JP5570767B2 - Non-power measuring device and non-power measuring system - Google Patents

Non-power measuring device and non-power measuring system Download PDF

Info

Publication number
JP5570767B2
JP5570767B2 JP2009162131A JP2009162131A JP5570767B2 JP 5570767 B2 JP5570767 B2 JP 5570767B2 JP 2009162131 A JP2009162131 A JP 2009162131A JP 2009162131 A JP2009162131 A JP 2009162131A JP 5570767 B2 JP5570767 B2 JP 5570767B2
Authority
JP
Japan
Prior art keywords
power
power generation
unit
measurement
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009162131A
Other languages
Japanese (ja)
Other versions
JP2011017605A (en
Inventor
三昭 小林
潔 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR East Consultants Co
Original Assignee
JR East Consultants Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR East Consultants Co filed Critical JR East Consultants Co
Priority to JP2009162131A priority Critical patent/JP5570767B2/en
Publication of JP2011017605A publication Critical patent/JP2011017605A/en
Application granted granted Critical
Publication of JP5570767B2 publication Critical patent/JP5570767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Emergency Alarm Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧力が加えられると起電力を発生する発電素子を利用した無電源計測装置及びこれを備えた無電源計測システムに関し、例えば、通行者の通行状況の計測に利用可能な無電源計測装置及び無電源計測システムに関する。   The present invention relates to a non-power source measurement device using a power generation element that generates an electromotive force when pressure is applied, and a non-power source measurement system including the same, for example, a non-power source measurement that can be used to measure the pass situation of a passerby The present invention relates to an apparatus and a no-power supply measurement system.

従来、この種の通行者の通行状況を計測するものとして、駅のホームや駅構内等を通行する通行者の通行量を監視する監視システムが知られている(特許文献1)。この監視システムでは、所定領域内に敷かれ、当該領域内を通行する通行者の圧力を検出するシート状の圧力検出部と、検出した圧力を示す検出信号に基づいて通行量を算出する演算部と、算出した通行量を表示部に表示すると共に当該通行量を移動通信端末に無線送信する通知部と、が備えられている。   2. Description of the Related Art Conventionally, a monitoring system that monitors the amount of traffic of a passerby passing through a platform of a station, a station premises, or the like is known as a method for measuring the traffic situation of this type of passerby (Patent Document 1). In this monitoring system, a sheet-like pressure detection unit that is placed in a predetermined region and detects the pressure of a passerby passing through the region, and a calculation unit that calculates a traffic amount based on a detection signal indicating the detected pressure. And a notification unit that displays the calculated traffic volume on the display unit and wirelessly transmits the traffic volume to the mobile communication terminal.

特開2003−296869号公報JP 2003-296869 A

しかしながら、特許文献1に記載された監視システムでは、通行量の計測用電力、表示部への表示用電力及び移動通信端末への送信用電力が必要となるため、電池やバッテリー等の外部電源を新たに設ける必要があると共にこの電源供給用の配線工事を行う必要があった。また、外部電源を新たに設ける場合には、外部電源からの電力供給が可能なエリアに、通行量等の計測エリアが限定されてしまう問題があった。   However, the monitoring system described in Patent Document 1 requires power for measuring traffic, power for display on a display unit, and power for transmission to a mobile communication terminal. Therefore, an external power source such as a battery or a battery is used. It was necessary to install a new power supply and to perform wiring work for supplying power. Further, when an external power supply is newly provided, there is a problem that a measurement area such as a traffic amount is limited to an area where power can be supplied from the external power supply.

本発明は、以上のような実情に鑑みてなされたもので、外部電源が不要であると共に、計測エリアを限定することなく任意のエリアで計測することができる無電源計測装置及び無電源計測システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an external power source is unnecessary, and a non-power source measurement apparatus and a non-power source measurement system that can measure in any area without limiting the measurement area The purpose is to provide.

本発明の無電源計測装置は、外部圧力が加わると電力を発生する発電素子と、前記発電素子に接続され該発電素子の発生電力を蓄積する蓄電部とをそれぞれ有し、所定エリアの上に二次元状に敷かれるシート状部材で構成され、当該シート状部材に接触して外部圧力が加わった前記発電素子から電力が発生する複数の発電ユニットと、前記発電ユニットから電力供給を受けて動作し、前記各発電ユニットの蓄電部に蓄積された電力をそれぞれ測定して電力測定値を得る測定手段と、前記発電ユニットから電力供給を受けて動作し、前記測定手段で測定された電力測定値を無線送信する無線送信部と、を具備し、前記測定手段は、前記各発電ユニットから前記蓄電部の正側端子と負側端子とがそれぞれ接続され、前記複数の蓄電部の端子間の電圧を、前記発電ユニットに外部圧力が加えられた順番にデジタルデータに変換するAD変換器を有することを特徴とする。 The non-power source measuring device of the present invention includes a power generation element that generates electric power when an external pressure is applied, and a power storage unit that is connected to the power generation element and accumulates the generated power of the power generation element. It is composed of a sheet-like member laid in two dimensions, and a plurality of power generation units that generate electric power from the power generation element applied with an external pressure in contact with the sheet-like member, and operate by receiving power supply from the power generation unit Measuring means for measuring the power accumulated in the power storage unit of each power generation unit to obtain a power measurement value; and power measurement value measured by the measurement means that operates by receiving power supply from the power generation unit. anda wireless transmission unit for wirelessly transmitting, said measuring means, said positive terminal of said power storage unit from the power generation unit and the negative terminal is connected respectively, conductive between the terminals of said plurality of power storage units And characterized in that it has an AD converter for converting the order in which external pressure is applied to the digital data to the power generation unit.

この構成によれば、発電ユニットにおける発電素子がセンサとして機能し、センシング結果情報が発電ユニットにおける蓄電部に保持される。そして、測定手段が発電ユニットから電力供給を受けて、各発電ユニットの蓄電部に蓄積された電力(センシング結果)をそれぞれ測定して、発電ユニットから電力供給を受けた無線送信部が電力測定値を無線送信する。したがって、従来の監視システムのように新たな外部電源を設けることなく、センシング結果そのものとなる電力を利用してセンシング結果情報を無線送信でき、歩行者や車両の通行状況の監視や、落石や地滑りなどの監視を、無電源で行うことができる。また、計測エリアが外部電源からの電力供給が可能なエリアに限定されないので、任意のエリアを計測エリアにすることができる。   According to this configuration, the power generation element in the power generation unit functions as a sensor, and sensing result information is held in the power storage unit in the power generation unit. The measuring means receives power supply from the power generation unit, measures the power (sensing result) stored in the power storage unit of each power generation unit, and the wireless transmission unit that receives power supply from the power generation unit measures the power measurement value. Is transmitted wirelessly. Therefore, without providing a new external power supply as in the conventional monitoring system, the sensing result information can be transmitted wirelessly using the power that is the sensing result itself, monitoring the traffic situation of pedestrians and vehicles, falling rocks and landslides Monitoring can be performed without a power source. Further, since the measurement area is not limited to an area where power can be supplied from an external power source, any area can be used as the measurement area.

本発明は、上記無電源計測装置において、前記複数の発電ユニットは、歩行者及び又は車両の通行状況を監視する領域に設置されることを特徴とする。   The present invention is characterized in that, in the above-described non-power-supply measuring apparatus, the plurality of power generation units are installed in a region for monitoring a traffic situation of a pedestrian and / or a vehicle.

この構成によれば、歩行者及び車両の通行に伴う外部圧力が複数の発電ユニットに加えられると、各発電ユニットの蓄電部に蓄積された電力をそれぞれ測定して、測定された電力測定値をセンシング結果として無線送信するので、新たに外部電源を設けることなく、歩行者及び又は車両の通行状況を監視することができる。   According to this configuration, when external pressure accompanying the passage of pedestrians and vehicles is applied to a plurality of power generation units, the power stored in the power storage unit of each power generation unit is measured, and the measured power measurement value is obtained. Since it transmits wirelessly as a sensing result, the traffic situation of a pedestrian and / or a vehicle can be monitored, without newly providing an external power supply.

本発明は、上記無電源計測装置において、前記複数の発電ユニットは、落石又は地すべりを監視する領域に設置されることを特徴とする。   The present invention is characterized in that, in the above-described non-power supply measuring apparatus, the plurality of power generation units are installed in a region where a falling rock or a landslide is monitored.

この構成によれば、落石又は地すべりに伴う外部圧力が発電ユニットに加えられると、その落石等を受けた場所に設置された発電ユニットの蓄電部に電力が蓄積されて電源となり、その発電ユニットの蓄電部に蓄積された電力を測定手段で測定して、測定された電力測定値を無線送信するので、落石又は地すべりが発生すると、センシング結果である電力測定値が無線送信され、電力測定値の大きさ又は頻度から落石又は地すべりの発生状況を迅速に検知できると共に被害規模まで予測することができる。   According to this configuration, when an external pressure accompanying a rock fall or landslide is applied to the power generation unit, power is accumulated in the power storage unit of the power generation unit installed in the place where the rock fall or the like has been received and becomes a power source. The power stored in the power storage unit is measured by the measurement means, and the measured power measurement value is wirelessly transmitted.When a rockfall or landslide occurs, the power measurement value as a sensing result is wirelessly transmitted, and the power measurement value From the size or frequency, it is possible to quickly detect the occurrence of falling rocks or landslides and to predict the damage scale.

この場合において、前記無線送信部は、前記発電ユニットによる総発生電力が閾値よりも大きい場合に、電力測定値を無線送信することが好ましい。   In this case, it is preferable that the wireless transmission unit wirelessly transmits the power measurement value when the total generated power by the power generation unit is larger than a threshold value.

この構成によれば、例えば、小規模で現実に問題が生じないと判断されるような落石に対応した閾値を設定することにより、交通に影響を与えない小さな落石ではセンシング結果の送信を行わず、交通に影響を与えるような大きな落石又は地すべりが発生した場合に迅速にセンシング結果の無線送信を行い、効果的に監視することができる。   According to this configuration, for example, by setting a threshold corresponding to a falling rock that is judged to be a small scale and not causing a problem in reality, the sensing result is not transmitted in a small falling rock that does not affect traffic. When a large falling rock or a landslide that affects traffic occurs, wireless transmission of the sensing result can be quickly performed and effectively monitored.

本発明の無電源計測システムは、上記無電源計測装置と、前記無電源計測装置の無線送信部と通信して前記各発電ユニットでの発生電力の電力測定値を受信する無線受信装置と、を具備したことを特徴とする。   The non-power measurement system of the present invention includes the non-power measurement device and a wireless reception device that communicates with a wireless transmission unit of the non-power measurement device and receives a power measurement value of generated power in each power generation unit. It is characterized by having.

この構成によれば、各発電ユニットでの発生電力の電力測定値を受信するので、従来の監視システムのように新たな外部電源を設けることなく、例えば、歩行者及び又は車両の通行状況を監視することができる。   According to this configuration, since the power measurement value of the generated power in each power generation unit is received, for example, the pedestrian and / or vehicle traffic situation is monitored without providing a new external power supply as in the conventional monitoring system. can do.

本発明は、前記無線受信装置は、前記測定手段の前記AD変換器における端子間電圧のAD変換順位を基に、各電力測定値に対応した発電ユニットを特定することを特徴とする。 The present invention, before Symbol radio receiving apparatus, based on the AD conversion rank of terminal voltage at the AD converter of the measuring means, and identifies the power generation units corresponding to the respective power measurements.

この構成によれば、測定手段における端子間電圧のAD変換順位を基に、各電力測定値に対応した発電ユニットを特定するので、二次元状に敷設された複数の発電ユニットから電力を発生した発電ユニットの電力発生位置を特定することができ、外部圧力の加えられたエリアを把握することができる。   According to this configuration, since the power generation unit corresponding to each power measurement value is specified based on the AD conversion order of the voltage between the terminals in the measurement means, power is generated from a plurality of power generation units laid in two dimensions. The power generation position of the power generation unit can be specified, and the area to which external pressure is applied can be grasped.

本発明によれば、外部電源が不要であると共に、計測エリアを限定することなく任意のエリアを計測することができる。   According to the present invention, an external power supply is unnecessary and an arbitrary area can be measured without limiting the measurement area.

本発明の第1の実施の形態に係る無電源計測システムを示す図である。It is a figure which shows the non-power-supply measuring system which concerns on the 1st Embodiment of this invention. 本実施の形態に係る無電源計測システムを説明するための図である。It is a figure for demonstrating the non-power-supply measurement system which concerns on this Embodiment. 本実施の形態に係る無電源計測装置の無線送信ユニットを示すブロック図である。It is a block diagram which shows the wireless transmission unit of the non-power-supply measuring device which concerns on this Embodiment. 本実施の形態に係る無電源計測装置の回路構成を示す図である。It is a figure which shows the circuit structure of the non-power-supply measuring device which concerns on this Embodiment. 本発明の第2の実施の形態に係る無電源計測システムを示す図である。It is a figure which shows the non-power-supply measuring system which concerns on the 2nd Embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら具体的に説明する。本発明の実施の形態に係る無電源計測装置を備えた無電源計測システムは、外部圧力が加わると起電力を発生する発電素子の発生電力に基づいて計測処理を行うものである。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. A non-power supply measurement system including a non-power supply measurement apparatus according to an embodiment of the present invention performs measurement processing based on power generated by a power generation element that generates electromotive force when external pressure is applied.

(第1の実施の形態)
図1は、本発明の実施の形態に係る無電源計測システム1を示す図である。図1に示す無電源計測システム1は、複数の発電ユニット12を有する無電源計測装置10と、無電源計測装置10と通信する無線受信装置11と、を備えている。この無電源計測システム1は、無電源計測装置10が外部圧力が加わると発生する発電ユニット12の発生電力を計測し、この発生電力を使って計測した電力計測値を無線受信装置11に送信するものであり、例えば、歩行者や車両の移動に伴う圧力から通行状況を監視する通行状況監視システムに適用可能なものである。以下、この無電源計測システム1を通行状況監視システムに適用した場合を例に挙げて説明する。
(First embodiment)
FIG. 1 is a diagram showing a non-power supply measuring system 1 according to an embodiment of the present invention. A non-power source measurement system 1 illustrated in FIG. 1 includes a non-power source measurement device 10 having a plurality of power generation units 12 and a wireless reception device 11 that communicates with the non-power source measurement device 10. The non-power source measurement system 1 measures the generated power of the power generation unit 12 that is generated when the external power source is applied by the non-power source measurement device 10, and transmits a power measurement value measured using the generated power to the wireless reception device 11. For example, the present invention can be applied to a traffic situation monitoring system that monitors a traffic situation from pressure caused by movement of a pedestrian or a vehicle. Hereinafter, a case where the powerless measurement system 1 is applied to a traffic condition monitoring system will be described as an example.

無電源計測装置10は、発電素子14及び蓄電器15を有する複数の発電ユニット12と、AD変換機能及び送信機能を有する無線送信ユニット13とを備えている。複数の発電ユニット12は、例えば、マトリクス状に設けられると共にシート状部材Sで構成されている(図2(a))。このシート状部材Sは、所定エリアに二次元状に敷設されて用いられ、計測エリアの面積・環境等に応じて発電ユニット12数を変えることが好ましい。例えば、駅構内のコンコース等の段差の無い平面部では、発電ユニット12数の多いシート状部材S1を敷設して十分な計測エリアを確保し(図2(b))、階段では、発電ユニット12数が各踏面部(図2(c)に示す斜線部分)に対応したシート状部材S2を敷設して最適な計測エリアのみを確保することが可能である(図2(c))。   The non-power supply measuring apparatus 10 includes a plurality of power generation units 12 having a power generation element 14 and a capacitor 15 and a wireless transmission unit 13 having an AD conversion function and a transmission function. The plurality of power generation units 12 are, for example, provided in a matrix and configured by a sheet-like member S (FIG. 2A). The sheet-like member S is used by being laid in a two-dimensional manner in a predetermined area, and it is preferable to change the number of power generation units 12 according to the area / environment of the measurement area. For example, in a flat part without a step such as a concourse in a station premises, a sheet-like member S1 having a large number of power generation units 12 is laid to secure a sufficient measurement area (FIG. 2B). It is possible to secure only the optimum measurement area by laying the sheet-like member S2 corresponding to each tread surface portion (the hatched portion shown in FIG. 2C) (FIG. 2C).

発電素子14は、例えば、ピエゾ素子等の圧電素子であり、圧力が加えられると起電力を発生する素子である。この発電素子14は、2つの電極と、これら電極に挟み込まれた圧電体とから構成され(不図示)、電極を介して圧電体が圧力を受けて変形することで起電力が発生するように構成されている。蓄電器15は、この発電素子14の起電力により発生した電流による電荷を蓄電する。すなわち、蓄電器15は、外部圧力が加えられた発電素子14に発生した電力(発生電力)を蓄積する。例えば、所望の計測エリアにシート状部材Sが敷かれると、シート状部材Sの上を移動する歩行者の移動に伴う外部圧力を受けて発電素子14から起電力が発生し、この起電力により生じた電荷が蓄電器15に蓄積されていく。   The power generation element 14 is, for example, a piezoelectric element such as a piezoelectric element, and is an element that generates an electromotive force when pressure is applied. The power generation element 14 is composed of two electrodes and a piezoelectric body sandwiched between the electrodes (not shown), so that an electromotive force is generated when the piezoelectric body receives pressure through the electrodes and deforms. It is configured. The battery 15 stores electric charges due to the current generated by the electromotive force of the power generation element 14. That is, the battery 15 accumulates electric power (generated electric power) generated in the power generation element 14 to which external pressure is applied. For example, when the sheet-like member S is laid in a desired measurement area, an electromotive force is generated from the power generation element 14 due to external pressure accompanying the movement of a pedestrian moving on the sheet-like member S, and this electromotive force causes The generated charge is accumulated in the battery 15.

無線送信ユニット13は、各発電ユニット12からの電力供給を受けて動作し、この発電ユニット12の蓄電器15に蓄積された電力を測定し、測定した電力測定値を無線受信装置11に無線送信する。具体的には、図3に示すように、無線送信ユニット13は、AD変換器16を有するマイクロコントローラ部18と、電源制御部19と、発振部20と、RF部17とを備えている。   The wireless transmission unit 13 operates by receiving power supply from each power generation unit 12, measures the power stored in the battery 15 of the power generation unit 12, and wirelessly transmits the measured power measurement value to the wireless reception device 11. . Specifically, as shown in FIG. 3, the wireless transmission unit 13 includes a microcontroller unit 18 having an AD converter 16, a power supply control unit 19, an oscillation unit 20, and an RF unit 17.

電源制御部19は、蓄電器15から供給される電圧で動作し、蓄電器15から受けた電圧Vccをマイクロコントローラ部18及びRF部17に供給する。この電圧Vccは、マイクロコントローラ部18(AD変換器16)及びRF部17を駆動する駆動電圧となる。また、電源制御部19は、蓄電器15から印加される電圧Vccから、AD変換器16のAD変換用の基準電圧Arfを生成してAD変換器16に供給する。   The power supply control unit 19 operates with the voltage supplied from the capacitor 15 and supplies the voltage Vcc received from the capacitor 15 to the microcontroller unit 18 and the RF unit 17. This voltage Vcc is a drive voltage for driving the microcontroller unit 18 (AD converter 16) and the RF unit 17. Further, the power supply control unit 19 generates a reference voltage Arf for AD conversion of the AD converter 16 from the voltage Vcc applied from the capacitor 15 and supplies it to the AD converter 16.

AD変換器16は、電源制御部19からの電力供給を受けて動作するように構成されており、各蓄電器15の正側端子及び負側端子がそれぞれ接続されている(後述する)。AD変換器16は、電源制御部19から駆動電圧Vccを受けると、電源制御部19から受けた基準電圧Arfと比較して、蓄電器15の正側端子及び負側端子間の電圧(電位差)を順番にデジタルデータに変換し、このデジタルデータをRF部17に送る。すなわち、AD変換器16は、蓄電器15の端子間の電位差をデジタル変換して電力測定値に変換し、この電力測定値のデジタル信号をRF部17に送る。なお、マイクロコントローラ部18は、CPU(Central Processing Unit)がROM(Read Only Memory)内の各種プログラムに従ってRAM(Random Access Memory)内のデータを演算し、各部と協働して電力測定値の送信タイミング制御等を実行するようになっている。発振部20は、RF帯に周波数変換するための局部発振信号をRF部17に供給する。   The AD converter 16 is configured to operate upon receiving power supply from the power supply control unit 19, and a positive terminal and a negative terminal of each capacitor 15 are connected to each other (described later). When the AD converter 16 receives the drive voltage Vcc from the power supply control unit 19, the AD converter 16 compares the reference voltage Arf received from the power supply control unit 19 with the voltage (potential difference) between the positive terminal and the negative terminal of the capacitor 15. The data is sequentially converted into digital data, and this digital data is sent to the RF unit 17. That is, the AD converter 16 converts the potential difference between the terminals of the battery 15 into a power measurement value, and sends a digital signal of this power measurement value to the RF unit 17. In the microcontroller unit 18, a CPU (Central Processing Unit) calculates data in a RAM (Random Access Memory) according to various programs in a ROM (Read Only Memory), and transmits a power measurement value in cooperation with each unit. Timing control or the like is executed. The oscillation unit 20 supplies a local oscillation signal for frequency conversion to the RF band to the RF unit 17.

RF部17は、外付けチップアンテナANT1を有しており、電源制御部19からの電力供給を受けて動作するように構成されている。RF部17は、電源制御部19から駆動電圧Vccが印加され、AD変換器16から入力されたデジタル信号を、発振部20から受けた局部発振信号に基づいてRF帯(例えば、2.4GHz)に周波数変換し、周波数変換されたデジタル信号をチップアンテナANT1を介して無線送信する。   The RF unit 17 has an external chip antenna ANT1, and is configured to operate upon receiving power supply from the power supply control unit 19. The RF unit 17 is applied with the drive voltage Vcc from the power supply control unit 19 and receives the digital signal input from the AD converter 16 based on the local oscillation signal received from the oscillation unit 20 in the RF band (for example, 2.4 GHz). The frequency conversion is performed, and the frequency-converted digital signal is wirelessly transmitted via the chip antenna ANT1.

無線受信装置11は、無電源計測装置10のRF部17とアンテナANT2を介して無線通信し、各発電ユニット12での発生電力の電力値を受信する。この無線受信装置11は、AD変換器16における端子間電圧のAD変換順位を基に、電力測定された各電力値に対応した発電ユニット12を特定する。すなわち、AD変換順位が判れば、発電ユニット12と電力測定値とを1対1で対応付けることができるので、シート状部材Sで二次元状に構成される複数の発電ユニット12から電力発生位置(電力測定された発電ユニット12)を特定することができる。   The wireless reception device 11 wirelessly communicates with the RF unit 17 of the powerless measurement device 10 via the antenna ANT2, and receives the power value of the generated power in each power generation unit 12. The wireless reception device 11 identifies the power generation unit 12 corresponding to each power value measured based on the AD conversion order of the voltage between the terminals in the AD converter 16. That is, if the AD conversion order is known, the power generation units 12 and the power measurement values can be associated with each other on a one-to-one basis. Therefore, the power generation positions (( The power generation unit 12) whose power has been measured can be identified.

次に、図4を用いて無電源計測装置10の回路構成について説明する。図4は、無電源計測装置10の回路構成を示す図である。図4に示す無電源計測装置10は、縦3個×横3個の計9個の発電ユニット12(12a〜12i)と、無線送信ユニット13とから構成されており、9個の発電ユニット12がマトリクス状に設けられている。各発電ユニット12は、発電素子14とキャパシタCとが並列に接続され、発電素子14とキャパシタCとの間に整流ダイオードD1が接続されている。発電素子14の一端は、整流ダイオードD1のアノードに接続され、キャパシタCの一端は、整流ダイオードD1のカソードに接続されている。発電素子14の他端は、キャパシタCの他端に接続されている。   Next, the circuit configuration of the non-power supply measuring apparatus 10 will be described with reference to FIG. FIG. 4 is a diagram illustrating a circuit configuration of the no-power supply measuring apparatus 10. 4 includes a total of nine power generation units 12 (12a to 12i) of 3 vertical × 3 horizontal and a wireless transmission unit 13, and includes 9 power generation units 12. Are provided in a matrix. In each power generation unit 12, a power generation element 14 and a capacitor C are connected in parallel, and a rectifier diode D1 is connected between the power generation element 14 and the capacitor C. One end of the power generation element 14 is connected to the anode of the rectifier diode D1, and one end of the capacitor C is connected to the cathode of the rectifier diode D1. The other end of the power generation element 14 is connected to the other end of the capacitor C.

各発電ユニット12の一方の出力端は、縦方向に並んだ発電ユニット12の出力端と共通接続され、整流ダイオードD2を介して無線送信ユニット13の電源端子Tに接続されると共に、一方のアナログ入力端子(正側入力端子)ADCに接続されている。一方、各発電ユニット12の他方の出力端は、横方向に並んだ発電ユニット12の出力端と共通接続され、無線送信ユニット13の他方のアナログ入力端子(負側入力端子)ADCに接続されている。例えば、発電ユニット12aの一方の出力端は、発電ユニット12b,12cの一方の出力端と共通接続されて整流ダイオードD2を介して電源端子T及び正側のアナログ入力端子ADC01に接続され、他方の出力端は、発電ユニット12d,12gの他方の出力端と共通接続されて負側のアナログ入力端子ADC04に接続されている。   One output end of each power generation unit 12 is connected in common with the output end of the power generation units 12 arranged in the vertical direction, is connected to the power supply terminal T of the wireless transmission unit 13 via the rectifier diode D2, and one analog An input terminal (positive input terminal) is connected to the ADC. On the other hand, the other output end of each power generation unit 12 is connected in common with the output end of the power generation units 12 arranged in the horizontal direction, and is connected to the other analog input terminal (negative input terminal) ADC of the wireless transmission unit 13. Yes. For example, one output terminal of the power generation unit 12a is connected in common with one output terminal of the power generation units 12b and 12c, and is connected to the power supply terminal T and the positive analog input terminal ADC01 via the rectifier diode D2. The output end is commonly connected to the other output end of the power generation units 12d and 12g and is connected to the negative analog input terminal ADC04.

次に、本実施の形態に係る無電源計測装置10の動作について説明する。ここでは、歩行者が発電ユニット12a、12b上を歩行したことにより、発電ユニット12a、12bの順に外部圧力が加えられた場合を例に説明する。   Next, the operation of the non-power supply measuring apparatus 10 according to the present embodiment will be described. Here, a case where an external pressure is applied in the order of the power generation units 12a and 12b when a pedestrian walks on the power generation units 12a and 12b will be described as an example.

まず、歩行者が発電ユニット12a上を踏みつけて歩行したことに伴い、発電ユニット12aの発電素子14に圧力が加わり、起電力が発生し、起電力により生じた電流が整流ダイオードD1で整流され、キャパシタCに電荷が蓄電される。キャパシタCの端子間には蓄積電荷量に応じた電圧が発生する。キャパシタCの一方の電極に生じた電圧は、整流ダイオードD2を順方向に介して電源端子Tに印加されると共に、正側入力端子ADC01に印加される。また、発電ユニット12aのキャパシタCの他方の電極に生じた電圧は、負側入力端子ADC04に印加される。   First, as a pedestrian steps on the power generation unit 12a and walks, pressure is applied to the power generation element 14 of the power generation unit 12a to generate an electromotive force, and the current generated by the electromotive force is rectified by the rectifier diode D1, Charge is stored in the capacitor C. A voltage corresponding to the amount of accumulated charge is generated between the terminals of the capacitor C. The voltage generated at one electrode of the capacitor C is applied to the power supply terminal T through the rectifier diode D2 in the forward direction and to the positive input terminal ADC01. The voltage generated at the other electrode of the capacitor C of the power generation unit 12a is applied to the negative input terminal ADC04.

無線送信ユニット13は、電源端子Tを介して電圧Vccが印加されると、電源制御部19で基準電圧Arfが生成され、駆動電圧Vcc及び基準電圧ArfがAD変換器16に送られる。AD変換器16では、駆動電圧Vccを受けると、アナログ入力端子ADC01及びADC04間の電圧が基準電圧Arfに基づいてデジタル信号に変換され、この端子間電圧を示すデジタル信号がRF部17に送られる。電源制御部19から駆動電圧Vccを受けたRF部17では、発振部20からの局部発振信号に基づいて、AD変換器16から入力されたデジタル信号がRF信号に変換され、RF信号に変換されたデジタル信号(センシング結果)がアンテナANT1を介して無線送信される。無線受信装置11は、無線送信ユニット13から無線送信された信号を受信してセンシング結果を取り込む。   When the voltage Vcc is applied to the wireless transmission unit 13 via the power supply terminal T, the power supply control unit 19 generates the reference voltage Arf and sends the drive voltage Vcc and the reference voltage Arf to the AD converter 16. When the AD converter 16 receives the drive voltage Vcc, the voltage between the analog input terminals ADC01 and ADC04 is converted into a digital signal based on the reference voltage Arf, and a digital signal indicating this inter-terminal voltage is sent to the RF unit 17. . In the RF unit 17 that has received the drive voltage Vcc from the power supply control unit 19, the digital signal input from the AD converter 16 is converted into an RF signal based on the local oscillation signal from the oscillation unit 20, and is converted into an RF signal. The digital signal (sensing result) is wirelessly transmitted via the antenna ANT1. The wireless reception device 11 receives a signal wirelessly transmitted from the wireless transmission unit 13 and captures a sensing result.

また、歩行者が別の発電ユニット12bの発電素子14を踏み付けて外部圧力が加わると起電力が発生し、起電力により生じた電流が整流ダイオードD1で整流され、キャパシタCに電荷が蓄積される。キャパシタCに蓄積された電荷に応じた電圧が端子間に発生する。キャパシタCの一方の電極に現れた電圧は、整流ダイオードD2を介して電源端子Tに印加されると共に、正側入力端子ADC02に印加される。また、同キャパシタCの他方の電極に現れた電圧は、負側入力端子ADC04に印加される。   Further, when a pedestrian steps on the power generation element 14 of another power generation unit 12b and external pressure is applied, an electromotive force is generated. The current generated by the electromotive force is rectified by the rectifier diode D1, and electric charge is accumulated in the capacitor C. . A voltage corresponding to the charge accumulated in the capacitor C is generated between the terminals. The voltage appearing on one electrode of the capacitor C is applied to the power supply terminal T via the rectifier diode D2 and to the positive input terminal ADC02. The voltage appearing on the other electrode of the capacitor C is applied to the negative side input terminal ADC04.

上記同様、無線送信ユニット13は、電源端子Tを介して電圧Vccが供給されると、電源制御部19で基準電圧Arfが生成され、駆動電圧Vcc及び基準電圧ArfがAD変換器16に送られる。駆動電圧Vccを受けると、AD変換器16では、アナログ入力端子ADC02及びADC04間の電圧が基準電圧Arfに基づいてデジタル信号に変換され、この端子間電圧を示すデジタル信号がRF部17に送られる。電源制御部19から駆動電圧Vccを受けたRF部17では、発振部20からの局部発振信号に基づいて、AD変換器16から入力されたデジタル信号がRF信号に変換され、RF信号に変換されたセンシング結果がアンテナANT1からを無線受信装置11に無線送信される。   Similarly to the above, when the voltage Vcc is supplied via the power supply terminal T, the wireless transmission unit 13 generates the reference voltage Arf by the power supply control unit 19 and sends the drive voltage Vcc and the reference voltage Arf to the AD converter 16. . When receiving the drive voltage Vcc, the AD converter 16 converts the voltage between the analog input terminals ADC02 and ADC04 into a digital signal based on the reference voltage Arf, and sends the digital signal indicating the voltage between the terminals to the RF unit 17. . In the RF unit 17 that has received the drive voltage Vcc from the power supply control unit 19, the digital signal input from the AD converter 16 is converted into an RF signal based on the local oscillation signal from the oscillation unit 20, and is converted into an RF signal. The sensing result is wirelessly transmitted from the antenna ANT1 to the wireless reception device 11.

このように、本実施の形態に係る無電源計測システム1によれば、各発電ユニット12でのセンシング結果を電力として蓄積し、各発電ユニット12の蓄電器15から電力測定値を取り込み、その電力測定値を無線送信し、電力測定値の取り込み及び電力測定値の無線送信に要する電力は、複数の発電ユニット12から供給を受けるようにしたので、従来の監視システムのように外部電源を設けることなく、例えば、歩行者及び又は車両の通行量を計測することができる。また、計測エリアが外部電源からの電力供給が可能なエリアに限定されないので、任意のエリアを計測エリアにすることができる。   Thus, according to the non-power supply measurement system 1 according to the present embodiment, the sensing result in each power generation unit 12 is accumulated as power, the power measurement value is taken from the capacitor 15 of each power generation unit 12, and the power measurement is performed. Since the power required for wireless transmission of the value and the acquisition of the power measurement value and the wireless transmission of the power measurement value is supplied from the plurality of power generation units 12, it is possible to provide an external power source as in the conventional monitoring system. For example, the amount of traffic of pedestrians and / or vehicles can be measured. Further, since the measurement area is not limited to an area where power can be supplied from an external power source, any area can be used as the measurement area.

(第2の実施の形態)
次に、本発明の第2の実施の形態に係る無電源計測システムについて説明する。上記第1の実施の形態では、無電源計測システムを通行状況監視システムに適用したが、第2の実施の形態では、無電源計測システムを落石、土砂崩れ、地すべり等を監視する落石監視システムに適用した場合を例に説明する。第2の実施の形態に係る無電源計測システム1aは、上記第1の実施の形態に係る無電源計測システム1と比べて、無線受信装置11の構成のみ相違している。したがって、特に相違点についてのみ説明し、同一の構成については同一の符号を用い、繰り返しの説明を省略する。
(Second Embodiment)
Next, a non-power supply measuring system according to the second embodiment of the present invention will be described. In the first embodiment, the powerless measurement system is applied to the traffic monitoring system. In the second embodiment, the powerless measurement system is applied to a rockfall monitoring system that monitors rockfalls, landslides, landslides, and the like. An example will be described. The non-power supply measurement system 1a according to the second embodiment is different from the non-power supply measurement system 1 according to the first embodiment only in the configuration of the wireless reception device 11. Therefore, only differences will be described in particular, and the same reference numerals are used for the same components, and repeated descriptions are omitted.

図5は、本実施の形態に係る落石監視システムに適用された無電源計測システム1aを説明するための模式図である。図5(a)は落石監視システムを上方から見た図であり、(b)は落石監視システムを電車車両の進行方向から見た図である。   FIG. 5 is a schematic diagram for explaining a non-power supply measuring system 1a applied to the falling rock monitoring system according to the present embodiment. FIG. 5A is a view of the falling rock monitoring system as viewed from above, and FIG. 5B is a view of the falling rock monitoring system as viewed from the traveling direction of the train car.

図5に示すように、本実施の形態に係る無電源計測システム1aは、無電源計測装置10及び無線送受信装置11aを備えている。複数の発電ユニット12を有するシート状部材Sは、電車線路Rと、落石・地すべりの起こりやすい崖との間を埋めるように敷かれている。無線送受信装置11aは、無電源計測装置10から各発電ユニット12での発生電力の電力測定値を無線受信すると共に、受信した電力測定値に無線処理等を施し、電車車両TRに対して無線送信する。この無線送受信装置11aは、電車車両TRへの電源供給路である架線Lと接続され、架線Lを介して電源が供給されるように構成されている。   As shown in FIG. 5, the non-power supply measurement system 1a according to the present embodiment includes a non-power supply measurement device 10 and a wireless transmission / reception device 11a. The sheet-like member S having a plurality of power generation units 12 is laid so as to fill the space between the train track R and the cliff where rockfalls and landslides are likely to occur. The wireless transmission / reception device 11a wirelessly receives a power measurement value of the generated power at each power generation unit 12 from the non-power supply measurement device 10, performs wireless processing on the received power measurement value, and wirelessly transmits it to the train vehicle TR. To do. The wireless transmission / reception device 11a is connected to an overhead line L that is a power supply path to the train vehicle TR, and is configured to be supplied with power via the overhead line L.

この無電源計測システム1aでは、崖からの落石によりシート状部材S内の発電素子14に落石に伴う外部圧力が加わると起電力が発生して蓄電器15に電荷が蓄積され、この蓄積電荷に応じた電圧が電源端子T、正側のアナログ入力端子ADC、負側のアナログ入力端子ADCに印加される。電源端子Tに電圧Vccが印加されると、電源制御部19で基準電圧Arfが生成され、駆動電圧Vcc及び基準電圧ArfがAD変換器16に供給される。駆動電圧Vccを受けると、AD変換器16では、2つのアナログ入力端子ADC及びADC間の電圧が基準電圧Arfに基づいてデジタル信号に変換され、この端子間電圧(電力測定値)を示すデジタル信号がRF部17に送られる。電源制御部19から駆動電圧Vccを受けたRF部17では、発振部20からの局部発振信号に基づいて、AD変換器16から入力されたデジタル信号がRF信号に変換され、RF信号に変換されたデジタル信号がアンテナANT1を介して無線送受信装置11aに無線送信される。無電源計測装置10からデジタル信号を無線受信した無線送受信装置11aは、各発電ユニット12での発生電力の電力測定値(落石などの有無)を示すデジタル信号を電車車両TRに対して無線送信する。   In this non-power source measuring system 1a, when an external pressure accompanying falling rock is applied to the power generation element 14 in the sheet-like member S due to falling rocks from a cliff, an electromotive force is generated and electric charges are accumulated in the capacitor 15, and according to the accumulated electric charges. The applied voltage is applied to the power supply terminal T, the positive analog input terminal ADC, and the negative analog input terminal ADC. When the voltage Vcc is applied to the power supply terminal T, the power supply control unit 19 generates the reference voltage Arf, and the drive voltage Vcc and the reference voltage Arf are supplied to the AD converter 16. When receiving the drive voltage Vcc, the AD converter 16 converts the voltage between the two analog input terminals ADC and ADC into a digital signal based on the reference voltage Arf, and a digital signal indicating the voltage between the terminals (power measurement value). Is sent to the RF unit 17. In the RF unit 17 that has received the drive voltage Vcc from the power supply control unit 19, the digital signal input from the AD converter 16 is converted into an RF signal based on the local oscillation signal from the oscillation unit 20, and is converted into an RF signal. The digital signal is wirelessly transmitted to the wireless transmission / reception device 11a via the antenna ANT1. The wireless transmission / reception device 11a that wirelessly received the digital signal from the non-power supply measurement device 10 wirelessly transmits a digital signal indicating a power measurement value (presence / absence of falling rocks) of the generated power in each power generation unit 12 to the train vehicle TR. .

このように、本実施の形態に係る無電源計測システム1aによれば、複数の発電ユニット12から電力供給を受けて、各発電ユニット12の蓄電器15に蓄積された電力をそれぞれ測定して、落石などの発生状況を示す電力測定値を無線送信し、無線送受信装置11aが電車車両TRに対して電力測定値を無線送信するので、センシング部に外部電源を設けることなく、落石や土砂崩れを監視して、落石・土砂災害による電車脱線等の事故を未然に回避することができる。また、AD変換器16における端子間電圧のAD変換順位を基に、各電力測定値に対応した発電ユニット12を特定するので、二次元状に敷設された複数の発電ユニット12から電力を発生した発電ユニット12の電力発生位置(落石位置)を特定することができる。   Thus, according to the no-power-supply measurement system 1a according to the present embodiment, the power supply is received from the plurality of power generation units 12, the power accumulated in the capacitors 15 of each power generation unit 12 is measured, and the falling rock Since the wireless transmission / reception device 11a wirelessly transmits the power measurement value indicating the occurrence state of the electric vehicle to the train vehicle TR, monitoring of falling rocks and landslides is performed without providing an external power source in the sensing unit. Thus, accidents such as train derailment due to rockfall and earth and sand disasters can be avoided in advance. Moreover, since the power generation unit 12 corresponding to each power measurement value is specified based on the AD conversion order of the voltage between the terminals in the AD converter 16, power is generated from the plurality of power generation units 12 laid in a two-dimensional manner. The power generation position (falling rock position) of the power generation unit 12 can be specified.

本発明は上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the present invention.

上記実施の形態では、無電源計測システム1(1a)を通行状況監視システム及び落石監視システムに適用した場合を例に説明したが、この構成に限定されるものではない。例えば、外部圧力による発生電力の電力値を測定するものであれば、例えば、住居等の建物内への侵入防止等のセキュリティシステムに適用可能である。   In the above embodiment, the case where the powerless measurement system 1 (1a) is applied to the traffic situation monitoring system and the rockfall monitoring system has been described as an example. However, the present invention is not limited to this configuration. For example, as long as the power value of the generated power due to the external pressure is measured, it can be applied to a security system for preventing intrusion into a building such as a residence.

また、上記実施の形態では、各発電ユニット12の発生電力を各々測定したが、複数の発電ユニット12の総発生電力を測定し、この総発生電力の電力測定値を送信する構成にしてもよい。すなわち、AD変換器16では、複数の発電ユニット12の蓄電器15の正側のアナログ入力端子ADC及び負側のアナログ入力端子ADCの端子間の電圧をそれぞれデジタル信号に変換し、端子間電圧の総和を計算して、その端子間電圧の総和を示すデジタル信号がRF部17に送られる。   Further, in the above-described embodiment, the generated power of each power generation unit 12 is measured, but the total generated power of a plurality of power generation units 12 may be measured and a power measurement value of the total generated power may be transmitted. . In other words, the AD converter 16 converts the voltages between the positive analog input terminal ADC and the negative analog input terminal ADC of the capacitors 15 of the plurality of power generation units 12 into digital signals, respectively, and sums the voltages between the terminals. And a digital signal indicating the sum of the voltages between the terminals is sent to the RF unit 17.

この場合に、マイクロコントローラ部18内に送信要否を判断するための閾値を設けるようにしてもよい。例えば、第2の実施の形態に係る落石監視システムに適用する場合には、小石等の落石検出では電力測定値を送信しないように閾値を設定し、総電力測定値がこの閾値より大きい場合にのみ電力測定値を無線送受信装置11aに対して無線送信する。これにより、交通に支障を与えない小さな落石等では電車車両等の運行を妨げないようにする。また、安全性に影響を与えるような落石又は地すべりは、確実に警告を発して、周辺を走行中の車両の走行を迅速に停止させる。   In this case, a threshold value for determining whether transmission is necessary may be provided in the microcontroller unit 18. For example, when applied to the rock fall monitoring system according to the second embodiment, when a rock fall detection such as a pebbles is set, a threshold value is set so that the power measurement value is not transmitted, and the total power measurement value is greater than this threshold value. Only the power measurement value is wirelessly transmitted to the wireless transmission / reception device 11a. As a result, the operation of the train car or the like is not hindered by a small falling rock that does not hinder traffic. In addition, a falling rock or landslide that affects safety securely issues a warning and quickly stops traveling of the vehicle traveling around.

また、電源制御部19は、マイクロコントローラ部18及びRF部17への蓄電器15からの電源供給タイミングを変えてもよい。この場合において、蓄電器15から電源電圧(Vcc)が印加されると、電源制御部19はマイクロコントローラ部18に駆動電圧Vccを供給してマイクロコントローラ部18を動作させるが(アクティブモード)、電源制御部19からRF部17へは、この時点では駆動電圧Vccを供給しないでRF部17は動作させない(スリープモード)。AD変換器16で測定された電力測定値は最大を維持するように更新され、間欠的にRF部17を動作させる。そのため、電源制御部19はスリープモードが解除されると、RF部17に駆動電圧Vccを供給し、RF部17を動作させる。すなわち、電源制御部19は、RF部17に対して、電力測定値の送信タイミング時には駆動電圧Vccを供給してアクティブモードに切り替え、非送信タイミング時には駆動電圧Vccの供給を停止してスリープモードに切り替える。2つの動作モードの切り替えは、本無電源計測システム1(1a)の適用用途により変更することが好ましく、例えば、スリープモード時間を設定により100msecから1時間の間で設定可能である。また、送信対象となる電力測定値がある場合にのみRF部17を動作させ、送信用電力を有効利用する。   Further, the power supply control unit 19 may change the power supply timing from the battery 15 to the microcontroller unit 18 and the RF unit 17. In this case, when the power supply voltage (Vcc) is applied from the capacitor 15, the power supply control unit 19 supplies the drive voltage Vcc to the microcontroller unit 18 to operate the microcontroller unit 18 (active mode). At this time, the drive voltage Vcc is not supplied from the unit 19 to the RF unit 17 and the RF unit 17 is not operated (sleep mode). The power measurement value measured by the AD converter 16 is updated to maintain the maximum, and the RF unit 17 is operated intermittently. Therefore, when the sleep mode is canceled, the power supply control unit 19 supplies the drive voltage Vcc to the RF unit 17 and operates the RF unit 17. That is, the power supply control unit 19 supplies the driving voltage Vcc to the RF unit 17 at the transmission timing of the power measurement value to switch to the active mode, and stops supplying the driving voltage Vcc to the sleep mode at the non-transmission timing. Switch. The switching between the two operation modes is preferably changed according to the application of the powerless measurement system 1 (1a). For example, the sleep mode time can be set between 100 msec and 1 hour by setting. Further, the RF unit 17 is operated only when there is a power measurement value to be transmitted, and the transmission power is effectively used.

本発明は、圧力が加えられると起電力を発生する発電素子を利用した無電源計測装置に関し、例えば、歩行者等の通行状況を監視する通行状況監視システムや落石等を監視する落石監視システムに有用である。   The present invention relates to a non-power measuring device using a power generating element that generates an electromotive force when pressure is applied, for example, a traffic condition monitoring system that monitors the traffic condition of a pedestrian or the like, or a rock fall monitoring system that monitors a rock fall or the like. Useful.

1,1a 無電源計測システム
10 無電源計測装置
11 無線受信装置
11a 無線送受信装置
12 発電ユニット
13 無線送信ユニット
14 発電素子
15 蓄電器(蓄電部)
16 AD変換器
17 RF部(無線送信部)
18 マイクロコントローラ部
19 電源制御部
20 発振部
DESCRIPTION OF SYMBOLS 1,1a Non-power supply measurement system 10 Non-power supply measurement apparatus 11 Wireless reception apparatus 11a Wireless transmission / reception apparatus 12 Power generation unit 13 Wireless transmission unit 14 Power generation element 15 Power storage device (power storage unit)
16 AD converter 17 RF part (wireless transmission part)
18 Microcontroller unit 19 Power supply control unit 20 Oscillation unit

Claims (6)

外部圧力が加わると電力を発生する発電素子と、前記発電素子に接続され該発電素子の発生電力を蓄積する蓄電部とをそれぞれ有し、所定エリアの上に二次元状に敷かれるシート状部材で構成され、当該シート状部材に接触して外部圧力が加わった前記発電素子から電力が発生する複数の発電ユニットと、
前記発電ユニットから電力供給を受けて動作し、前記各発電ユニットの蓄電部に蓄積された電力をそれぞれ測定して電力測定値を得る測定手段と、
前記発電ユニットから電力供給を受けて動作し、前記測定手段で測定された電力測定値を無線送信する無線送信部と、
を具備し
前記測定手段は、前記各発電ユニットから前記蓄電部の正側端子と負側端子とがそれぞれ接続され、前記複数の蓄電部の端子間の電圧を、前記発電ユニットに外部圧力が加えられた順番にデジタルデータに変換するAD変換器を有することを特徴とする無電源計測装置。
A sheet-like member that has a power generation element that generates power when external pressure is applied and a power storage unit that is connected to the power generation element and accumulates the generated power of the power generation element, and is laid two-dimensionally on a predetermined area A plurality of power generation units configured to generate electric power from the power generation element in contact with the sheet-like member and external pressure is applied;
Measuring means that operates by receiving power supply from the power generation unit and measures the power stored in the power storage unit of each power generation unit to obtain a power measurement value;
A wireless transmission unit that operates by receiving power supply from the power generation unit and wirelessly transmits a power measurement value measured by the measurement unit;
Equipped with,
In the measuring means, a positive terminal and a negative terminal of the power storage unit are connected from each power generation unit, respectively, and the voltage between the terminals of the plurality of power storage units is determined in the order in which external pressure is applied to the power generation unit. A non-power-supply measuring device comprising an AD converter for converting into digital data .
前記複数の発電ユニットは、歩行者及び又は車両の通行状況を監視する領域に設置されることを特徴とする請求項1記載の無電源計測装置。 Wherein the plurality of power generating units, pedestrians and or no-power measuring apparatus according to claim 1 Symbol mounting, characterized in that it is installed in the area to monitor the traffic situation of the vehicle. 前記複数の発電ユニットは、落石又は地すべりを監視する領域に設置されることを特徴とする請求項1記載の無電源計測装置。 Wherein the plurality of power generating units, falling rocks or landslide claims 1 Symbol placement no-power measuring apparatus, characterized in that it is installed in an area to be monitored. 前記無線送信部は、前記発電ユニットによる総発生電力が閾値よりも大きい場合に、電力測定値を無線送信することを特徴とする請求項記載の無電源計測装置。 The non-power source measurement device according to claim 3 , wherein the wireless transmission unit wirelessly transmits a power measurement value when the total generated power by the power generation unit is larger than a threshold value. 請求項1から請求項のいずれかに記載の無電源計測装置と、前記無電源計測装置の無線送信部と通信して前記各発電ユニットでの発生電力の電力測定値を受信する無線受信装置と、を具備したことを特徴とする無電源計測システム。 A no-power measuring apparatus as claimed in any one of claims 4, wherein the wireless receiver for receiving power measurement value of the generated power at the radio transmitter and communicating the respective power generation units in the no-power measurement device And a non-power supply measurement system characterized by comprising: 記無線受信装置は、前記測定手段の前記AD変換器における端子間電圧のAD変換順位を基に、各電力測定値に対応した発電ユニットを特定することを特徴とする請求項記載の無電源計測システム。 Before SL radio receiver, the said group AD conversion rank of terminal voltage at the AD converter of the measuring means, free of claim 5, wherein the identifying the power generating units corresponding to the power measurement Power supply measurement system.
JP2009162131A 2009-07-08 2009-07-08 Non-power measuring device and non-power measuring system Active JP5570767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162131A JP5570767B2 (en) 2009-07-08 2009-07-08 Non-power measuring device and non-power measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162131A JP5570767B2 (en) 2009-07-08 2009-07-08 Non-power measuring device and non-power measuring system

Publications (2)

Publication Number Publication Date
JP2011017605A JP2011017605A (en) 2011-01-27
JP5570767B2 true JP5570767B2 (en) 2014-08-13

Family

ID=43595512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162131A Active JP5570767B2 (en) 2009-07-08 2009-07-08 Non-power measuring device and non-power measuring system

Country Status (1)

Country Link
JP (1) JP5570767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491093A (en) * 2019-08-23 2019-11-22 大连民族大学 Mountain landslide supervision system based on nano friction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101983B2 (en) * 2012-12-27 2017-03-29 日本特殊陶業株式会社 Power generation circuit and transmitter using the same
KR20150016804A (en) * 2013-08-05 2015-02-13 삼성전기주식회사 Wireless power receiving apparatus
JP6618883B2 (en) * 2016-11-08 2019-12-11 公益財団法人鉄道総合技術研究所 Impact detection device and disaster monitoring system
JP6958832B2 (en) * 2017-06-26 2021-11-02 学校法人五島育英会 Detection system and detection method
CN117355733A (en) 2021-03-15 2024-01-05 国立大学法人东北大学 Load sensor and load detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106334A (en) * 1985-11-01 1987-05-16 Daikin Ind Ltd Impact sensor
JP3412264B2 (en) * 1994-07-07 2003-06-03 朝日航洋株式会社 Measuring device
JPH1090086A (en) * 1996-09-18 1998-04-10 Toyota Motor Corp Detecting apparatus for object on road
JPH11316141A (en) * 1998-05-06 1999-11-16 Mitsubishi Electric Corp Rock-bed rock-falling detecting device
JP4144736B2 (en) * 2002-12-25 2008-09-03 株式会社大林組 Falling rock detection system
JP3984185B2 (en) * 2003-03-28 2007-10-03 財団法人鉄道総合技術研究所 Structure monitoring device and monitoring system
JP2006221499A (en) * 2005-02-14 2006-08-24 Nitta Ind Corp Handwritten symbol evaluating device and program for handwritten symbol evaluating device
JP4504292B2 (en) * 2005-09-28 2010-07-14 浩平 速水 Power generator
JP2008258343A (en) * 2007-04-04 2008-10-23 Shimizu Corp Power generation floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491093A (en) * 2019-08-23 2019-11-22 大连民族大学 Mountain landslide supervision system based on nano friction

Also Published As

Publication number Publication date
JP2011017605A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5570767B2 (en) Non-power measuring device and non-power measuring system
KR100555659B1 (en) self power-generated sensing module and tire pressure monitoring system using the same
JP2007018126A (en) Collapse monitoring system
US10656299B2 (en) Method for operating a sensor device, and sensor device
US20090303076A1 (en) Wireless and battery-less monitoring unit
US20120255349A1 (en) Micro-power systems
CN107251122B (en) Method for operating a sensor device and sensor device
CN113302711B (en) Switch
RU2015101174A (en) SYSTEM AND METHOD FOR MONITORING OPERATIONAL CHARACTERISTICS OF RAILWAY CAR
KR100990166B1 (en) System and method for monitoring the road-surrounding using the independent power plant
KR102157199B1 (en) Apparatus for informing excretions and contorl method thereof
JP2007108884A (en) Wireless sensor and wireless monitoring system using the same
EP2415619A1 (en) Self-powered sensing module and system for monitoring the conditions of the tyres of a vehicle provided with at least one self-powered sensing module
KR101288608B1 (en) Multi-Function Inspection Device Of Train and Railroad Using Power Generators Including A Piezoelectric
JP7482906B2 (en) System and method for providing emergency assistance using lighting infrastructure
KR101531034B1 (en) Vehicle detecting system using geomagnetism detector and piezo sensor
JP5945778B2 (en) Sensor system and sensor tag
JP2015203685A (en) Environment monitoring system and environment monitoring method
JP6167085B2 (en) Wireless measurement system, wireless sensor terminal, and device management method
JP5117108B2 (en) Electrical equipment and tire condition monitoring device
JP2017223606A (en) Slope monitoring system
JP2011248598A (en) Intersection monitoring system and mobile terminal device
JP5927842B2 (en) Sensor device, sensor system, and concrete state measuring method
JP2001034874A (en) Disaster detection sensor transmission device
CN219992498U (en) Railway side slope landslide and falling stone initiative protection network device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5570767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250