JP5565150B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5565150B2
JP5565150B2 JP2010151590A JP2010151590A JP5565150B2 JP 5565150 B2 JP5565150 B2 JP 5565150B2 JP 2010151590 A JP2010151590 A JP 2010151590A JP 2010151590 A JP2010151590 A JP 2010151590A JP 5565150 B2 JP5565150 B2 JP 5565150B2
Authority
JP
Japan
Prior art keywords
blast furnace
ammonia
reducing material
tuyere
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151590A
Other languages
Japanese (ja)
Other versions
JP2012012678A (en
Inventor
稔 浅沼
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010151590A priority Critical patent/JP5565150B2/en
Publication of JP2012012678A publication Critical patent/JP2012012678A/en
Application granted granted Critical
Publication of JP5565150B2 publication Critical patent/JP5565150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は羽口から補助還元材を吹き込む高炉操業に関する。   The present invention relates to a blast furnace operation in which an auxiliary reducing material is blown from a tuyere.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。これを受け、最近の高炉操業では低還元材比操業においてCO2排出量を削減する方法が強力に推進されている。高炉は主にコークスおよび微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークス等を廃プラスチック、LNG(Liquefied Natural Gas:液化天然ガス)、重油等の水素含有率の高い還元材で置換する方策が有効である。炭素の代わりに水素を還元材として利用することにより、発生するCO2を大幅に削減することが可能と考えられている。水素含有率の高い還元材を高炉で用いる技術として、高炉にLNGを羽口より吹き込み、製銑工程で排出される炭酸ガスを低減させる低炭酸ガス排出製鉄法が知られている(例えば、特許文献1、特許文献2参照。)。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. In response, recent blast furnace operations are strongly promoting methods for reducing CO 2 emissions in operations with a low reducing material ratio. Blast furnaces mainly use coke and pulverized coal as reducing materials. In order to achieve a low reducing material ratio, and in order to reduce carbon dioxide emission, coke is used as waste plastic, LNG (Liquefied Natural Gas), It is effective to replace with a reducing material having a high hydrogen content such as heavy oil. It is considered that CO 2 generated can be significantly reduced by using hydrogen as a reducing material instead of carbon. As a technique for using a reducing material having a high hydrogen content in a blast furnace, a low carbon dioxide exhaust iron manufacturing method is known in which LNG is blown into the blast furnace from the tuyere to reduce the carbon dioxide discharged in the ironmaking process (for example, patents). Reference 1 and Patent Reference 2).

また、水素ガスを補助還元材として利用する方法も知られている(例えば、特許文献3参照。)   A method of using hydrogen gas as an auxiliary reducing material is also known (see, for example, Patent Document 3).

特開平03−240906号公報Japanese Patent Laid-Open No. 03-240906 特開2006−241586号公報JP 2006-241586 A 特開2008−082516号公報JP 2008-082516 A

日本芳香族工業会 「アロマティックス」第29巻第6号、1977年、p.7〜12 尚、非特許文献1は下記の「発明を実施するための形態」で参照する。Japan Aromatic Industry Association “Aromatics” Vol. 29, No. 6, 1977, p. 7-12 Note that Non-Patent Document 1 is referred to in the following “Mode for Carrying Out the Invention”.

上記のように、水素含有率の高い還元材を高炉の羽口から補助還元材として吹き込むことで、コークス、微粉炭等の炭素系還元材を削減し、排出CO2を抑制することが可能となるが、例えばLNGの主成分はメタン(CH4)であり、CH4由来の炭素も還元材として利用されることから、大幅な炭酸ガス削減量は期待できない。これに対して、水素ガス単体を補助還元材として用いれば、炭酸ガス削減量を大幅に増やすことができることになる。 As described above, by blowing a reducing material with a high hydrogen content from the tuyere's tuyere as an auxiliary reducing material, it is possible to reduce carbon-based reducing materials such as coke and pulverized coal, and to suppress exhaust CO 2 However, for example, the main component of LNG is methane (CH 4 ), and since carbon derived from CH 4 is also used as a reducing material, a significant reduction in carbon dioxide gas cannot be expected. On the other hand, if hydrogen gas alone is used as an auxiliary reducing material, the carbon dioxide gas reduction amount can be greatly increased.

