリの温度制御システムにおいて、
前記蓄熱剤温度調節装置は、
前記伝熱管に接続され、前記第1冷媒を流動させるブライン回路とを有し、
前記ヒートポンプ空調装置は、
前記第2冷媒を加圧する圧縮機と、
前記圧縮機の吐出側と吸込側に接続された第1切替弁と、
前記圧縮機の吐出側と吸込側に接続された第2切替弁と、
前記第2冷媒を膨張させる膨張弁とを備えた圧縮機回路とを有し、
前記温度制御システムは、
前記圧縮機回路に接続された空調用室外熱交換器および空調用室内熱交換器と、
前記ブライン回路と前記圧縮機回路とを相互に熱交換する中間熱交換手段とをさらに備え、
前記第1切替弁は、前記圧縮機の吐出側を、前記空調用室外熱交換器または前記空調用室内熱交換器に接続し、
前記第2切替弁は、前記中間熱交換手段を前記圧縮機の吸込側また吐出側に接続する車載用バッテリの温度制御システム。
In the vehicle battery temperature control system according to claim 6 or 7 ,
The heat storage agent temperature control device is:
A brine circuit connected to the heat transfer tube and flowing the first refrigerant ;
The heat pump air conditioner
A compressor for pressurizing the second refrigerant;
A first switching valve connected to a discharge side and a suction side of the compressor;
A second switching valve connected to a discharge side and a suction side of the compressor;
A compressor circuit having an expansion valve for expanding the second refrigerant,
The temperature control system includes:
An air conditioning outdoor heat exchanger and an air conditioning indoor heat exchanger connected to the compressor circuit;
An intermediate heat exchange means for exchanging heat between the brine circuit and the compressor circuit;
The first switching valve connects the discharge side of the compressor to the outdoor heat exchanger for air conditioning or the indoor heat exchanger for air conditioning,
The second switching valve is a vehicle-mounted battery temperature control system for connecting the intermediate heat exchange means to the suction side or the discharge side of the compressor.
JP2013500737A 2011-02-21 2011-02-21 Automotive battery temperature control system Expired - Fee Related JP5571843B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053724 WO2012114439A1 (en) 2011-02-21 2011-02-21 Temperature control system of vehicle-mounted battery

Publications (2)

Publication Number Publication Date
JPWO2012114439A1 JPWO2012114439A1 (en) 2014-07-07
JP5571843B2 true JP5571843B2 (en) 2014-08-13

Family

ID=46720260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500737A Expired - Fee Related JP5571843B2 (en) 2011-02-21 2011-02-21 Automotive battery temperature control system

Country Status (2)

Country Link
JP (1) JP5571843B2 (en)
WO (1) WO2012114439A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203490B2 (en) * 2012-12-04 2017-09-27 三菱重工業株式会社 Air-conditioner for electric vehicle and operation method thereof
KR101855759B1 (en) * 2015-12-08 2018-05-09 현대자동차 주식회사 Betterly cooling system for vehicle
DE102016206712A1 (en) * 2016-04-20 2017-10-26 Mahle International Gmbh motor vehicle
CN107187291B (en) * 2017-05-02 2023-07-14 珠海格力电器股份有限公司 Air conditioner system, vehicle and method for controlling air conditioner system
WO2020059712A1 (en) 2018-09-18 2020-03-26 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular heat exchange system and motor unit used in same
CN111231619A (en) * 2018-11-29 2020-06-05 比亚迪股份有限公司 Vehicle thermal management system and vehicle
CN111231774A (en) * 2018-11-29 2020-06-05 比亚迪股份有限公司 Vehicle thermal management system, control method of vehicle thermal management system and vehicle
HUP1900419A1 (en) * 2019-12-11 2021-07-28 Zoltan Andrassy Method and arrangement for heat control of the parts of an electric car
JP7439658B2 (en) 2020-06-30 2024-02-28 株式会社デンソー Refrigeration cycle equipment
CN112976999B (en) * 2021-04-12 2022-07-22 吉林大学 Integrated thermal management system for multi-heat-source direct-current energy storage device and control method
CN115626189A (en) * 2022-06-24 2023-01-20 山东朗进科技股份有限公司 Rail air conditioner control system and method integrating waste heat utilization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020457U (en) * 1973-06-14 1975-03-07
JPH05178070A (en) * 1991-12-27 1993-07-20 Nippondenso Co Ltd Air conditioner for electric automobile
JPH08253019A (en) * 1995-03-16 1996-10-01 Nissan Motor Co Ltd Air conditioner for vehicle
JPH09238401A (en) * 1996-02-29 1997-09-09 Toyota Autom Loom Works Ltd Auxiliary heater of electric vehicle
JP2000059918A (en) * 1998-08-12 2000-02-25 Hitachi Ltd Automobile
JP2001018635A (en) * 1999-06-02 2001-01-23 Valeo Klimasyst Gmbh Independent type air conditioner for automobile
JP2009174779A (en) * 2008-01-24 2009-08-06 Fuji Electric Retail Systems Co Ltd Showcase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020457U (en) * 1973-06-14 1975-03-07
JPH05178070A (en) * 1991-12-27 1993-07-20 Nippondenso Co Ltd Air conditioner for electric automobile
JPH08253019A (en) * 1995-03-16 1996-10-01 Nissan Motor Co Ltd Air conditioner for vehicle
JPH09238401A (en) * 1996-02-29 1997-09-09 Toyota Autom Loom Works Ltd Auxiliary heater of electric vehicle
JP2000059918A (en) * 1998-08-12 2000-02-25 Hitachi Ltd Automobile
JP2001018635A (en) * 1999-06-02 2001-01-23 Valeo Klimasyst Gmbh Independent type air conditioner for automobile
JP2009174779A (en) * 2008-01-24 2009-08-06 Fuji Electric Retail Systems Co Ltd Showcase

Also Published As

Publication number Publication date
JPWO2012114439A1 (en) 2014-07-07
WO2012114439A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5571843B2 (en) Automotive battery temperature control system
US11179994B2 (en) Heat pump for automobile
WO2015136768A1 (en) In-vehicle temperature adjusting device, vehicle air-conditioning device, and battery temperature adjsuting device
US9994087B2 (en) Vehicular heat management system
KR101859512B1 (en) Heat pump system for vehicle
JP3736847B2 (en) Air conditioning apparatus and air conditioning method
WO2011061981A1 (en) Air conditioning system for vehicle
JP6108322B2 (en) Air conditioner for vehicles
WO2014087645A1 (en) Vehicle heat pump device, and vehicle air-conditioning device
JP2020050155A (en) Air conditioner for vehicle
JP2013184592A (en) Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
KR102047749B1 (en) Heat pump system for vehicle
JP2014088060A (en) Air conditioner for heat pump type vehicle and vehicle
JP2013184596A (en) Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
JP2014223867A (en) Vehicle air conditioner and vehicle air conditioner control method
KR101941026B1 (en) Heat pump system for vehicle
JP2018111339A (en) Air conditioner for electrically driven vehicle
JP5248692B1 (en) Air conditioner for vehicles
KR101544877B1 (en) Heat pump system for vehicle
JP2014144668A (en) Air conditioner for vehicle
JP2005100694A (en) Warming-up system of fuel cell
KR101950750B1 (en) Heat pump system for vehicle
JP2014113837A (en) Air conditioner for vehicle
JP2020030977A (en) Thermal insulation device
JP6712400B2 (en) Air conditioning system for vehicles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees