JP5568855B2 - Resin multilayer structure - Google Patents

Resin multilayer structure Download PDF

Info

Publication number
JP5568855B2
JP5568855B2 JP2008288708A JP2008288708A JP5568855B2 JP 5568855 B2 JP5568855 B2 JP 5568855B2 JP 2008288708 A JP2008288708 A JP 2008288708A JP 2008288708 A JP2008288708 A JP 2008288708A JP 5568855 B2 JP5568855 B2 JP 5568855B2
Authority
JP
Japan
Prior art keywords
water
water vapor
resin
vapor barrier
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008288708A
Other languages
Japanese (ja)
Other versions
JP2010116435A (en
Inventor
隆幸 石原
淳 菊地
俊樹 山田
実佐 笹井
洋介 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2008288708A priority Critical patent/JP5568855B2/en
Publication of JP2010116435A publication Critical patent/JP2010116435A/en
Application granted granted Critical
Publication of JP5568855B2 publication Critical patent/JP5568855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、水蒸気バリア性を有する樹脂多層構造体に関するものであり、より詳細には、吸湿性に優れ、水蒸気を遮断可能な樹脂多層構造体に関する。 The present invention relates to a resin multilayer structure having a water vapor barrier property, and more particularly, excellent in hygroscopicity, relates interruptible resin multilayer structure steam.

水分の影響を受けやすい、食品、医薬品、精密機器、電子部品等を包装する包装容器においては、包装容器内の湿度を低くすることが必要であり、このような内容品の保存には、容器内部の湿気を除去するために、シリカゲル、ゼオライト等の乾燥剤を充填した小袋を上記内容品と一緒に封入することが一般に行われている。
しかしながら、このような別体の乾燥剤を封入するのは、内容品によっては、封入操作が煩雑であると共に容器容積の減少により内容品の収納に支障があったり、或いは乾燥剤を充填した小袋の破損により、内容品に影響を与えるおそれがある。
For packaging containers that are sensitive to moisture, such as packaging for food, pharmaceuticals, precision instruments, electronic parts, etc., it is necessary to reduce the humidity in the packaging container. In order to remove moisture inside, it is common practice to enclose a sachet filled with a desiccant such as silica gel or zeolite together with the above contents.
However, such a separate desiccant is encapsulated, depending on the contents, because the enclosing operation is complicated and the container volume is reduced, so that storage of the contents is hindered, or a sachet filled with the desiccant There is a risk of damage to the contents due to damage.

このような問題を解決するものとして、容器を構成する熱可塑性樹脂中に吸湿機能を有する無機化合物を配合して成る吸湿性樹脂組成物から成る吸湿層を有する吸湿容器が提案されている(特許文献1)。   As a solution to such a problem, a moisture absorbing container having a moisture absorbing layer made of a moisture absorbing resin composition formed by blending an inorganic compound having a moisture absorbing function into a thermoplastic resin constituting the container has been proposed (patent). Reference 1).

特開2004−210392号公報Japanese Patent Laid-Open No. 2004-210392

しかしながら、吸湿材料として無機化合物を用いると、マトリックス樹脂と吸湿材料との間の剥離によりボイドが発生し、吸湿性能の低下や、透明性等の外観不良、或いは機械的物性の低下という問題を生じる場合がある。
また容器内部の吸湿を行っても、容器外部からの水蒸気の透過を防止しなければ容器内の湿度を低く保つことは困難である。
However, when an inorganic compound is used as the hygroscopic material, voids are generated due to separation between the matrix resin and the hygroscopic material, causing problems such as a decrease in hygroscopic performance, poor appearance such as transparency, or a decrease in mechanical properties. There is a case.
Even when moisture is absorbed inside the container, it is difficult to keep the humidity inside the container low unless the permeation of water vapor from the outside of the container is prevented.

従って本発明の目的は、上述したような問題を生じることがなく、水蒸気の透過を有効に抑制することが可能な樹脂多層構造体であって、外部からの吸湿を有効に防止することができ、水分の影響を受けやすい食品、医薬品、精密機器、電子部品等の製品を保存性よく収納可能な多層構造体を提供することである。 Accordingly, an object of the present invention is a resin multilayer structure capable of effectively suppressing the permeation of water vapor without causing the above-described problems, and can effectively prevent moisture absorption from the outside. It is to provide a multilayer structure capable of storing products such as foods, pharmaceuticals, precision instruments, electronic parts and the like which are easily affected by moisture with good storage stability.

本発明によれば、水蒸気バリア性樹脂組成物から形成された層を中間層又は最内層として少なくとも一層有する樹脂多層構造体において、40℃及び90%RHの条件下、厚さ25μmにおける水蒸気透過度が100g/m・day以下である熱可塑性樹脂をマトリックス樹脂とし、前記熱可塑性樹脂に対して1〜50wt%の有機系吸水性材料を配合して成り、該有機系吸水性材料が、水膨潤度が10以下且つ平均粒径が5μm以下の架橋構造を有するアクリル系微粒子から成ることを特徴とする樹脂多層構造体が提供される。
本発明の樹脂多層構造体においては、有機系吸水性材料が、カルボキシル基又は水酸基を有することが好適である
尚、本発明において、「吸水性」は「吸湿性」を含み、「水分」は「水蒸気」を含むものとして使用する。
According to the present invention, in a resin multilayer structure having at least one layer formed from a water vapor barrier resin composition as an intermediate layer or an innermost layer, water vapor permeability at a thickness of 25 μm under conditions of 40 ° C. and 90% RH A thermoplastic resin having a weight of 100 g / m 2 · day or less is used as a matrix resin, and 1 to 50 wt% of an organic water-absorbing material is blended with the thermoplastic resin. Provided is a resin multilayer structure comprising acrylic fine particles having a crosslinked structure having a swelling degree of 10 or less and an average particle diameter of 5 μm or less.
In the resin multilayer structure of the present invention, it is preferable that the organic water-absorbing material has a carboxyl group or a hydroxyl group .
In the present invention, “water absorption” includes “hygroscopicity”, and “water” includes “water vapor”.

本発明の樹脂多層構造体の形成に使用される水蒸気バリア性樹脂組成物においては、水蒸気バリア性に優れた熱可塑性樹脂をマトリックス樹脂として、このマトリックス樹脂中に有機系吸水性材料を配合することにより、水蒸気バリア性に優れた熱可塑性樹脂単独で構成した場合よりも優れた水蒸気バリア性を発現することが可能になる。
しかも本発明の樹脂多層構造体の形成に使用される水蒸気バリア性樹脂組成物においては、吸水性材料として従来用いられていた無機系吸水材料を用いた場合のように、成形加工によりマトリックス樹脂と吸水性材料の剥離に起因するボイドの発生が防止され、水蒸気バリア性を成形体に有効に発現することができると共に、機械的強度及び外観特性にも優れている。
本発明の樹脂多層構造体においては、構造体外部からの水蒸気の浸入が有効に防止されており、湿気により影響を受けやすい食品や医薬品等を収納する容器や包装として好適に使用することができる。
In the water vapor barrier resin composition used for forming the resin multilayer structure of the present invention, a thermoplastic resin having excellent water vapor barrier properties is used as a matrix resin, and an organic water-absorbing material is blended in the matrix resin. Thus, it becomes possible to express a water vapor barrier property superior to that of a thermoplastic resin alone having a high water vapor barrier property.
In addition, in the water vapor barrier resin composition used for forming the resin multilayer structure of the present invention, the matrix resin is formed by molding as in the case of using an inorganic water absorbing material conventionally used as the water absorbing material. Generation of voids due to peeling of the water-absorbing material is prevented, water vapor barrier properties can be effectively exhibited in the molded article, and mechanical strength and appearance characteristics are also excellent.
In the resin multi layer structure of the present invention, penetration of water vapor from the structure outside are effectively prevented, be suitably used as a container or packaging for containing the susceptible foods and pharmaceuticals, etc. affected by moisture it can.

本発明の樹脂多層構造体の形成に使用される水蒸気バリア性樹脂組成物(以後、本発明の水蒸気バリア性樹脂組成物と呼ぶことがある。)においては、有機系吸水性材料を配合するマトリックス樹脂として、40℃及び90%RHの条件下、厚さ25μmにおける水蒸気透過度が100g/m・day以下、特に80g/m・day以下である熱可塑性樹脂(以下、「水蒸気バリア性熱可塑性樹脂」ということがある)を用いることが重要な特徴である。
本発明においては、有機系吸水性材料を配合するマトリックス樹脂として水蒸気バリア性の高い熱可塑性樹脂を用いることにより、樹脂組成物から成る層への水蒸気の透過を防止すると共に、マトリックス樹脂に水蒸気が浸入した場合でも、有機系吸水性材料が水蒸気を吸収することができるため、樹脂組成物から成る層は水蒸気を有効に遮断することが可能となるのである。
また本発明に用いる有機系吸水性材料は、マトリックス樹脂との相溶性に優れているため、無機系吸収材料を用いた場合のように成形時にマトリックス樹脂と吸水材料との間に剥離を生じることが有効に防止されている。
In the water vapor barrier resin composition (hereinafter sometimes referred to as the water vapor barrier resin composition of the present invention ) used for forming the resin multilayer structure of the present invention, a matrix containing an organic water-absorbing material is included. As a resin, a thermoplastic resin having a water vapor permeability of 100 g / m 2 · day or less, particularly 80 g / m 2 · day or less at a thickness of 25 μm under the conditions of 40 ° C. and 90% RH (hereinafter referred to as “water vapor barrier heat”). It is an important feature to use a “plastic resin”.
In the present invention, by using a thermoplastic resin having a high water vapor barrier property as a matrix resin to which the organic water-absorbing material is blended, it is possible to prevent water vapor from permeating into the layer composed of the resin composition, and to prevent water vapor from entering the matrix resin. Even when infiltrated, the organic water-absorbing material can absorb water vapor, so that the layer made of the resin composition can effectively block water vapor.
In addition, since the organic water-absorbing material used in the present invention is excellent in compatibility with the matrix resin, separation occurs between the matrix resin and the water-absorbing material during molding as in the case of using an inorganic absorbent material. Is effectively prevented.

本発明の水蒸気バリア性樹脂組成物において、40℃及び90%RHの条件下、厚さ25μmにおける水蒸気透過度が100g/m・day以下の熱可塑性樹脂を用いること、及び吸水性樹脂として有機系吸水性材料を用いることにより、上述した効果が奏されることは後述する実施例の結果から明らかである。
すなわち、熱可塑性樹脂中に有機系吸水性材料を配合している場合であっても、40℃及び90%RHの条件下、厚さ25μmにおけるマトリックス樹脂の水蒸気透過度が100g/m・dayよりも大きい熱可塑性樹脂を用いた樹脂組成物(比較例2)の場合には、水蒸気透過度が100g/m・day以下の水蒸気バリア性熱可塑性樹脂中に同一の吸水性材料を同量配合した樹脂組成物(実施例1)に比して水蒸気バリア性が劣っており、一方、水蒸気透過度が100g/m・day以下の水蒸気バリア性熱可塑性樹脂を用いた樹脂組成物であっても、無機系吸水性材料を用いた場合には(比較例3)、吸水性材料を配合していない同一の水蒸気バリア性熱可塑性樹脂(比較例1)の水蒸気バリア性よりも劣っている。これに対して、水蒸気透過度が100g/m・day以下の水蒸気バリア性熱可塑性樹脂に有機系吸水性材料を配合した樹脂組成物(実施例1〜9)では、同一の水蒸気バリア性熱可塑性樹脂単独から成るもの(比較例1)よりも優れた水蒸気バリア性が得られていることが明らかである。
In the water vapor barrier resin composition of the present invention, use of a thermoplastic resin having a water vapor permeability of 100 g / m 2 · day or less at a thickness of 25 μm under conditions of 40 ° C. and 90% RH, and organic as a water absorbent resin It is clear from the result of the Example mentioned later that the effect mentioned above is show | played by using a system water-absorbing material.
That is, even when an organic water-absorbing material is blended in the thermoplastic resin, the water vapor permeability of the matrix resin at a thickness of 25 μm is 100 g / m 2 · day under the conditions of 40 ° C. and 90% RH. In the case of a resin composition using a larger thermoplastic resin (Comparative Example 2), the same amount of the same water-absorbing material is contained in the water vapor barrier thermoplastic resin having a water vapor permeability of 100 g / m 2 · day or less. Compared to the blended resin composition (Example 1), the water vapor barrier property is inferior, while the water vapor permeability is 100 g / m 2 · day or less. However, when an inorganic water-absorbing material is used (Comparative Example 3), it is inferior to the water vapor barrier property of the same water-vapor barrier thermoplastic resin (Comparative Example 1) in which no water-absorbing material is blended. . On the other hand, in the resin compositions (Examples 1 to 9) in which an organic water-absorbing material is blended with a water vapor barrier thermoplastic resin having a water vapor permeability of 100 g / m 2 · day or less, the same water vapor barrier heat It is clear that a water vapor barrier property superior to that of the plastic resin alone (Comparative Example 1) is obtained.

(熱可塑性樹脂)
本発明の水蒸気バリア性樹脂組成物において、マトリックスとして使用し得る熱可塑性樹脂としては、上述したように、40℃及び90%RHの条件下、厚さ25μmにおける水蒸気透過度が100g/m・day以下、特に80g/m・day以下の熱可塑性樹脂である。
このような熱可塑性樹脂としては、これに限定されないが、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ナイロン等のポリアミド樹脂、ポリアクリロニトリル樹脂(PAN)、三フッ化塩化エチレン樹脂(PCTFE)等のフッ素樹脂、酢酸ビニル含有量が1〜15wt%の範囲にあるエチレン−酢酸ビニル共重合体(EVA)、エチレンビニルアルコール共重合体(EVOH)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、エチレン−環状オレフィン共重合体(COC)等を挙げることができ、中でも成形性・衛生性・コスト等の観点より特にポリエチレン、ポリプロピレン、酢酸ビニル含有量が1〜10wt%の範囲にあるエチレン−酢酸ビニル共重合体、環状オレフィン系共重合体、また相溶性・分散性等の観点より親水基を有するエチレンビニルアルコール共重合体(EVOH)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)を好適に使用することができる。また、上述した樹脂を2種類以上ブレンドし使用することができる。
(Thermoplastic resin)
As described above, the thermoplastic resin that can be used as the matrix in the water vapor barrier resin composition of the present invention has a water vapor transmission rate of 100 g / m 2 .multidot.m at a thickness of 25 μm under the conditions of 40 ° C. and 90% RH. The thermoplastic resin is not more than day, particularly not more than 80 g / m 2 · day.
Examples of such thermoplastic resins include, but are not limited to, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyamide resins such as nylon, and polyacrylonitrile resin (PAN). ), A fluororesin such as ethylene trifluoride chloride resin (PCTFE), an ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content in the range of 1 to 15 wt%, an ethylene vinyl alcohol copolymer (EVOH), Polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), ethylene-cyclic olefin copolymer (COC), etc. can be mentioned, especially polyethylene, polypropylene, vinyl acetate containing from the viewpoint of moldability, hygiene, cost, etc. The amount is in the range of 1 to 10 wt%. Rene-vinyl acetate copolymer, cyclic olefin copolymer, ethylene vinyl alcohol copolymer (EVOH) having a hydrophilic group from the viewpoint of compatibility and dispersibility, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET) ) Can be preferably used. Further, two or more kinds of the above-described resins can be blended and used.

(吸水性材料)
本発明の吸水性樹脂組成物に用いる吸水性材料としては、親水基を有するアクリル系微粒子(以下、有機系化合物と呼ぶことがある。)であることが重要であり、特にカルボキシル基又は水酸基を有する有機系化合物であることが好適である。
機系化合物は、架橋構造を有する。吸水による溶解が生じないため食品等に用いる場合、衛生的に安全である。
さらに、有機系化合物は、架橋構造を有すると共に、水膨潤度が10以下であり、特に5以下であることが好ましい。水膨潤度が10より大きい吸水性材料では、樹脂に配合した際、吸水性材料の周りを取り囲むマトリックス樹脂種によっては、吸水に伴う膨潤が阻害され、性能を発現できないことがある。これに対して、水膨潤度が10以下の吸水性材料では、樹脂種に制限されることなく性能を発現することができる。これは、構造内の自由体積が水を取り込むサイトになるためと考えられ、架橋密度や架橋間距離、親水基数等により吸水量を制御できると推測される。前アクリル系微粒子の平均粒径は5μm以下である。
尚、水膨潤度は、後述する吸水性材料を室温(25℃)の条件下で24時間蒸留水に浸漬させた前後の体積比で測定される。
(Water-absorbing material)
It is important that the water-absorbing material used in the water-absorbing resin composition of the present invention is an acrylic fine particle having a hydrophilic group (hereinafter sometimes referred to as an organic compound ) , particularly a carboxyl group or a hydroxyl group. The organic compound is preferably included.
Organic-based compounds, that have a cross-linked structure. Since it does not dissolve due to water absorption, it is hygienic and safe when used in foods.
Furthermore, the organic compound has a crosslinked structure and a water swelling degree of 10 or less , and particularly preferably 5 or less. In a water-absorbing material having a degree of water swelling greater than 10, depending on the type of matrix resin surrounding the water-absorbing material, when it is added to the resin, swelling due to water absorption may be inhibited and performance may not be exhibited. On the other hand, in a water-absorbing material having a water swelling degree of 10 or less, performance can be expressed without being restricted by the resin type. This is presumably because the free volume in the structure becomes a site that takes in water, and it is speculated that the amount of water absorption can be controlled by the crosslink density, the distance between crosslinks, the number of hydrophilic groups, and the like . The average particle size before Symbol acrylic fine particles Ru der 5 [mu] m or less.
In addition, a water swelling degree is measured by the volume ratio before and behind immersing the water absorbing material mentioned later on distilled water for 24 hours on the conditions of room temperature (25 degreeC).

(水蒸気バリア性樹脂組成物)
本発明の水蒸気バリア性樹脂組成物においては、上記吸水性材料をマトリックスとなる水蒸気バリア性熱可塑性樹脂に対して1〜50wt%、特に1〜30wt%の量で配合することが好適である。上記範囲よりも少ないと、十分に水蒸気バリア性能を向上させることができず、一方上記範囲よりも吸水性材料の量が多いと、後述する実施例3の結果からも明らかなように、水蒸気バリア性能においては優れているとしても、ブツの発生等の外観特性や成形性の点で劣るようになる。
本発明の水蒸気バリア性樹脂組成物は、樹脂組成物の特性を損なわない限り、従来公知の樹脂用配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することができる。
また、酸素吸収剤或いは酸化性有機成分及び遷移金属触媒を含有する酸素吸収性樹脂組成物等を配合することにより、酸素バリア性を付与することができる。
(Water vapor barrier resin composition)
In the water vapor barrier resin composition of the present invention, the water-absorbing material is preferably blended in an amount of 1 to 50 wt%, particularly 1 to 30 wt%, with respect to the water vapor barrier thermoplastic resin as a matrix. When the amount is less than the above range, the water vapor barrier performance cannot be sufficiently improved. On the other hand, when the amount of the water-absorbing material is larger than the above range, as is apparent from the results of Example 3 to be described later, Even if it is excellent in performance, it is inferior in terms of appearance characteristics such as generation of bumps and formability.
The water vapor barrier resin composition of the present invention is a conventionally known resin compounding agent, for example, a filler, a plasticizer, a leveling agent, a thickener, a thickener, and a stabilizer, as long as the properties of the resin composition are not impaired. Antioxidants, ultraviolet absorbers, and the like can be blended according to known formulations.
Moreover, oxygen barrier property can be provided by mix | blending the oxygen absorbent or the oxygen-absorbing resin composition containing an oxidizing organic component and a transition metal catalyst.

(多層構造体)
本発明の水蒸気バリア性樹脂組成物は、他の熱可塑性樹脂から成る層との多層構造体として使用することが好ましい。
例えば、これに限定されないが、上記水蒸気バリア性樹脂組成物から成る層の両側に他の熱可塑性樹脂から成る層、例えば後述するように、環状オレフィン系共重合体から成る外層、ポリエチレンから成る内層が形成された2種3層のもの等を挙げることができる。このような層構成を採ることにより、外部からの水蒸気の浸入を確実に抑制すると共に、多層構造体の内部に存在する水蒸気を水蒸気バリア性樹脂組成物から成る層が効率的に吸収することが可能となる。さらに、エチレン−ビニルアルコール共重合体やポリアミド樹脂或いは酸素吸収性樹脂組成物等の酸素バリア材を有する層を中間層に設けることにより酸素バリア性を付与することができる。
(Multilayer structure)
The water vapor barrier resin composition of the present invention is preferably used as a multilayer structure with a layer made of another thermoplastic resin.
For example, but not limited thereto, a layer made of another thermoplastic resin on both sides of the layer made of the water vapor barrier resin composition, for example, an outer layer made of a cyclic olefin copolymer and an inner layer made of polyethylene as described later 2 types and 3 layers in which is formed. By adopting such a layer structure, it is possible to reliably suppress the intrusion of water vapor from the outside, and the layer made of the water vapor barrier resin composition can efficiently absorb the water vapor present in the multilayer structure. It becomes possible. Furthermore, oxygen barrier properties can be imparted by providing a layer having an oxygen barrier material such as an ethylene-vinyl alcohol copolymer, a polyamide resin, or an oxygen-absorbing resin composition in the intermediate layer.

また水蒸気バリア性樹脂組成物から成る層は、多層構造体の最内層とすることもできるが、内容物が食品や医薬品等の場合には、他の熱可塑性樹脂から成る最内層を設けることが衛生的観点から望ましい。本発明の水蒸気バリア性樹脂組成物から成る層の内面側に設ける層は、多層構造体内部に存在する水蒸気を吸水性材料に速やかに到達させるために、比較的水蒸気透過率が高いものであることが好ましく、好適には、酢酸ビニル含有量が20wt%以上であるエチレン−酢酸ビニル共重合体(EVA)等を挙げることができる。   Further, the layer made of the water vapor barrier resin composition can be the innermost layer of the multilayer structure, but if the content is food, medicine, etc., the innermost layer made of another thermoplastic resin may be provided. Desirable from a hygienic point of view. The layer provided on the inner surface side of the layer made of the water vapor barrier resin composition of the present invention has a relatively high water vapor transmission rate so that water vapor present in the multilayer structure can quickly reach the water absorbent material. An ethylene-vinyl acetate copolymer (EVA) having a vinyl acetate content of 20 wt% or more is preferable.

本発明の多層構造体において、各層の厚みは、用途や構造体の形態等によって異なり、特に制限はないが、カップ等の成形に用いられる多層シートの場合では、本発明の水蒸気バリア性樹脂組成物から成る層は、1〜1000μm、特に5〜500μmの範囲にあるのが好適である。また外層として水蒸気バリア性熱可塑性樹脂から成る外層を設ける場合には、1〜1000μm、特に5〜500μmの範囲にあるのが好ましく、水蒸気透過率の高い熱可塑性樹脂から成る内層を設ける場合には、1〜500μm、特に1〜100μmの範囲にあるのが好ましい。
本発明の多層構造体は、これに限定されるものではないが、従来公知の製法によって、フィルム 、シート、カップ、トレイ 、包装袋、容器蓋、ボトル等の成形体として成形され、水蒸気バリア性に優れた包装材として使用することができる。
本発明の多層構造体において、フィルム或いはシートは、予め各層を別途形成し、熱接着などの方法により積層することもできるし、従来公知の接着剤を用いて積層することも勿論できる。また共射出、共押出等の従来公知の積層体の方法により成形することもできる。カップ、トレイ等は、上記方法により得られたシートを真空成形、圧空成形、張出成形、プラグアシスト成形等に付することにより成形することができる。
またパウチ等の包装袋は、種々の形状に従来公知の製法により成形することができ、ボトルは、従来公知の押出機から押し出した中空パリソンをダイレクトブロー成形、或いは射出成形によって得たプリフォームを二軸延伸ブロー成形することにより成形することができる。
In the multilayer structure of the present invention, the thickness of each layer varies depending on the application and the form of the structure and is not particularly limited. However, in the case of a multilayer sheet used for molding a cup or the like, the water vapor barrier resin composition of the present invention is used. The layer made of the material is preferably in the range of 1 to 1000 μm, particularly 5 to 500 μm. When an outer layer made of a water vapor barrier thermoplastic resin is provided as the outer layer, it is preferably in the range of 1 to 1000 μm, particularly 5 to 500 μm. When an inner layer made of a thermoplastic resin having a high water vapor permeability is provided. 1 to 500 μm, particularly 1 to 100 μm.
The multilayer structure of the present invention is not limited to this, but is formed as a molded body of a film, a sheet, a cup, a tray, a packaging bag, a container lid, a bottle, etc. by a conventionally known production method, and has a water vapor barrier property. It can be used as an excellent packaging material.
In the multilayer structure of the present invention, the film or sheet may be formed by separately forming each layer in advance and laminated by a method such as thermal bonding, or of course, using a conventionally known adhesive. Moreover, it can also shape | mold by the methods of conventionally well-known laminates, such as co-injection and co-extrusion. Cups, trays and the like can be formed by subjecting the sheet obtained by the above method to vacuum forming, pressure forming, bulging forming, plug assist forming and the like.
In addition, packaging bags such as pouches can be formed into various shapes by a conventionally known manufacturing method, and bottles are formed by direct blow molding or injection molding of a hollow parison extruded from a conventionally known extruder. It can shape | mold by carrying out biaxial stretch blow molding.

1.[熱可塑性樹脂(マトリックス樹脂)]
(水蒸気透過度の測定)
50tホットプレス(庄司鉄工製)により熱可塑性樹脂を200℃の温度で加熱溶融を繰り返し、厚み約150μmのシートを作製した。水蒸気透過測定装置(PERMATRAN−W 3/30:MOCON社製)により得られたシートの40℃、90%RHにおける水蒸気透過度を測定し、25μm厚に換算して、熱可塑性樹脂の水蒸気透過度とした。
1. [Thermoplastic resin (matrix resin)]
(Measurement of water vapor permeability)
The thermoplastic resin was repeatedly heated and melted at a temperature of 200 ° C. by a 50 t hot press (manufactured by Shoji Iron Works) to produce a sheet having a thickness of about 150 μm. The water vapor permeability of a sheet obtained by a water vapor transmission measuring device (PERMATRAN-W 3/30: manufactured by MOCON) at 40 ° C. and 90% RH is measured, and converted to a thickness of 25 μm, the water vapor permeability of the thermoplastic resin. It was.

2.[有機系吸水性材料]
(水膨潤度の測定)
メスシリンダーに有機系吸水性材料0.5gと蒸留水100mlを入れ、室温(25℃)で24時間静置した。その後、有機系吸水性材料の体積をメスシリンダーの目盛りから読み取り、これを吸水後の体積とした。また、吸水前の体積は嵩密度(JIS Z2504に準拠)より仕込み量0.5gを換算した値を用いた。吸水前後の体積比を水膨潤度とし、下記計算式より算出した。
2. [Organic water-absorbing material]
(Measurement of water swelling)
An organic water-absorbing material (0.5 g) and distilled water (100 ml) were placed in a graduated cylinder and allowed to stand at room temperature (25 ° C.) for 24 hours. Thereafter, the volume of the organic water-absorbing material was read from the scale of the graduated cylinder, and this was taken as the volume after water absorption. Moreover, the volume before water absorption used the value which converted 0.5g preparation amount from the bulk density (based on JISZ2504). The volume ratio before and after water absorption was taken as the degree of water swelling, and was calculated from the following formula.

Figure 0005568855
Figure 0005568855

[吸水性樹脂組成物]
(作製方法)
出口部分にストランドダイを装着した二軸押出機(スクリュー径φ20 L/D=32.5ULTNano05−20AG:テクノベル社製)により、押出温度200℃ スクリュー回転数100rpmで真空ベントを引きながら熱可塑性樹脂を溶融混練した。同時に、粉体フィーダーを用いて押出機ホッパー下より有機系吸水性材料を配合した。このとき、熱可塑性樹脂に対し10wt%になるように有機系吸水性材料の配合量を調整した。
[Water-absorbing resin composition]
(Production method)
With a twin-screw extruder (screw diameter φ20 L / D = 32.5 ULT Nano 05-20AG: manufactured by Technobel) with a strand die attached to the outlet portion, thermoplastic resin was drawn while pulling a vacuum vent at an extrusion temperature of 200 ° C. and a screw rotation speed of 100 rpm. Melt kneaded. At the same time, an organic water-absorbing material was blended from under the extruder hopper using a powder feeder. At this time, the blending amount of the organic water-absorbing material was adjusted so as to be 10 wt% with respect to the thermoplastic resin.

(混練時の目視評価)
吸水性樹脂組成物を作製する際の目視評価として、押出機より押し出されたストランドの外観やベントアップの有無を確認し、特に問題ないものを○、ストランド中にブツが発生し、分散が不十分なものを△、樹脂圧の増加等によるベントアップにより作製できなかったものを×とした。
(Visual evaluation during kneading)
As a visual evaluation when preparing the water absorbent resin composition, the appearance of the strand extruded from the extruder and the presence or absence of vent-up were confirmed. A sufficient one was indicated by Δ, and a case where the product could not be produced by venting up due to an increase in resin pressure or the like was indicated by ×.

(吸水性樹脂組成物の水蒸気バリア性評価)
50tホットプレス(庄司鉄工製)により得られた吸水性樹脂組成物を、200℃の温度で加熱溶融を繰り返し、厚み約150μmのシートを作製した。水蒸気透過測定装置(PERMATRAN−W 3/30:MOCON社製)により得られたシートの20℃、70%RHにおける水蒸気透過度を測定した。
尚、水蒸気バリア性の評価は、下記計算式より行ない、1.0未満のものを○、1.0以上のものを×とした。
(Evaluation of water vapor barrier property of water-absorbent resin composition)
The water-absorbent resin composition obtained by 50t hot press (manufactured by Shoji Iron Works) was repeatedly heated and melted at a temperature of 200 ° C. to prepare a sheet having a thickness of about 150 μm. The water vapor transmission rate at 20 ° C. and 70% RH of the sheet obtained by a water vapor transmission measuring device (PERMATRAN-W 3/30: manufactured by MOCON) was measured.
The evaluation of the water vapor barrier property was performed according to the following calculation formula.

Figure 0005568855
Figure 0005568855

3.[多層構造体]
(多層ボトルの作製)
上記方法により作製した吸水性樹脂組成物、低密度ポリエチレン樹脂(スミカセンF108−2:住友化学(株))、接着性樹脂(モディックL522:三菱化学(株))を用いて、ダイレクトブロー成形機により多層構造体を作製した。成形温度は200℃、シェル径15mm、コア13mmを用い、広口ボトル(口径44mm、内容積125cc)を作製した。
層構成は、外層側より低密度ポリエチレン樹脂層(250μm)/吸水性樹脂組成物層(50μm)/低密度ポリエチレン樹脂層(50μm)の2種3層、または外層側より低密度ポリエチレン樹脂層(250μm)/接着層(5μm)/吸水性樹脂組成物層(50μm)/接着層(5μm)/低密度ポリエチレン樹脂層(50μm)の3種5層である。
(多層フィルムの作製)
上記方法により作製した吸水性樹脂組成物、低密度ポリエチレン樹脂(スミカセンF108−2:住友化学(株))を用いて、三層ラボプラストミル(東洋精機(株))により多層フィルムを作製した。成形温度は200℃とした。
層構成は、外層側より低密度ポリエチレン樹脂層(50μm)/吸水性樹脂組成物層(100μm)/低密度ポリエチレン樹脂層(20μm)の2種3層である。
3. [Multilayer structure]
(Production of multi-layer bottles)
Using a water-absorbing resin composition, a low-density polyethylene resin (Sumikasen F108-2: Sumitomo Chemical Co., Ltd.), and an adhesive resin (Modic L522: Mitsubishi Chemical Co., Ltd.) produced by the above method, using a direct blow molding machine A multilayer structure was produced. Using a molding temperature of 200 ° C., a shell diameter of 15 mm, and a core of 13 mm, a wide-mouth bottle (44 mm diameter, 125 cc internal volume) was produced.
The layer structure is low density polyethylene resin layer (250 μm) / water-absorbent resin composition layer (50 μm) / low density polyethylene resin layer (50 μm) from the outer layer side, or low density polyethylene resin layer (from the outer layer side) 250 μm) / adhesive layer (5 μm) / water absorbent resin composition layer (50 μm) / adhesive layer (5 μm) / low density polyethylene resin layer (50 μm).
(Production of multilayer film)
Using the water-absorbent resin composition produced by the above method and a low-density polyethylene resin (Sumikasen F108-2: Sumitomo Chemical Co., Ltd.), a multilayer film was produced by a three-layer laboratory plastmill (Toyo Seiki Co., Ltd.). The molding temperature was 200 ° C.
The layer structure is two layers of three layers of a low density polyethylene resin layer (50 μm) / a water absorbent resin composition layer (100 μm) / a low density polyethylene resin layer (20 μm) from the outer layer side.

(多層構造体の水蒸気バリア性評価)
ドライエアにより除湿した低湿度雰囲気(20%RH以下)のグローブボックス内で、前記作製した多層ボトルにワイヤレス式温湿度計(ハイグロクロン:KNラボラトリーズ製)を入れ、アルミ/ポリエチレンで積層した蓋材で容器口部をヒートシールした。多層フィルムでは、内容積が150mlになるように作製した包装袋をボトル同様にグローブボックス内でヒートシールした。その後、22℃60%RHで経時し、7日後の容器内部の相対湿度が20%RH以下であるものを○、20%RHより湿度が高いものを×とした。
(Evaluation of water vapor barrier properties of multilayer structures)
In a glove box in a low humidity atmosphere (20% RH or less) dehumidified with dry air, a wireless thermometer / hygrometer (High Glocron: manufactured by KN Laboratories) is placed in the multi-layer bottle, and the lid is laminated with aluminum / polyethylene. The container mouth was heat sealed. In the multilayer film, the packaging bag produced so that the internal volume was 150 ml was heat-sealed in a glove box like a bottle. Thereafter, the sample was aged at 22 ° C. and 60% RH, and the sample having a relative humidity inside the container after 7 days of 20% RH or less was marked with ◯, and the sample with a humidity higher than 20% RH was marked with ×.

(実施例1)
熱可塑性樹脂として水蒸気透過度80g/m・day、酢酸ビニル含有量が10wt%であるエチレン−酢酸ビニル共重合体(EVA10%、ウルトラセンEVA541:東ソー(株))、吸水性材料として水膨潤度1.2(嵩密度0.28g/cm)のアクリル系微粒子である非膨潤性架橋有機ゲル(タフチックHU:東洋紡(株))を用い、上記作製方法により吸水性樹脂組成物を作製した。ベントアップやブツの発生はなく、ゲルが均一に分散しており、問題なく作製することができた。吸水性樹脂組成物の水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも2割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
Example 1
Ethylene-vinyl acetate copolymer (EVA 10%, Ultrasen EVA 541: Tosoh Corporation) with water vapor permeability of 80 g / m 2 · day as a thermoplastic resin and vinyl acetate content of 10 wt%, and water swelling as a water-absorbing material A water-absorbent resin composition was prepared by the above-described production method using a non-swellable crosslinked organic gel (Tuffic HU: Toyobo Co., Ltd.), which is an acrylic fine particle having a degree of 1.2 (bulk density 0.28 g / cm 3 ). . There was no occurrence of vent-up or fuzz, the gel was uniformly dispersed, and it could be produced without any problems. The water vapor barrier property evaluation of the water absorbent resin composition showed a value about 20% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by water absorption of the water absorbent material. Further, in the evaluation of the water vapor barrier property of the multilayer structure of 2 types and 3 layers produced by the above method, 20% RH or less was maintained.

(実施例2)
吸水性材料の配合量を50wt%にした以外は、実施例1と同様に吸水性樹脂組成物を作製した。配合量が実施例1の5倍増であるが、特に問題なく配合することができ、ゲルの分散状態も良好であった。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも7割程度低い値を示し、高い水蒸気バリア性であった。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
(Example 2)
A water absorbent resin composition was prepared in the same manner as in Example 1 except that the amount of the water absorbent material was changed to 50 wt%. The blending amount was 5 times that of Example 1, but it could be blended without any particular problem, and the gel was well dispersed. In the evaluation of the water vapor barrier property, the value was about 70% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was high. Further, in the evaluation of the water vapor barrier property of the multilayer structure of 2 types and 3 layers produced by the above method, 20% RH or less was maintained.

(実施例3)
吸水性材料の配合量を60wt%にした以外は、実施例1と同様に吸水性樹脂組成物を作製した。ストランド中にブツが発生し、ゲルの分散が不十分であったが、作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも8割程度低い値を示し、高い水蒸気バリア性であった。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
(Example 3)
A water absorbent resin composition was prepared in the same manner as in Example 1 except that the amount of the water absorbent material was changed to 60 wt%. There were spots in the strands, and the gel was insufficiently dispersed, but could be produced. In the evaluation of the water vapor barrier property, the value was about 80% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was high. Further, in the evaluation of the water vapor barrier property of the multilayer structure of 2 types and 3 layers produced by the above method, 20% RH or less was maintained.

(実施例4)
熱可塑性樹脂として水蒸気透過度22g/m・dayであるポリエチレンテレフタレート(PET、5015W:日本ユニペット(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも4割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により成形温度280℃で作製した3種5層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
(Example 4)
A resin composition was prepared in the same manner as in Example 1 except that polyethylene terephthalate (PET, 5015W: Nippon Unipet Co., Ltd.) having a water vapor permeability of 22 g / m 2 · day was used as the thermoplastic resin. It was possible to produce without any problem. In the evaluation of the water vapor barrier property, the value was about 40% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by the water absorption of the water absorbing material. Further, in the evaluation of the water vapor barrier property of the three-kind five-layer multilayer structure produced at a molding temperature of 280 ° C. by the above method, 20% RH or less was maintained.

(実施例5)
熱可塑性樹脂として水蒸気透過度30g/m・day、エチレン含有量が32mol%であるエチレンビニルアルコール共重合体(EVOH、F171B:クラレ(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも4割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により作製した3種5層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
(Example 5)
Resin as in Example 1 except that an ethylene vinyl alcohol copolymer (EVOH, F171B: Kuraray Co., Ltd.) having a water vapor permeability of 30 g / m 2 · day and an ethylene content of 32 mol% was used as the thermoplastic resin. A composition was prepared. It was possible to produce without any problem. In the evaluation of the water vapor barrier property, the value was about 40% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by the water absorption of the water absorbing material. In addition, in the evaluation of the water vapor barrier property of the multilayer structure of 3 types and 5 layers produced by the above method, 20% RH or less was maintained.