しかし、水素は輸送が困難であるという問題がある。気体還元材として用いるものであっても、気体の状態での輸送は体積が大きく効率的でないため、LNGのように液体の状態で輸送することが望ましいが、このためには低温の貯蔵タンクが必要となる。LNGの場合、主成分のCH4の沸点が−162℃であるのに対し、水素の沸点は−253℃であるため、水素の輸送には極低温の貯蔵タンクが必要となり、このようなタンクを用いてトラック等で輸送を行なうことは非常にコスト高であり現実的でない。したがって、水素ガスの利用は、製鉄所内に水素ガスの発生設備があるような、限られた場合にのみ有効な手段であり、炭素を含まない補助還元材を高炉の羽口から大量に吹き込み、排出CO2を抑制することは現状では困難である。 However, there is a problem that hydrogen is difficult to transport. Even if it is used as a gas reducing material, it is desirable to transport in a liquid state such as LNG because transportation in a gas state is large and inefficient, but for this purpose, a low-temperature storage tank is used. Necessary. In the case of LNG, the boiling point of CH 4 as a main component is −162 ° C., whereas the boiling point of hydrogen is −253 ° C. Therefore, a cryogenic storage tank is required for transporting hydrogen, and such a tank It is very expensive and unrealistic to transport the vehicle using a truck or the like. Therefore, the use of hydrogen gas is an effective means only in a limited case where there is a hydrogen gas generation facility in the steelworks, and a large amount of auxiliary reducing material containing no carbon is blown from the tuyere's tuyere, It is difficult to suppress the exhausted CO 2 at present.

したがって本発明の目的は、このような従来技術の課題を解決し、補助還元材の少なくとも一部として炭素を含有しない還元材を羽口から吹き込む高炉操業であって、補助還元材の輸送や吹き込みのためのコストを大幅に増加させること無く、従来以上に炭酸ガスの削減効果の大きい、高炉操業方法を提供することにある。   Accordingly, an object of the present invention is to solve such a problem of the prior art, and is a blast furnace operation in which a reducing material containing no carbon is blown from the tuyere as at least a part of the auxiliary reducing material, and transportation and blowing of the auxiliary reducing material. An object of the present invention is to provide a method for operating a blast furnace that has a greater effect of reducing carbon dioxide gas than before without significantly increasing the cost for the operation.

上記の課題を解決するために、本発明では極低温で液化させる必要がないため輸送が容易であり、炭素を含有しないアンモニア(NH3)を補助還元材として用いることに想到し、本発明を完成した。アンモニアは沸点が−33℃であるため水素に比較して液化がはるかに容易であり、LNGに比較しても液化が容易である。液化したアンモニアは、輸送が容易であり、貯蔵の際の設備も低コストで建設することができる。またH2に比較して、単位体積あたりの水素含有率が高いという特徴もある。アンモニアガス1モル当たり水素ガスの1.5倍の水素を含有する。 In order to solve the above problems, the present invention does not need to be liquefied at a very low temperature and is therefore easy to transport, and has been conceived to use ammonia containing no carbon (NH 3 ) as an auxiliary reducing material. completed. Ammonia has a boiling point of −33 ° C., so it is much easier to liquefy than hydrogen, and liquefaction is also easier than LNG. Liquefied ammonia can be easily transported and equipment for storage can be constructed at low cost. In addition, the hydrogen content per unit volume is higher than that of H 2 . It contains 1.5 times as much hydrogen as hydrogen gas per mole of ammonia gas.

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)鉄含有原料とコークスとを高炉の炉頂から装入し、羽口から空気または酸素富化空気を送風する高炉操業において、
補助還元材として、アンモニアを前記羽口から吹き込むことを特徴とする高炉操業方法。
(2)前記酸素富化空気の酸素富化率を30体積%以下として、前記アンモニアの吹き込み量を130kg/t−p以下とすることを特徴とする(1)に記載の高炉操業方法。
(3)前記アンモニアはコークス炉ガス中のアンモニアであることを特徴とする(1)または(2)に記載の高炉操業方法。
The present invention has been made based on such findings, and the features thereof are as follows.
(1) In blast furnace operation in which iron-containing raw material and coke are charged from the top of the blast furnace and air or oxygen-enriched air is blown from the tuyere,
A blast furnace operating method, wherein ammonia is blown from the tuyere as an auxiliary reducing material.
(2) The blast furnace operating method according to (1), characterized in that an oxygen enrichment rate of the oxygen-enriched air is set to 30% by volume or less, and an ammonia blowing amount is set to 130 kg / tp or less.
(3) The method for operating a blast furnace according to (1) or (2), wherein the ammonia is ammonia in coke oven gas.

本発明によれば、炭素を含有しない還元材を用いて羽口からの補助還元材吹き込みを行なうことで、高炉のコークス比を低減すると共に、排出CO2量を大幅に削減することが可能となる。 According to the present invention, it is possible to reduce the coke ratio of the blast furnace and greatly reduce the amount of CO 2 emission by blowing the auxiliary reducing material from the tuyere using a reducing material that does not contain carbon. Become.

本発明の一実施形態を示す、高炉の概略図。1 is a schematic view of a blast furnace showing one embodiment of the present invention.

本発明では上記のように、補助還元材としてアンモニア(NH3)を高炉の羽口から吹き込むものである。高炉の羽口からは空気または酸素富化空気が送風されるが、通常は補助還元材として微粉炭等の固体還元材が同時に吹き込まれる。本発明では固体還元材に追加して、または固体還元材の少なくとも一部と代替して、高炉の羽口から、ランス等を用いてアンモニアの吹き込みを行なう。固体還元材とアンモニアとは、同一の羽口に複数本のランスを装着して吹き込んでも良く、羽口ごとに吹きこみ還元材の種類を変えても構わない。さらに、重油等の液体還元材を同時に吹き込むことも可能である。 In the present invention, as described above, ammonia (NH 3 ) is blown from the tuyere of the blast furnace as an auxiliary reducing material. Air or oxygen-enriched air is blown from the tuyere of the blast furnace, but usually a solid reducing material such as pulverized coal is blown simultaneously as an auxiliary reducing material. In the present invention, in addition to the solid reducing material or in place of at least part of the solid reducing material, ammonia is blown from the blast furnace tuyere using a lance or the like. The solid reducing material and ammonia may be blown in by attaching a plurality of lances to the same tuyere, and the type of blowing reducing material may be changed for each tuyere. Furthermore, it is possible to simultaneously blow in liquid reducing material such as heavy oil.

本発明の一実施形態を図1を用いて説明する。   An embodiment of the present invention will be described with reference to FIG.

高炉1では、羽口2から送風3と、補助還元材として微粉炭4の吹き込みを行なっている。羽口から高炉内にアンモニア5の吹き込みを行なうが、このためには、貯蔵タンク6に貯蔵された液体アンモニアを気化して、高炉内に吹込み可能な圧力まで昇圧機7で昇圧後、羽口2に接続したブローパイプを貫通させて設置したランスを用いて炉内に吹き込む。吹き込まれたアンモニアは炉内の高温で分解されてH2が生成し、還元材として作用する。 In the blast furnace 1, the air blow 3 is blown from the tuyere 2 and the pulverized coal 4 is blown as an auxiliary reducing material. Ammonia 5 is blown into the blast furnace from the tuyere. For this purpose, the liquid ammonia stored in the storage tank 6 is vaporized, and the pressure is increased by the booster 7 to a pressure that can be blown into the blast furnace. It blows into a furnace using the lance installed through the blow pipe connected to the opening 2. The injected ammonia is decomposed at a high temperature in the furnace to generate H 2 and acts as a reducing material.

アンモニアを高炉内に吹き込んだ場合、炉内ガス組成(ボッシュ部でのガス組成で、計算値を用いる。)は通常の操業に比較して、水素濃度が高くなる。分解により生成したH2は高炉内で発生するCO、CO2やN2に比較してガス密度が低く、通常の微粉炭吹込み高炉操業に比較して高炉内での通気性を良好とする。 When ammonia is blown into the blast furnace, the gas concentration in the furnace (the gas composition in the Bosch section, using the calculated value) has a higher hydrogen concentration than in normal operation. H 2 produced by cracking has a lower gas density than CO, CO 2 and N 2 generated in the blast furnace, and better air permeability in the blast furnace compared to normal pulverized coal injection blast furnace operation. .

