JP5566651B2 - 電池およびその製造方法 - Google Patents

電池およびその製造方法 Download PDF

Info

Publication number
JP5566651B2
JP5566651B2 JP2009220887A JP2009220887A JP5566651B2 JP 5566651 B2 JP5566651 B2 JP 5566651B2 JP 2009220887 A JP2009220887 A JP 2009220887A JP 2009220887 A JP2009220887 A JP 2009220887A JP 5566651 B2 JP5566651 B2 JP 5566651B2
Authority
JP
Japan
Prior art keywords
current collecting
width
tab
tabs
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009220887A
Other languages
English (en)
Other versions
JP2011070917A (ja
Inventor
夏樹 豊田
永記 柏▲崎▼
俊文 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009220887A priority Critical patent/JP5566651B2/ja
Publication of JP2011070917A publication Critical patent/JP2011070917A/ja
Application granted granted Critical
Publication of JP5566651B2 publication Critical patent/JP5566651B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電池およびその製造方法に関するものである。
近年、電子機器の発達に伴ない、小型で軽量かつエネルギー密度が高く、さらに繰り返し充放電が可能な非水電解質二次電池としてリチウム二次電池が発達してきた。また、最近では、ハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適な、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発が要望されている。このような二次電池として、負極活物質として小粒径(一次粒子の平均粒子径が1μm以下)のリチウムチタン酸化物(リチウムチタン複合酸化物)を用いた、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発がなされている。
エネルギー密度の高い二次電池の需要により、複数枚の集電タブを一つにする必要があり、例えば特許文献1には、保護リードを用いて集電タブへのダメージを軽減することが記載されている。これにおいては、複数積層された集電タブが保護リードで挟まれた状態でリードに超音波接合することにより、超音波接合時の不良率が低減されている。
特開2009−87728号公報
複数枚の集電タブが積層される際、幅端に位置ズレが生じることがある。こうした複数の集電タブとリードとが超音波接合されると、必ずしも十分な強度が得られない。容器内への電極群の組込み中および組込み後に、外力により集電タブが切断されやすい。しかも、急速充電および大電流放電時の特性が安定しない。
本発明の目的は、外力に対する集電タブの強度が高く、急速充電および大電流放電時の特性が安定した電池およびその製造方法を提供することにある。
本発明の電池は、正極および負極を含む電極群と、
前記電極群の前記正極または前記負極と電気的に接続され、アルミニウムまたはアルミニウム合金からなり、幅端に位置ずれをもって積層された複数の集電タブと、
前記複数の集電タブを挟む保護リードと、
前記保護リードに挟まれた前記複数の集電タブと超音波により接合され、アルミニウムまたはアルミニウム合金からなるリードと
を備える電池であって、
前記超音波による接合部は、前記複数の集電タブを構成するいずれの集電タブの幅端も横切らずに形成されていることを特徴とする。
また、本発明の電池の製造方法は、前述の電池の製造方法であって、前記複数の集電タブを構成するいずれの集電タブの幅端も横切らないように、前記保護リードに挟まれた前記複数の集電タブと前記リードとを超音波により接合することを特徴とする。
本発明によれば、外力に対する集電タブの強度が高く、急速充電および大電流放電時の特性が安定した電池およびその製造方法を提供することができる。
一実施形態に係る非水電解質電池を示す分解斜視図。 図1に示す電池における集電タブと保護リードとリードとの超音波接合部の一例を示す平面図。 保護リードに挟まれた集電タブとリードとを超音波接合する工程を示す概略図。 集電タブの幅と超音波接合部の幅との関係を説明する模式図。 集電タブの幅と超音波接合部の幅との関係を説明する模式図。 集電タブの幅と超音波接合部の幅との関係を説明する模式図。 他の実施形態に係る非水電解質電池を示す分解斜視図。 他の実施形態に係る非水電解質電池を示す分解斜視図。 図8に示す電池における集電タブと保護リードとリードとの超音波接合部の一例を示す平面図。 集電タブのズレ幅と超音波接合部の位置との関係を説明する模式図。 集電タブのズレ幅と超音波接合部の位置との関係を説明する模式図。 集電タブのズレ幅と超音波接合部の位置との関係を説明する模式図。 集電タブのズレ幅と超音波接合部の位置との関係を説明する模式図。 サンプル1における超音波接合部の位置を表わす模式図。 サンプル1のタブの引張り試験結果。 サンプル2における超音波接合部の位置を表わす模式図。 サンプル2のタブの引張り試験結果。 サンプル3における超音波接合部の位置を表わす模式図。 サンプル3のタブの引張り試験結果。 サンプル4における超音波接合部の位置を表わす模式図。 サンプル4のタブの引張り試験結果。 サンプル5における超音波接合部の位置を表わす模式図。 サンプル5のタブの引張り試験結果。 サンプル6における超音波接合部の位置を表わす模式図。 サンプル6のタブの引張り試験結果。 サンプル7における超音波接合部の位置を表わす模式図。 サンプル7のタブの引張り試験結果。 タブのズレ幅と引張り強度との関係を示すグラフ図。
以下、図面を参照して本発明の実施形態を説明する。
一実施形態にかかる電池は、非水電解質電池であり、図1に示すように有底矩形筒状をなす容器31を具備する。容器31は、例えば、アルミニウム板もしくはアルミニウム合金板に深絞り加工を施すことにより成形されたものである。電極群32は、例えば、シート状の正極と、シート状の負極とをセパレータを間にして渦巻状に捲回した後、全体を容器の横断面形状に合致した断面四角形状に押し潰し変形することにより作製される。
正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗布することにより作製される。正極活物質としては、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。
負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗布することにより作製される。負極活物質としては、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。例えば、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、および酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。
セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。
非水電解液(図示しない)は容器31内に収容されており、電極群32に含浸されている。非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。
複数の帯状をした正極集電タブ34は、正極の複数個所と電気的に接続されており、それぞれが電極群32の上端面32aから上向きに導出されている。一方、複数の帯状をした負極集電タブ35は、負極の複数個所と電気的に接続されており、それぞれが電極群32の上端面32aから上向きに導出されている。
正極集電タブ34としては、例えば正極の集電体を部分的に延出されたものを使用することができるが、正極と別体であってもよい。また、負極集電タブ35としては、例えば、負極の集電体を部分的に延出されたものを用いることができるが、負極と別体であってもよい。別体とする場合には、導電材料からなる集電タブが超音波接合等により集電体に電気的に接続される。
正極集電タブ34および負極集電タブ35は、それぞれ保護リード36および保護リード37で挟まれる。具体的には、集電タブは、複数枚が厚さ方向に積層された状態で、U字状の折れ曲がった保護リードに挟まれる。保護リードの材質は、例えば、アルミニウムまたはアルミニウム合金とすることができる。集電タブを保護リードで挟んで超音波接合することによって、集電タブに亀裂が生じるおそれは低減される。このため、保護リードと集電タブとリードとの接合強度を十分に高めることができる。
保護リード36、37の厚さは、集電タブ1枚当たりの厚さの3倍より大きくすることが望ましい。充分な厚さを有することになるので、保護リードに亀裂が発生することは避けられる。さらに、保護リードの厚さは、リードの厚さより薄いことが好ましい。超音波接合を行なう際にホーン側に厚さの薄い保護リードを配置できるので、ホーンの加圧力を高くする必要がなく、集電タブに亀裂を生じるおそれもない。
保護リード36,37の厚さは、0.05〜0.6mmの範囲内が好ましく、0.1〜0.5mmの範囲内がより好ましい。また、保護リードの幅は、接合部59の幅より大きければ特に規定されない。保護リードは、積層された集電タブの両面を覆う形状の折り曲げられた1枚の板である必要はない。積層された集電タブの両面に、それぞれ別個の保護リードを配置してもよい。
容器31の開口部は、封口部材によって封止される。封口部材は、容器31の開口部を塞ぐ蓋38と、蓋38の外面(上面)にガスケット39を介して取り付けられた負極出力端子(リベット)40と、蓋38の外面(上面)側に凸状に張り出した正極出力端子43とを備える。図示していないが、蓋38には、電解液注入口および安全弁が設けられている。負極リード41は、上面と側面とを有するL字型であり、絶縁部材(図示しない)を介して蓋38の内面(下面)に配置される。負極リード41の上面は、負極出力端子40にかしめ固定されることにより、負極出力端子40と電気的に接続される。一方、正極リード42は、蓋38の内面(下面)に直接配置されることで正極出力端子43と電気的に接続される。なお、電解液注入孔(図示しない)より、電解液(図示しない)を注入後、封止栓(図示しない)で閉止される。この封止栓は、蓋38に溶接される。
L字型の負極リード41は、負極集電タブ35と接続される。具体的には、負極リード41の側面は、図2に示すように、保護リード37に挟まれた負極集電タブ35と、超音波により接合される。超音波による接合部は、参照符号59として示されている。保護リード37に挟まれた負極集電タブ35と負極リード41とは、例えば、図3に示されるようにアンビル21とホーン22とを用いて超音波により接合することができる。これにより、負極集電タブ35が、負極の保護リード37および負極リード41を介して負極出力端子40と電気的に接続される。なお、超音波による接合部59の所望される寸法や位置などに応じて、アンビルおよびホーンは適切に選択すればよい。
超音波による接合部59の幅は、集電タブの幅との間に特定の関係を有するように規定されることが好ましい。図4には、集電タブの幅と接合部の幅との関係を示す。説明のために、図中の積層された集電タブは、図面の奥行き方向(タブの長さ方向)にもズレを設けて示してある。個々の集電タブ35の幅をAとし、積層された複数の集電タブ全体の幅をEとし、集電タブの幅方向における超音波接合部59の幅をCとする。図4に示されるようにC=2A−Eの場合には、複数のタブが全て積層されている部分の幅が2A−Eとなるため、接合部59の端は集電タブ35の幅端と一致する。
C<2A−Eの場合には、図5に示されるように接合部59は集電タブ35の幅端には達しない。接合部59は、積層された集電タブが全て重なった領域内に形成されており、いずれの集電タブの幅端も横切らない。すなわち、C≦2A−Eであれば、集電タブの幅端を踏まないように接合部59を形成することができる。
これに対し、C>2A−Eの場合には、図6に示されるように接合部59は、必ずいずれかの集電タブの幅端を踏んで、その外側まで広がる。超音波で接合される幅が狭いので不十分な接合となり、こうした集電タブが1枚でも存在すると強度が低下してしまう。
これらに基づいて、本発明においては、超音波接合部59は、複数の集電タブのいずれの幅端も横切らないように規定した。上述したように、幅端が接合部59で踏まれたタブは接合される幅が狭く、こうしたタブが1枚でも存在すると強度が低下するからである。接合部59の幅Cは、以下の範囲に規定することが好ましい。
C≦2A−E (1)
本発明においては、超音波による接合部59は、集電タブの幅端を横切らず、全ての集電タブが重なり合った領域に形成される。その結果、全ての集電タブが等しい幅で超音波接合される。他の集電タブと比較して、接合部の幅が少ない集電タブ、すなわち接合が不完全な集電タブは存在しない。積層された集電タブ全体の強度が高められるので、集電タブの切断といった不都合が生じるおそれが低減される。容器内への電極群の組込み中および組込み後の外力に対する強度が高められることにより、安定した電池特性を得ることができる。
正極集電タブ34と正極リード42との接合も、負極側と同様に行なわれることが好ましい。すなわち、保護リード36で挟まれた正極集電タブ34は、超音波により正極リード42に接合され、超音波による接合部は、集電タブの幅端を横切らないよう、全てのタブが重なった領域に形成される。しかも、この接合部の幅は、集電タブの幅との間に特定の関係(1)を有するように規定されることが好ましい。
この場合には、正極側および負極側の両方において、集電タブの強度が高められるので、電池の組み込み中および組み込み後の外力に対する強度は、よりいっそう高いものとなる。
図1に示されるように、蓋38の内面(下面)と電極群32の正極集電タブ34および負極集電タブ35が突出している上端面32aとの間に設けられる空間を囲むように、スペーサ51a,51bが配置される。スペーサ51aは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕切り板52a〜52cが設けられたものである。仕切り板52a〜52cの端面には、突起53が設けられている。
一方、スペーサ51bは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕切り板54a〜54cが設けられたものである。仕切り板54a〜54cの端面には、スペーサ51aの突起53を嵌め込むための凹部55が設けられている。スペーサ51aの仕切り板52a〜52cの突起53を、スペーサ51bの仕切り板54a〜54cの凹部55に嵌め込むと、スペーサ51aの仕切り板52a,52bとスペーサ51bの仕切り板54a,54bとで囲まれた空間内に正極集電タブ34と正極保護リード36と正極リード42とが位置し、スペーサ51aの仕切り板52b,52cとスペーサ51bの仕切り板54b,54cとで囲まれた空間内に負極集電タブ35と負極保護リード37と負極リード41とが位置する。これにより、正極集電タブ34と負極集電タブ35との絶縁、正極保護リード36と負極保護リード37との絶縁、正極リード42と負極リード41との絶縁、これら部材と容器31との絶縁が達成される。
こうしたスペーサ51a,51bは、電池に振動や衝撃が加わった際の電極群32の移動を防止することができる。さらに、電解液注入孔から注入された電解液が電極群32の上部に溜まるため、電極群32の上端面から電解液が浸透し易くなり、電極群32に電解液を均一に含浸させることができる。スペーサ51a,51bの4隅には、容器31と電極群32の空隙に電解液を浸透させるために穴56が設けられている。スペーサ51a,51bの材質としては、PP、PFAなどが挙げられる。
本実施形態においては、リードに接合される複数の複数の集電タブは十分に大きな強度を有するので、タブの切断といった不都合は低減され、抵抗の上昇を抑制することができる。したがって、急速充電特性および大電流出力特性の優れた電池が得られる。
上述した構成の非水電解質電池は、図7に示すような積層片出し型の構成に適用することもできる。図示する非水電解質電池は、シート状の正極とシート状の負極とをセパレータを挟んで交互に積層することにより作製された電極群33を有する。
こうした点が異なる以外は、図示する電池は図1に示した非水電解質電池と同様の構成であり、集電タブと保護リードとリードとは、前述と同様に超音波により接合される。超音波接合部は、集電タブの幅端を横切らないよう、全ての集電タブが重なった領域のみに形成される。集電タブは十分に大きな強度を有することから、集電タブの切断といった不都合が低減される。しかも、超音波接合部の幅Cは、集電タブの幅との間に特定の関係(C≦2A−E、Aは個々の集電タブの幅であり、Eは積層された集電タブ全体の幅である)を有するように規定されることが好ましい。これによって、急速充電特性および大電流出力特性の優れた電池が得られる。
図8は、捲回両出し型の非水電解質電池の例であり、容器1内に電極群2が収容される。電極群2は、シート状の正極とシート状の負極とをセパレータを間に挟んで交互に積層することにより作製されたものである。複数の正極集電タブ3は、正極の複数個所と電気的に接続されており、それぞれが積層型電極面の一方の側面から横向きに導出されている。複数の負極集電タブ4は、負極の複数個所と電気的に接続されており、それぞれが積層型電極の対向する他方の側面から横向きに導出されている。
正極集電タブ3としては、例えば正極の集電体を部分的に延出されたものを使用することができるが、正極と別体であってもよい。また、負極集電タブ4としては、例えば、負極の集電体を部分的に延出されたものを用いることができるが、負極と別体であってもよい。
容器1の開口部は封口部材によって封止される。図8に示すように、封口部材は、容器1の開口部を塞ぐ蓋9と、蓋9の外面(上面)にガスケット10および11を介してそれぞれかしめ固定された正極出力端子12および負極出力端子13を備える。蓋9は、アルミニウムまたはアルミニウム合金板材等の金属を素材にしたプレス成形品からなる。図示していないが、蓋9には、電解液注入孔および安全弁が設けられている。電解液注入後、電解液注入孔は封止栓(図示しない)で閉止され、この封止栓は、蓋9に溶接される。
蓋9の内面(下面)には、負極リード8が絶縁体15を介して配置されるとともに、正極リード7が絶縁体14を介して配置される。負極リード8は、接続プレート81と、接続プレート81に開口された貫通孔82と、接続プレート81から下方に延びた集電部83とを有する。絶縁体15は、貫通孔151が開口された矩形プレートからなる。負極出力端子13は、リベットで、蓋9上に配置された頭部と、頭部から下方に延出された軸部(図示しない)とを有する。負極出力端子13の軸部が、絶縁体15の貫通孔151と負極リード8の貫通孔82に挿入されてかしめ固定される、つまり、負極出力端子13は蓋9にかしめ固定され、さらに負極リード8にもかしめ固定される。こうして、負極リード8が負極出力端子13と電気的に接続される。
正極リード7は、接続プレート71と、接続プレート71に開口された貫通孔72と、接続プレート71から下方に延びた集電部73とを有する。絶縁体14は、貫通孔141が開口された矩形プレートからなる。正極出力端子12は、リベットで、蓋9上に配置された頭部と、頭部から下方に延出された軸部(図示しない)とを有する。正極出力端子12の軸部が、絶縁体14の貫通孔141と正極リード7の貫通孔72に挿入されてかしめ固定される。つまり、正極出力端子12は蓋9にかしめ固定され、さらに正極リード7にもかしめ固定される。こうして、正極リード7が正極出力端子12と電気的に接続される。
負極出力端子13および負極リード8の材質は、活物質の材質に合わせて変更することができる。例えば負極活物質としてチタン酸リチウムが用いられる場合には、アルミニウムもしくはアルミニウム合金を使用することができる。一方、正極出力端子12および正極リード7は、例えば、アルミニウムあるいはアルミニウム合金を使用することができる。
負極リード8は、負極集電タブ4と接続される。具体的には、負極リード8の集電部83は、図9に示すように、負極の保護リード6に挟まれた負極集電タブ4と超音波により接合される。超音波による接合部は、参照符号20として示されている。超音波接合部は、集電タブの幅端を横切らないよう、全ての集電タブが重なった領域のみに形成される。しかも、集電タブ4の幅方向において、超音波接合部20の幅Cは、上述した関係(1)(C≦2A−E、Aは個々の集電タブの幅であり、Eは積層された集電タブ全体の幅である)を満たすことが好ましい。
正極の保護リード5も同様の条件を満たすように、正極リード7の集電部73に超音波により接合されることが好ましい。これにより、強度の大きな正極集電タブ3が正極リード7を介して正極出力端子12と電気的に接続される。
集電タブとリードとの超音波接合部の条件を満たしていれば、図8の電池は種々の変更が可能である。例えば、前述した図では、正極出力端子および負極出力端子をいずれもリベットとしたが、負極出力端子のみをリベットとし、蓋9の外面に凸状に張り出した部分により正極出力端子を構成してもよい。あるいは、正極出力端子のみをリベットとして、蓋9の外面に凸状に張り出した部分を負極出力端子とすることもできる。
本発明においては、複数の集電タブとリードとを超音波接合するにあたって、集電タブの幅端を横切らないよう、全ての集電タブが重なった領域のみを確実に接合することを可能とした。その結果、集電タブの強度が高められ、タブの切断といった不具合を低減して、大電流特性の優れた電池を提供することができる。
[実施例]
以下、実施例を示して本発明を詳細に説明する。
アルミタブ(1N30−H製、厚さ0.015mm、幅25mm)、保護リード(1050−O製、厚さ0.2mm、幅25mm)、およびリード(1050−H製、厚さ0.8mm、幅22mm)を準備した。
アルミタブ40枚を積層して保護リードで挟み、図3に示したようにホーンとアンビルとを用いて、超音波によりリードと接合して試験サンプルを作製した。超音波による接合には、日本エマソン株式会社製の超音波溶接機を使った。超音波溶接機のホーンの先端角度は90°とし、加圧時間0.2Mpa、振幅80%、時間0.8secの条件で接合を行なった。その結果、深さ4mmの接合部(ホーン痕)が形成され、接合部の幅は8mmであった。
得られたサンプルについて、アルミタブのズレ幅を測定するとともに、それぞれのアルミタブの引張り強度を測定した。
ここで、タブのズレ幅について説明する。タブのズレ幅Bは、タブ35の中心から超音波接合部59の中心までの距離で定義する。例えば、図10に示されるようにタブ35の中心と超音波接合部59の中心とが一致する場合には、B=0である。
ここで用いたタブの幅(A)が25mmであり、超音波接合部の幅(C)が8mmであるので、タブのズレ幅(B)が8.5mmの場合には、図11に示されるように、接合部59の端はタブ35の幅端と一致する。
ズレ幅Bが12.5mmの場合には、図12に示されるように超音波接合部59の中心は、タブ35の幅と一致する。すなわち、接合部59はタブの幅端を踏んで、その外側にまで存在することになる。このタブにおいては、接合される幅が少ないので強度が小さくなる。
ズレ幅Bが16.5mmの場合には、超音波接合部59は集電タブ35との重なりが生じないので、図13に示されるように集電タブは接合されない。
引張り強度の測定は、超音波接合されたサンプルのリードを固定して、40枚のアルミタブを1枚ずつ、切断が発生するまで引張ることにより行なった。40枚のアルミタブは、ホーン側から順に1,2,3・・・として、それぞれのタブの強度を調べた。その結果を以下に示す。
(サンプル1)
40枚のタブの幅端は揃っており、図14に示すようにアルミタブ35とリード41とが超音波接合部59により接合された。40枚のアルミタブが全て、超音波によって接合され、超音波接合部の幅Cは(C≦2A−E)を満たしている。接合部59の端は、タブ35の幅端に達していない。引張り強度は、図15のグラフに示されるように、最小でも26N程度、最大で45N程度と高いレベルである。
(サンプル2)
40枚のタブの幅端は揃っているものの、図16に示されるように、接合部59はアルミタブ35を横切って形成された。接合部59のはみ出し幅xは2mmであり、タブのズレ幅は10.5mmであった。超音波接合部の幅Cは(C≦2A−E)を満たすが、接合部はタブの幅端を越えている。引張り強度は、図17のグラフに示されるように大幅に低下し、最大でも25N程度であった。
(サンプル3)
40枚のタブにはズレが発生したものの、超音波接合部59は、アルミタブ35の幅端を横切っていない。リード41とアルミタブ35との接合の状態を、図18に示す。超音波接合部の幅Cは(C≦2A−E)を満たしており、40枚全てのタブが超音波によって接合された。
タブの引張り強度を図19のグラフに示す。40枚の集電タブのうち、No.1〜8のタブのズレ幅は8.5mm、No.9〜16のタブのズレ幅は6.5mm、No.17〜24のタブのズレ幅は4.5mm、No.25〜40のタブのズレ幅は2.5mmであった。タブにズレが生じた場合であっても、タブの幅端を踏まないように超音波接合部が形成されていれば、比較的高いレベルで安定した強度が得られることが、図19のグラフに示されている。
(サンプル4)
図20に示されるように、アルミタブ35にはズレが生じ、接合部59はアルミタブの幅端を横切って形成された。接合部の幅Cは(C>2A−E)である。
タブの引張り強度を図21のグラフに示す。40枚の集電タブのうち、No.1〜8のタブのズレ幅は15mm、No.9〜16のタブのズレ幅は13mm、No.17〜24のタブのズレ幅は11mm、No.25〜32のタブのズレ幅は8.5mm、No.33〜40のタブのズレ幅は6.5mmであった。
ズレ幅が大きくなると、接合部のはみ出しも大きくなる。はみ出し部の幅は、No.1〜8のタブでは6mm、No.9〜16のタブでは4mmであり、No.17〜24のタブでは2mmであった。
タブにズレが生じ、しかも超音波接合部がタブの幅端を踏んでいる場合には、引張り強度が低下することがわかる。
(サンプル5)
超音波接合部の幅Cは(C>2A−E)であり、図22に示すようにホーン側の8枚のタブにズレが生じていた。タブのズレ幅は12.5mmであった。この8枚のタブの幅端は接合部59で踏まれており、接合部59の4mmがはみ出している。
ズレが生じた8枚のタブにおいては、接合部が幅端を踏んで横切ることにより接合が不十分となって、引張り強度が劣ることが図23のグラフからわかる。
(サンプル6)
超音波接合部の幅Cは(C>2A−E)であり、図24に示すように中央付近の8枚のタブにズレが生じていた。タブのズレ幅は12.5mmであった。この8枚のタブは、幅端が接合部59で踏まれており、接合部の4mmがはみ出している。
ズレが生じた8枚のタブにおいては、接合部が踏んで幅端を横切ることにより接合が不十分となって、引張り強度が劣ることが図25のグラフからわかる。
(サンプル7)
超音波接合部の幅Cは(C>2A−E)であり、図26に示すように中央付近の1枚のタブにズレが生じていた。タブのズレ幅は12.5mmであった。このタブは、幅端が接合部59で踏まれており、接合部の4mmがはみ出している。
ズレが生じたタブにおいては、接合部が幅端を踏んで横切ることにより接合が不十分となって、引張り強度が低下することが図27のグラフからわかる。
ここで、タブのズレ幅と平均強度との関係を図28のグラフにまとめる。タブのズレ幅が大きくなるにしたがって、強度は低下する傾向にある。しかしながら、本発明の条件(1)を満たしていれば、その低下の割合は比較的小さい。図28においては、ズレ幅8.5mm以下の場合に、上述の関係(1)が成立する。すなわち、タブの幅端を踏んで横切ることなく、全てのタブが存在する領域のみを超音波接合することによって、ズレが生じていても強度を確保することができる。
タブの強度が大きいことから切断される可能性が低減して、抵抗の増加は避けられる。出力が安定し、優れた急速充填特性および大電流出力特性が得られることがわかる。本発明により、容器内への電極群の組み込み中の外力に対して強度が得られることが確認された。
次に、前述のサンプル3を適用して集電タブと保護リードリードとを接合し、実施例の電池を作製した。具体的な構成は以下のとおりである。
正極には、リチウムコバルト酸化物(LiCoO2)と、導電剤として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを含む活物質含有層が、アルミニウムもしくはアルミニウム合金箔からなる集電体の両面に形成されたシート状のものを使用した。一方、負極には、リチウム金属の開回路電位に対して開回路電位0.4V以上のリチウム吸蔵電位を有する負極活物質粉末と導電剤として炭素粉末と結着剤としてポリフッ化ビニリデン(PVdF)とを含む活物質含有層が、アルミニウムもしくはアルミニウム合金箔からなる集電体の両面に形成されたシート状のものを使用した。電極群は、正極と負極との間にセパレータを介在させながら、これらを渦巻き状に捲回した後、全体を金属製容器の断面形状に合致した断面四角形状に押し潰し変形することにより作製された図1に示す構造を有するものを使用した。
正極集電タブには、正極集電体を複数個所(この場合、50点)において帯状に延出させたものを使用した。また、負極集電タブには負極集電体を複数個所(この場合、50点において帯状に延出させたものを使用した。正極集電タブおよび負極集電タブのそれぞれについて、集電タブ50枚の先端部を重ね合わせ、保護リードを配置した。図3に示したようにホーンおよびアンビルを用いて、保護リードで挟まれた集電タブとリードとを超音波により接合した。
これ以降の工程は常法により行なって、実施例の電池を得た。
さらに、集電タブとリードとの接合状態をサンプル4に変更する以外は同様の手法により、比較例の電池を作製した。
得られた電池を、10cmの高さから落下させて落下試験を実施した。この落下試験は、電池の各面を下にして、6面全てについて行なった。これを1サイクルとして、繰り返したところ、実施例の電池は800サイクルに耐えた。これに対し、比較例の電池では、200サイクルで正負極リードとタブとの接合部が外れる不具合が発生した。なお、1mからの落下試験においても同様の効果を確認できた。
こうした結果から、本発明によって、電池の組み込み後の外力に対する強度が確保されたことがわかる。
前述した実施例では非水電解液を用いた電池を例えに説明したが、非水電解液の代わりに固体電解質やポリマー電解質、または水溶液電解質を用いた電池についても当然適応可能である。さらに正負極活物質に関してもこの限りでなく、他の活物質を用いることができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1…容器; 2…電極群; 3…正極集電タブ; 4…負極集電タブ
5…保護リード; 6…保護リード; 7…正極リード; 8…負極リード
1,81…接続プレート; 72,82…貫通孔; 73,83…集電部
9…蓋; 10,11…ガスケット; 12…正極出力端子; 13…負極出力端子
14,15…絶縁体; 141,151…貫通孔; 20…超音波による接合部
21…アンビル; 22…ホーン; 31…容器; 32,33…電極群
32a,33a…上端面; 34…正極集電タブ; 35…負極集電タブ
36,37…保護リード; 38…蓋; 39…ガスケット; 40…負極出力端子
41…負極リード; 42…正極リード; 43…正極出力端子
51a,51b…スペーサ; 52a〜52c…仕切り板; 53…突起
54a〜54c…仕切り板; 55…凹部; 56…穴
59…超音波による接合部。

Claims (4)

  1. 正極および負極を含む電極群と、
    前記電極群の前記正極または前記負極と電気的に接続され、アルミニウムまたはアルミニウム合金からなり、幅端に位置ずれをもって積層された複数の集電タブと、
    前記複数の集電タブを挟む保護リードと、
    前記保護リードに挟まれた前記複数の集電タブと超音波により接合され、アルミニウムまたはアルミニウム合金からなるリードと
    を備える電池であって、
    前記超音波による接合部は、前記複数の集電タブを構成するいずれの集電タブの幅端も横切らずに形成されていることを特徴とする電池。
  2. 前記複数の集電タブの幅方向において、前記接合部の幅Cと前記複数の集電タブの幅Eとは以下の関係を満たすことを特徴とする請求項1に記載の電池。
    C≦2A−E
    (Aは、前記複数の集電タブを構成するそれぞれの集電タブの幅Aである。)
  3. 請求項1に記載の電池の製造方法であって、前記複数の集電タブを構成するいずれの集電タブの幅端も横切らないように、前記保護リードに挟まれた前記複数の集電タブと前記リードとを超音波により接合することを特徴とする方法。
  4. 以下の関係を満たすように、前記保護リードに挟まれた前記複数の集電タブと前記リードとを超音波により接合することを特徴とする請求項3に記載の方法。
    C≦2A−E
    (Cは前記超音波による接合部の幅であり、Eは前記複数の集電タブの幅であり、Aは前記複数の集電タブを構成するそれぞれの集電タブの幅Aである。)
JP2009220887A 2009-09-25 2009-09-25 電池およびその製造方法 Active JP5566651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220887A JP5566651B2 (ja) 2009-09-25 2009-09-25 電池およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220887A JP5566651B2 (ja) 2009-09-25 2009-09-25 電池およびその製造方法

Publications (2)

Publication Number Publication Date
JP2011070917A JP2011070917A (ja) 2011-04-07
JP5566651B2 true JP5566651B2 (ja) 2014-08-06

Family

ID=44016008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220887A Active JP5566651B2 (ja) 2009-09-25 2009-09-25 電池およびその製造方法

Country Status (1)

Country Link
JP (1) JP5566651B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101034A (ko) * 2017-03-03 2018-09-12 주식회사 엘지화학 박판을 이용한 리드 단선을 개선하는 파우치형 이차전지 및 그 제조방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616502B1 (ko) * 2011-12-08 2016-04-28 주식회사 엘지화학 슬릿을 이용하여 연결된 전극 리드와 전극 탭을 포함하는 이차전지
US9899655B2 (en) 2012-09-14 2018-02-20 Greatbatch Ltd. Electrochemical current collector screen designs utilizing ultrasonic welding
JP6173729B2 (ja) 2013-03-14 2017-08-02 株式会社東芝 電池の製造方法
JP6173730B2 (ja) 2013-03-14 2017-08-02 株式会社東芝 電池
JP2014191967A (ja) * 2013-03-27 2014-10-06 Murata Mfg Co Ltd 電池
KR101736548B1 (ko) 2014-11-19 2017-05-16 주식회사 엘지화학 이차전지의 복수개의 전극 탭과 전극 리드의 용접 방법 및 이에 의해 제조된 이차 전지, 이차전지의 복수개의 전극 탭과 전극 리드의 용접 불량 검사 방법
JP6466296B2 (ja) * 2015-09-10 2019-02-06 株式会社東芝 電池及び電池製造方法
US20220302559A1 (en) * 2019-09-26 2022-09-22 Sanyo Electric Co., Ltd. Secondary battery
CN112825381A (zh) * 2019-11-19 2021-05-21 深圳市海鸿新能源技术有限公司 二次电池的极片及其制备方法、二次电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644899B2 (ja) * 2000-02-23 2011-03-09 ソニー株式会社 電極及び電池、並びにそれらの製造方法
JP2008060407A (ja) * 2006-08-31 2008-03-13 Fdk Corp 蓄電素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101034A (ko) * 2017-03-03 2018-09-12 주식회사 엘지화학 박판을 이용한 리드 단선을 개선하는 파우치형 이차전지 및 그 제조방법
KR102309416B1 (ko) * 2017-03-03 2021-10-07 주식회사 엘지에너지솔루션 박판을 이용한 리드 단선을 개선하는 파우치형 이차전지 및 그 제조방법

Also Published As

Publication number Publication date
JP2011070917A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5566651B2 (ja) 電池およびその製造方法
JP5618515B2 (ja) 電池
US10115937B2 (en) Battery including branched current collector sections
JP5558265B2 (ja) 電池
CN105917512B (zh) 二次电池和二次电池的制造方法
KR101427018B1 (ko) 전지 및 그 제조 방법
JP5591566B2 (ja) 電池
JP5537094B2 (ja) 電池
JP2011049065A (ja) 非水電解質電池およびその製造方法
JP5106024B2 (ja) 電池
JP6250921B2 (ja) 電池
JPWO2016204147A1 (ja) 電池及び電池パック
JP6173730B2 (ja) 電池
JP5329890B2 (ja) 非水電解質電池
JP6173729B2 (ja) 電池の製造方法
JP2011171079A (ja) 電池
JP2011049064A (ja) 電池
JP6972175B2 (ja) 電池パック
JP5677373B2 (ja) 電池
JP5161421B2 (ja) 非水電解質電池
CN113711423B (zh) 电池
JP2018147574A (ja) 角形リチウムイオン二次電池
JP5472941B2 (ja) 非水電解質電池
WO2019167357A1 (ja) 密閉型電池
WO2019049377A1 (ja) 電池及び電池パック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R151 Written notification of patent or utility model registration

Ref document number: 5566651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151