(実施例6)
熱可塑性樹脂として水蒸気透過度40g/m・dayであるポリメタキシリレンアジバミド(MXD6、T−620:東洋紡績(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも2割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により成形温度260℃で作製した3種5層の多層構造体の水蒸気バリア性評価において20%RH以下を保持していた。
(Example 6)
A resin composition was prepared in the same manner as in Example 1 except that polymetaxylylene adipamide (MXD6, T-620: Toyobo Co., Ltd.) having a water vapor permeability of 40 g / m 2 · day was used as the thermoplastic resin. . It was possible to produce without any problem. In the evaluation of the water vapor barrier property, the value was about 20% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by the water absorption of the water absorbing material. Moreover, 20% RH or less was maintained in the evaluation of the water vapor barrier property of the multilayer structure of 3 types and 5 layers produced at a molding temperature of 260 ° C. by the above method.

(実施例7)
熱可塑性樹脂として水蒸気透過度18g/m・dayである低密度ポリエチレン(LDPE、F108−2:住友化学(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも4割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
(Example 7)
A resin composition was prepared in the same manner as in Example 1 except that low density polyethylene (LDPE, F108-2: Sumitomo Chemical Co., Ltd.) having a water vapor permeability of 18 g / m 2 · day was used as the thermoplastic resin. It was possible to produce without any problem. In the evaluation of the water vapor barrier property, the value was about 40% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by the water absorption of the water absorbing material. Further, in the evaluation of the water vapor barrier property of the multilayer structure of 2 types and 3 layers produced by the above method, 20% RH or less was maintained.

(実施例8)
実施例7で作製した吸水性樹脂組成物を用いて、前記方法により多層フィルムを作製した。水蒸気バリア性評価では、低湿度を保持していた。
(Example 8)
Using the water-absorbent resin composition produced in Example 7, a multilayer film was produced by the above method. In the evaluation of water vapor barrier properties, low humidity was maintained.

(実施例9)
吸水性材料として水膨潤度100.0(嵩密度0.65g/cm)のアクリル酸系膨潤性有機ゲル(サンフレッシュST−500MPS:三洋化成工業(株))を用いた以外は実施例7と同様に樹脂組成物を作製した。特に問題なく作製することができた。水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも1割程度低い値を示し、吸水性材料の吸水により水蒸気バリア性が向上していた。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、20%RH以下を保持していた。
Example 9
Example 7 except that an acrylic acid-based swelling organic gel (Sunfresh ST-500MPS: Sanyo Chemical Industries, Ltd.) having a water swelling degree of 100.0 (bulk density 0.65 g / cm 3 ) was used as the water-absorbing material. A resin composition was prepared in the same manner as described above. It was possible to produce without any problem. In the evaluation of the water vapor barrier property, the value was about 10% lower than the value of the thermoplastic resin alone, and the water vapor barrier property was improved by the water absorption of the water absorbing material. Further, in the evaluation of the water vapor barrier property of the multilayer structure of 2 types and 3 layers produced by the above method, 20% RH or less was maintained.

(比較例1)
吸水性材料を配合しなかった以外は、実施例1と同様に水蒸気バリア性樹脂組成物を作製した。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、容器内に水蒸気が透過し、湿度上昇が確認された。
(Comparative Example 1)
A water vapor barrier resin composition was prepared in the same manner as in Example 1 except that the water absorbing material was not blended. In addition, in the evaluation of the water vapor barrier properties of the two-layer / three-layer multilayer structure produced by the above method, water vapor permeated into the container, and an increase in humidity was confirmed.

(比較例2)
熱可塑性樹脂として水蒸気透過度520g/m・day、酢酸ビニル含有量が20wt%であるエチレン−酢酸ビニル共重合体(EVA20%、ウルトラセンEVA638:東ソー(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができたが、樹脂組成物の水蒸気バリア性評価では、熱可塑性樹脂と同程度の値を示し、水蒸気バリア性の向上が認められなかった。この原因としては、熱可塑性樹脂の水蒸気透過度が高く、吸水性材料の吸水量よりも透過する水蒸気量が多いためと考えられる。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、容器内に水蒸気が透過し、湿度上昇が確認された。
(Comparative Example 2)
Example except that an ethylene-vinyl acetate copolymer (EVA 20%, Ultrasen EVA 638: Tosoh Corp.) having a water vapor permeability of 520 g / m 2 · day and a vinyl acetate content of 20 wt% was used as the thermoplastic resin. A resin composition was prepared in the same manner as in 1. Although it was possible to produce the resin composition without any problem, the evaluation of the water vapor barrier property of the resin composition showed the same value as that of the thermoplastic resin, and the improvement of the water vapor barrier property was not recognized. This is probably because the water vapor permeability of the thermoplastic resin is high and the amount of water vapor that permeates is larger than the water absorption amount of the water absorbent material. In addition, in the evaluation of the water vapor barrier properties of the two-layer / three-layer multilayer structure produced by the above method, water vapor permeated into the container, and an increase in humidity was confirmed.

(比較例3)
吸水性材料として水膨潤度1.0(嵩密度3.0g/cm)のゼオライト3A(純正化学(株))を用いた以外は実施例1と同様に樹脂組成物を作製した。特に問題なく作製することができたが、樹脂組成物の水蒸気バリア性評価では、熱可塑性樹脂のみの値よりも2割高い値を示し、水蒸気バリア性の向上が認められなかった。この原因としては、熱可塑性樹脂と吸水性材料の相溶性が悪く、界面でのボイド発生によるものと考えられる。また上記方法により作製した2種3層の多層構造体の水蒸気バリア性評価において、容器内に水蒸気が透過し、湿度上昇が確認された。
(Comparative Example 3)
A resin composition was prepared in the same manner as in Example 1 except that zeolite 3A (Pure Chemical Co., Ltd.) having a water swelling degree of 1.0 (bulk density: 3.0 g / cm 3 ) was used as the water-absorbing material. Although it could be produced without any particular problem, the evaluation of the water vapor barrier property of the resin composition showed a value 20% higher than the value of the thermoplastic resin alone, and no improvement in the water vapor barrier property was observed. This is probably because the thermoplastic resin and the water-absorbing material have poor compatibility and voids are generated at the interface. In addition, in the evaluation of the water vapor barrier properties of the two-layer / three-layer multilayer structure produced by the above method, water vapor permeated into the container, and an increase in humidity was confirmed.

実施例1〜9(但し、実施例3及び9は参考例)、比較例1〜3の結果を表1にまとめた。表1の結果から明らかなように、熱可塑性樹脂の水蒸気透過度、吸水性材料の種類や水膨潤度、配合量の違いにより水蒸気バリア性評価で相違が見られた。 Examples 1 to 9 (however, Examples 3 and 9 are reference examples) and the results of Comparative Examples 1 to 3 are summarized in Table 1. As is clear from the results in Table 1, differences in water vapor barrier properties were observed depending on the water vapor permeability of the thermoplastic resin, the type of water-absorbing material, the water swelling degree, and the blending amount.