アンモニアの吹き込み量は、CO2の発生量を少なくできるので多いほど好ましいが、吹込み量が多くなるほど、羽口先理論燃焼温度を維持するために酸素富化率を高くする必要が生じる。そのため、通常の送風機の酸素濃度管理値から30体積%程度の酸素富化率が安全上上限となり、アンモニアの吹き込み量は130kg/t−p(溶銑)程度が現実的な上限となる。尚、酸素富化率とは、「(熱風中酸素量+酸素供給量)/(送風量)×100−熱風中酸素濃度(%)」で定義され、送風量は「熱風量(空気)+酸素供給量」である。例えば、熱風量が1000Nm3/t−p、酸素供給量が50Nm3/t−pであれば、(1000×0.21+50)/(1000+50)×100−21=3.76%となる。kg/t−p(溶銑)とは、溶銑1t製造当たりに吹き込まれるアンモニアの質量を示している。 The ammonia blowing amount is preferably as large as possible because the amount of CO 2 generated can be reduced. However, as the blowing amount increases, it is necessary to increase the oxygen enrichment rate in order to maintain the tuyere theoretical combustion temperature. Therefore, an oxygen enrichment rate of about 30% by volume is an upper limit for safety from the oxygen concentration management value of a normal blower, and the practical upper limit is about 130 kg / tp (molten metal) for the ammonia blowing amount. The oxygen enrichment rate is defined as “(hot air oxygen amount + oxygen supply amount) / (air flow rate) × 100−hot air oxygen concentration (%)”, and the air flow rate is “hot air amount (air) + Oxygen supply amount ". For example, the hot air amount 1000Nm 3 / t-p, if the oxygen supply amount 50Nm 3 / t-p, the (1000 × 0.21 + 50) / (1000 + 50) × 100-21 = 3.76%. kg / tp (molten metal) indicates the mass of ammonia blown per 1 ton of molten iron.

アンモニアとして、コークス炉でコークス製造の際に発生するコークス炉ガス(COG)に含まれるアンモニアを回収して用いることが好ましい。通常、コークス炉から発生するガス中には6〜10g/Nm3のアンモニアが含有されており、希硫酸で洗浄し、硫安として回収されて、硫安肥料として販売されている。しかしながら、硫安肥料の需要が減少した場合、他に適当な用途も無いため、硫安の市場価値が大幅に低落し、採算性が著しく悪くなる恐れがある。また、アンモニアを燃焼し、単純に熱として回収することも可能であるが、燃焼過程でフーエルNOX、サーマルNOXが発生しやすく、NOX発生を抑制する燃焼制御が必要である。したがって、コークス炉ガスに含まれるアンモニアを高炉羽口から吹き込む補助還元材として用いることで、製鉄所内で発生する副生成物を安定的に、NOX発生の問題もなく、有効に利用することが可能となる。COGからのアンモニアの回収方法としては、例えばカールスチル法を用いることができる(例えば、非特許文献1参照。)。COG中のアンモニアを水またはアンモニア水で吸収し、次に、アンモニア水を蒸留してアンモニア蒸気とする方法である。 As ammonia, it is preferable to recover and use ammonia contained in coke oven gas (COG) generated during coke production in a coke oven. Normally, the gas generated from the coke oven contains 6 to 10 g / Nm 3 of ammonia, washed with dilute sulfuric acid, recovered as ammonium sulfate, and sold as ammonium sulfate fertilizer. However, when the demand for ammonium sulfate fertilizer decreases, there is no other suitable use, so the market value of ammonium sulfate is greatly reduced, and the profitability may be significantly deteriorated. In addition, ammonia can be burned and simply recovered as heat, but fuel NO x and thermal NO x are likely to be generated in the combustion process, and combustion control is required to suppress NO x generation. Thus, by using as an auxiliary reducing agent blowing ammonia contained in the coke oven gas from the blast furnace tuyeres, stable by-products generated in the steelworks, without problems of the NO X generation, it is used effectively It becomes possible. As a method for recovering ammonia from COG, for example, the Karl Still method can be used (see, for example, Non-Patent Document 1). In this method, ammonia in COG is absorbed with water or aqueous ammonia, and then the aqueous ammonia is distilled into ammonia vapor.