Figure 0005568855
Figure 0005568855

Claims (2)

水蒸気バリア性樹脂組成物から形成された層を中間層又は最内層として少なくとも一層有する樹脂多層構造体において、
40℃及び90%RHの条件下、厚さ25μmにおける水蒸気透過度が100g/m・day以下である熱可塑性樹脂をマトリックス樹脂とし、前記熱可塑性樹脂に対して1〜50wt%の有機系吸水性材料を配合して成り、該有機系吸水性材料が、水膨潤度が10以下且つ平均粒径が5μm以下の架橋構造を有するアクリル系微粒子から成ることを特徴とする樹脂多層構造体
In the resin multilayer structure having at least one layer as an intermediate layer or innermost layer formed of a water vapor barrier resin composition,
A thermoplastic resin having a water vapor permeability of 100 g / m 2 · day or less at a thickness of 25 μm under conditions of 40 ° C. and 90% RH is used as a matrix resin, and the organic water absorption is 1 to 50 wt% with respect to the thermoplastic resin. A resin multilayer structure comprising an acrylic fine particle having a cross-linked structure having a water swelling degree of 10 or less and an average particle diameter of 5 μm or less.
前記有機系吸水性材料が、カルボキシル基又は水酸基を有することを特徴とする請求項1に記載の樹脂多層構造体The resin multilayer structure according to claim 1, wherein the organic water-absorbing material has a carboxyl group or a hydroxyl group.
JP2008288708A 2008-11-11 2008-11-11 Resin multilayer structure Active JP5568855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288708A JP5568855B2 (en) 2008-11-11 2008-11-11 Resin multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288708A JP5568855B2 (en) 2008-11-11 2008-11-11 Resin multilayer structure

Publications (2)

Publication Number Publication Date
JP2010116435A JP2010116435A (en) 2010-05-27
JP5568855B2 true JP5568855B2 (en) 2014-08-13

Family

ID=42304288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288708A Active JP5568855B2 (en) 2008-11-11 2008-11-11 Resin multilayer structure

Country Status (1)

Country Link
JP (1) JP5568855B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287289B2 (en) * 2013-02-07 2018-03-07 東洋製罐グループホールディングス株式会社 Gas barrier laminate
JP6287288B2 (en) * 2013-02-07 2018-03-07 東洋製罐グループホールディングス株式会社 Gas barrier laminate with excellent moisture barrier properties
WO2016021459A1 (en) * 2014-08-07 2016-02-11 東洋製罐グループホールディングス株式会社 Laminate having moisture barrier properties
JP6657651B2 (en) * 2015-08-10 2020-03-04 東洋製罐グループホールディングス株式会社 Moisture barrier resin laminate
JP7310088B2 (en) * 2016-10-07 2023-07-19 グローバルポリアセタール株式会社 Articles and methods of manufacturing articles
JP7310089B2 (en) * 2016-10-07 2023-07-19 グローバルポリアセタール株式会社 Articles and methods of manufacturing articles
JP7472453B2 (en) * 2019-09-30 2024-04-23 大日本印刷株式会社 Transparent water-absorbent sealant film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898251A (en) * 1981-12-07 1983-06-11 住友ベークライト株式会社 High barrier composite film and package
JP2743423B2 (en) * 1988-12-29 1998-04-22 東洋製罐株式会社 Plastic laminate structure with excellent resistance to water vapor transmission
JP3650977B2 (en) * 1994-12-13 2005-05-25 日本エクスラン工業株式会社 Highly moisture-absorbing / releasing material, method for producing the same, and additive comprising the material
JP4049906B2 (en) * 1998-10-20 2008-02-20 横浜ゴム株式会社 Thermoplastic elastomer composition and multilayer glass using the composition
JP2001248073A (en) * 2000-02-29 2001-09-14 Toyobo Co Ltd Resin composition for moisture permeable waterproof fabric
JP2002137339A (en) * 2000-11-02 2002-05-14 Oji Paper Co Ltd Gas barrier multi-layered laminate
JP2002138206A (en) * 2000-11-06 2002-05-14 Showa Denko Kk Moisture permeable but water-proof and air impermeable material
JP5223401B2 (en) * 2007-03-23 2013-06-26 ヤマハ株式会社 Key material and key for keyboard device

Also Published As

Publication number Publication date
JP2010116435A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5568855B2 (en) Resin multilayer structure
JP4659523B2 (en) Blister film and blister packaging container
KR102417298B1 (en) oxygen barrier plastic material
ES2359119T3 (en) BIODEGRADABLE MULTI-PAPER POLYMER FILMS AND PACKS PRODUCED FROM THE SAME.
JP6255712B2 (en) Hygroscopic film and package
JP5700414B2 (en) Hygroscopic resin composition and hygroscopic multilayer container
JP6815485B2 (en) Oxygen-absorbing film, packaging laminate and packaging using this, and content processing method using the packaging
JPWO2015194646A1 (en) Absorbent layer for blister pack, laminate including the same, and blister pack using the same
JP5663828B2 (en) Water absorbent resin composition
JP2699814B2 (en) Plastic multilayer container and cooked rice package with excellent flavor retention
EP2718097A2 (en) Material composition, laminate tube and method for manufacture thereof
WO2015194645A1 (en) Absorbent layer for blister packs, laminate comprising same, and blister pack using said laminate
JP6465958B2 (en) Laminated body for heat seal
JP5615623B2 (en) Heat sealing film and packaging bag
WO2020213517A1 (en) Laminate for blister containers
ES2966615T3 (en) Product packaging with heat-sealable barrier material
JP2003267431A (en) Multi-layer squeezing container or bottle
JP7038569B2 (en) Laminates for blister packs and blister packs using them
JP5405021B2 (en) Oxygen-absorbing composition and container using the same
JPH03215031A (en) Multilayer structure for packaging
JPH0490847A (en) Oxygen absorbing agent and resin composition using the same, and film, sheet, or wrapping container consisting of said resin composition
JP2955776B2 (en) Package
JP6746879B2 (en) Sealant film, multilayer film, and package
JP2004331207A (en) Multilayer packaging material
JP5574174B2 (en) Resin composition, sealant film, laminated film, packaging bag and tube container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Effective date: 20120627

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Effective date: 20120831

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Effective date: 20130513

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20130523

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Effective date: 20130812

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Effective date: 20140609

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP

Ref document number: 5568855