または、使用済みプラスチック等の廃棄物を原料として製造したリサイクル品のアンモニアを用いることが好ましい。   Alternatively, it is preferable to use ammonia, which is a recycled product manufactured using waste such as used plastic as a raw material.

アンモニアはそれ自体がC成分を含まない点で高炉操業におけるCO2排出量削減に効果があるが、原料を含めてカーボンフリーのクリーンなアンモニアを用いることがさらに好ましい。すなわち、アンモニアを製造する段階でも、カーボンに由来しない原料を用い、CO2を発生させていないものを用いることで、完全に地球全体としてのCO排出量削減に貢献できることになる。 Ammonia itself is effective in reducing CO 2 emissions in blast furnace operation in that it does not contain a C component, but it is more preferable to use carbon-free clean ammonia including raw materials. That is, even at the stage of producing ammonia, by using a material that does not originate from carbon and that does not generate CO 2 , it is possible to completely contribute to CO 2 emission reduction as a whole of the earth.

図1に示すものと同様の、炉内容積約5000m3の高炉において、条件1〜5の操業試験を実施した。アンモニア以外の補助還元材としては微粉炭を130kg/t−p(溶銑)とし、羽口先理論燃焼温度が2249℃になるように酸素富化率を調整した。表1に各操業条件と結果を示す。条件1は比較例であり、アンモニア(NH3)吹込みを行なわない従来の操業の場合である。アンモニア吹込み量は条件2で25kg/t−p(溶銑)、条件3は50kg/t−p(溶銑)、条件4は100kg/t−p(溶銑)、条件5で130kg/t−p(溶銑)である。送風圧力は3.4×105Paとし、アンモニアを吹き込む際の吹込み圧力は3.9×105Paとした。 In a blast furnace having a furnace internal volume of about 5000 m 3 similar to that shown in FIG. As an auxiliary reducing material other than ammonia, pulverized coal was 130 kg / tp (molten metal), and the oxygen enrichment rate was adjusted so that the theoretical combustion temperature at the tuyere became 2249 ° C. Table 1 shows the operating conditions and results. Condition 1 is a comparative example, which is a case of conventional operation in which ammonia (NH 3 ) blowing is not performed. Ammonia injection rate was 25 kg / tp (molten metal) under condition 2, condition 3 was 50 kg / tp (molten metal), condition 4 was 100 kg / tp (molten metal), and condition 5 was 130 kg / tp (molten metal). Hot metal). The blowing pressure was 3.4 × 10 5 Pa, and the blowing pressure when blowing ammonia was 3.9 × 10 5 Pa.

Figure 0005565150
Figure 0005565150

アンモニアを吹き込むことで、還元材比(RAR)は上昇するが、C投入量は減少する。これに伴い、条件2ではCO2発生削減量は16kg−CO2/t−p(溶銑)、条件3では32kg−CO2/t−p(溶銑)、条件4では63kg−CO2/t−p(溶銑)、条件5では82kg−CO2/t−p(溶銑)となり、CO2発生量を大幅に削減することができた。 By blowing ammonia, the reducing material ratio (RAR) increases, but the amount of C input decreases. Accordingly, the CO 2 generation reduction amount is 16 kg-CO 2 / tp (hot metal) in condition 2 , 32 kg-CO 2 / tp (hot metal) in condition 3, and 63 kg-CO 2 / t- in condition 4. Under p (molten metal) and condition 5, the amount was 82 kg-CO 2 / tp (molten metal), and the amount of generated CO 2 could be greatly reduced.

また、炉内ボッシュ部での各種ガスの合計のガス密度(ボッシュガス密度)は、条件1(比較例)で1.17kg/Nm3、条件2で1.13kg/Nm3、条件3で1.09kg/Nm3、条件4で1.00kg/Nm3、条件5で0.94kg/Nm3となり、ガス密度の低下から炉内通気性が改善されたものと考えられる。 The gas density (Bosch gas density) of the total various gases in the furnace Bosch unit, condition 1 (Comparative Example) 1.17 kg / Nm 3, condition 2 by 1.13 kg / Nm 3, in condition 3 1 0.09 kg / Nm 3 , Condition 4 is 1.00 kg / Nm 3 , Condition 5 is 0.94 kg / Nm 3 , and it is considered that the air permeability in the furnace was improved due to the decrease in gas density.

1 高炉
2 羽口
3 送風
4 補助還元材
5 アンモニア
6 貯蔵タンク
7 昇圧機
8 高炉ガス
1 Blast Furnace 2 Tuyere 3 Blow 4 Auxiliary Reducing Material 5 Ammonia 6 Storage Tank 7 Booster 8 Blast Furnace Gas

Claims (2)

鉄含有原料とコークスとを高炉の炉頂から装入し、羽口から空気または酸素富化空気を送風する高炉操業において、
補助還元材として、液体アンモニアを気化させた、カーボンフリーの気化アンモニアを前記羽口から吹き込むことを特徴とする高炉操業方法。
In blast furnace operation in which iron-containing raw material and coke are charged from the top of the blast furnace and air or oxygen-enriched air is blown from the tuyere,
A method for operating a blast furnace, wherein carbon-free vaporized ammonia obtained by vaporizing liquid ammonia is blown from the tuyere as an auxiliary reducing material.
前記酸素富化空気の酸素富化率を30体積%以下として、前記気化アンモニアの吹き込み量を130kg/t−p以下とすることを特徴とする請求項1に記載の高炉操業方法。 The blast furnace operating method according to claim 1, wherein an oxygen enrichment rate of the oxygen-enriched air is set to 30% by volume or less, and an amount of the vaporized ammonia blown is set to 130 kg / tp or less.
JP2010151590A 2010-07-02 2010-07-02 Blast furnace operation method Active JP5565150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151590A JP5565150B2 (en) 2010-07-02 2010-07-02 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151590A JP5565150B2 (en) 2010-07-02 2010-07-02 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2012012678A JP2012012678A (en) 2012-01-19
JP5565150B2 true JP5565150B2 (en) 2014-08-06

Family

ID=45599452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151590A Active JP5565150B2 (en) 2010-07-02 2010-07-02 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5565150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220062628A (en) * 2019-11-29 2022-05-17 제이에프이 스틸 가부시키가이샤 Blast furnace operation method and blast furnace auxiliary equipment
CN115478122A (en) * 2022-10-10 2022-12-16 北京首钢国际工程技术有限公司 Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154095A (en) * 1974-11-01 1976-05-12 Texaco Development Corp Kangengasuno seizohoho
JPH03215613A (en) * 1990-01-19 1991-09-20 Nkk Corp Operation of blast furnace
JPH04268003A (en) * 1991-02-21 1992-09-24 Nippon Steel Corp Method for operating blast furnace
JP2004309067A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method of using blast furnace gas
JP5605828B2 (en) * 2010-03-03 2014-10-15 国立大学法人北海道大学 Iron making method and iron making system

Also Published As

Publication number Publication date
JP2012012678A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP6229863B2 (en) Oxygen blast furnace operation method
CN102037145B (en) Method for melting raw iron while recirculating blast furnace gas by adding hydrocarbons
JP4661890B2 (en) Blast furnace operation method
CN113999945A (en) Method for operating blast furnace
KR20140043385A (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
JP2015510030A (en) Blast furnace for recirculating furnace top gas
EP3687941B1 (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
WO2023240753A1 (en) Low-carbon smelting system and method based on blast furnace-steelmaking furnace process coupled carbon cycle
JP5509676B2 (en) How to operate a vertical furnace
JP5593883B2 (en) How to reduce carbon dioxide emissions
JP5565150B2 (en) Blast furnace operation method
CN108430914A (en) Make the method for carbon dioxide decomposition and recycling using hot-blast stove
JP5315732B2 (en) Blast furnace operation method
JP5851828B2 (en) Method for producing combustible gas
JP2009509905A (en) Method for producing hydrogen and / or other gases from steel plant waste and waste heat
JP5884156B2 (en) Blast furnace operation method
JP2012067326A (en) Reduced iron manufacturing method
US20230366050A1 (en) Device to inject a reducing gas into a shaft furnace
JP5614517B1 (en) Blast furnace operation method
CN103740873B (en) A kind of system for blast furnace ironmaking
JP2011190471A (en) Method for operating blast furnace
JP2020045508A (en) Operation method of blast furnace
JP7131698B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
US20230366047A1 (en) Blast furnace for ironmaking production
US20230366049A1 (en) Device to inject a reducing gas into a shaft furnace

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5565150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250